
CHAPTER II 

REVIEW OF FUNDAMENTAL THEORY* 

18. Numbers and limits. The concept and theory of real number, 
integral, rational, and irrational, will not be set forth in detail here. 
Some matters, however, which are necessary to the proper understand­
ing of rigorous methods in analysis must be mentioned ; and numerous 
points of \riew which are adopted in the study of irrational number 
ΛVÌΠ be suggested in the text or exercises. 

It is taken for granted that by his earlier work the reader has become familiar 
with the use of real numbers. In particular it is assumed that he is accustomed 
to represent numbers as a scale, that is, by points on a straight line, and that he 
knows that when a line is given and an origin chosen upon it and a unit of measure 
and a positive direction have been chosen, then to each point of the line corre­
sponds one and only one real number, and conversely. Owing to this correspond­
ence, that is, owing to the conception of a scale, it is possible to interchange 
statements about numbers with statements about points and hence to obtain a 
more vivid and graphic or a more abstract and arithmetic phraseology as may be 
desired. Thus instead of saying that the numbers x , x2, • .• • are increasing algebra­
ically, one may say that the points (whose coordinates are) xu x2, • • • are moving 
in the positive direction or to the right ; with a similar correlation of a decreasing 
suite of numbers with points moving in the negative direction or to the left. It 
should be remembered, however, that whether a statement is couched in geometric 
or algebraic terms, it is always a statement concerning numbers when one has in 
mind the point of view of pure analysis. † 

I t may be recalled that arithmetic begins with the integers, including 0, and 
with addition and multiplication. That second, the rational numbers of the 
form p/q are introduced with the operation of division and the negative rational 
numbers with the operation of subtraction. Finally, the irrational numbers are 
introduced by various processes. Thus V2 occurs in geometry through the 
necessity of expressing the length of the diagonal of a square, and / 3 for the 
diagonal of a cube. Again, π is needed for the ratio of circumference to diameter 
in a circle. In algebra any equation of odd degree has at least one real root and 
hence may be regarded as defining a number. But there is an essential difference 
between rational and irrational numbers in that any rational number is of the 

* The object of this chapter is to set forth systematically, with attention to precision 
of statement and accuracy of proof, those fundamental definitions and theorems which 
lie at the basis of calculus and which have* been given in the previous chapter from an 
intuitive rather than a critical point of view. 

† Some illustrative graphs will be given ; the student should make many others. 
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form ± p/q with q ≠ 0 and can therefore be written down explicitly ; whereas 
the irrational numbers arise by a variety of processes and, although'they may be 
represented to any desired accuracy by a decimal, they cannot all be written 
down explicitly. I t is therefore necessary to have some definite axioms regulating 
the essential properties of irrational numbers. The particular axiom upon which 
stress will here be laid is the axiom of continuity, the use of which is essential 
to the proof of elementary theorems on limits. 

19 . A X I O M O F C O N T I N U I T Y . Jf all the points of a line are divided into 
two classes such that every point of the first class precedes every point of 
the second class, there must he a point such f hat any point preceding  

is in the first class and any point succeeding is in the second class. 
T h i s p r inc ip le m a y be s t a t ed in t e r m s of n u m b e r s , as : If all real num­
bers be assorted into two classes such that every number of the first class 
is algebraically less than every number of the second class, there must be 
a number N such that any number less than N is in the first class and 
any number greater than N is in the second. T h e n u m b e r N (or po in t C) 
is cal led t h e f ront ie r n u m b e r (or p o i n t ) , or s imply t h e frontier of t h e 
t w o classes, a n d in pa r t i cu l a r i t is t h e upper frontier for t h e first class 
a n d t h e lower frontier for t h e second. 

To consider a particular case, let all the negative numbers and zero constitute 
the first class and all the positive numbers the second, or let the negative numbers 
alone be the first class and the positive numbers with zero the second. In either 
case it is clear that the classes satisfy the conditions of the axiom and that zero is 
the frontier number such that any lesser number is in the first class and any 
greater in the second. If, however, one were to consider the system of all positive 
and negative numbers but without zero, it is clear that there would be «no number 
N which would satisfy the conditions demanded by the axiom when the two 
classes were the negative and positive numbers ; for no matter how small a posi­
tive number were taken as N, there would be smaller numbers which would also 
be positive and would not belong to the first class ; and similarly in case it were 
attempted to find a negative N. Thus the axiom insures the presence of zero in 
the system, and in like manner insures the presence of every other number — a 
matter which is of importance because there is no way of writing all (irrational) 
numbers in explicit form. 

Further to appreciate the continuity of the number scale, consider the four 
significations attributable to the phrase "the interval from a toh." They are 

α = =≡ ò, a <x = b, a = x <b, a <x <b. 

That is to say, both end points or either or neither may belong to the interval. -In 
the case a is absent, the interval has no first point ; and if b is absent, there is no 
last point. Thus if zero is not counted as a positive number, there is no least 
positive number ; for if any least number were named, half of it would surely be 

Ï
^ss , and hence the absurdity. The axiom of continuity shows that if all numbers ļ 
»e divided into two classes as required, there must be either a greatest in the first ' 
lass or a least in the second — the frontier — but not both unless the frontier is 
ounted twice, once in each class. 
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20. . D E F I N I T I O N OF A L I M I T . If x is a variable which takes on succes­
sive values x , x0, • • -, x{, xΊ, • • -, the variable x is said to approach the con­
stant I as a Uhi it if the numerical difference between x and I ultimately 
becomes, and f or all succeeding values of x remains, 
less than any ^reassigned number no matter how ¦χ x. '"'!"' ' ¿ 
small. The numerical difference between x and I 
is denoted by \x —1\ or \l — x\ and is called the absolute value of the 
difference. The fact of the approach to a limit may be stated as 

\x — l\ < e for all æ's subsequent to some x 
or x — l-\-η, 1771 < e for all x's subsequent to some x, 

where is a positive number which may be assigned at pleasure and 
must be assigned before the attempt be made to find an x such that 
for all subsequent #'s the relation \x — l\ < holds. 

So long as the conditions required in the definition of a limit are satisfied there 
is no need of bothering about how the variable approaches its limit, whether from 
one side or alternately from one side and the other, whether discontinuously as in 
the case of the area of the polygons used for computing the area of a circle or 
continuously as in the case of a train brought to rest by its brakes. To speak 
geometrically, a point x which changes its position upon a line approaches the 
point I as a limit if the point x ultimately comes into and remains in an assigned 
interval, no matter how small, surrounding I. 

A variable is said to become infinite if the numerical value of the 
variable ultimately becomes and remains greater than any preassigned 
number K, no matter how large.* The notation is x = ∞, but had best 
be read “ x becomes infinite/' not “ x equals infinity." 

THEOREM 1. If a variable is always increasing, it either becomes 
infinite or approaches a limit. 

That the variable may increase indefinitely is apparent. But if it does not 
become infinite, there must be numbers which are greater than any value of 
the variable. Then any number must satisfy one of two conditions : either there 
are values of the variable which are greater than it or there are no values of the 
variable greater than it. Moreover all numbers that satisfy the first condition are 
less than any number which satisfies the second. All numbers are therefore^ 
divided into two classes fulfilling the requirements of the axiom of continuity, and ļ 
there must be a number N such that there are values of the variable greater than ļ 
any number N— e which is less than N. Hence if e be assigned, there is a value of 
the variable which lies in the interval N — e<x≤N, and as the variable is always 
increasing, all subsequent values must lie in this interval. Therefore the variable 
approaches N as a limit. 

* This definition means what it says, and no more. Later, additional or different 
meanings may be assigned to infinity, but not now. Loose and extraneous concepts in 
this connection are almost certain to introduce errors and confusion. 
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EXERCISES 

1. If x , x2, • • -, x», • • -, x-n+µ, • • • is a suite approaching a limit, apply the defi­
nition of a limit to show that when e is given it must be possible to lind a value of 
n so great that \x„ +ļl — xn \ < e for all values of p. 

2. If x l ţ ¿c2, • • • is a suite approaching a limit and if yh y2, • • • is any suite such 
that \yn — xnI approaches zero when n becomes infinite, showr that the ¾/'s approach 
a limit which is identical with the limit of the x's. 

3 . As the definition of a limit is phrased in terms of inequalities and absolute 
values, note the following rules of operation : 

. . _. _ . . b . a a 
(a) It a > 0 and c>b, then - > - and - < - , 

(ß) |α + b + c + . . . | ≤ | α | + |b| + | c | + ••-, (y) \abc • • -| = \a\. \b\.\c\. .., 
where the equality sign in (ß) holds only if the numbers α, fr, c, • • • have the same 
sign. By these relations and the definition of a limit prove the fundamental 
theorems : 

If lim x = X and lim — Y, then lim (x ± y) = JĹ ± Y and lim xy = XY. 

4. Prove Theorem 1 when restated in the slightly changed form : If a variable 
x never decreases and never exceeds JΓ, then x approaches a limit N and N' =≤ K. 
Illustrate fully. State and prove the corresponding theorem for the case of a 
variable never increasing. 

5. If »i, x2ì • • • and ž/i, ž/2, • • • are two suites of which the first never decreases 
and the second never increases, all the ?/'s being greater than any of the x's, and if 
when e is assigned an n can be found such that yn — x < e, show that the limits 
of the suites are identical. 

6. If ÍCI, x2, • - • and ?/i, 2/2, • • • are two suites which never decrease, show by Ex. 4 
(not by Ex. 3) that the suites X\ + , x2 + 2/2, • • • and xxy\, x2y2, • • • approach 
limits. Note that two infinite decimals are precisely two suites which never de­
crease as more and more figures are taken. They do not always increase, for some 
of the figures may be 0. 

7. If the word f f all “ in the hypothesis of the axiom of continuity be assumed to 
refer only to rational numbers so that the statement becomes : If all rational 
numbers be divided into two classes • • •, there shall be a number N (not neces­
sarily rational) such that • • • ; then the conclusion may be taken as defining a 
number as the frontier of a sequence of rational numbers. Show that if two num­
bers X, Y be defined by two such sequences, and if the sum of the numbers be 
defined as the number defined by the sequence of the sums of corresponding terms 
as in Ex. 6, and if the product of the numbers be defined as the number defined by 
the sequence of the products as in Ex. 6, then the fundamental rules 

X + Y - Y + χ4 2T= TX, (X+Y)Z = XZ+YZ 

of arithmetic hold for the numbers X, F, Z defined by sequences. In this way a 
complete theory of irrationals may be built up from the properties of rationale 
combined with the principle of continuity, namely, 1° by defining irrationals as 
frontiers of sequences of rationals, 2° by defining the operations of addition, multi­
plication, • • • as operations upon the rational numbers in the sequences, 3° by 
showing that the fundamental rules of arithmetic still hold for the irrationals. 
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8. Apply the principle of continuity to show that there is a positive number x 
such that x2 = 2. To do this it should be shown that the rationals are divisible 
into two classes, those whose square is less than 2 and those whose square is not 
less than 2 ; and that these classes satisfy the requirements of the axiom of conti­
nuity. In like manner if a is any positive number and is any positivejnteger, 
show that there is an x such that xn = a. 

21. Theorems on limits and on sets of points. The theorem on 
limits which is of fundamental algebraic importance is 

THEOREM 2. If R (x, ;/, z, • • •) be any rational function of the variables 
x9 y, z, • • •, and if these variables are approaching limits X, Γ, Z, • • •, 
then the value of R approaches a limit ancļ the limit is R (X, Y, Z, •'••), 
provided there is no division by zero. 

As any rational expression is made up from its elements by combinations of 
addition, subtraction, multiplication, and division, it is sufficient to prove the 
theorem for these four operations. All except the last have been indicated in the 
above Ex. 3. As multiplication has been cared for, division need be considered 
only in the simple case of a reciprocal 1/x. It must be proved that if lim x — X, 
then lim (1/x) = 1/X. Now 

I1 1 \ \ X ~ X \ , « v. 
|í-χ| = W í x ī f by Ex. 3 ( 7 ) above. 

This quantity must be shown to be less than any assigned e. As the quantity is 
complicated it will be replaced by a simpler one which is greater, owing to an 
increase in the denominator. Since x ≡ X, x — X may be made numerically as 
small as desired, say less than e', for all 's subsequent to some particular x. Hence 
if e' be taken at least as small as ļ|-Y|, it appears that |æ| must be greater than 
\\X\. Then 

1 ' < ' ' = , by Ex. 3 (a) above, 
\x\\x\ ι µ γ | * ¾|X|2 ĸ > 

and if e' be restricted to being less than ļ | X | 2 e , the difference is less than e and 
the theorem that lim (1/x) = 1/X is proved, and also Theorem 2. The necessity 
for the restriction X ≠ 0 and the corresponding restriction in the statement of 
the theorem is obvious. 

THEOREM 3. If when is given, no matter how small, it is possible 
to find a value of n so great that the difference \xn + p — xn\ between xn 

and every subsequent term xn + p in the suite xΛ, x2, ••• , xn, ••• is less 
than e, the suite approaches a limit, and conversely. 

The converse part has already been given as Ex. 1 above. The theorem itself is 
a consequence of the axiom of continuity. First note that as \xn + p — xn\<e for 
all 's subsequent to ¿εn, the x's cannot become infinite. Suppose 1° that there 
is some number I such that no matter how remote xn is in the suite, there are 
always subsequent values of x which are greater than I and others which are less 
than I. As all the x's after xn lie in the interval 2 e and as I is less than some æ's 
and greater than others, I must lie in that interval. Hence \l — xn+p\ < 2 e for all 
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x's subsequent to xn. But now 2 e can be made as small as desired because e can be 
taken as small as desired. Hence the definition of a limit applies and the x's 
approach I as a limit. 

Suppose 2° that there is no such number I. Then every number is such that 
either it is possible to go so far in the suite that all subsequent numbers x are 
as great as or it is possible to go so far that all subsequent x's are less than k. 
Hence all numbers are divided into two classes which satisfy the requirements of 
the axiom of continuity, and there must be a number N such that the x's ultimately 
come to lie between N — e' and N + e', no matter how small e is. Hence the x's 
approach N as a limit. Thus under either supposition the suite approaches a limit 
and the theorem is proved. I t may be noted that under the second supposition the 
x's ultimately lie entirely upon one side of the point N and that the condition 
\xn + p — x \ < € is not used except to show that the x's remain finite. 

2 2 . Cons ider n e x t a set of po in t s (or t he i r corre la t ive n u m b e r s ) 
w i t h o u t a n y impl ica t ion t h a t t h e y form a sui te , t h a t is, t h a t one m a y 
be said to be subsequen t to ano ther . I f t he re is only a finite n u m b e r 
of po in t s i n t h e set , t h e r e is a po in t f a r t he s t to t h e r i g h t a n d one 
f a r the s t t o t h e left. I f t he r e is an infini ty of po in t s in t h e set, t w o 
possibi l i t ies ar ise . E i t h e r 1° i t is no t possible to ass ign a po in t so 
far t o t h e r i g h t t h a t no po in t of t h e set is f a r the r to t h e r i g h t — in 
wh ich case t h e set is said t o be unlimited above — or 2° t h e r e is a 
po in t such t h a t n o p o i n t of t h e set is beyond — a n d t h e se t is 
sa id t o be limited above. S imi la r ly , a set m a y be limited below or un­
limited below. I f a se t is l imi ted above a n d below so t h a t i t is en t i r e ly 
con ta ined in a finite in te rva l , i t is sa id m e r e l y to be limited. I f t h e r e 
is a p o i n t such t h a t in a n y in te rva l , no m a t t e r h o w smal l , su r round­
i n g t h e r e a r e po in t s of t h e set, t h e n is cal led a point of condensa­
tion of t h e se t (C i tself m a y or m a y no t be long to t h e se t ) . 

T H E O R E M 4. A n y infinite set of po in t s wh ich is l imi ted has a n 
u p p e r f ront ie r ( m a x i m u m ?) , a lower f ront ie r ( m i n i m u m ?) , a n d a t 
l eas t one p o i n t of condensa t ion . 

Before proving this theorem, consider three infinite sets as illustrations : 

(a) 1, 1.9, 1.99, 1.999, . . . , (ß) - 2, • •. , - 1.99, - 1.9, - 1, 

( ) — 1? ~" \i — ìì ' ' ' ι h h -*-• 
In (a) the element 1 is the minimum and serves also as the lower frontier ; it is 

clearly not a point of condensation, but is isolated. There is no maximum ; but 2 
is the upper frontier and also a point of condensation. In (ß) there is a maximum 
— 1 and a minimum — 2 (for — 2 has been incorporated with the set). In (7) there 
is a maximum and minimum ; the point of condensation is 0. If one could be sure 
that an infinite set had a maximum and minimum, as is the case with finite 
sets, there would be no need of considering upper and lower frontiers. I t is clear 
that if the upper or lower frontier belongs to the set, there is a maximum or 
minimum and the frontier is not necessarily a point of condensation ; whereas 
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if the frontier does not belong to the set, it is necessarily a point of condensation and 
the corresponding extreme point is missing. 

To prove that there is an upper frontier, divide the points of the line into two 
classes, one consisting of points which are to the left of some point of the-set, the 
other of points which are not to the left of any point of the set — then apply the 
axiom. Similarly for the lower frontier. To show the existence of a point of con­
densation, note that as there is an infinity of elements in the set, any point p is such 
that either there is an infinity of points of the set to the right of it or there is not. 
Hence the two classes into which all points are to be assorted are suggested, and 
the application of the axiom offers no difficulty. 

EXERCISES 

1. I n a manner analogous to the proof of Theorem 2, show that 
, ,. x-1 1* /Λ4 ,. 3 x - 1 5 , .. x2 + l 
(a) lim = - , (ß) hm = - , (7) hm o = — 1. 

2. Given an infinite series S = + u2 + uz + • • • . Construct the suite 

Si = MI, S2 = + u2, Ss = + u2 + uz, • • •, Si = + u2 + • • • + , • • •, 
where Si is the sum of the first terms. Show that Theorem 3 gives : The neces­
sary and sufficient condition that the series S converge is that it is possible to find 
an n so large that \Sn+p — Sn\ shall be less than an assigned e for all values of p. 
I t is to be understood that a series converges when the suite of Ã's approaches a limit, 
and conversely. 

3 . If in a series % — u2 + — + • • • the terms approach the limit 0, are 
alternately positive and negative, and each term is less than the preceding, the 
series converges. Consider the suites Si, S3, *S5, • • • and £2 , &ι, SQ, 

4. Given three infinite suites of numbers 
Xι, x2, • . . , xn, •••; yi, y2, - •-, yn, •••; zx, z2, • • -, zn, • • • 

of which the first never decreases, the second never increases, and the terms of the 
third lie between corresponding terms of the first two, xn ≤ zn ≤ yn. Show that 
the suite of «'s has a point of condensation at or between the limits approached by 
the x1s and by the ¾/'s ; and that if lim x = Hm = I, then the z's approach I as a 
limit. # 

5. Restate the definitions and theorems on sets of points in arithmetic terms. 

6. Give the details of the proof of ^Theorem 4. Show that the proof as outlined 
gives the least point of condensation. How would the proof be worded so as to give 
the greatest point of condensation ? Show that if a set is limited above, it has an 
upper frontier but need not have a lower frontier. 

7. If a set of points is such that between any two there is a third, the set is said 
to be dense. Show that the rationale form a dense set ; also the irrationals. Show 
that any point of a dense set is a point of condensation for the set. 

8. Show that the rationale p/q where q < do not form a dense set — in fact 
are a finite set in any limited interval. Hence in regarding any irrational as the 
limit of a set of rationale it is necessary that the denominators and also the numer­
ators should become infinite. 
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9. Show that if an infinite set of points lies in a limited region of the plane, 
say in the rectangle a =§ x ^ č>, ≤ = cř, there must be at least one point of 
condensation of the set. Give the necessary definitions and apply the axiom 
of continuity successively to the abscissas and ordinates. 

23. Real functions of a real variable. If x be a variable which 
takes on a certain set of values of which the totality may be denoted 
by \_x¯¦ and if is a second variable the value of which is uniquely 

determined for each x of the set [as], then is said to be a function of 

x defined over the set \_x¯\. T h e t e r m s “ l imi t ed , " “ u n l i m i t e d , " “ l imi ted 

above , " “ u n l i m i t e d be low," • • • a re app l i ed to a funct ion if t h e y a re 

appl icable to t h e set [?/] of values of t h e funct ion. H e n c e Theo rem 4 

has t h e corol lary : 

T H E O R E M 5. I f a func t ion is l imi ted over t he set ¡V], i t has a n 

u p p e r f ront ie r M a n d a lower f ront ie r m for t h a t set. 

I f t h e func t ion t akes on i ts u p p e r f ront ie r M, t h a t is, if t h e r e is a 

va lue x0 i n t h e set [ ] such t h a t ƒ (xQ) = M, t h e funct ion has t h e abso­

lu te maximum M a t æ0; a n d s imi la r ly w i t h respec t to t h e lower 

f ront ier . I n a n y case, t h e difference M— m be tween t h e u p p e r a n d 

lower f ront ie rs is cal led t h e oscillation of t h e funct ion for t h e set [ ] . 

T h e se t [x¯] is genera l ly a n in te rva l . 

Consider some illustrations of functions and sets over which they are defined. 
The reciprocal 1/x is defined for all values of x save 0. In the neighborhood of 0 
the function« is unlimited, above for positive se's and unlimited below for negative x\s. 
I t should be noted that the function is not limited in the interval < x ≤j a but is 
limited in the_interval e =É≡ x ≤ a where is any assigned positive number. The 
function + Vx is defined for all positive 's including 0 and is limited below. It 
is not limited above for the totality of all positive numbers ; but if is assigned, 
the function is limited in the interval 0 = x =§ . The factorial function x ! is de­
fined only for positive integers, is limited below by the value 1, but is not limited 
above unless the set [x] is limited above. The function E (x) denoting the integer 
not greater than x or “ the integral part of x “ is defined for all positive numbers 
— for instance E (3) = E{π) = 3. This function is not expressed, like the elemen­
tary functions of calculus, as a “ formula “ ; it is defined by a definite law, however, 
and is just as much of a function as x2 + Sx + 2 or ļ sin22x + logx. Indeed it 
should be noted that the elementary functions themselves are in the first instance 
defined by definite laws and that it is not until after they have been made the 
subject of considerable study and have been largely developed along analytic lines 
that they appear as formulas. The ideas of function and formula are essentially 
distinct and the latter is essentially secondary to the former. 

The definition of function as given above excludes the so-called multiple-valued 
functions such as Vx and sin-1 x where to a given value of x correspond more than 
one value of the function. I t is usual, however, in treating multiple-valued func­
tions to resolve the functions into different parts or branches so that each branch 
is a single-valued function. Thus + Vx is one branch and — Vx the other branch 
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of Vx ; in fact when x is positive the symbol Vx is usually restricted to mean 
merely -f ^Vx and thus becomes a single-valued symbol. One branch of sin -1 x con­
sists of the values between — \ π and + \ 7r, other branches give values between 
ļ π and f 7Γ or — ¿7Γ and — ļ π, and so on. Hence the term ff function" will be 
restricted in this chapter to the single-valued functions allowed by the definition. 

24. If x = a is any point of an interval over winch f(x) is defined, 
the function f(x) is said to be continuous at the point x = a if 

lim f(x) =f(a), no matter how x = a. 

Tlie function is said to be continuous in the interra/ if it is continuous 
(ft every point of the interval. If the function is not continuous at the 
point a, it is said to be discontinuous at a ; and if it fails to be con­
tinuous at any one point of an interval, it is said to be discontinuous 
in the interval. 

THEOREM 6. If any finite number of functions are continuous (at a 
point or over an interval), any rational expression formed of those 
functions is continuous (at the point or over the interval) provided no 
division by zero is called for. 

THEOREM 7. If y—f(x) is continuous at x0 and takes the value 
y0 =f(x0) and if z = φ(y) is a continuous function of y at y — y0, then 
z = φ\_f(x)¯\ will be a continuous function of x at xQ. 

In regard to the definition of continuity note that a function cannot be con­
tinuous at a point unless it is defined at that point. Thus e~1/*2 is not continuous 
at x = 0 because division by 0 is impossible and the function is undefined. If, how­
ever, the function be defined at 0 as/(0) = 0, the function becomes continuous at 
x = 0. In like manner the function 1/x is not continuous at the origin, and in this 
case it is impossible to assign to/(0) any value which will render the function 
continuous ; the function becomes infinite at the origin and the very idea of be­
coming infinite precludes the possibility of approach to a definite limit. Again, the 
function E (x) is in general continuous, but is discontinuous for integral values 
of x. When a function is discontinuous at x = α, the amount of the discontinuity is 
the limit of the oscillation M — m of the function in the interval a — δ <x < a + δ 
surrounding the point a when δ approaches zero as its limit. The discontinuity 
of E (x) at each integral value of x is clearly 1 ; that of 1/x at the origin is infi­
nite no matter what value is assigned to /(0). 

In case the interval over which f(x) is defined has end points, say a = x ≤ 6, 
the question of continuity at x = a must of course be decided by allowing x to" 
approach a from the right-hand side only ; and similarly it is a question of left-
handed approach to b. In general, if for any reason it is desired to restrict the 
approach of a variable to its limit to being one-sided, the notations x — a+ and 
x = b~ respectively are used to denote approach through greater values (right-
handed) and through lesser values (left-handed). It is not necessary to make this 
specification in the case of the ends of an interval} for it is understood that x 
shall take on only values in the interval in question. It should be noted that 
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lim f(x) =f(x0) when x = x0+ in no wise implies the continuity of f{x) at x0 ; a 
simple example is that of E (x) at the positive integral points. 

The proof of Theorem 6 is an immediate corollary application of Theorem 2. For 
lim R [f(x), φ (x) -. •] = R [lim ƒ (x), lim φ (x), . • •] = R [/(Um x), ø (lim x), •. •], 

and the proof of Theorem 7 is equally simple. 

T H E O R E M 8. I f f(x) is con t inuous a t x = a, t h e n for a n y pos i t ive  

wh ich has been ass igned , no m a t t e r how small , t he re m a y be found a 

n u m b e r δ such t h a t \f(x)—f(a)\<e in t h e i n t e rva l \x—a\<δ, a n d 
hence in th i s i n t e rva l t h e oscil lat ion of f(x) is ,less t h a n 2 A n d 
conversely , if these condi t ions hold, t h e funct ion is cont inuous . 

This theorem is in reality nothing but a restatement of the definition of conti­
nuity combined with the definition of a limit. For "limf(x) — f(a) when x = α, 
no matter h o w " means that the difference between ƒ (x) and / ( a ) can be made as 
small as desired by taking x sufficiently near to a ; and conversely. The reason 
for this restatement is that the present form is more amenable to analytic opera­
tions. I t also suggests the geometric picture which corre­
sponds to the usual idea of continuity in graphs. For the 
theorem states that if the two lines = / ( α ^ ± e'be drawn, 
the graph of the function remains between them for at least 
the short distance δ on each side of x = a ; and as e may be 
assigned a value as small as desired, the graph cannot exhibit 
breaks. On the other hand it should be noted that the actual 

e I y/¦ J  

'\δ\ò\  
¯¯Ō α Y~ 

physical graph is not a curve but a band, a two-dimensional region of greater < 
less breadth, and that a function could be discontinuous at every point of ? 
interval and yet lie entirely within the limits of any given physical graph. 

I t is clear that δ, which has to be determined subsequently to e, is in gener 
more and more restricted as e is taken smaller and that for different points it 
more restricted as the graph rises more rapidly. Thus if ƒ (x) = 1/x and e = 1/100 
δ can be nearly 1/10 if x0 = 100, but must be slightly less than 1/1000 if x0 = 1, ai 
something less than 10- 6 if x is 10~ 3. Indeed, if x be allowed to approach zero, tl 
value δ for any assigned e also approaches zero ; and although the functie 
f(x) = 1/x is continuous in the interval 0 < x ĩ≡ 1 and for any given x0 and e 
number δ may be found such that | f(x) — ƒ (x0) | < e when |x — x01 < δ, yet it is n 
possible to assign a number δ which shall serve uniformly for all values of x0. 

2 5 . T H E O R E M 9. I f a func t ion f(x) is con t inuous in a n interv¡ 

a = x = h w i t h e n d po in t s , i t is possible to find a δ such thí 

\f(x) —f(xo)\<c w h e n \x — x01 < δ for al l po in t s x0 ; a n d the functie 
is sa id to be uniformly continuous. 

The proof is conducted by the method of reductio ad absurdum. Suppose 
is assigned. Consider the suite of values ļ , J, ļ-, • • -, or any other suite whi< 
approaches zero as a limit. Suppose that no one of these values will serve as a 
for all points of the interval. Then there must be at least one point for which 
will not serve, at least one for which \ will not serve, at least one for which \ w 
not serve, and so on indefinitely. This infinite set of points must have at least oi 
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point of condensation such that in any interval surrounding there are points for 
which 2~* will not serve as δ, no matter how large k. But now by hypothesis ƒ (x) 
is continuous at and hence a number δ can be found such that \f(x) — f(C)\< ļ e 
when \x— x0\<2δ. Trîe oscillation of f(x) in the whole interval 4δ is less than e. 
Now if x0 be any point in the middle half of this interval, | æ0 — \ < δ ; and if x 
satisfies the relation | x — x0 | < δ, it must still lie in the interval 4 δ aßđ the differ­
ence \f(x) —f(xo) I < e, being surely not greater than the oscillation of ƒ in the whole 
interval. Hence it is possible to surround with an interval so small that t h e ļ 
same δ will serve for any point of the interval. This contradicts the former con- | 
elusion, and hence the hypothesis upon which that conclusion was based must have 
been false and it must have been possible to find a δ which would serve for all 
points of the interval. -The reason why the proof would not apply to a function 
like 1/x defined in the interval 0 < x ~ 1 lacking an end point is precisely that 
the point of condensation would be 0, and at 0 the function is not continuous 
and \f(x) —f(C)\<ļe, \x — ¢ | < 2δ could not be satisfied. 

T H E O R E M 10. I f a funct ion is con t inuous in a reg ion w h i c h inc ludes 
i ts e n d po in t s , t h e funct ion is l imi ted . 

T H E O R E M 1 1 . I f a funct ion is con t inuous in a n in t e rva l wh ich inc ludes 
i ts end po in t s , t h e funct ion t akes on i ts u p p e r f ront ie r a n d has a max i ­
m u m M; s imi la r ly i t has a m i n i m u m m. 

These are successive corollaries of Theorem 9. For let e be assigned and let δ 
be determined so as to serve uniformly for all points of the interval. Divide the 
interval b — a into n successive intervals of length δ or less. Then in each such 
interval ƒ cannot increase by more than e nor decrease by more than e. Hence ƒ 
will be contained between the values f (a) + ne and f (a) — ne, and is limited. And 
f(x) has an upper and a lower frontier in the interval. Next consider the rational 
function 1/(M — f) of ƒ. By Theorem 6 this is continuous in the interval unless 
the denominator vanishes, and if continuous it is limited. This, however, is impos­
sible for the reason that, as is a frontier of values of ƒ, the difference M— f 
may be made as small as desired. Hence 1/(M —f ) is not continuous and there 
must be some value of x for which ƒ = M. 

T H E O R E M 12. If f(x) is con t inuous in t h e i n t e rva l a ≤ . * ≤ h w i t h e n d 
po in t s a n d if f (ft) a n d f(b) have opposi te s igns , t he re is a t leas t one 
po in t ¿, a < ¿ < b, in t h e i n t e rva l for wh ich the funct ion vanishes . 

A n d w h e t h e r f (a) a n d f(b) have opposi te s igns or not , t h e r e is a po in t 

f, a < ¿ < by such t h a t f(ξ) = µ,, whe re µ. is a n y value i n t e r m e d i a t e be­
t w e e n t h e m a x i m u m a n d m i n i m u m of ƒ in t h e in te rva l . 

For convenience suppose that f (a) < 0. Then in the neighborhood of x = a the 
function will remain negative on account of its continuity ; and in the neighbor­
hood of it will remain positive. Let £ be the lower frontier of values of x which 
make f(x) positive. Suppose that ƒ (£) were either positive or negative. Then as 
ƒ is continuous, an interval could be chosen surrounding £ and so small that ƒ re­
mained positive or negative in that interval. In neither case could £ be the lower 
frontier of positive values. Hence the contradiction, and ƒ(£) must be zero. To 
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prove the second part of the theorem, let and d be the values of x which make 
ƒ a minimum and maximum. Then the function f—µ has opposite signs at and 
đ, and must vanish at some point of the interval between and d ; and hence a 
fortiori at some point of the interval from a tob. 

EXERCISES 

1. Note that x is a continuous function of x, and that consequently it follows 
from Theorem 6 that any rational fraction P(x)/Q(x), where P and Q are poly­
nomials in x, must be continuous for all x's except roots of Q(x) — 0. 

2 . Graph the function x— E{x) for x ≥ 0 and show that it is continuous except 
for integral values of x. Show that it is limited, has a minimum 0, an upper fron­
tier 1, but no maximum. 

3 . Suppose that ƒ (x) is defined for an infinite set [xj of which x = a is a point 
of condensation (not necessarily itself a point of the set). Suppose 

lim [f(x') - ƒ (x")] = 0 or I f(x') - f(x") \ < e, \x' - a\ < δ, |x" - a\ < δ, 
a/, a/' = a 

when x' and x" regarded as independent variables approach a as a limit (passing 
only over values of the set [x], of course). Show that ƒ (x) approaches a limit as 
x = a. By considering the set of values of/(x) , the method of Theorem 3 applies 
almost verbatim. Show that there is no essential change in the proof if it be 
assumed that x' and x" become infinite, the set [x] being unlimited instead of 
having a point of condensation a. 

4. From the formula sin x < x and the formulas for sin — sin v and cos — cos υ 
show that Δ sin x and Δ cosx are numerically less than 21 x | ; hence infer that sinx 
and cosx are continuous functions of x for all values of x. 

5. What are the intervals of continuity for tanx and cscx ? If e = 10-4 , what 
are approximately the largest available values of δ that will make | f(x) — /(x0) |<e 
when x0 = 1°, 30°, 60?, 89° for each ? Use a four-place table. 

6. Let ƒ(x) be defined in the interval from 0 to 1 as equal to 0 when x is irra­
tional and equal to ì/q when x is rational and expressed as a fraction p/q in lowest 
terms. Show that ƒ is continuous -for irrational values and discontinuous for 
rational values. Ex. 8, p. 39, will be of assistance in treating the irrational values. 

7. Note that in the definition of continuity a generalization may be introduced 
by allowing the set [x] over which ƒ is defined to be any set each point of which 
is a point of condensation of the set, and that hence continuity over a dense set 
(Ex. 7 above), say the rationale or irrationals, may be defined. This is important 
because many functions are in the first instance defined only for rationale and are 
subsequently defined for irrationals by interpolation. Note that if a function is 
continuous over a dense set (say, the rationale), it does not follow that it is uni­
formly continuous over the set. For the point of condensation which was used 
in the proof of Theorem 9 may not be a point of the set (may be irrational), and 
the proof would fall through for the same reason that it would in the case of 1/x 
in the interval 0 < x ≤ 1, namely, because it could not be affirmed that the function 
was continuous at C. Show that if a function is defined and is uniformly continu­
ous over a dense set, the value ƒ (x) will approach a limit when x approaches any 
value a (not necessarily of the set, but situated between the upper and lower 
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frontiers of the set), and that if this limit be defined as the value of / ( a ) , the 
function will remain continuous. Ex. 3 may be used to advantage. 

8. By factoring (x -f A x)n — xn, show for integral values of n that when 
0 = x = K, then Δ (xn) <7i-řT"-1 x for small x's and consequently xn is uniformly 
continuous in the interval 0 ĩ≡ x ≤ K. If it be assumed that xn has been defined 
only for rational x's, it follows from Ex. 7 that the definition may be extended 
to all x's and that the resulting xn will be continuous. 

9. Suppose (a) that ƒ (x) +f(y) = f(x + y) for any numbers x and y. Show that 
f(n) = nf(l) and nf(l/rì) = / (1) , and hence infer that f(x) = xf(l) = Cx, where  

= / (1) , for all rational x's. From Ex. 7 it follows that if f(x) is continuous, 
f(x) = Cx for all x's. Consider (ß) the function ƒ (x) such that ƒ (x) f(y) =f(x + y). 
Show that it is Ce* = ax. 

10. Show by Theorem 12 that if y = f(x) is a continuous constantly increasing 
function in the interval a ≤ x ≤ 6, then to each value of y corresponds a single value 
of x so that the function x = f~1 (y) exists and is single-valued ; show also that 
it is continuous and constantly increasing. State the corresponding theorem if 
ƒ(x) is constantly decreasing. The function f~λ(y) is called the inverse function 
to f(x). 

11. Apply Ex. 10 to discuss y = Vx, where n is integral, x is positive, and only 
positive roots are taken into consideration. 

12. In arithmetic it may readily be shown that the equations 
aman — am + n? (am)n = α"1», α“ö» = (αδ)n, 

are true when a and are rational and positive and when m and n are any positive 
and negative integers or zero, (a) Can it be inferred that they hold when a 
and are positive irrationals ? (ß) How about the extension of the fundamental 
inequalities 

xn > 1, when x > 1, xn < 1, when 0 ≤ x < 1 
to all rational values of n and the proof of the inequalities 

x"» > xn if m > n and x > 1, xm < xn if m>n and 0 < x < 1. 
(7) Next consider x as held constant and the exponent n as variable. Discuss the 
exponential function ax from this relation, and Exs. 10, 11, and other theorems that 
may seem necessary. Treat the logarithm as the inverse of the exponential. 

26. The der ivat ive . If x = a ù a point of an interval over tvhich 

f(x) is defined and if the quotient 

Ax h 

approaches a limit when h approaches zero, no matter how, the function 

f(x) is said to be dijferentiable at x = a and the value of the limit of 

the quotient is the derivative f'(fi) off at x = a. I n t h e case of differ­

en t iab i l i ty , t h e definit ion of a l imi t g ives 

f(a + h)-f(a)=fl(a)+rι o r Aa + h)_f(a) = hf(a)+≠¡ ( 1 ) 

where l im η = 0 w h e n l im h = 0, no m a t t e r how. 
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In other words if e is given, a δ can be found so that \η\<e when |Λ|<δ. This 
shows that a function differentiable at a as in (1) is continuous at a. For 

\f(a + ħ) - f(a)\ ≤ \f'(a)\ò + eδ, |Λ| < δ. 

If the limit of the quotient exists when h = 0 through positive values only, the 
function has a right-hand derivative which may be denoted by ƒ ' (α+) and similarly 
for the left-hand derivative ƒ ' (a~). At the end points of an interval the derivative 
is always considered as one-handed ; but for interior points the right-hand and left-
hand derivatives must be equal if the function is to have a derivative (unqualified). 
The function is said to have an infinite derivative at a if the quotient becomes infi­
nite as h = 0 ; but if a is an interior point, the quotient must become positively 
infinite or negatively infinite for all manners of approach and not positively infinite 
for some and negatively infinite for others. Geometrically this allows a vertical 
tangent with an inflection point, but not with a cusp as in Fig. 3, p. 8. If infinite 
derivatives are allowed, the function may have a derivative and yet be discontin­
uous, as is suggested by any figure where f (a) is any value between lim f(x) when 
x = α+ and lim f(x) when x = a~. 

T H E O R E M 1 3 . I f a func t ion t akes on i ts m a x i m u m (or m i n i m u m ) a t 
a n in te r io r po in t of t h e i n t e rva l of definit ion a n d if i t is differentiable 
a t t h a t po in t , t h e de r iva t ive is zero. 

T H E O R E M 14. Rolle's Theorem. I f a f unc t ion ƒ (x) is con t inuous over 
a n i n t e r v a l a ≤ x ≤ b w i t h e n d po in t s a n d van i shes a t t h e ends a n d has 
a de r iva t ive a t each in te r io r po in t a < x < b, t h e r e is some po in t ¿j} 

a<( <b, such t h a t ƒ ' (ξ) = 0. 
T H E O R E M 15 . Theorem of the Mean. I f a funct ion is con t inuous over 

a n i n t e rva l a ≤ x ≤ b a n d has a de r iva t ive a t each in te r io r po in t , t h e r e 
is some po in t $ such t h a t 

w h e r e h ≤ b — a* a n d θ is a p r o p e r f ract ion, 0 < θ < 1. 

To prove the first theorem, note that if f (a) — 3f, the difference ƒ (a + h) —f(a) 
cannot be negative for any value of h and the quotient Af/h cannot be positive 
when ħ > 0 and cannot be negative when ħ < 0. Hence the right-hand derivative 
cannot be positive and the left-hand derivative cannot be negative. As these two 
must be equal if the function has a derivative, it follows that they must be zero, 
and the derivative is zero. The second theorem is an immediate corollary. For as 
the function is continuous it must have a maximum and a minimum (Theorem 11) 
both of which cannot be zero unless the function is always zero in the interval. 
Now if the function is identically zero, the derivative is identically zero and the 
theorem is true ; whereas if the function is not identically zero, either the maximum 
or minimum must be at an interior point, and at that point the derivative will vanish. 

* That the theorem is true for any part of the interval from a to if it is true for the 
whole interval follows from the fact that the conditions, namely, that ƒ be continuous 
and t h a t / ' exist, hold for any part of the interval if they hold for the whole. 
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To prove the last theorem construct the auxiliary function 

φ{x)=fix)-Aa)- a)ţņ = W>, { )= - = . 
— — a 

As ψ (a) = φ (b) = 0, Rolle's Theorem shows that there is some point for which 
ψ' (£) = 0, and if this value be substituted in the expression for ψ' (x) the solution 
for/ ' (£) gives the result demanded by the theorem. The proof, however, requires 
the use of the function ψ (x) and its derivative and is not complete until it is shown 
that ψ(x) really satisfies the conditions of Rolle's Theorem, namely, is continuous 
in the interval a^x = b and has a derivative for every point a<x<h. The con­
tinuity is a consequence of Theorem 6 ; that the derivative exists follows from the 
direct application 'of the definition combined with the assumption that the deriva­
tive of ƒ exists. 

27. THEOREM 16. If a function has a derivative which is identically 
zero in the interval a ≤= x ≤ b, the function is constant ; and if two 
functions have derivatives equal throughout the interval, the functions 
differ by a constant. 

THEOREM 17. If f(x) is diffèrentiable and becomes infinite when 

x = as the derivative cannot remain finite as x ^^ CL, 

THEOREM 18. If the derivative f(x) of a function exists and is a 

continuous function of x in the interval a ≤ x ≤ b, the quotient Δ/ /Λ 
converges uniformly toward its limit f(x). 

These theorems are consequences of the 'Theorem of the Mean. For the first, 

ƒ (α + ħ) - f (a) = h f (a + θħ) = 0, if ≤ ò - α, or ƒ (α + Λ) = f (a). 

Hence ƒ (x) is constant. And in case of two functions/and with equal derivatives, 
the difference ψ (x) = f(x) — φ (x) will have a derivative that is zero and the differ­
ence will be constant. For the second, let x0 be a fixed value near a and suppose that 
in the interval from x0 to a the derivative remained finite, say less than K. Then 

\f(xo + Λ) -f(xo)\ = \ħf'(xo + θħ)\ \ħ\K. 

Now let x0 + h approach a and note that the left-hand term becomes infinite and 
the supposition that f' remained finite is contradicted. For the third, note that ƒ ', 
being continuous, must be uniformly continuous (Theorem 9), and hence that if e is 
given, a δ may be found such that 

\f(x+ħ)-f(x) _ )\ { + _ <1 
I 'l I 

when |Λ|< ð and for all x's in the interval ; and the theorem is proved. 
Concerning derivatives of higher order no special remarks are necessary. Each 

is the derivative of a definite function — the previous derivative. If the deriva­
tives of the first n orders exist and are continuous, the derivative of order n + 1 
may or may not exist. In practical applications, however, the functions are gen­
erally indefinitely differentiable except at certain isolated points. The proof of 
Leibniz's Theorem (§ 8) may be revised so as to depend on elementary processes. 
Let the formula be assumed for a given value of n. The only terms which can. 
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contribute to the term D»“uD» +1 - ¾ in the formula for the (n + 1) st derivative of 
uυ are the terms 

n(n — 1) • • • (n — -f 2) _.. t _ ,, n(n — 1) • • • (n — + 1) - . ^ • 
1. 2 - - - (i — 1) l - 2 . . .  

in which the first factor is to be differentiated in the first and the second in the 
second. The sum of the coefficients obtained by differentiating is 

n ( n — l ) - - - ( n — ¾ + 2) n(n- 1 ) . . . ( — i + 1) _ (n + 1) n • • • (n - + 2) 
1 . 2 . - . ( - 1 ) l - 2 - - - _ _ L 2 . . - ' 

which is precisely the proper coefficient for the term D*uD4 + 1~iv in the expansion 
of the (n + 1) st derivative of uυ by Leibniz's Theorem. 

With regard to this rule and the other elementary rules of operation (4)-(7) of 
the previous chapter it should be remarked that a theorem as well as a rule is in­
volved— thus: If two functions and v are differentiable at x0, then the product 
uv is differentiable at se0, and the value of the derivative is (x0) υ' (x0) + u' (x0) v (x0). 
And similar theorems arise in connection with the other rules. As a matter of fact 
the ordinary proof needs only to be gone over with care in order to convert it into 
a rigorous demonstration. But care does need to be exercised both in stating the 
theorem and in looking to the proof. For instance, the above theorem concerning 
a product is not true if infinite derivatives are allowed. For let be — 1, 0, or + 1 
according as x is negative, 0, or positive, and let v = x. Now v has always a deriva­
tive which is 1 and has always a derivative which is 0, + , or 0 according as x 
is negative, 0, or positive. The product uv is\x of which the derivative is — 1 for 
negative x's, + 1 for positive x's, and nonexistent for 0. Here the product has no 
derivative at 0, although each factor has a derivative, and it would be useless to have 
a formula for attempting to evaluate something that did not exist. 

EXERCISES 

1. Show that if at a point the derivative of a function exists and is positive, the 
function must be increasing at that point. 

2. Suppose that the derivatives f'(a) and f'(b) exist and are not zero. Show 
that f (a) and ƒ (b) are relative maxima or minima of ƒ in the interval a Ë≡ x ≤ &, and 
determine the precise criteria in terms of the signs of the derivatives ƒ '(a) and f'(b). 

3 . Show that if a continuous function has a positive right-hand derivative at 
every point of the interval a Ë≡ x =Ξ 6, then ƒ (6) is the maximum value of ƒ. Simi­
larly, if the right-hand derivative is negative, show that f(b) is the minimum of ƒ. 

4. Apply the Theorem of the Mean to show that if f'(x) is continuous at α, then 

hm -*—^ — '-=f'(cή, 
x', x" = a X' — X" 

x' and x" being regarded as independent. 

5. Form the increments of a function ƒ for equicrescent values of the variable : 

i ƒ = f (a + h) - f (a), Δ2 ƒ = ƒ (a + 2 h) - f (a + h), 
= f(a + 3h)-f(a + 2h), . . . . 
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These are called first differences ; the differences of these differences are 

A*f = f(a + 2Ä) - 2 f (a + ħ) + / ( a ) , 
Aļf=f(a + 3Ä) - 2 / ( a + 2h) + / ( a + Ä) , . . . 

which are called the second differences ; in like manner there are third differences 

A?f = f(a + 3 h) - Sf(a + 2Ä) + Sf(a + h) -f (a), . . . 

and so on. Apply the Law of the Mean to all the differences and show that 

Aļf = Wĵ“(a + θxh + 02Λ), Aļf = /¿3/ "'(α + Øχŵ + 02Λ + 08A), 

Hence show that if the first n derivatives of ƒ are continuous at α, then 

ƒ"(α) = lim ^ , ƒ'"(α) = lim ^Ĺ, . . . , ƒ c»)(α) = lim ̂ . 

6. Cauchyηs Theorem. If f(x) and ø(z) are continuous over α ≤ x ≤ ò , have 
derivatives at each interior point, and if φ' (x) does not vanish in the interval, 

f(b)-f(a) = £) o r / ( α + ŵ ) - / ( α ) = f (a + Øŵ) _ 
φ(b)—φ(a) φ'(ξ) φ(a + h) — φ(a) φ'(a + θh) ' 

Prove that this follows from the application of Rolle's Theorem to the function 

ψ (x) = f(x)-f (a) - [φ(x) - φ(a)ļ f ļ * ļ¯¯ f ļ* ¡ • 
Φ(b)—φ (a) 

7. One application of Ex. 6 is to the theory of indeterminate forms. Show that 
if f (a) = φ(a) = 0 and if ƒ '(x)/φ'(x) approaches a limit when x = α, then f(x)/φ(x) 
will approach the same limit. 

8. Taylor's Theorem. Note that the form f(b) =f(a) + (b — a)f'(ξ) is one way 
of writing the Theorem of the Mean. By the application of Rolle's Theorem to 

φ(x) = fΦ) -/(x)- φ- *)ƒ'<*)- φ - „ ) > Ä Ä ± ^ W , 
(o — α)J 

show ƒ (6) - f (a) + (b- a)f'(a) + ( 6 ~ α ) ¾ ƒ"(*), 

and to φ(x) =f(b)-f(x)-(b-x)f'{x)-¢^Γ(x) ^ ^ T Γ ^ " " 1 ^ * ) 
2 (n — 1) ! 

- § 5 - ^ [f< > -f<α) - < - α> /'<«> • 
-^ņ*--¾=¾f/-4 

show ƒ(6) = ƒ((/) + (b - a)f'(a) + (¾ ̄  α ) 2 Γ W + • • • 

What are the restrictions that must be imposed on the function and its derivatives ? 

9. If a continuous function over α ≤ Æ = δ has a right-hand derivative at each 
point of the interval which is zero, show that the function is constant. Apply Ex. 2 
to the functions f(x) + e (x — a) and ƒ ( ) — e{x— a) to show that the maximum 
difference between the functions is 2 e (b — a) and that ƒ must therefore be constant. 
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10. State and prove the theorems implied in the formulas (4)-(6), p. 2. 

11. Consider the extension of Ex. 7, p. 44, to derivatives of functions defined 
over a dense set. If the derivative exists and is uniformly continuous over the dense • 
set, what of the existence and continuity of the derivative of the function when its 
definition is extended as there indicated ? 

12. If f(x) has a finite derivative at each point of the interval α≤x=≡ò, the 
derivative ƒ '(x) must take on every value intermediate between any two of its values. 
To show this, take first the case where f (a) and f'(b) have opposite signs and show, 
by the continuity of ƒ and by Theorem 13 and Ex. 2, that ƒ'(£) = 0. Next if 
f(á)<µ<f'(þ) without any restrictions on /'(α) and ƒ'(6), consider the function 
ƒ(x) — µx and its derivative f(x) — µ. Finally, prove the complete theorem. It 
should be noted that the continuity of f(x) is not assumed, nor is it proved ; for 
there are functions which take every value intermediate between two given values 
and yet are not continuous. 

28. Summation and integration. Let f(x) be defined and limited 
over the interval a ≤ x ≤ b and let M, m, and = M — m be the 
upper frontier, lower fron­
tier, and oscillation of f(x) 
in the interval. Let n — 1 
points of division be intro­
duced in the interval divid­
ing it into n consecutive 
intervals δι, δ2, • • -, δn of 
which the largest has the 
length Δ and let M{, m¿, Oiy 

y\ i q ŵ ,jř 

A¯ — \m 

ōļ « ξ¡ ¿ ¯Ķ 

and ƒ (h) be the upper and lower frontiers, the oscillation, and any 
value of the function in the interval δt. Then the inequalities 

mĶ ≤ ≤ ) =Ξ M,Ķ ≤ MĶ 

will hold, and if these terms be summed up for all n intervals, 

m (b - a) ≤ 2 '"A = X f (¾ ¾ = S ^ A M(þ- a) (Ä) 

will also hold. Let s = 2w¿δ¿, σ = 2 / ŵ ) ¼ > and S = S . From (A) 
it is clear that the difference S — s does not exceed 

(M - m) (b - a) = O(b- a), 

the product of the length of the interval by the oscillation in it. The 
values of the sums 5, s, σ will evidently depend on the number of parts 
into which the interval is divided and on the way in which it is divided 
into that number of parts. 

THEOREM 19. If n' additional points of division be introduced into 
the interval, the sum Sf constructed for the n + n' — 1 points of division 
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cannot be g rea te r t h a n S a n d canno t be less t h a n S by more t h a n 
n'OΔ. S imi lar ly , s' canno t be less t h a n s a n d canno t exceed s by more 
t h a n n'OΔ. 

T H E O R E M 20. T h e r e exis ts a lower f ront ie r L for al l possible m e t h o d s 
of cons t ruc t ing t he sum S a n d an u p p e r f ront ier I for s. 

T H E O R E M 2 1 . Darhoux's Theorem. W h e n is a s s igned i t is possible 
to find a Δ so smal l t h a t for all m e t h o d s of d iv is ion for wh ich δ¿ ≤ Δ, 
t h e sums S a n d s shal l differ f rom the i r f ront ie r va lues L a n d I by less 
t h a n a n y p reass igned ^j 

To prove the first theorem note that although (A) is written for the whole inter­
val from a to b and for the sums constructed on it, yet it applies equally to any 
part of the interval and to the sums constructed on that part. Hence if Si = M(δi be 
the part of S due to the interval δ¿ and if S'{ be the part of S' due to this interval 
after the introduction of some of the additional points into it, m,-ð¿ == £¿ ≤ Si = -M¿δ¿. 
Hence S¡ is not greater than Si (and as this is true for each interval δ¿, S' is not 
greater than S) and, moreover, Si — S¡ is not greater than O¿δ¿ and a fortiori not 
greater than OΔ. As there are only n' new points, not more than rí of the intervals 
δi can be affected, and hence the total decrease S — S' in S cannot be more than 
n'OA. The treatment of s is analogous. 

Inasmuch as (A) shows that the sums S and s are limited, it follows from Theo­
rem 4 that they possess the frontiers required in Theorem 20. To prove Theorem 21 
note first that as L is a frontier for all the sums S, there is some particular sum S 
which differs from L by as little as desired, say J e. For this S let n be the number 
of divisions. Now consider S' as any sum for which each δ¿ is less than Δ = ļ e/nO. 
If the sum S" be constructed by adding the n points of division for S to the points 
of division for S', S" cannot be greater than S and hence cannot differ from L by 
so much as ļ e. Also S" cannot be greater than S' and cannot be less than S' by 
more than OΔ, which is ļe. As S" differs from L by less than ļ e and ß/ differs 
from S" by less than J e, S' cannot differ from L by more than e, which was to be 
proved. The treatment of s and I is analogous. ^ 

29 . I f indices a re i n t roduced to ind ica te t h e i n t e rva l for wh ich t h e 
f ront iers L a n d I a re ca lcula ted a n d if ß l ies in t h e i n t e rv a l f rom a to b, 
t h e n Lğ a n d Iğ wil l be funct ions of ß. 

T H E O R E M 22. T h e equa t ions L¦¦¡ = L¦ + L , a<c<b; L = -L«; 
L¦¦ = µ(b — a), m ≤ µ ≤ M, ho ld for i , a n d s imi lar equa t ions for I. A s 
funct ions of ß, Lğ a n d l¦¦¦ a r e con t inuous , a n d if ƒ ( x ) is con t inuous , 
t h e y a re difřerent iable a n d have t h e common de r iva t i ve ƒ ( /? ) . 

To prove that L¦ = L¦ -f ic?, consider as one of the points of division of the 
interval from a to b. Then the sums S will satisfy S¦¡ = S¿ + £c

&, and as the limit 
of a sum is the sum of the limits, the corresponding relation must hold for the 
frontier L. To show that L¦ = — L¦¦ it is merely necessary to note that S = — S" 
because in passing from b to a the intervals δi must be taken with the sign opposite 
to that which they have when the direction is from a to b. From (A) it appears 
that m (b — a) Ë≡ £α

& ≤i M (b — a) and hence in the limit m (b — a) ≤ Xα
ò ≤ M (b — α). 
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Hence there is a value µ, m≤µ≤if, such that L¦¦ = µ(b— a). To show that L& 
is a continuous function of /3, take 2Γ>| Jf ļ and |ra|, and consider the relations 

¿«β+Λ - ¿«ß = 4 + 4^"-La = ¾3+Λ = M; IH< JΓ, 
if-* - L¡ = U~h- i f ~* - ¿ß

β_A = - ¿l_» = - M'A, IMΊ<-KΓ. 
Hence if e is assigned, a δ may be found, namely δ <e/K, so that ¦Lğ±h — Lĝ¦<e 
when Ä < δ and J¾f is therefore continuous. Finally consider the quotients 

¿ß + ¾ _ ¿ ß χ ß - Λ _ ¿ ß 
í½ Í½ = /A and -5 « = / , 

- A 

where /A is some number between the maximum and minimum of ƒ ( ) in the inter-
val ß =≡≡ ≤ ß + and, if ƒ is continuous, is some value ƒ (£) of ƒ in that interval 
and where µ.' =ƒ(£') is some value of ƒ in the interval ß— h≤x½≡=ß. Now let 
h = 0. As the function ƒ is continuous, lim/(Q =f(ß) and lim ƒ(£') =f(ß). Hence 
the right-hand and left-hand derivatives exist and are equal and the function Lĝ 
has the derivative ƒ (ß). The treatment of I is analogous. 

THEOREM 23. For a given interval and function f the quantities Z 
and Z satisfy the relation ¿ ≤≡ L ; and the necessary and sufficient con­
dition that L = I is that there shall be some division of the interval 
which shall make S (Λft- — m¿) δ¿ = 2 0 < e. 

If Z^ = ¾ the function ƒ is said to be integrable over the interval 

from a to b and the integral I ƒ(x) dx is defined as the common value . 
%Ja 

L = l¦. Thus the definite integral is defined. 
THEOREM 24. If a function is integrable over an interval, it is inte­

grable over any part of the interval and the equations 

f(x) dx+ f ƒ (ar) dx = f(x) dx, 
%Ja %J %J a 

J
s*b r*a s*b 

\ f(x)dx = — ļ f(x)dx, ļ f(x)dx = µ(b-a) 
a %Jb %J a 

hold ; moreover, ļ f(x) dx = F(ß) is a continuous function of ß ; and 
%Ja 

if f(x) is continuous, the derivative F'(ß) will exist and hef(ß). 
By (A) the sums S and s constructed for the same division of the interval satisfy 

the relation S — s ≡≥ 0. By Darboux's Theorem the sums S and s will approach the 
values L and I when the divisions are indefinitely decreased. Hence L — I ≥ 0. 
Now if L = I and a Δ be found so that when δ{ < Δ the inequalities 8 — L < \ e and 
I — s < J e hold, then £ — s = Σ (iλf¿ — m¿) δ¿ = ΣO¿δ¿ < e ; and hence the condition 
' O{δi < e is seen to be necessary. Conversely if there is any method of division such 
that Oiδi<e, then S — s<e and the lesser quantity L — I must also be less thane. 
But if the difference between two constant quantities can be made less than e, 
where is arbitrarily assigned, the constant quantities are equal ; and hence the 
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condition is seen to be also sufficient. To show that if a function is integrable over 
an interval, it is integrable over any part of the interval, it is merely necessary to 
show that if L¦¦ = ¿α

&, then L¦ — iĝ where a and ß are two points of the interval. 
Here the condition O¿δi<€ applies; for if O¿ð¿ can be made less than € for the 
whole interval, its value for any part of the interval, being less than for the whole, 
must be less than e. The rest of Theorem 24 is a corollary of Theorem 22. 

30. T H E O R E M 25 . A funct ion is in tegrab le over t h e i n t e rva l a≤x^b 
if i t is con t inuous in t h a t in te rva l . 

T H E O R E M 26. I f t he i n t e rva l a½≡ix^b over wh ich ƒ (x) is defined 
a n d l imi ted conta ins on ly a finite n u m b e r of po in t s a t wh ich ƒ is dis­
con t inuous or if i t conta ins an infinite n u m b e r of po in t s a t which ƒ is 
d i scon t inuous bu t these po in t s have only a finite n u m b e r of po in t s of 
condensa t ion , t h e funct ion is in tegrab le . 

T H E O R E M 27. I f f(x) is in t eg rab le over t h e i n t e rva l a ≤ x ≤ b, t h e 

s u m σ = 2 / ( í ¿ ) δ¿ wil l app roach t h e l imi t I f(x) dx w h e n t h e indi ­

v idua l i n t e rva l s δ¿ app roach t h e l imi t zero, i t be ing immate r i a l h o w 

t h e y app roach t h a t l imi t or h o w t h e po in t s ξ{ a r e selected in t he i r 

respec t ive in t e rva l s δ¿. 

T H E O R E M 28. I f f(x) is con t inuous in a n in t e rva l a ^ x ^ b , t h e n 

f(x)đx, in t h e in te rva l . 

Theorem 25 may be reduced to Theorem 23. For as the function is continuous, 
it is possible to find a Δ so small that the oscillation of the function in any interval 
of length Δ shall be as small as desired (Theorem 9). Suppose Δ be chosen so that 
the oscillation is less than e/(b — a). Then O¿δ¿ < e when δ¿ < Δ ; and the function 
is integrable. To prove Theorem 26, take first the case of a finite number of discon­
tinuities. Cut out the discontinuities surrounding each value of x at which ƒ is dis­
continuous by an interval of length δ. As the oscillation in each of these intervals 
is not greater than 0, the contribution of these intervals to the sum 2 0 - is not 
greater than Onδ, where n is the number of the discontinuities. By taking δ small 
enough this may be made as small as desired, say less than | e. Now in each of the 
remaining parts of the interval a ≤ x ≤ 6, the function ƒ is continuous and hence 
integrable, and consequently the value of O¿δ¿ for these portions may be made as * 
small as desired, say ļ e. Thus the sum ΣOŵ for the whole interval can be made 
as small as desired and f(x) is integrable. When there are points of condensation 
they may be treated just as the isolated points of discontinuity were treated. After 
they have been surrounded by intervals, there will remain over only a finite num­
ber of discontinuities. Further details will be left to the reader. 

For the proof of Theorem 27, appeal may be taken to the fundamental relation 
(Λ) which shows that s ≤ σ ≤ S. Now let the number of divisions increase indefi­
nitely and each division become indefinitely small. As the function is integrable, 

rb 
S and s approach the same limit ļ ƒ (x) cřx, and consequently σ which is included 

between them must approach that limit. Theorem 28 is a corollary of Theorem 24 
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J r*x t 

f(x) dx is ƒ ( ). By défi­
ez 

nition, the indefinite integral is any function whose derivative is the integrand. 
Hence ļ f(x)dx is an indefinite integral of / ( ), and any other may be obtained 
by adding to this an arbitrary constant (Theorem 16). Thus it is seen that the 
proof of the existence of the indefinite integral for any given continuous function 
is made to depend on the theory of definite integrals. 

EXERCISES 

1. Rework some of the proofs in the text with I replacing L. 

2. Show that the L obtained from Cf(x), where is a constant, is times the L 
obtained f rom/ . Also if u, v, w are all limited in the interval a ≤= x ≤ 6, the L for 
the combination + υ — w will be L (u) + L (v) — L(w), where L (u) denotes thi*L 
for u, etc. State and prove the corresponding theorems for definite integrals and 
hence the corresponding theorems for indefinite integrals. 

3 . Show that O¿δ¿ can be made less than an assigned e in the case of the func­
tion of Ex. 6, p. 44. Note that I = 0, and hence infer that the function is integrable 
and the integral is zero. The proof may be made to depend on the fact that there 
are only a finite number of values of the function greater than any assigned value. 

4. State with care and prove the results of Exs. 3 and 5, p. 29. What restric­
tion is to be placed on f(x) if ƒ (£) may replace µ ? 

5. State with care and prove the results of Ex. 4, p. 29, and Ex. 13, p. 30. 

6. If ¾ function is limited in the interval a ≤ x =§ b and never decreases, show 
that the function is integrable. This follows from the fact that ö¿ =≡¡ is finite. 

7. More generally, let f(x) be such a function that O¿ remains less than some 
number if, no matter how the interval be divided. Show that ƒ is integrable. Such 
a function is called & function of limited variation (§ 127). 

8. Change of variable. Let ƒ(x) be continuous over α ≤ x ≤ ö . Change the 
variable to x = φ(t), where it is supposed that a = Φ(t-¡) and b — <þ(t2), and that 
φ (¿), ø'(¿), and ƒ [φ (t)] are continuous in t over tχ ≤ t ≤ t2. Show that 

J
i b /> 12 Φ ( 0 nt 

f(x) dx= f[φ (t)] φ'(t) dt or f(x) dx= f[φ (t)] φ'(t) dt. 
Do this by showing that the derivatives of the two sides of the last equation with 
respect to t exist and are equal over tx ≤ t ≤ ¿2, that the two sides vanish when 
t~tχ and are equal, and hence that they must be equal throughout the interval. 

9. Osgood's Theorem. Let αr¿ be a set of quantities which differ uniformly from 
f(ki) ¾ by an amount ft¾, that is, suppose 

(*i = f(ξi) δi + i*»δf, where | ft| < ¢ and a ≤ £ ≤ 6. 
Prove that if ƒ is integrable, the sum ¿r¿ approaches a limit when δ¿ = 0 and that 

the limit of the sum is ļ f(x) dx. 

10. Apply Ex. 9 to the case Af = f'Ax -f ξ^Ax where ƒ ' is continuous to show 
directly that ƒ (b) —f(á) = f f(x) dx. Also by regarding x = φ' (t) At + î  ¿, apply 

to Ex. 8 to prove the rule for change of variable. 


