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because δj(G̃(p)) + σts
t
j ≥ σts

t
0 where 0 < δ1 < δ2 < · · · . Since Ĝ

(t)
0 (x, D) is

a di↵erential operator of order st
0 which is non characteristic with respect to

x0 =const, disposing of the power λ in front of the operator in square brackets,
we are left with the operator

(1.4.8) P (x, D) +
X
j≥1

λ−j/kPj(x, D)

where P (x, D) has the principal part Ĝ(t)(x, D) and Pj(x, D) are di↵erential
operators. One can then seek an asymptotic null solution to (1.4.8) in the form

X
j≥0

λ−j/kuj(x).

By the Cauchy-Kowalevski theorem we solve uj(x) successively with u0(x) ∕= 0.
Note that we may assume that

Im τ0(x, ξ′) ≤ −c in U × V

with some c > 0 where (x̂, ξ̂′) ∈ U × V . We solve φ(0)(x) under the condition

φ(0)(x̂0, x
′) = i|x′ − x̂′|2 + 〈x′, ξ̂′〉.

Then it is easy to see that φ(0)(x) verifies

Im φ(0)(x) ≥ c{x̂0 − x0 + |x′ − x̂′|2}, x0 ≤ x̂0

near x̄ with some c > 0. The rest of the proof is a repetition of standard
arguments (e.g. Theorem 23.3.1 in [19]). □

Chapter 2

Hyperbolic double
characteristics

2.1 Hamilton map

Let us denote by T ∗⌦ the cotangent bundle over ⌦ with a system of local
coordinates x = (x0, x1, ..., xn). Let (x, ξ) be a system of canonical coordinates
on T ∗⌦, then the canonical 2-form σ on T ∗⌦ is given by

σ =
nX

j=0

dξj ∧ dxj

in these coordinates. This 2-form gives a symplectic structure on T ∗⌦.
Let f ∈ C∞(T ∗⌦). Then the Hamilton vector field Hf of f is defined by

(2.1.1) df(·) = σ(·, Hf ).

In the canonical coordinates (x, ξ), denoting X = α∂/∂x+β∂/∂ξ, Hf = a∂/∂x+
b∂/∂ξ we have

df(X) = α
∂f

∂x
+ β

∂f

∂ξ
= dξ ∧ dx(α

∂

∂x
+ β

∂

∂ξ
, Hf ) = 〈β, a〉 − 〈α, b〉.

That is b = −∂f/∂x, a = ∂f/∂ξ and hence

Hf =
∂f

∂ξ

∂

∂x
− ∂f

∂x

∂

∂ξ
.

It is clear that
σ((x, ξ), (y, η)) = 〈ξ, y〉 − 〈x, η〉

in a system of canonical coordinates.
Let P (x, D) be a di↵erential operator of order m on ⌦ and let

P (x, D) = Pm(x, D) + Pm−1(x, D) + · · · .
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Then the principal symbol Pm(x, ξ) ∈ C∞(T ∗⌦), that is if y = (y0, y1, ..., yn)
is a second system of local coordinates and (y, η) is the system of canonical
coordinates on T ∗⌦ then

Pm(x, ξ) = Pm(y, η) if η = t

✓
∂x

∂y

◆
ξ.

Definition 2.1.1 Let p(x, ξ) ∈ C∞(T ∗⌦). Then a null bicharacteristic of p is
an integral curve of Hp lying on {p = 0}.

In what follows we assume that Pm(x, ξ) is hyperbolic and monic with respect
to ξ0 and we write p(x, ξ) = Pm(x, ξ). By definition, a null bicharacteristic of p
is an integral curve of the following Hamilton system

(2.1.2)

8><
>:

ẋ =
∂p

∂ξ
(x, ξ),

ξ̇ = −∂p

∂x
(x, ξ)

on which p = 0.
Let ρ = (x̄, ξ̄) be a multiple characteristic of p(x, ξ). Then it is clear that

ρ is a singular (stationary) point of the Hamilton system (2.1.2). To make a
closer look on behaviors of null bicharacteristics near double characteristics we
linearize the Hamilton system at the reference double characteristic ρ = (x̄, ξ̄).
Let

x(t) = x̄ + �y(t), ξ(t) = ξ̄ + �η(t)

and plug this into (2.1.2). Then the linear term in � gives

d

dt

 
y

η

!
=

0
BB@

∂2p

∂ξ∂x

∂2p

∂ξ∂ξ

− ∂2p

∂x∂x
− ∂2p

∂x∂ξ

1
CCA

 
y

η

!
.

Definition 2.1.2 We call

Fp(ρ) =
1
2

0
BB@

∂2p

∂ξ∂x
(ρ)

∂2p

∂ξ∂ξ
(ρ)

− ∂2p

∂x∂x
(ρ) − ∂2p

∂x∂ξ
(ρ)

1
CCA

the Hamilton map of p at ρ.

Hamilton map is first studied in [22] by the word fundamental matrix1

1one of the authors of [22] told me the history of the word ”fundamental matrix” as follows:
At this time I was a grad student and among mathematical students we had the following
definitions: *Derivative* of the drunken party is the party financed through deposit bottles.
[i.e. if I remember correctly the cheap booze was 1.52 per bottle, while returning the bottle
intact to the store one could recover 0.12, so multiplier was 12/152 and in order to be able to
get one bottle in the second round one should consume 13 in the first.]

*Fundamental* drunken party is a party with non-zero second derivative.
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Let Q(X, Y ) be the quadratic form (polar form) corresponding to the local-
ization p⇢ of p at ρ (see Definition 1.2.1)

2Q(X, Y ) = p⇢(X + Y ) − p⇢(X) − p⇢(Y )

then Fp(ρ) is given by

(2.1.3)
1
2
Q(X, Y ) = σ(X, FpY ), ∀X, Y ∈ T⇢(T ∗⌦).

Note that this definition is coordinates free.

2.2 Ivrii-Petkov-Hörmander condition

Thanks to Corollary 1.2.1 it follows that p⇢ is a hyperbolic polynomial and hence
Q is a hyperbolic quadratic form, that is a quadratic form with the signature
(−1, 1, ..., 1, 0, ..., 0). This hyperbolicity implies a special spectral structure of
the Hamilton map Fp.

Lemma 2.2.1 ([22], [18]) Let ρ ∈ T ∗⌦ \ {0} be a double characteristic of p.
Then all eigenvalues of Fp(ρ) are on the pure imaginary axis possibly with one
exception of a pair of ±λ, λ ∈ R+. More precisely the eigenvalues of Fp(ρ)
consists of

±λ, ±iµ1, ...,±iµk, λ ∈ R+, µj ∈ R+ ∪ {0}.

Definition 2.2.1 We say that p is effectively hyperbolic at ρ if Fp has non zero
real eigenvalues otherwise we say that p is noneffectively hyperbolic at ρ.

We now characterize e↵ective hyperbolicity in a more geometrical way.

Definition 2.2.2 We define the hyperbolic cone Γ⇢ of p⇢ as the connected com-
ponent of θ = (0, ..., 0, 1, 0, ..., 0) = −Hx0 of the set

{X ∈ T⇢(T ∗⌦) | p⇢(X) ∕= 0}.

Definition 2.2.3 The propagation cone C⇢ of the localization p⇢(x, ξ) is given
by

C⇢ = {X ∈ T⇢(T ∗⌦) | σ(X, Y ) ≤ 0, ∀Y ∈ Γ⇢}.

When ρ is a simple characteristic, that is p(ρ) = 0, dp(ρ) ∕= 0 then p⇢ is a
linear function in X = (x, ξ) and p⇢(X) = dp(ρ; X). Then it is clear that
Γ⇢ = {X | dp(ρ; θ)dp(ρ; X) > 0} for dp(ρ; θ) ∕= 0 by Lemma 1.2.3 and hence
C⇢ = R+ · dp(ρ; θ)Hp(ρ). We note that C⇢ is the minimal cone including every
null bicharacteristic which has ρ as a limit point in the following sense

Lemma 2.2.2 Let ρ ∈ T ∗⌦\{0} be a multiple characteristic of p. Assume that
there are simple characteristics ρj and positive numbers γj such that

ρj → ρ and γjHp(ρj) → X(∕= 0), j → ∞, ±dp(ρj ; θ) > 0, ∀j.

Then ±X ∈ C⇢.
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Proof: Let K be any compact set in Γ⇢. Then from Theorem 3 in [54] (see also
[53]) it follows that for sufficiently large j we have K ⊂ Γ⇢j . Since

dp(ρj ; θ)dp(ρj ;Y ) = dp(ρj ; θ)σ(Y, Hp(ρj)) > 0, ∀Y ∈ K

it follows that ±X ∈ C⇢. □

Definition 2.2.4 Let t(x, ξ) be homogeneous of degree 0 in ξ, C∞ near ρ. We
say that t is a time function for p near ρ if t(ρ) = 0 and

(2.2.1) −Ht(ρ) ∈ Γ⇢.

Note that t(x, ξ) is a time function near ρ for p if and only if

C⇢ ∩ T⇢({t(x, ξ) = 0}) = {0}.

Definition 2.2.5 ([12]) We define the linearity of p⇢ by

⇤⇢ = {X ∈ T⇢(T ∗⌦) | p⇢(tX + Y ) = p⇢(Y ), ∀t ∈ R, ∀Y ∈ T⇢(T ∗⌦)}.

When ρ is a simple characteristic then

p⇢(tX + Y ) = dp(ρ; tX + Y ) = tdp(ρ; X) + dp(ρ; Y )

hence it is clear that ⇤⇢ = {X ∈ T⇢(T ∗⌦) | dp(ρ; X) = 0}. When ρ is a double
characteristic of p then we have

⇤⇢ = Ker Fp(ρ).

Indeed p⇢(tX +Y ) = p⇢(Y ) for any t ∈ R and Y ∈ R2(n+1) implies Q(Y, X) = 0
for any Y . Since Q(Y, X) = 2σ(Y, FpX) and σ is non degenerate we have
FpX = 0.

Lemma 2.2.3 The following conditions are equivalent.

(a) Fp(ρ) has non zero real eigenvalues,

(b) (KerFp(ρ))σ ∩ Γ⇢ ∕= ∅,

(c) C⇢ ∩ ⇤⇢ = {0}

where (KerFp(ρ))σ = {X ∈ T⇢(T ∗⌦) | σ(X, Y ) = 0, ∀Y ∈ Ker Fp(ρ)}.

Proof: We give a proof in the next section. □
Let P be a second order di↵erential operator. Then we give another useful

characterization of e↵ective hyperbolicity. Write p as

(2.2.2) p(x, ξ) = −(ξ0 − a(x, ξ′))2 + q(x, ξ′)

where ξ′ = (ξ1, ..., ξn) and q(x, ξ′) ≥ 0 by Theorem 1.1.1. Then we have
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Lemma 2.2.4 ([44]) Assume that p is effectively hyperbolic at ρ. Then there is
a time function t(x, ξ′) near ρ for p verifying

(2.2.3) q(x, ξ′) ≥ ct(x, ξ′)2|ξ′|2 near ρ

with some c > 0. Conversely if (2.2.3) holds with some time function t(x, ξ′)
then p is effectively hyperbolic at ρ.

Proposition 2.2.1 Let p be as in (2.2.2). Assume that p is effectively hyper-
bolic at ρ and there is a null bicharacteristic γ having ρ as a limit point. Then γ
is transversal to some hypersurface containing the double characteristic set near
ρ.

Proof: Let t(x, ξ′) be a time function given in Lemma 2.2.4. Then it is clear
that the double characteristic set is contained in

{ξ0 = a, q = 0} ⊂ {q = 0} ⊂ {t = 0}.

Hence from Lemma 2.2.2 and (2.2.1) the assertion is clear. □
Thanks to Corollary 1.2.2 if p is strongly hyperbolic then every multiple

characteristic is double. The importance of e↵ective hyperbolicity is clear from
the following result.

Theorem 2.2.1 In order that p(x, D) is strongly hyperbolic it is necessary and
sufficient that p(x, ξ) is effectively hyperbolic at every double characteristic.

The necessary part follows from Theorem 2.2.2 below. The proof of sufficiency
part is due to [25], [29], [30], [42]. For a detailed exposition, see [31], [48].

Theorem 2.2.1 implies, in particular, that if p is none↵ectively hyperbolic
at ρ then in order that the Cauchy problem for P (x, D) is C∞ well posed the
lower order terms must verify some conditions. We discuss about one of such
necessary conditions.

Definition 2.2.6 Let ρ ∈ T ∗⌦ \ {0} be a double characteristic. We define
Tr+Fp(ρ) by

Tr+Fp(ρ) =
X

µj

where iµj are the eigenvalues of Fp(ρ) on the positive imaginary axis repeated
according to their multiplicities.

Definition 2.2.7 The subprincipal symbol of P (x, D) is defined by

Psub(x, ξ) = Pm−1(x, ξ) +
i

2

nX
j=0

∂2p

∂xj∂ξj
(x, ξ)

which is well defined on the double characteristics.

The proof of the next result was given in part in [22] and completed in [18].
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Theorem 2.2.2 (Ivrii-Petkov-Hörmander) Assume that the Cauchy problem
for P is C∞ well posed near the origin. Let ρ ∈ T ∗

0 ⌦ \ {0} be a multiple
characteristic and p is not effectively hyperbolic at ρ. Then we have

Im Psub(ρ) = 0, −Tr+Fp(ρ) ≤ Psub(ρ) ≤ Tr+Fp(ρ).

We end this subsection with a conjecture proposed by Melrose [37]. Let ⌃e

be the subset in T ∗⌦ \ {0} on which p is e↵ectively hyperbolic. Denote by e(ρ)
the positive eigenvalue of Fp(ρ) when ρ ∈ ⌃e. Set

s(ρ) = |Im Psub(ρ)| + inf{|Re Psub(ρ) − s| | |s| ≤ Tr+Fp(ρ)}.

Then

Conjecture:([37]) Assume that the Cauchy problem for P is C∞ well posed
near the origin. Then there is a neighborhood U of the origin such that s(ρ)/e(ρ)
is uniformly bounded in ⌃ ∩ (T ∗U \ {0}).

2.3 Hyperbolic quadratic form

Since p⇢ is a hyperbolic quadratic form it is natural to make more detailed
studies about general hyperbolic quadratic forms.

Here we restate Theorem 21.5.3 in [19] about symplectic equivalence of hy-
perbolic quadratic forms.

Theorem 2.3.1 Let Q be a hyperbolic quadratic form on R2(n+1), that is a
quadratic form with the signature (−1, 1, ..., 1, 0, ..., 0) and let F be the Hamilton
map of the quadratic form Q

1
2
Q(X, Y ) = σ(X, FY ), ∀X, Y ∈ R2(n+1).

Then one can choose symplectic coordinates (x, ξ) = (x0, x1, ..., xn, ξ0, ξ1, ..., ξn)
so that

(1) Q = −ξ2
0 +

Pk
j=1 µj(x2

j + ξ2
j ) +

Pl
j=k+1 ξ2

j ,

(2) Q = (−ξ2
0 + 2ξ0ξ1 + x2

1)/
√

2 +
Pk

j=2 µj(x2
j + ξ2

j ) +
Pl

j=k+1 ξ2
j ,

(3) Q = λ(x2
0 − ξ2

0)/
√

2 +
Pk

j=1 µj(x2
j + ξ2

j ) +
Pl

j=k+1 ξ2
j

where F has only pure imaginary eigenvalues in the case (1) and (2) while F
has a pair of non zero real eigenvalues in the case (3) and

X
µj = Tr+F.

In (1) and (3) we have Ker F 2∩Im F 2 = {0} while one has Ker F 2∩Im F 2 ∕= {0}
in the case (2).
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For symplectic coordinates, see Chapter 10 where we gathered basic facts
about them.

Corollary 2.3.1 Assume that Q is a hyperbolic quadratic form. Then the fol-
lowing conditions are equivalent.

(i) F has non zero real eigenvalues,

(ii) there is v ∈ V σ
0 such that Q(v) < 0,

(iii) there is v ∈ (KerF )σ such that Q(v) < 0,

(iv) for any v ∈ Ker F there is w ∈ R2(n+1) such that σ(v, w) = 0, Q(w) < 0,

where V0 denotes the space of generalized eigenvectors belonging to the zero
eigenvalue.

Proof: The implication (i)=⇒(ii) follows from Theorem 2.3.1. Indeed assume
the case (3) occurs. Then we have V0 = {x0 = · · · = xk = 0, ξ0 = · · · = ξ` = 0}
and hence V σ

0 = {ξ0, ..., ξk, x0, ..., x`} so that v = Hx0 is a desired vector.
The implications (ii)=⇒(iii)=⇒(iv) are trivial. We now prove (iv)=⇒ (i). By
Theorem 2.3.1, Q has one of the forms (1), (2) and (3) in suitable symplectic
coordinates. Suppose now (2) occurs. Working in {x0, x1, ξ0, ξ1} space Ker F
is given by {x1 = ξ0 = ξ1 = 0}. If σ(v, w) = 0, ∀v ∈ Ker F it follows that the
ξ0 coordinate of w is zero. Hence we get Q(w) ≥ 0 and this shows that if (iv)
holds then (2) never occurs.

Suppose that the case (1) occurs. Working in {x0, ξ0} space we have Ker F =
{ξ0 = 0}. If σ(v, w) = 0, ∀v ∈ Ker F then we see that the ξ0 coordinate of w is
zero and hence Q(w) ≥ 0. This shows that the case (1) also never happens if
(iv) holds.

Thus we proved that (iv) implies that only the case (3) happens. This proves
the assertion. □

Proof of Lemma 2.2.3: Apply Corollary 2.3.1 to Q = −Fp(ρ) which is a hyper-
bolic quadratic form. Then (iii) of Corollary 2.3.1 shows that (a) and (b) are
equivalent. It is sufficient to prove the equivalence of (b) and (c). Recall that
Ker Fp(ρ) = ⇤⇢ in this case. Assume Γ⇢ ∩ ⇤σ

⇢ = ∅. Then by the Hahn-Banach
theorem there is 0 ∕= Y ∈ T⇢(T ∗⌦) such that

σ(Y, X) ≤ 0, ∀X ∈ Γ⇢, σ(Y, X) ≥ 0, ∀X ∈ ⇤σ
⇢ .

This implies that Y ∈ C⇢ ∩ ⇤⇢ which would give a contradiction to (c). Thus
(c)=⇒(b). Suppose 0 ∕= Y ∈ Γ⇢ ∩ ⇤σ

⇢ . Then it is clear that 〈Y 〉σ ⊃ ⇤⇢ and
〈Y 〉σ ∩C⇢ = {0} because Γ⇢ is open where 〈Y 〉 = R · Y . This implies obviously
C⇢ ∩ ⇤⇢ = {0} and hence (b)=⇒(c). □
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Theorem 2.2.2 (Ivrii-Petkov-Hörmander) Assume that the Cauchy problem
for P is C∞ well posed near the origin. Let ρ ∈ T ∗

0 ⌦ \ {0} be a multiple
characteristic and p is not effectively hyperbolic at ρ. Then we have

Im Psub(ρ) = 0, −Tr+Fp(ρ) ≤ Psub(ρ) ≤ Tr+Fp(ρ).

We end this subsection with a conjecture proposed by Melrose [37]. Let ⌃e

be the subset in T ∗⌦ \ {0} on which p is e↵ectively hyperbolic. Denote by e(ρ)
the positive eigenvalue of Fp(ρ) when ρ ∈ ⌃e. Set

s(ρ) = |Im Psub(ρ)| + inf{|Re Psub(ρ) − s| | |s| ≤ Tr+Fp(ρ)}.

Then

Conjecture:([37]) Assume that the Cauchy problem for P is C∞ well posed
near the origin. Then there is a neighborhood U of the origin such that s(ρ)/e(ρ)
is uniformly bounded in ⌃ ∩ (T ∗U \ {0}).

2.3 Hyperbolic quadratic form

Since p⇢ is a hyperbolic quadratic form it is natural to make more detailed
studies about general hyperbolic quadratic forms.

Here we restate Theorem 21.5.3 in [19] about symplectic equivalence of hy-
perbolic quadratic forms.

Theorem 2.3.1 Let Q be a hyperbolic quadratic form on R2(n+1), that is a
quadratic form with the signature (−1, 1, ..., 1, 0, ..., 0) and let F be the Hamilton
map of the quadratic form Q

1
2
Q(X, Y ) = σ(X, FY ), ∀X, Y ∈ R2(n+1).

Then one can choose symplectic coordinates (x, ξ) = (x0, x1, ..., xn, ξ0, ξ1, ..., ξn)
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j
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