Chapter 4. An analogue of W for discrete Markov chains.
4.0 Introduction.

In this chapter, we construct for Markov chains some o-finite measures which enjoy similar
properties as the measure W studied in Chapter 1. Very informally, these o-finite measures
are obtained by ”conditioning a recurrent Markov process to be transient”.

Our construction applies to discrete versions of one- and two-dimensional Brownian motion,
i.e. simple random walk on Z and Z2, but it can also be applied to a much larger class of
Markov chains.

This chapter is divided into three sections; in Section 4.1, we give the construction of the
o-finite measures mentioned above ; in Section 4.2, we study the main properties of these
measures, and in Section 4.3, we study some examples in more details.

4.1 Construction of the o-finite measures (Q,,z € E)

4.1.1 Notation and hypothesis.

Let E be a countable set, (X,,),>0 the canonical process on EV, (F,,),>0 its natural filtration,
and Fo, the o-field generated by (Xp,)n>0-

Let us denote by (P,).cr the family of probability measures on (EN, (F,,)n>0, Fao) associated
to a Markov chain (E, below denotes the expectation with respect to P;) ; more precisely,
we suppose there exist probability transitions (py,.)y,.er such that :

IPJ:v(‘XO =20, X1 =21, .0, X = xk) = 1zo:zpzo,w1pz1,w2'“pzk,l,zk (411)

for all kK > 0, zg, x1, ...,z € E.

We assume three more hypotheses :

e For all x € F, the set of y € F such that p;, > 0 is finite (i.e. the graph associated to
the Markov chain is locally finite).

e For all z,y € E, there exists n € N such that P,(X,, = y) > 0 (i.e. the graph of the
Markov chain is connected).

e For all x € F, the canonical process is recurrent under the probability P,.

4.1.2 A family of new measures.

From the family of probabilities (P,),ecr, we will construct families of o-finite measures which
should be informally considered to be the law of (X,)n>0 under Py, after conditionning this
process to be transient.

More precisely, let us fix a point zg € E and let us suppose there exists a function ¢ : £ — R
such that :

e ¢(x) >0 for all x € F, and ¢(xp) = 0.

e ¢ is harmonic with respect to P, except at the point zg, i.e. :
for all z # o, ZEpz,y(z)(y) = Ez[¢(X1)] = ¢(x)
ye

e ¢ is unbounded.
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As we will see in Section 4.2 (Lemma 4.2.9), if ¢ satisfies the two first conditions, the third
one is equivalent to the following (a priori weaker):

e ¢ is not identically zero.

In Section 4.3 (Proposition 4.3.1), we give some sufficient conditions for the existence of ¢.
We also study some examples. Generally, ¢ is not unique, but it will be fixed in this section.
For any r €]0, 1], let us define:

r

Pr(x) = mEm [p(X1)] + o(x). (4.1.2)

From this definition, the following properties hold :
e For all = # xg, ¥ (z) = Egx[t)r(X1)]. (4.1.3)

o p(z9) = rEqy [tr (X1)] (4.1.4)

Now, for y € F and k > —1, let us denote by LZ the local time of X at point y and time k,
ie. :

k
L= 1x,-y (4.1.5)
m=0

(in particular, LY ; = 0 and Lg = 1x,—y). The properties of 1), imply the following result :
Proposition 4.1.1 For every v € E, (1/Jr(Xn)erle—1,n > 0) is a martingale under P,.
Proof of Proposition 4.1.1 For every n > 0, by Markov property :

E, {wr (XnJrl)TL"O |‘7:"} - TL"OEi ['¢r (Xn+1)|]:"]
T, 1 T
= B, (X,) <lxmo + ;1xn—zo> =l (X, (4.06)

(from (4.1.3) and (4.1.4)).
Corollary 4.1.2
There exists a finite measure ug;r) on (EN, F) such that :

ug\)ﬂ = P (Xp)rino1 Py 5, (4.1.7)

At this point, we remark that, for all 0, 0 < o < 1/r :
e .(z) <sup (%, 1) Wor(x) for all z € E.

e Consequently, forn > 1 :

H (GE0) = P [, (X)) (ro) 1] (from (4.1.7))

o (% 1> Pa[Yor (X0)(ro) 1]
< sup (%, 1) plen ) = ¢ (4.1.8)

where C' < oo does not depend on n.
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Therefore, N;’”) (JLQ) < oo, with

)
L% =3 1x, 4 = lim L.
k—o0

m=0

(r)

In particular, L% < oo, py’-a.s. It is now possible to define a measure Qy), by : Q;”) =
o
(%)L“’ .p&’"); this measure is o-finite since the sets { LZ0 < m} increase to { L% < 0o}; moreover

{LZ0 = oo} is Qg)-neghgible7 and
1 m
QY(LZ <m) < (;) (1) < oo (4.1.9)

4.1.3 Definition of the measures (Q,, = € E).
Here is a remarkable result, which explains the interest of this construction :

Theorem 4.1.3 The two following properties hold :

i) For allz € E, Q;(cr) does not depend on r €]0,1].

i1) Let Q. denote the measure equal to Qg([) for all r €]0,1], and F,, > 0 a F,,-measurable
functional. If q is a function from E to [0,1], such that {q < 1} is a finite set, then :

00 n—1
Q| Fn H Q(Xk)] =Ep | Fnipg(Xn) H Q(Xk)‘| (4.1.10)
k=0 k=0
where for y € E, ¥q(y) := Qy lH q(Xk)] . (4.1.11)
k=0

Remark 4.1.4 If we denote by ng) the measure defined by :

e = (H Q<Xk)> Qs (4.1.12)
k=0

we obtain : )
e
“ch\)fn = 1y(X,) (H q(Xk)> P, iz, (4.1.13)
k=0

These relations are similar to relations between W and Feynman-Kac penalisations of Wiener
measure W (see Chap. 1, Th. 1.1.2, formulae (1.1.7), (1.1.8), (1.1.16)).
Moreover, 1, satisfies the ”Sturm-Liouville equation” :

Pq(x) = q(2)Es[thg(X1)] (4.1.14)

The analogy between this situation and the Brownian case described in Chapter 1 can be
represented by the following correspondance :
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Markov chain Brownian motion

Py, Wo
P, W,
0 Wi,

M =y (X) TiZga(X) | M = 280 exp (—347)
() = a(2)E (14(X1)) #ll(x) = q(2)pq )
w5 = MO P, g, o5 = MO W, 5,

X x

= ([IiZo a(Xk)) Q. Wé?oo:%l()exp( Agg) W,

Proof of Theorem 4.1.3 To begin with, let us prove the point 4) (with Q; instead of
Q) for a function ¢ such that q(zg) < 1. Under the hypotheses of Theorem 4.1.3, for all

Q
n >0, F, Hk o q(Xk) ( ) N1 tends to F, [ e q(Xk) ( )L°° as N — oo and is dominated

O
by ( 4zo) \, 1) , which is M; )—integrable because @ V1< % (from (4.1.8)).
By domlnated convergence, if for y € E, k > 0, we define :

k—1
XoF ) =By | (Xe) [] q(Xm)] : (4.1.15)
m=0
forall x € E :
N-1
Ea | Foxy™ " H 0(Xp) | =B, |Futn(Xn) ] q(Xk)]
k=0
N-1 L%0
1 N—1
=ul) | Fy [T a(Xe) (;) ]
k=0
L o0
o l H 4(X) (—) ] —a £ T q(Xk)] . (4.1.16)
k=0
In particular, if we take n = O and Fp=1:
xg N () N QY [H (Xk)] (4.1.17)
> k=0
for all y € E.
Moreover :
V) < By [(aleo) N n (X))
r (1—q(x0) Ly
<s - _
=P (Q(Io) < 1—7r > 71) By {(q(mo)) Y Ygga) (Xv—n)
B r 1 —q(zo)
= sup (q(mo) < T > ,1) 'z/)q(xo)(y) (4.1.18)
where

IN

n—1
x wq(a:o)(Xn) Hq(Xk)]
k=0

E, {wq(xo)(Xn)( (330)) nt
= Py(ay) () < 0. (4.1.19)

112



By dominated convergence :

n—1 n—1
E, |Fn X; N- "(Xn) 1:[ q(Xk)‘| Neoo E; | Fy "p((f) (Xn) kli[@ Q(Xk)] ) (4.1.20)
where 44 (y) = Q) [T 4(X3)).
The two previous limits are equal; therefore :
00 n—1
QY | Fo [T ax0) | =B |Fued?(X0) [ ] q(Xk)] : (4.1.21)
k=0 k=0

as written in point ) of Theorem 4.1.3 (with Qg) instead of Q).
Now we can prove point i), by taking for any s €]0, 1[, ¢(x) = 1yzzy + $1o—gy-

Let us first observe that WE n; is puy ¥)_a.s. well-defined for all n > 0; therefore, u?(f) [73 E§”§ }
is well-defined and : s\An
S w (X’ﬂ) r Lz(l1
! [ | =B [ >} =i | (%)
s
ey [(r ] Q"] = v (v). (4.1.22)
Moreover, for all A >0 :
0 [9rCE)] _ o [9r(Xa) « "
Hy |:ws(Xn) Vo (X, ) Ye(Xn)>A| T 184, (4.1.23)
where :
’('Z) (s) 1/)7“ ng
K4 <sup v iy [Ps(Xy) < A] < A sup Ve Ey[s"»—1] — 0, (4.1.24)

(from the definition (4.1.7) of ;Lg(f) and the fact that (X,,)n>0 is recurrent under P,). Hence :

mmgmw”v ) [1hs (X)) > A

n—00 >Avs(x)

< lim inf ,u(é) [zTEXnﬂ < lim supu {

: () \ ()
< lim sup (w S(:B)I; e (x)) ty [0s(Xn) > Al (4.1.25)

Now, since ¢ (and hence, ;) is unbounded, inf vr(@) and sup (@)

tend to 1 when
Ys () >A1/Js(~”€) s (x)>AwS(x)

A goes to infinity and :
I s(Xn) 2 Al = i) (1) = s (y). (4.1.26)

Hence, ;L?(f) [M] T s (y), which implies that ;bé” (y) = ¥s(y)-
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By (4.1.21) :

Qg) [Fnngg] =E, Fnst(llqu}(gr)(Xn)} =E, [Fnstglws(Xn>
= u(F,) = QP [F,sP=). (4.1.27)

By monotone class theorem, if F' is F-measurable and positive :
Q;T)(F.SLQ) — Q(IS)(F.SLQ) (4.1.28)
for all r,s €]0,1[. Now, for all r,s,t <1 :
QI (Fthy = QW (Fti8) = Q) (F.tEe?). (4.1.29)

Recall that LT < oo, Q(J) and Qgs)—a.s. Therefore, by monotone convergence, Qg)(F ) =

;(vs)(F) ; point %) of Theorem 4.1.3 is proven, and Q, is well-defined. By (4.1.21), point i)
is proven if g(xg) < 1. It is easy to extend this formula to the case ¢(zg) = 1, again by
monotone convergence ; the proof of Theorem 4.1.3 is now complete. |

Remark 4.1.5 The family (Q,).cr of o-finite measures depends on zy and ¢, which were
assumed to be fixed in this section. In the sequel of the chapter, these parameters may vary;

if some confusion is possible, we will write ( §;¢’z°))zeE instead of (Qg)zecE-

4.2 Some more properties of (Q,,z € E).

4.2.1 Martingales associated with (Q,z € E).
At the beginning of this section, we extend the second point of Theorem 4.1.3 to more general

functionals than functionals of the form F;, H q(Xg). More precisely, the following result

k=0
holds :

Theorem 4.2.1
Let F be a positive Fu-measurable functional. For n >0, yo,y1,..-,yYn € E, let us define the
quantity :

M(F,yo,y1, - Yn) = Qy,, [F(Yo, Y1, -, yn = Xo, X1, X, ...)] . (4.2.1)

Then, for every (Fp)n>0-stopping time T, one has :

Qu(Flrene) = Ey [M(F, Xo, X1, oo, X7) 17200 - (4.2.2)

Proof Tof Theorem 4.2.1:  To begin with, let us suppose that T' = n for n > 0, and
F =L fo(Xo) fu(X1) . fN(Xn) for N>n, 0< f;i<1,0<7r < 1.
One has :

Qe(F) = p [fo(Xo0)... fn (X)]
Ey {fO(XO)--~fN(XN)""L?\?’11/)r(XN)} (4.2.3)

e [o(Xo)-fur (a0 K (X,)].
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where :
K(y) =By [fa(Xo) v (Xn)r ¥onr (X )
= 1) [Fa(X0) . N (X —n)] (4.2.4)
= Qy [ fa(Xo)of (Xn—p)r

Hence, for all yg, ..., yn :

Folwo)---Fa ()P0 B K (yy) |
= Q[ fo0)---F1(gn-1) fn(Ko)-oofv (Xnp)rZizo nmso 2] (4.2.5)
= Qyn [F(yo, ey Yn = Xo,Xl, )} = M(F, Yo, Y1, ,yn)

Therefore :
Qu(F) = Ey [M(F, Xo, ..., Xn)], (4.2.6)

which proves Theorem 4.2.1 for these particular functionals F' and for T' = n.

By monotone class theorem, we can extend (4.2.6) to the functionals F' = 1L G, where G is
any positive functional, and by monotone convergence (r increasing to 1), Theorem 4.2.1 is
proven for all F' and T = n.

Now, let us suppose that T is a stopping time.

For n > 0, M(Flp—y, X0, X1,..., X)) = 1p—, M (F, Xy, ..., Xy,), because {T = n} depends
only on Xo, X1, ..., Xp; hence,

Qu(Flr=p) =E, 19—, M (F, Xo, ..., X;)] . (4.2.7)
Summing from n = 0 to infinity, we obtain the general case of Theorem 4.2.1. |

Corollary 4.2.2 For any functional F € L'(Q,), (M (F, Xo, X1, ..., X)) nso 18 a Fn-martingale
(with expectation Q(F)).
The correspondance with the Brownian case is the following :

Markov chain Brownian motion
Fe L' (QFx) FelL!' (W, Fy)
(M(F, Xo, ., Xn), n > 0) (M(F), t>0) a (F, t > 0, W)
a (Fn, n > 0,P;) martingale such that martingale such that
(*) Q[T F) =P, [[M(F, Xo,....Xpn)] (Tn € Fpn) | Wi [[WF] = WD My(F)] (Ty € F)
Qx(F) :Px[M(F7X0a~--7Xn)] Wx(F) :Wx(Mt(F))

Here, (¥) is a consequence of (4.2.2) with T' = n.1,, + (+00).1xc.

Now, we are able to describe the properties of the canonical process under Q,.

4.2.2. Properties of the canonical process under (Q,,z € E).

We have already proven that LZ9 is almost surely finite under Q. In fact, the following
proposition gives a more general result :

Proposition 4.2.3 Under Q,, the canonical process is a.s. transient, i.e LY < oo for all
Yo € E.
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Proof of Proposition 4.2.3: Let yo be in E, and r be in |0, 1[. If, for k > 1, Tlgyo) denotes
the k-th hitting time of yy for the canonical process X, then for all n > 0 :

L 2 K = pOE <n) = Ba (L, 70 6 (X0)

0

L
(vo)
=By |1 o_, 7 Wh(yo)] (4.2.8)
k

by strong Markov property (applied at time T, (UO An), and by the fact that E, [r m- 1. (Xom)] =
r(yo) for all m > 0 (from Proposition 4.1. 1)

Hence : v

e

(
PR, > k] < e (yo)Bq |7 7k90>11 ! (4.2.9)

and by monotone convergence :
L0

(r)[ryo o)y
py [LE > k] < r(yo)Ey |7 7 k—_>»oo 0 (4.2.10)
(since L™, Rt P,-a.s.); this implies Proposition 4.2.3. |

Tk‘ —0Q

Now, we have the following decomposition result which gives a precise description of the
canonical process under Qy (y € E) :

Proposition 4.2.4 For all y,yg € E, one has :

(o)
Qy=Q + Y P 0Qy, (4.2.11)
k>1
where QZ[JyO] = Lyp>0,X,#4Qy is the restriction of Q, to trajectories which do not hit yo,

Quo = Lvn>1,X,#y0Qyo 18 the restriction of Qy, to trajectories which do not return to yo, and

(yo)

Pf o Qyo denotes the concatenation of P, stopped at time T, and @ym i.e. the image of

P, ® Qyo by the functional ® from EN x EN such that :
D((20, 215 evy Zny o)y (20 215 ey Ziys o)) = (205 21y oy Z_(5g) » 215 vy Zy) - (4.2.12)
Tk

This formula (4.2.11) can be compared to (3.2.20) or (1.1.40).
(o)

Proof of Proposition 4.2.4 : We apply Theorem 4.2.1 to the stopping time T' = 7.,
and to the functional :

F= GH(XT,EyO)’XT,SyO) Ilyu>1,x (o), , V0" (4.2.13)
J C Tk u

FEER

where GG, H are positive functionals such that G € .7-7(%).
k
For k£ > 1, we obtain :

Qy {GH(XT;?JM , XTliyO)+17 "')ngg:k}

=E, {1T,§y0><ooG(X07"" (W)} Qo [H], (4.2.14)
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which implies :

")1L§.‘Q=k =Ey[G] @yo [H], (4.2.15)

Qy |GH(X 0)» X o) -
k k

because T,Eyo) < 00, Py-a.s. (the canonical process is recurrent under P,). Moreover :

QyH1,50_o] = QI (H) (4.2.16)

by definition. Now, L < oo, Qy-a.s. by Proposition 4.2.3, so there exists & > 0 such that
L% =k : the equalities (4.2.15) and (4.2.16) imply the Proposition 4.2.4 by monotone class
theorem. m

4.2.3 Dependence of Q, on xg.
The next Theorem shows that in the construction of the family (Q,).ck, the choice of the
point xg in E is in fact not so important. More precisely, the following result holds :

Theorem 4.2.5. For all yo € E, let us define the function ¢l by :

Plwol(y) = Q?[Jyo](l) (4.2.17)

Then the following holds :
i) ¢l is equal to ¢ and for all yo € E, ¢l%) — ¢ is a bounded function.
it) For all yp € E :

o oWl is finite and harmonic outside of yo, i.e. for all y # yo :
Ey[¢1(X1)] = ¢l*l(y).

° ¢[yo] (yo) = 0.
o Qyy(1) = Eyy [0l (X1)].

[wol
ii) By point ii), yo and the function ¢! can be used to construct a family (ng) v ,yo))er

of o-finite measures by the method given in Section 4.1. Moreover, this family is equal to the
family (Q, = ;‘ﬁ’“))er constructed with ¢ and xg.

iv) For all yo,y € E, the image of the measure Q, by the total local time at yo is given by the
following expressions :

o Q)[LE = 0] = ¢lwl(y).
o Forall k> 1, QLY = k] = E,, [pl*)(X1)].

Proof of Theorem 4.2.5. Let yp and y be in E. For all r €]0,1[, n > 1 :

z0
WL 2 1) = D™ <n) =B [rP ) 4 (X0)
z0
(o)
1

=E, |r

—1_1Tl(y0)<n] Ur(Y0) (4.2.19)

from (4.1.7) and the martingale property. Hence :

i [LY > 1) = 1, (y0) By

L %0
e 1] . (4.2.20)
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If yo = xg, this implies :

DL > 1] = (o) (4.2.21)
Therefore :
ol(y) = QlLE = 0] = u (L5 = 0)
= u (1) =t (20) = Pry) — tr(z0) = H(y) (4.2.22)
as written in Theorem 4.2.5. If yy # g, let us define the quantities :
Pl = Bylri® <), (4.2.23)
and
gie?) =Py [rf* > 75°]. (4.2.24)
We have :
P, [Lffyml = 0} = i) (4.2.25)
and, for k > 1, by strong Markov property :
Py {Lffyo)l = k] = (1= p{rol) (g{z)* =1 (1 — ) (4.2.26)
Summing all these equalities, one obtains :
L™ _ @)y _ (x0)
E, [r T§y0>1] = 2(43,653 n (1 py,yo)((lxo) Gy ) (4.2.27)
1 —rqy,

and from (4.2.21) and (4.2.27) :

r

B (X)) + o)

ez = |;

(z0) (o)
1-—- 1-—-
v pg% . 7( Py,yo)((zo) Qyo )] . (4.2.28)
1 —rgy,
(from (4.2.20) and (4.1.2)). Moreover :
" r
1 (1) = e (v) = T——Eao [6(X1)] + ¢(v)- (4.2.29)

By hypothesis, there exists n > 0 such that P,,(X,, = yo) > 0; it is easy to check that it

implies : ¢\=)
plies : gy, < 1.
Hence, by considering the difference between (4.2.28) and (4.2.29) and taking r — 1, one

obtains :
(zo0)

$y) = Ex[6(X0)] —EE8 4 [6(3) - 9(0)]. (12:30)
— dyo
Therefore : & X
$(y) — ¢yo) < ol (y) < % + [(y) — (o)) (4.2.31)
— Qyo
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which implies point i) of the Theorem, and in particular the finiteness of plvol, By applying
Theorem 4.2.1toT =1and FF =1 L¥0_(, One can easily check that ¢ is harmonic every-
where except at point yo (where it is equal to zero).

By taking T'=1 and F' = 1 _,, one obtains the formula : Qyo( ) = Ey[¢%)(X1)]. Hence,
we obtain point #) of the Theorem, and the point iv) by formula (4.2. 11) Now, by taking

the notation : ,u?(f)’yo = rng.Qy, one has (for all positive and F,,-measurable functionals F,),

by applying Theorem 4.2.1 to T =n and F = F,, rke

uw(F,) = Qy[F, %) = B, [, rLZ(lla(Xn)} : (4.2.32)

where a(z) = Q. [rng}. By point iv) of the Theorem (already proven), one has :

afz) = ¢l(z <ZT> [0 (X )]

= i . E,, [0 (X1)] + ¢l¥0l(2) (4.2.33)

Hence :

r

— By [0 ()] + ¢[y0](Xn)):| (4.2.34)

Mér)yyO(Fn) _ ]Ey |:Fn ,an(ll (1

This formula implies that i, is the measure defined in the same way as uz(f), but from the

point 4o and the function ¢yo], instead of the point zg and the function ¢. By considering

(r)yo -

the new measure with density r ~L% with respect to ,u?(/ r):yo , one obtains the equality :
Q, = Q") (4.2.35)
which completes the proof of Theorem 4.2.5. |

There is also an important formula, which is a direct consequence of (4.2.1), (4.2.5) and
Theorem 4.2.5. :

Corollary 4.2.6 Let I, be a positive F,-measurable functional, y,yo be in E and gy, be the
last hitting time of yo for the canonical process. Then the following formula holds :

Qy [Fulg,y<n] = Ey[Fgll(X,)] (4.2.36)

In particular, one has :

Qy [Fn1g10<n} = Ey[Fno(Xy)] (4.2.37)

and (¢[yo] (Xn), n=>0), (¢(Xy), n>0) are two P submartingales.
The correspondance with the Brownian case is the following :

Markov chain Brownian motion
QylFnlg, <n] = Ey[Fnd(Xy)] W (Filger) = Wa(Fy| Xy|)
Qy[Fulgy, <n] = By [Fad ) (X,)] | We(Bily, <) = WalB(IXi] - a)4)
F, € F, FieF

By Theorem 4.2.5, the construction of a given family (Q,).cr can be obtained by taking any
point yo instead of zg, if the corresponding harmonic function ¢[¥! is well-chosen.
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4.2.4 Dependence of Q, on ¢.

In fact, this family of o-finite measures depends only upon the equivalent class of the function
¢, for an equivalence relation which will be described below. More precisely, if o and § are
two functions from F to Ry, let us write : a ~ g, iff a is equivalent to 8 when « + 3 tends
to infinity ; i.e, for all e €]0, 1], there exists A > 0 such that for all z € E, a(z) + f(z) > A

implies 1 — e < % < 1+ e. With this definition, one has the following result :
x

Propostion 4.2.7 The relation ~ is an equivalence relation.

Proof of Proposition 4.2.7 The reflexivity and the symmetry are obvious, so let us prove
the transitivity.

We suppose that there are three functions «, 3, such that « ~ § and [ ~ 7.

There exists € : Ry — Ry U {o0}, tending to zero at infinity, such that o + 8 > A implies

‘— - 1’ < €(A), and S+ > A implies ‘g — 1‘ < ¢(A). For a given x € F, let us suppose that
x) +y(x) > A for A > 4sup{z,e(z) > 1/2}. There are two cases :

o afx) > A/2. In this case, a(x) + B(x) > A/2; hence, ‘% - 1‘ < e(A/2) <1/2, which
implies : B(z) +v(z) > B(x) > a(z)/2 > A/4.
Therefore : ‘% - 1‘ < €(A/4). Consequently, there exist v and v, |u] <e(A/2) <1/2,

vl <e(A/4) <1 Zsuchthath 1+ u)(1 4+ v), which implies :
y(z)

IN

‘M _ 1‘ lu| + o] + [uv| < e(A/2) + €(A/4) + e(A/2)e(A/4)

7(@)

IA

3
2 (e(A/2) +€(A/4)) (4.2.38)
a(x) < A/2. In this case, y(x) > A/2, hence we are in the same situation as in the first

case if we exchange a(z) and 7(z)

The above inequality implies : « ~ -, since €(A4/2) + €(A/4) tends to zero when A goes to
infinity. Hence, ~ is an equivalence relation. |

This equivalence relation satisfies the following property :

Lemma 4.2.8 Let ¢1 and ¢ be two functions from E to Ry which are equal to zero at a
point yo € E and which are harmonic at the other points i.e. for all y # yo, Ey[¢i(X1)] =
Gi(y), i =1,2. If 1 = ¢a, then ¢1 = ¢a.

Proof of Lemma 4.2.8 By the martingale property, for all x € £, A >0 :

o) =Ex [01(X,, )]
x |:¢1(Xn/\Tl(yO))1¢1(X7L/\T§y0))+¢2(XnAT{yU>)>A + K, (4,2.39)

where |K| < APZ(Tl(yO) >n). Now, if ¢1(y) + ¢2(y) > A, one has :

(1 —€(A))d1(y) < P2(y) < (14 €(A))1(y), (4.2.40)
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where €(A) tends to zero when A tends to infinity. Therefore :

¢1(z) = aE, [d)z(Xmleo))1¢1(xmfy0>)+¢2(XMT{1,O))2A] + K, (4.2.41)
where 1 — €(A) < a <14 €¢(A). Moreover :
d)Q('r) = Eﬁf |:¢2(Xn/\T1(y0))1¢1(X A (yo))+¢2(X A (?JO))EA:| +K,7 (4242)
n Tl n. 7'1
where |K’| < APx(Tl(yO) > n). Hence :
p1(x) = o (da() — K') + K. (4.2.43)

Now, if A is fixed, |K| + |K'| tend to zero when n goes to infinity. Therefore :

(1 - e(A))é1(2) < do(e) < (L + e(A)) (2). (4.2.44)

This inequality is true for all A > 0; hence : ¢1 = ¢o, which proves Lemma 4.2.8. |
We now give another lemma, which is quite close to Lemma 4.2.8 :

Lemma 4.2.9 Let ¢ be a function from E to R which is equal to zero at a point yo € E and
harmonic at the other points. If ¢ is bounded, it is identically zero.

Proof of Lemma 4.2.9 Since ¢ is bounded, there exists A > 0 such that |¢(z)| < A. The
harmonicity of ¢ implies, for every n > 0 and = # yq :

$(x) = Eulo(X, 0]
Consequently, since ¢(yo) = 0, we get :

6(z)] < APy(r{" > n) — 0

n—oo

since (X, n > 0) is recurrent. Hence, ¢ is identically zero.
If ¢ is bounded and positive, then ¢ is equivalent to zero (by definition of ~). Hence, in this
case, Lemma 4.2.9 may be considered as a particular case of Lemma 4.2.8.

Now, let us state the following result, which explains why we have defined the previous
equivalence relation :

Proposition 4.2.10 Let xq, yo be in E, ¢ a positive function which is harmonic except at
xo and equal to zero at xg, ¥ a positive function which is harmonic except at yo and equal
to zero at yo. In these conditions, the family ( ;(fb’xo))ggeE of o-finite measures is identical to
the family ( g"’y"))er if and only if ¢ ~ 1. Therefore this family can also be denoted by
(Qﬁf])ze& where [§] is the equivalence class of ¢.

Proof of Proposition 4.2.10 If the two families of measures are equal, for all z € F,
ng’xo) = Q&“”y“). Now, it has been proven that v(z) = @&”’W)(ng = 0). Hence, if ol (z) =
Q{#™) (¥ = 0), one has 1) = ¢lol.

Since ¢ — ¢l¥°! is bounded (point i) of Theorem 4.2.5), ¢ —1) is bounded, which implies that ¢
is equivalent to ©». On the other hand, if ¢ is equivalent to ¢, and if ¢lvol = ng’zo)(ng =0),
¢ and ¢ are two equivalent functions which are harmonic except at point yo, and equal
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to zero at yo. Hence, by Lemma 4.2.8, 1) = ¢! and by Theorem 4.2.5, for all = € F,
(¢,m0) _ (810.30)

x - x

Therefore, Q§E¢’IO) = Qﬁ’y"), which proves Proposition 4.2.10.
In the next Section, we give some examples of the above construction.

4.3 Some examples.

4.3.1 The standard random walk.

In this case, £ = Z and for all z € E, P, is the law of the standard random walk. The
functions ¢4 : © — x4, ¢_ : * — x_ and their sum ¢ : x — |z| satisfies the harmonicity
conditions above at point z¢g = 0.

Let (QF)zez, (QF )zez and (Q4)zez be the associated o-finite measures. For all a € Z, let us
take the notations : QSLL_L] (z) = Qf[L% = 0], qﬁ[f} (x) = Q; [L% = 0] and ¢l9(z) = Q,[L% = 0].
The function (b[f] satisfies the harmonicity conditions at point a and is equivalent to ¢. Now,
these two properties are also satisfied by the function £ — (x — a)4; hence, by Lemma 4.2.8,

[f] () = (x — a)4. By the same argument, qb[f] (z) = (z —a)_ and ¢l(z) = |z — al.

Therefore, we have the equalities for every positive and F,-measurable functional F,,, and for
every x,a € Z :

Q;[Fn 1ga<n} = E.[Fn(Xn —a)4], (4.3.1)
Q; [Fn 19a<n} = ]Ew[Fn (Xn - a),], (432)
Q:c[Fn 1ga<n] = ]Ex[Fn|Xn - (IH (4.3.3)

These equations and the fact that the canonical process is transient under QF, Q, Q.
characterize these measures. Moreover, by using equations (4.3.1), (4.3.2) and (4.3.3), it is
not difficult to prove that for all x € Z, these measures are the images of Qaﬂ Qy and Qg by
the translation by z.

Now, for all a,z € Z, and for all positive and F,-measurable functional F;, :

QMR = QF [Fn 112 —0] = Es[Fo(X,,\ 0 = a)+]. (4.3.4)

Hence, if x < a, Q;’[al =0, and if x > a, QI’M is (z — a) times the law of a Bessel random
walk strictly above a, starting at point x (Cf [LG] for a definition of the Bessel random Walk).
By the same arguments, if z > a, Q;’[a] =0, and if x < a, Q;’[a] is (@ — z) times the law of a
Bessel random walk strictly below a, starting at point x. Moreover, QL’” is the |z — a| times

the law of a Bessel random walk above or below a, depending on the sign of £ — a. The same
kind of arguments imply that (with obvious notations) :

. @j{ is 1/2 times the law of a Bessel random walk strictly above a.
. @; is 1/2 times the law of a Bessel random walk strictly below a.

° @a is the law of a symmetric Bessel random walk, strictly above or below a with equal
probability.

The equalities given by Proposition 4.2.4 are the following :

(a)
Qf =Qrl+ > P oQf, (4.3.5)

k>1

122



(a) o
Q; =Q M+ P Qg (4.3.6)

E>1

(a)
Q. =Q +> P oQ.. (4.3.7)

k>1

Moreover, one has :
e QF[LY =0]=(z—a); and Qf [LI = k] =1/2 for all k > 1.
o QL% =0l=(z—a)- and Q; [LE = k] =1/2 for all k > 1.
o QL% =0] = |z —a| and Q[L% = k] =1 for all k > 1.

Hence, by applying Theorem 4.2.1 and Corollary 4.2.2 to the functional F' = h(L%) for a
positive function h such that ) _h(n) < oo, and for a € Z, one obtains that for all x € Z :

neN
1 o0
M = (Xo—a) Ly )+5 D, hik), (4.3.8)
k=L¢ +1
1 oo
My = (Xn —a)- h(Ly_1) + 5 > h(k), (4.3.9)
k=L _,+1
and their sum -
My, =|X, —alh(Ls_y)+ Y h(k) (4.3.10)
k=L% | +1

are martingales under the probability P,. Other martingales can be obtained by taking other
functionals F.

4.3.2 The "bang-bang random walk”.

In this case, we suppose that £ = N and that (P;).cn is the family of measures associated
to transition probabilities : po1 = 1, pyy+1 = 1/3 and p, -1 = 2/3 for all y > 1. Informally,
under P, (for any = € N), the canonical process is a Markov process which tends to decrease
when it is strictly above zero, and which increases if it is equal to zero.

The family of measures (Q,)zen can be constructed by taking xp = 0 and ¢(z) = 2* — 1 for
all z € N.

For y € N, the function ¢¥ : 2 — Q, [LY% = 0] is harmonic except at y where it is equal to
zero, and it is equivalent to ¢.

Since the function : & — (27 —2¥).1,>, satisfies the same properties, by Lemma 4.2.8, we get
ol (z) = (2° — 2Y).1,>y. For all x € N, the measure Q, is characterized by the transience
of the canonical process, and by the formula :

Qo[ Fh 1g,<n] = Ee[Fy (2X" —2%)4], (4.3.11)

which holds for all a, n € N and for every positive F,,-measurable functional F,.
Adopting obvious notations, it is not difficult to prove the formula :

X @
Q) = Eo[Fp (27 ™17 = 2%)] Losa, (4.3.12)
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and forn >1:

(a)

~ X
Qu(Fp) =Eq [Fy (2 7" —29) 1x,—q41] - (4.3.13)

Moreover :
e The total mass of QL?] is zero if x < a, and 2¥ — 2% if x > a.

e The total mass of @a islifa=0,and2%/3if x > 1.

e For z > a and under the probability Pica] = Q&a] /(2% — 2%), the canonical process is
22774 —1
3.22=a — 3

We remark that pyz4+1 tends to 2/3 when z goes to infinity, and pg -1

a Markov process with probability transitions : pgz+1 =
270 1
3.2¢e—a — 3
tends to 1/3 (the opposite case as the initial transition probabilities).
Qa
(2¢/3)1a>1 + la=o
with the same transition probabilities as under P

and ﬁz,mfl =

e Under the probability

, the canonical process is a Markov process
[a]
xT

, with X7 = a + 1 almost surely.

For all a,z € N, the image of Q, by the total local times is given by the equalities :

Qu[LS = 0] = (2" — 2) 14>q, (4.3.14)
and for all £ > 1 :
Q[L5, = k] = K(a), (4.3.15)

where K(0) =1 and K(a) =2%/3 for a > 1.
Moreover, if h is an integrable function from N to Ry, and if a,x € N,

M, =h(L% ;) (2% =2%), + K(a) > h(k) (4.3.16)

is a martingale under the initial probability P,.

4.3.3 The random walk on a tree.

We consider a random walk on a binary tree, which can be represented by the set E =
{2,(0),(1),(0,0),(0,1),(1,0),(1,1),(0,0,0), ...} of k-uples of elements in {0,1} (k € N).
Obviously, k is the distance to the origin & of the tree.

The probability transitions of the Markov process associated to the starting family of prob-
abilities (Pz)zep are pg (o) = Pg,1) = 1/2, and for k > 1 : p 1/2,
Pz, xp),(x1,e0zk,0) = P@r,eezn),(@1,02p,1) = 1/4'

In particular, under P, (for all z € E), the distance to the origin is a standard reflected
random walk.

If the reference point x( is &, we can take for ¢ the distance to the origin of the tree. But
there are other possible functions ¢ for the same point zg. For example, if (ag, a1, az,...) is
an infinite sequence of elements in {0, 1} it is possible to take for ¢ the function such that for
all (zo,x1,...,2x) € E, one has ¢(zg, 1, ..., z) = 2P — 1, where p is the smallest element of N
such that p > k or z, # ap. In particular, if a, = 0 for all p, one has ¢(&) = 0, ¢((0)) =1,

o((1)) =0, ¢((0,0)) =3, ¢((0,1)) =1, 6((1,0)) = ¢((1,1)) = 0, ¢((0,0,0)) = 7, ete.

T1,22,..,k), (1,22, Tp—1)
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Each choice of the sequence (ap)pen gives a different function ¢ and hence a different family
(Q?])me g of o-finite measures.

4.3.4 Some more general conditions for existence of ¢.
The following proposition gives some sufficient conditions for the existence of a function ¢
which satisfies the hypothesis of Section 4.1.2 :

Proposition 4.3.1 Let (P,).cr be the family of probabilities associated to a discrete time
Markov process on a countable set E. We suppose that for all x € E, the set of y € E such
that the transition probability p, , is strictly positive is finite. Furthermore, let us consider a
function ¢ which satisfies one of the two following conditions (for a given point xg € E) :

o There exists a function f from N to RY such that f(n)/f(n+1) tends to 1 when n goes
to infinity, and such that for allx € E :

E[r") > n] ~ f(n)o(x). (4.3.17)

n—oo

(z0)

where 77" is the first hitting time of xo, for the canonical process.

o forallx € B, P, (X = xg) tends to zero when k tends to infinity, and :
N
S [Py (Xi = 70) — Po(Xi = 20)] = (). (43.18)
k=0

In these conditions, ¢ is harmonic, except at point xg where this function is equal to zero.
Proof of Proposition 4.3.1 Let us suppose that the first condition is satisfied. For all
x # xo and for all y € E such that p,, >0 :

n—oo

Ey H“’)Zn} ~ () oy). (4.3.19)

By adding the equalities obtained for each point y and multiplied by p,,, we obtain :

> payEy [Tl(rw > n} ~ f() > Py 6), (4.3.20)
yeEE yelE
which implies :
E, Hro) >n+ 1] ~ F)E[g(X1)]. (4.3.21)
Moreover :
E, on) >t 1} ~ [+ 1) (). (4.3.22)

By comparing these equivalences and by using the fact that f(n) is equivalent to f(n + 1)
and is strictly positive, one obtains :

o(z) = Ezo(X1)]- (4.3.23)
Since ¢(xzg) is obviously equal to zero (Eq, [7'1(060) > n} = 0), Proposition 4.3.1 is proven if the

first condition holds.
Now let us assume the second condition holds.
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If & # w0, for all y such that p,, > 0:

N
> Py (Xi = 0) = Py(Xp = 20)] | = (). (4.3.24)
k=0
Therefore :
N
pr,y Z (Pry (X = w0) — Py (Xy, = 20)) N me, o(y). (4.3.25)
yeE k=0 yeE
This equality implies :
N N+1
[Pay (Xi = 20)] = D [Po(Xi = 20)] = Ex[6(X1))]. (4.3.26)
k=0 k=1

Now, P(Xo = z9) = 0 (since = # xp) and when N goes to infinity, P,(Xn41 = o) tends to
zero by hypothesis. Hence :

N
[Py (Xk = 0) — Po( X = 20))] N E.[¢(X1)], (4.3.27)
k=0
which implies :

o(x) = Ez[o(X1)], (4.3.28)
as written in Proposition 4.3.1. |
Remark 4.3.2 If the condition :

N
[Pro(Xi = 20) — Po(Xy = 20)] N o(x) (4.3.29)
k=0

is satisfied for a function ¢, then ¢ is automatically positive. Indeed :

N
Z [P (Xk = 20) — Po(Xy = 20)] = Eq,
k=0

Zle zo] — E

N
21 XHO] , (4.3.30)
k=0

where, by the strong Markov property :

Tl(zo)-&-N

Eqq {ZkN:O 1info} > E; Z 1x, =20
k=0

N
> E; 1xk_$0] . (4.3.31)
Lk=0

4.3.5 The standard random walk on ZZ2.
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In this case, £ = Z? and (P,),cz2 is the family of probabilities associated to the standard
random walk. If we take xg = (0,0), the problem is to find a function ¢ which satisfies the
hypothesis of Section 4.1.2 : it can be solved by using Proposition 4.3.1.

More precisely, by doing some classical computations (see for example [Spi]), we can prove
that for all (z,y) € Z?, and for all k € N :

Pley) [Xk = (0,0)] = L=ty (mod. 2) + €z (k) (4.3.32)

E+1

where for all (z,y), k* €, ,)(k) is bounded and C is a universal constant.
Therefore, for all N :

1
Z;cv:() IP(:my) [Xk = (Oa 0)] =C Z k—H + Ze(x,y)<k)
k<N, k=z+y (mod. 2) k=0
C
=3 log(N) + 0zy) (N), (4.3.33)

where for all (z,y) € Z2, N(a,y) (V) converges to a limit 7 ,)(co) when N goes to infinity.
Therefore :

N
[]P’(o,o) (X1 = (0,0)) — IED(ac,y) (Xy = (0»0))] N:’OO o((z,y)) := 7](0,0)(00) - n(x,y)(oo)'

k=0
(4.3.34)
By Proposition 4.3.1, the function ¢ is harmonic except at (0,0), and can be used to construct
the family of probabilities (Q(;,))(z,y)cz2, as in dimension one. Moreover, it is not difficult
to check that Q(, ) is the image of Qg ) by the translation of (x,y).
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