
Chapter 2. Existence and properties of the measure W(2).

We shall now establish a number of results similar to those of Chapter 1, but this time
(Xt, t ≥ 0) is a 2-dimensional Brownian motion.

2.1. Existence of W(2).

2.1.1 Notations and Feynman-Kac penalisations in two dimensions.(
Ω = C(R+ → C), (Xt, Ft)t≥0, W

(2)
z (z ∈ C)

)
denotes the two dimensional canonical Brow-

nian motion, which takes its values in C. We write W (2) for W
(2)
0 . I denotes here the set

of positive Radon measures on C admitting a density q with compact support and such that∫
q(x)dx > 0. Define :

A
(q)
t :=

∫ t

0
q(Xs)ds (2.1.1)

Here is the analogue in dimension 2 of Theorem 1.1.1. A proof of this Theorem (in dimension
2) is found in [RVY, VI].

Theorem 2.1.1. Let q ∈ I and, for every t ≥ 0 and z ∈ C :

W
(2,q)
z,t :=

exp
(
− 1

2 A
(q)
t

)

Z
(2,q)
z,t

·W (2)
z (2.1.2)

with

Z
(2,q)
z,t := W (2)

z

(
exp−1

2
A

(q)
t

)
(2.1.3)

1) For every s ≥ 0 and Γs ∈ b(Fs) :

W
(2,q)
z,t (Γs) admits a limit W

(2,q)
z,∞ (Γs) as t→ ∞ :

W
(2,q)
z,t (Γs) −→

t→∞
W (2,q)
z,∞ (Γs) (2.1.4)

2) W
(2,q)
z,∞ is a probability on (Ω,F∞) such that :

W (2,q)
z,∞ |Fs = M (2,q)

s ·W (2)
z |Fs

where (M
(2,q)
s , s ≥ 0) is the

(
(Fs, s ≥ 0), W

(2)
z

)
martingale defined by :

M (2,q)
s =

ϕq(Xs)

ϕq(z)
exp

(
−1

2
A(q)
s

)
(2.1.5)

3) The function ϕq : C → R+ featured in (2.1.5) is strictly positive, continuous and
satisfies :

ϕq(z) ∼
|z|→∞

1

π
log
(
|z|
)

(2.1.6)

It may be defined via one or the other of the following descriptions :
i) ϕq is the unique solution of the Sturm-Liouville equation :

∆ϕ = q · ϕ (in the sense of Schwartz distributions)
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which satisfies the limiting condition :

|z|∂ϕ
∂r

(z) −→
r→∞

1

π

(
r = |z|

)
(2.1.7)

ii)
1

2π
(log t) W (2)

z

(
exp

(
−1

2
A

(q)
t

))
−→
t→∞

ϕq(z) (2.1.8)

4) Under the family of probabilities (W
(2,q)
z,∞ , z ∈ C), the canonical process (Xt, t ≥ 0) is a

transient diffusion. More precisely, there exists a
(
Ω, (Ft, t ≥ 0), W

(2,q)
z,∞

)
Brownian motion

(Bt, t ≥ 0) valued in C and starting from 0 such that :

Xt = z +Bt +

∫ t

0

∇ϕq
ϕq

(Xs)ds (2.1.9)

2.1.2 Existence of the measure W(2).
Theorem 2.1.2. There exists on

(
Ω = C(R+ → C), F∞

)
a σ-finite and positive measure

W(2) (with infinite total mass) such that, for every q ∈ I :

W(2) = ϕq(0) exp

(
+

1

2
A(q)

∞

)
·W (2,q)

∞ (2.1.10)

In other terms, the RHS of (2.1.10) does not depend on q ∈ I.
In fact, just as in the case of dimension 1, we show for every z ∈ C, the existence of a measure

W
(2)
z , this measure being defined by :

W(2)
z

(
F (Xs, s ≥ 0)

)
= W(2)

(
F (z +Xs, s ≥ 0)

)
(2.1.11)

Proof of Theorem 2.1.2.

It consists in showing that ϕq(0) exp

(
+

1

2
A(q)

∞

)
·W (2,q)

∞ does not depend on q. The proof is

quite similar to that of Theorem 1.1.2. It hinges upon :

• ϕq(z) > 0 for every q ∈ I and z ∈ C ;

• ϕq1(z)

ϕq2(z)
−→

|z|→∞
1 for every q1 and q2 ∈ I ;

• ϕq(z) −→
|z|→∞

+∞ and the (W
(2,q)
z,∞ , z ∈ C) process (Xt, t ≥ 0) is transient.

These properties follow from Theorem 2.1.1. We also note, just as we did in Lemma 1.1.3 :

W (2,q)
z,∞

(
exp +

λ

2
A(q)

∞

)
< ∞ if λ < 1 (2.1.12)

W (2,q)
z,∞

(
exp +

λ

2
A(q)

∞

)
= ∞ if λ ≥ 1 (2.1.13)

These two properties show that W(2) is well defined via (2.1.10)
(
since A

(q)
∞ < ∞ W

(2,q)
∞

a.s.
)

and that W(2) has infinite total mass ; it is σ-finite on (Ω,F∞) and it is such that
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W(2)(Γt) = 0 or +∞ for any Γt ∈ b+(Ft) depending whether W (2)(Γt) is equal to 0 or is
strictly positive.

2.2 Properties of W(2).

2.2.1 Some notation.
We shall now prepare for Theorem 2.2.1 - which plays for W(2) a similar role as Theorem
1.1.5 for W. However, in order to prepare for Theorem 2.2.1, we need the following notation
:
i) Denote by C the unit circle in C :

C = {z ∈ C ; |z| = 1} (2.2.1)

and (L
(C)
t , t ≥ 0) the (continuous) local time process on C, which may be defined as :

L
(C)
t := lim

ε↓0
1

2πε

∫ t

0
1Cε(Xs)ds (2.2.2)

where
Cε = {z ∈ C ; 1 − ε ≤ |z| ≤ 1 + ε}

so that, a.s. if q0 denotes the uniform probability on C :

∫

C
f(z) q0(dz) =

1

2π

∫ 2π

0
f(eiθ)dθ (2.2.3)

we have :
(L

(C)
t , t ≥ 0) = (A

(q0)
t , t ≥ 0) (2.2.4)

In other terms, (L
(C)
t , t ≥ 0) is the additive functional which admits q0 as Revuz’s measure

(see [Rev]). We denote by (τ
(C)
l , l ≥ 0) the right continuous inverse of (L

(C)
t , t ≥ 0) :

τ
(C)
l := inf{t ≥ 0 ; L

(C)
t > l}, l ≥ 0 (2.2.5)

and we denote by W
(2,τ

(C)
l

)
0 the law of a 2-dimensional Brownian motion starting from 0,

considered up to τ
(C)
l .

ii) We denote by P
(2,log)
1 the law of the process (Rt, t ≥ 0) which solves the stochastic

differential equation :

Rt = 1 + βt +

∫ t

0

ds

Rs

(
1

2
+

1

log Rs

)
(2.2.6)

where (βt, t ≥ 0) is a 1-dimensional Brownian motion starting from 0. We note that the
process (Rt, t ≥ 0) starts from 1 and that P (Rt > 1 for every t > 0) = 1.

We adopted the notation P
(2,log)
1 to indicate :

a) that this process R starts from 1 ;
b) that it ”differs at infinity from a 2-dimensional Bessel process” by the presence of the term

1

log Rs
, in the drift part of equation (2.2.6).
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iii) Here is another description of the process (Rt, t ≥ 0) defined by (2.2.6) :

(log Rt, t ≥ 0)
(law)
= (ρHt , t ≥ 0) (2.2.7)

with :
• (ρu, u ≥ 0) a 3-dimensional Bessel process starting from 0 ;

• Ht :=

∫ t

0

ds

R2
s

(2.2.8)

We prove (2.2.7).

We apply Itô’s formula to the process (Rt) solution of (2.2.6) and we obtain :

log Rt =

∫ t

0

dβs
Rs

+

∫ t

0

ds

R2
s · log Rs

(2.2.9)

We denote by (νh, h ≥ 0) the inverse of the process (Ht, t ≥ 0) and we replace t by νh in
(2.2.9). Thus :

log Rνh
=

∫ νh

0

dβs
Rs

+

∫ νh

0

ds

R2
s log Rs

(2.2.10)

= β̃h +

∫ h

0

du

log Rνu

(2.2.11)

after the change of variable s = νu and with (β̃h, h ≥ 0) :=

(∫ νh

0

dβs
R2
s

, h ≥ 0

)
, which is a

1-dimensional Brownian motion since this - local - martingale admits as bracket
( ∫ νh

0

ds

R2
s

=

Hνh
= h, h ≥ 0

)
. Hence, from (2.2.11) (log Rνh

, h ≥ 0) is a 3-dimensional Bessel process

starting from 0.

iv) Let now (αt , t ≥ 0) be another 1-dimensional Brownian motion, independent from

(βt, t ≥ 0)
(
hence independent from (Rt, t ≥ 0)

)
. We define the law W (2,τ

(C)
l

) ◦ P̃ (2,log)
1 as

the law of the 2-dimensional process (Yt, t ≥ 0) satisfying to :

a) (Yt, t ≤ τ
(C)
l ) is a 2-dimensional Brownian motion starting from 0 and stopped in τ

(C)
l ;

its law, from point i), is W (2,τ
(C)
l

). Here, τ
(C)
l is the right-continuous inverse of (L

(C)
t , t ≥ 0),

the local time on C of the process (Yt, t ≥ 0).

b) after τ
(C)
l , the process (Y

τ
(C)
l

+t
t ≥ 0) writes :

Y
τ
(C)
l

+t
:= Rt · eiαHt (t ≥ 0) (2.2.12)

where :

• the law of the process (Rt, t ≥ 0) is P
(2, log)
1

• (αt, t ≥ 0) is a 1-dimensional Brownian motion starting from α0, with eiα0 = Y
τ
(C)
l

(we

note that Y
τ
(C)
l

∈ C)

• Ht =

∫ t

0

ds

R2
s
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c) (αt, t ≥ 0) and (βt, t ≥ 0), the driving Brownian motion of (Rt, t ≥ 0) (see (2.2.6))

are, conditionally on α0, independent from the process (Yt, t ≤ τ
(C)
l ).

Formula (2.2.7) - the second description of (Rt, t ≥ 0) - permits to write (2.2.12) in another
form :

Y
τ
(C)
l

+t
= exp(ρu + iαu)|u=Ht (t ≥ 0) (2.2.13)

where (ρu, u ≥ 0) is a 3-dimensional Bessel process starting from 0 and Ht =

∫ t

0

ds

R2
s

·

2.2.2 Description of the canonical process (Xt, t ≥ 0) under W
(2,q0)
∞ .

In order to describe the measure W(2), we shall use the formula :

W(2) = ϕq0(0)(e
1
2
L

(C)
∞ ) ·W (2,q0)

∞ (2.2.14)

This is formula (2.1.10), with q = q0
(
in fact, we use here a slight extension of (2.1.10) since

q0 is not absolutely continuous with respect to Lebesgue measure on C
)
. We now need to

study the probability W
(2,q0)
∞ . This is the aim of the following Theorem :

Theorem 2.2.1. With the notation of Theorem 2.1.1 :

1) ϕq0(z) = 2 +
1

π
log |z| if |z| ≥ 1

= 2 if |z| ≤ 1 (2.2.15)

and (M
(q0)
s , s ≥ 0) is the martingale defined by :

M (q0)
s =

ϕq0(Xs)

ϕq0(0)
exp

(
−1

2
L(C)
s

)
(2.2.16)

= 1 +
1

ϕq(0)

∫ s

0
< ∇ϕq0(Xu), dXu > e−

1
2
L

(C)
u (2.2.17)

2) Let gC := sup{t ≥ 0 ; Xt ∈ C}. Then gC is W
(2,q0)
∞ a.s. finite and the r.v. L

(C)
∞ (= L

(C)
gC

)

admits as density fW
(2,q0)
∞

L
(C)
∞

with :

fW
(2,q0)
∞

L
(C)
∞

(l) =
1

2
e−

l
2 1[0,∞[(l) (2.2.18)

3) Under the probability W
(2,q0)
∞ :

i) Conditionally on XgC
, (Xs, s ≤ gC) and (XgC+s, s ≥ 0) are independent

ii) The law of the process (XgC+s, s ≥ 0) is P̃
(2,log)
1

(
defined in point 2.2.1, iv)

)

iii) Conditionally on L
(C)
gC = l, the process (Xs, s ≤ gC) is a 2-dimensional Brownian

process stopped at τ
(C)
l , and its law, from point 2.2.1 i), is W

(2,τ
(C)
l

)
0 .

In other terms :

iv) W (2,q0)
∞ =

1

2

∫ ∞

0
e−

l
2dl
(
W

(2,τ
(C)
l

)
0 ◦ P̃ (2,log)

1

)
(2.2.19)

We note, in particular, that X
τ
(C)
l

under W
(2,q0)
∞ is uniformly distributed on C.

Proof of Theorem 2.2.1.
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In dimension 1, this Theorem is, essentially, proven in
(
[RVY, II]

)
. The only item which

really differs from those of Theorem 8 in [RVY, II] is point 3, ii). We shall emphasize the
corresponding arguments.
We prove point 3, ii).

We first recall and adapt to dimension 2 the notation and results of [RVY, II].

i) Let (Gt, t ≥ 0) be the smallest filtration containing (Ft, t ≥ 0) and such that gC is a

(Gt, t ≥ 0) stopping time. Then, there exists a
(
(Gt, t ≥ 0), W 2,q0∞

)
2-dimensional Brownian

motion (Bt, t ≥ 0) such that :

Xt = Bt +

∫ t

t∧g
C

nu

M
(q0)
u −M

(q0)
u

du (2.2.20)

with :
• nu := e−

1
2
L

(C)
u · ∇ϕq0 (Xu)

ϕq0 (0) (2.2.21)

• M
(q0)
u is defined by (2.2.16) and :

M (q0)
u := inf

s≤u
M (q0)
s (2.2.22)

ii) The function ϕq0(z) = 2 +
1

π
log |z| (for |z| ≥ 1)

(
see (2.2.15)

)
is increasing in |z|. On

the other hand, for u ≥ gC , L
(q0)
u = L

(C)
gC

. Thus :

M (q0)
u = M (q0)

gC
=
ϕq0(XgC

)

ϕq0(0)
e−

1
2
LC

gC

= e−
1
2
L

(C)
gC (2.2.23)

(
from (2.2.15) and since XgC

∈ C
)
.

iii) Gathering (2.2.20), (2.2.21) and (2.2.23), we obtain :

Xt = Bt +

∫ t

t∧g
C

du
∇ϕq0(Xu) e

− 1
2
L

(C)
gC

ϕq0(Xu) e
− 1

2
L

(C)
gC − 2e−

1
2
L

(C)
gC

,

= Bt +

∫ t

t∧g
C

∇
(
log | · |

)
(Xu)

log |Xu|
du (after simplification by e−

1
2
L

(C)
gC ) (2.2.24)

(
from (2.2.15), since ϕq0(Xu) − 2 =

1

π
log |Xu| and ∇ϕq0(Xu) =

1

π

(
∇ log | · |

)
(Xu)

)
.

iv) We now use Itô’s formula to express |XgC+t| := R̃t. We obtain, from (2.2.24) :

R̃t = (B̃gC+t − B̃gC
) +

∫ t

0

ds

R̃s

(
1

2
+

1

log R̃s

)
(2.2.25)

where
(
B̃gC+t − B̃gC

, t ≥ 0
)

is a 1-dimensional Brownian motion started at 1. Thus, from

(2.2.6), the law of
(
|XgC+t|, t ≥ 0

)
is P

(2,log)
1 .

Now, operating in an analogous manner to calculate Arg (XgC+t), we obtain :

(XgC+t, t ≥ 0) = (Rt e
iαHt , t ≥ 0) (2.2.26)
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with notation of points 2.2.1, ii), iii) and iv).

2.2.3 Another description of the measure W(2).

We now present a description of W(2) which is analogous, in dimension 2, to the description
of W given by Theorem 1.1.6.

Theorem 2.2.2.

1) W(2) =

∫ ∞

0
dl
(
W

(2,τ
(C)
l

)
0 ◦ P̃ (2,log)

1

)
(2.2.27)

2) For every t ≥ 0 and Γt ∈ b(Ft) :

W(2)[Γt 1gC≤t] =
1

π
W (2)

[
Γt log+(|Xt|)

]
(2.2.28)

(
Recall that gC := sup{s ≥ 0 ; Xs ∈ C}

)

3) i) W(2)(gC ∈ dt) = e−
1
2t

dt

2πt
(t ≥ 0) (2.2.29)

ii) Conditionally on gC = t, the law of the process (Xu, u ≤ gC), under W(2) is Π
(2,t,U)
0 ,

where :

• U is a r.v. uniformly distributed on C ;

• Conditionally on U = u, Π
(2,t,U)
0 is the law of a 2-dimensional Brownian bridge

(b
(2,t,u)
s , 0 ≤ s ≤ t) of length t such that b

(2,t,u)
0 = 0 and b

(2,t,u)
t = u.

iii) W(2) =

∫ ∞

0

dt

2πt
e−

1
2t

(
Π2,t,U ◦ P̃ (2,log)

1

)
(2.2.30)

Proof of Theorem 2.2.2.
i) Point 1) is an easy consequence of (2.2.14), (2.2.19) and (2.2.18).

ii) We now show (2.2.28)

For this purpose, we use the definition (2.1.10) of W(2) with q = λ q0 (where q0 is defined by
(2.2.3), and λ > 0). We have :

ϕλ q0(z) =
2

λ
+

1

π
log+(|z|) (2.2.31)

(
see (2.2.15)

)
. Thus, for every t ≥ 0 and Γt ∈ b(Ft) :

W (2)

(
Γt

(
2

λ
+

1

π
log+(|Xt|)

))
= ϕλ q0(0)W

(2,λ q0)
∞

(
Γt e

λ
2
L

(C)
t )
)

= W(2)
(
Γt e

−λ
2
(L

(C)
∞ −L(C)

t )
)

(2.2.32)

We then let λ→ ∞ in (2.2.32) and note that L
(C)
∞ −L

(C)
t > 0 on the set (gC > t) (and equals

to 0 on gC ≤ t). The monotone convergence Theorem implies :

1

π
W (2)

(
Γt log+(|Xt|)

)
= W(2)(Γt 1gC≤t)
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This is (2.2.28). Note that we may replace t by a stopping time T in (2.2.28). We obtain :

W(2)
(
ΓT 1gC≤T<∞) =

1

π
W (2)

(
ΓT log+(|XT |)1T<∞

)
(2.2.33)

with ΓT ∈ b(FT ).

Remark 2.2.3.
We deduce from (2.2.32) and (2.2.28) :

2

λ
W (2)(Γt) = W(2)

(
Γt 1gC>t exp

(
− λ

2

(
L(C)
∞ − L

(C)
t

)))

= W (2)(Γt)

(∫ ∞

0
e−

λ
2
ldl

)
(2.2.34)

and
1

π
W (2)

(
log+ |Xt|

)
= W(2)(gC ≤ t) = W(2)(L(C)

∞ − L
(C)
t = 0) (2.2.35)

Then, operating as in the proof of Theorem 1.1.6, point 3) i)
(
see (1.1.45) and (1.1.46)

)
, we

obtain :
i) W(2)(L

(C)
∞ − L

(C)
t ∈ dl) = 1[0,∞[(l)dl +

1
πW

(2)
(
log+(|Xt|)

)
δ0(dl) (2.2.36)

ii) Conditionally on LC∞ − LCt = l (l > 0), (Xu, u ≤ t) is, under W(2), a 2-dimensional
Brownian motion indexed by [0, t].

Remark 2.2.4. We can obtain (2.2.28) in the same manner as for point 2) of Remark
1.1.9. For this purpose, we need a scale function for the W (2,q0) process. The function

z → 1

1 + 1
π log(|z|)

(|z| ≥ 1) is an adequate choice.

iii) We now prove point 3 i) of Theorem 2.2.2.
We write (2.2.28) with Γt ≡ 1 :

W(2)(gC ≤ t) =
1

π
W (2)(log+ |Xt|) (2.2.37)

and we differentiate (2.2.37) with respect to t. Thus :

W(2)(gC ∈ dt) =
1

π

(
d

dt
W (2)(log+ |Xt|)

)
· dt

=
1

π

d

dt
W (2)

(
1|X1|> 1√

t

(
log

√
t− log

1

|X1|

))
· dt (by scaling)

=
1

2πt
W (2)

( |X1|2
2

>
1

2t

)
dt

=
1

2πt
e−

1
2t dt (t ≥ 0)

since
|X1|2

2
is a standard exponential r.v.

The end of the proof of Theorem 2.2.2 is obtained by using arguments similar to those used
for Theorem 1.1.6. We note, in particular, that conditionally on XgC

, (XgC+t, t ≥ 0) and
(Xs, s ≤ gC) are independent.
Remark 2.2.5. From (2.2.29), we deduce :

W(2)(e−
λ2

2
gC ) =

∫ ∞

0

dt

2πt
e−

λ2

2
t− 1

2t = K0(λ) (2.2.38)

where K0 denotes the Bessel-Mc Donald function with index 0
(
see [L], formula 5.10.25

)
.
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2.3. Study of the winding process under W(2).
Formula (2.2.12) :

XgC+t = Rt e
iαHt , (t ≥ 0)

which provides a representation of X after gC under W (2) invites to establish for this process
a theorem similar to the classical theorem of Spitzer, which we recall :

2.3.1 Spitzer’s Theorem.

Theorem.
(
Spitzer [S]

)

Let (Xt, t ≥ 0) a C valued Brownian motion, starting from z 6= 0. We have :

Xt = |Xt| eiαHt (2.3.1)

with :
i) (αu, u ≥ 0) a 1-dimensional Brownian motion independent from the 2-dimensional Bessel
process (|Xt|, t ≥ 0) (one can also find a precise study of the winding process of planar
Brownian motion in [PY1]).

ii) Ht =

∫ t

0

ds

|Xs|2
(2.3.2)

Let (θt, t ≥ 0) := (αHt , t ≥ 0) =

(
θ0 + Im

∫ t

0

dXs

Xs
, t ≥ 0

)
be the winding process. Then :

2θt
log t

(law)−→
t→∞

Γ
(law)
= αT1(γ) (2.3.3)

In (2.3.3), (γt, t ≥ 0) is a 1-dimensional Brownian motion started from 0 and independent
from (αu, u ≥ 0). and :

T1(γ) := inf{s ≥ 0 ; γs = 1} (2.3.4)

iii) Consequently Γ is a standard Cauchy r.v.

2.3.2. An analogue of Spitzer’s Theorem.

Now, here is the analogue of the above (Spitzer) Theorem for the process (XgC+t, t ≥ 0) :

Theorem 2.3.1. Under P̃
(2,log)
1 , the winding process (θt, t ≥ 0) = (αHt , t ≥ 0) satisfies :

1)
4

(log t)2
Ht

(law)−→
t→∞

T
(3)
1 (2.3.5)

where T
(3)
1 := inf{u ; ρu = 1} (2.3.6)

is the first hitting time of level 1 by a 3-dimensional Bessel process (ρu, u ≥ 0) started at 0.

2)
2

log t
θt

(law)−→
t→∞

α
T

(3)
1

(2.3.7)

where (αu, u ≥ 0) is a 1-dimensional Brownian motion independent from (ρu, u ≥ 0).

We now recall our notation (see Section 2.2.1)

• (Rt, t ≥ 0) is the process defined in (2.2.6)

• Ht =

∫ t

0

ds

R2
s

(2.3.8)

• (αu, u ≥ 0) is a 1-dimensional Brownian motion independent from (Rt, t ≥ 0)
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• (log Rt, t ≥ 0) = (ρHt , t ≥ 0) and (ρu, u ≥ 0) is a 3-dimensional Bessel process started
at 0.

Remark 2.3.2.
1. Theorem 2.3.1 differs from Spitzer’s Theorem in that T1 has been replaced by T

(3)
1 .

2. Let, for every z ∈ C, W
(2)
z be defined by :

W(2)
z

(
F (Xs, s ≥ 0)

)
:= W(2)

(
F (z +Xs, s ≥ 0)

)

Theorem 2.3.1 then implies that, for z 6= 0, under W
(2)
z and conditionally on gC ≤ a, the

winding process (θt, t ≥ 0) satisfies :

2

log t
θt −→
t→∞

α
T

(3)
1

(2.3.9)

for all a > 0. This easily results from (2.3.7) and from the representation formula (2.2.6).

Proof of Theorem 2.3.1.
i) We use the notation (2.3.8). We admit for a moment that :

Ht −HT√t(R) converges in law as t→ ∞, with : (2.3.10)

T√t(R) := inf{s ≥ 0 ; Rs ≥
√
t} (2.3.11)

and we show that (2.3.10) implies Theorem 2.3.1. Indeed, from (2.3.10), we have :

4

(log t)2
Ht ∼

t→∞
1

(log
√
t)2

HT√t(R) (2.3.12)

But :
1

(log a)2
HTa(R) =

1

(log a)2
Tlog a(ρ)

(law)
= T1(ρ) (2.3.13)

with
Tlog(a)(ρ) := inf{t ≥ 0 ; ρt ≥ log a} (2.3.14)

The first equality in (2.3.13) results from definitions
(
see point 4 of (2.3.8)

)
and the second

from the scaling property. Thus, from (2.3.10), we deduce :

4

(log t)2
Ht

(law)−→
t→∞

T
(3)
1 (2.3.15)

and

2

log t
θt =

2

log t
αHt

(law)
=

2
√
Ht

log t
α1 (by scaling)

(law)−→
t→∞

√
T

(3)
1 · α1

(law)
= α

T
(3)
1

(by scaling)

which proves Theorem 2.3.1.

ii) It remains to prove (2.3.10).
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For this purpose, we start with the following Lemma :

Lemma 2.3.3. Let (Rt, t ≥ 0) be defined by (2.2.6). Then :

(
1√
t
Rtv, v ≥ 0

)
converges in

law, as t→ ∞, to a 2-dimensional Bessel process starting from 0.

Proof of Lemma 2.3.3.
From (2.2.6) we have :

Rt = 1 + βt +

∫ t

0

(
1

2Rs
+

1

Rs log Rs

)
ds

Thus :
1√
t
Rtv =

1√
t

+
1√
t
βtv +

1√
t

∫ tv

0

(
1

2Rs
+

1

Rs log Rs

)
ds (2.3.16)

Denoting by (β̃v , v ≥ 0) the Brownian motion

(
1√
t
βtv , v ≥ 0

)
and making the change of

variable s = tv, we obtain, with

(
R̃(t)
v =

1√
t
Rtv, v ≥ 0

)
:

R̃(t)
v =

1√
t

+ β̃v +

∫ v

0

(
1

2R̃
(t)
u

+
1

R̃
(t)
u

(
log

√
t+ log R̃

(t)
u

)
)
du (2.3.17)

Hence, as t→ ∞, (R̃
(t)
v , v ≥ 0) converges in law to the law of the solution of the SDE :

R̃v = β̃v +

∫ v

0

du

2R̃u

i.e. to (the law of) a 2-dimensional Bessel process started at 0.

iv) We may now end up the proof of (2.3.10).
We have, from (2.3.8) :

HT√t(R) −Ht =

∫ T√t(R)

t

du

R2
u

=

∫ 1
t
T√t(R)

1

dv(
1
t R

2
vt

)

after making the change of variable u = tv. But, from Lemma 2.3.3,

(
1√
t
Rvt, v ≥ 0

)

converges in law to a 2-dimensional Bessel process
(
R

(2)
0 (v), v ≥ 0

)
starting from 0. Thus :

Ht −H√
t(R) converges in law, as t → ∞, to

∫ T1(R
(2)
0 )

1

du

(R
(2)
0 (u))2

(2.3.18)

with T1(R
(2)
0 ) = inf{s ≥ 0 ; R

(2)
0 (s) = 1}.

Remark 2.3.4. (An extension of Theorem 2.3.1.)

Let (βt, t ≥ 0) denote a 1-dimensional Brownian motion starting at 0, δ > 0 and (R
(δ)
t ,

t ≥ 0) the solution of :

R
(δ)
t = 1 + βt +

∫ t

0

(
1

2R
(δ)
s

+
δ

R
(δ)
s log R

(δ)
s

)
ds (2.3.19)
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The case we have just studied is that of δ = 1. Let :

H
(δ)
t :=

∫ t

0

ds

(R
(δ)
s )2

(2.3.20)

and
θ
(δ)
t = α

H
(δ)
t

where (αu, u ≥ 0) is a 1-dimensional Brownian motion independent from (βt, t ≥ 0).
The technique we have just developed allows to obtain :

i) (log R
(δ)
t , t ≥ 0) = (ρ

(2δ+1)

H
(δ)
t

, t ≥ 0) (2.3.21)

where (ρ
(2δ+1)
u , u ≥ 0) is a (2δ + 1)-dimensional Bessel process starting at 0.

ii)
4

(log t)2
H

(δ)
t

(law)−→
t→∞

T
(2δ+1)
1

where T
(2δ+1)
1 := inf{u ≥ 0 ; ρ

(2δ+1)
u = 1}.

iii)
2θ

(δ)
t

log t
=

2α
(δ)
Ht

log t

(law)−→
t→∞

α
T

(2δ+1)
1

(2.3.22)

where T
(2δ+1)
1 is independent from the 1-dimensional Brownian motion (αu, u ≥ 0).

2.4 W (2) martingales associated to W(2).
Just as in Chapter 1, we associated to any r.v. F ∈ L1(F∞,W) the

(
(Ft, t ≥ 0), W

)
martin-

gale
(
Mt(F ), t ≥ 0), we now associate to every r.v. F ∈ L1(F∞,W(2)) a

(
(Ft, t ≥ 0), W (2)

)

martingale
(
M

(2)
t (F ), t ≥ 0

)
.

2.4.1 Definition of
(
M

(2)
t (F ), t ≥ 0

)
.

Theorem 2.4.1. Let F ∈ L1
(
Ω = C(R+ → C), F∞,W(2)

)
. There exists a

(
(Ft, t ≥

0), W (2)
)

martingale (which is necessarily continuous)
(
M

(2)
t (F ), t ≥ 0

)
, positive if F ≥ 0,

such that :
1) For every t ≥ 0 and Γt ∈ b(Ft) :

W(2)(F · Γt) = W (2)
(
M

(2)
t (F ) · Γt

)
(2.4.1)

In particular, for every t ≥ 0 :

W(2)(F ) = W (2)
(
M

(2)
t (F )

)
(2.4.2)

and, if F and G belong to L1
+(F∞,W(2)) :

W (2)
(
M

(2)
t (F ) ·M (2)

t (G)
)

= W(2)
(
F ·M (2)

t (G)
)

= W(2)
(
M

(2)
t (F ) ·G

)
(2.4.3)

2) M
(2)
t (F ) = Ŵ

(2)
Xt(ωt)

(F (ωt, ω̂
t)) (2.4.4)

3) M
(2)
t (F ) −→

t→∞
0 W (2) a.s. (2.4.5)

In particular, the martingale (M
(2)
t (F ), t ≥ 0) is not uniformly integrable if F 6= 0.

4) For every q ∈ I :

M
(2)
t (F ) = ϕq(0) M

(q)
t W (2,q)

∞ (F e
1
2
A

(q)
∞ |Ft) (2.4.6)
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where M
(q)
t , ϕq and W

(2,q)
∞ are defined in Theorem 2.1.1.

The proof of Theorem 2.4.1 is, mutatis mutandis, the proof of Theorem 1.2.1. Here are some

examples of martingales (M
(2)
t (F ), t ≥ 0).

Example 2.1. Let q ∈ I and Fq = exp

(
−1

2
A(q)

∞

)
. We have, from (2.1.10) :

W(2)(Fq) = ϕq(0) (2.4.7)

and (
M

(2)
t (Fq) = ϕq(Xt) exp

(
−1

2
A

(q)
t

)
, t ≥ 0

)
(2.4.8)

In particular, for q = λq0
(
see (2.2.3) and (2.2.31)

)
:

M
(2)
t

(
exp−λ

2
A(q0)

∞

)
=

(
2

λ
+

1

π
log+

(
|Xt|

))
exp

(
−λ

2
L

(C)
t

)
(2.4.9)

Example 2.2.
(
see [RVY, VI]

)
.

We write the skew-product representation of the canonical 2-dimensional Brownian motion
(Xt, t ≥ 0) starting at z 6= 0 as :

Xt = |Xt| · exp(i αHt) (2.4.10)

where :
i)
(
|Xt|, t ≥ 0

)
is a 2-dimensional Bessel process starting at |z|.

ii) Ht =

∫ t

0

ds

|Xs|2
iii) (αu, u ≥ 0) is a 1-dimensional Brownian motion, independent from

(
|Xu|, u ≥ 0

)
.

Let (θt := αHt , t ≥ 0) denote the winding process and introduce :

Sθt := sup
s≤t

θs = sup
u≤Ht

αu (2.4.11)

Let ϕ : R+ → R+ Borel and integrable. Then :

(
M

(2)
t

(
ϕ(Sθ∞)

)
, t ≥ 0

)
=

(
ϕ(Sθt )(S

θ
t − θt) +

∫ ∞

Sθ
t

ϕ(y)dy, t ≥ 0

)
(2.4.12)

2.4.2 A decomposition Theorem of positive W (2) supermartingales.

Just as in Theorem 1.2.5, we have obtained a decomposition Theorem for every
(
(Ft, t ≥ 0),

W
)

positive supermartingale, we now present a decomposition theorem for every
(
(Ft, t ≥ 0),

W (2)
)

positive supermartingale.

Theorem 2.4.2. Let (Zt, t ≥ 0) denote a positive
(
Ω = C(R+ → C), (Ft, t ≥ 0), W (2)

)

supermartingale. We denote Z∞ := lim
t→∞

Zt, W
(2) a.s. Then :

1) z∞ := lim
t→∞

π
Zt

1 + log+(|Xt|)
exists W(2) a.s. (2.4.13)

and : W(2)(z∞) <∞ (2.4.14)
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2) (Zt, t ≥ 0) decomposes in a unique manner in the form :

Zt = M
(2)
t (z∞) +W (2)(Z∞|Ft) + ξt (t ≥ 0) (2.4.15)

where
(
M

(2)
t (z∞), t ≥ 0

)
and

(
W (2)(Z∞|Ft), t ≥ 0

)
denote two

(
(Ft, t ≥ 0), W (2)

)
martin-

gales and :
(ξt, t ≥ 0) is a

(
(Ft, t ≥ 0), W (2)

)
positive supermartingale such that :

i) Z∞ ∈ L1
+(F∞,W (2)), hence W (2)(Z∞|Ft) converges W (2) a.s. and in L1(F∞,W (2)) towards

Z∞.

ii)
W (Z∞|Ft) + ξt

1 + log+(|Xt|)
−→
t→∞

0 W(2) a.s.

iii) M
(2)
t (z∞) + ξt −→

t→∞
0 W (2) a.s.

In particular, if F ∈ L1(F∞,W(2)), then :

π · Mt(F )

1 + log+(|Xt|)
−→
t→∞

F W(2) a.s. (2.4.16)

and the map : F →
(
M

(2)
t (F ), t ≥ 0

)
is injective.

Corollary 2.4.3. (A characterisation of martingales of the form
(
M

(2)
t (F ), t ≥ 0

)
. A(

(Ft, t ≥ 0), W (2)
)

positive martingale (Zt, t ≥ 0) is equal to
(
M

(2)
t (F ), t ≥ 0

)
for an

F ∈ L1(F∞,W(2)) if and only if :

Z0 = W(2)

(
lim
t→∞

π · Zt

1 + log+(|Xt|)

)
(2.4.17)

Note that lim
t→∞

Zt

1 + log+(|Xt|)
exists W(2) a.s. from (2.4.13).

Sketches of Proofs of Theorem 2.4.2 and of Corollary 2.4.3.
This proof is essentially the same as those of Theorem 1.2.5 and of Corollary 1.2.6. Two
arguments need to be modified :
i) The role of the r.v. g in the proof of Theorem 1.2.5 is played here by that of the r.v. gC .
ii) The relation (1.1.41) : W(Γt 1g≤t) = W (Γt|Xt|)
and the limiting result :

ϕq(Xt) exp(−1
2 A

(q)
t )

1 + |Xt|
−→
t→∞

exp

(
−1

2
A(q)

∞

)
(2.4.18)

which were used in the proof of Lemma 1.2.8 need to be replaced respectively by :

W(2)
(
Γt 1(g

C
≤t)
)

=
1

π
W (2)(Γt log+ |Xt|)

)
.

(This is relation (2.2.28) of Theorem 2.2.2) and by :

π · ϕq(Xt) exp(−1
2 A

(q)
t )

1 + log+(|Xt|)
−→
t→∞

exp

(
−1

2
A(q)

∞

)
W(2) a.s. (2.4.19)
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The latter (2.4.19) follows easily from :

π · ϕq(z) ∼
|z|→∞

log(|z|), from (2.1.6)

and from : |Xt| −→
t→∞

∞ W(2) a.s.

since the canonical process under W
(2,q)
∞ is transient.

2.4.3 A decomposition Theorem for the martingales
(
M

(2)
t (F ), t ≥ 0

)
.

A difference with the preceding subsection is that the r.v.’s F which we now consider belong
to L1(F∞,W(2)) but are not necessarily positive. Here is the analogue, in dimension 2, of
Theorem 1.2.11.

Theorem 2.4.4. F ∈ L1(F∞,W(2)) and let
(
M

(2)
t (F ), t ≥ 0

)
the

(
(Ft, t ≥ 0), W (2)

)

martingale associated to F by Theorem 2.4.1. Let C, (L
(C)
t , t ≥ 0) and gC be as in Section

2.2.1, i) and Section 2.2.2. Then :

1) i) There exists a previsible process
(
k

(C)
s (F ), s ≥ 0

)
which is defined dL

(C)
s ·W (2)(dω) a.s.,

positive if F ≥ 0, and such that :

W (2)

(∫ ∞

0

∣∣k(C)
s (F )

∣∣dL(C)
s

)
= W(2)

(∣∣k(C)
gC

(F )
∣∣) ≤ W(2)(|F |) <∞ (2.4.20)

and for every bounded previsible process (Φs, s ≥ 0) :

W(2)(Φg
C
· F ) = W (2)

(∫ ∞

0
Φs k

(C)
s (F ) dL(C)

s

)
(2.4.21)

= W(2)
(
ΦgC

k(C)
gC

(F )
)

(2.4.22)

Thus :
W(2)

(
F |FgC

)
= k(C)

gC
(F ) (2.4.23)

ii)
(
k(C)
s (k(C)

gC
(F )), s ≥ 0

)
=
(
k(C)
s (F ), s ≥ 0

)
(2.4.24)

iii) If (hs, s ≥ 0) is a previsible process such that : W(2)
(
|hg

C
|
)
<∞,

(
k(C)
s (hg

C
), s ≥ 0

)
= (hs, s ≥ 0) dL(C)

s ·W (2)(dω) a.s. (2.4.25)

2) There exist two continuous quasimartingales
(
Σ

(2,C)
t , t ≥ 0

)
and (∆

(2,C)
t , t ≥ 0) such that,

for every t ≥ 0 :

M
(2)
t (F ) = Σ

(2,C)
t (F ) + ∆

(2,C)
t (F ) (2.4.26)

with :
i) For every t ≥ 0 and Γt ∈ b(Ft) :

W(2)(Γt 1gC≤t · F ) = W (2)
(
Γt Σ

(2,C)
t (F )

)
(2.4.27)

W(2)(Γt 1gC>t · F ) = W (2)
(
Γt ∆

(2,C)
t (F )

)
(2.4.28)

In particular, from (2.4.27) applied with Γ̃t = Γt 1|Xt|≤1 and since 1gC≤t · 1|Xt|≤1 = 0, the

process
(
Σ

(2,C)
t (F ), t ≥ 0

)
vanishes on the set

(
|Xt| ≤ 1

)
.
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ii) The Doob-Meyer decompositions of Σ
(2,C)
t (F ) and ∆

(2,C)
t (F ) write :

Σ
(2,C)
t (F ) = −MΣ(2,C)

t (F ) +

∫ t

0
k(C)
s (F )dL(C)

s (2.4.29)

∆
(2,C)
t (F ) = M∆(2,C)

t (F ) −
∫ t

0
k(C)
s (F )dL(C)

s (2.4.30)

where
(
MΣ(2,C)

t (F ), t ≥ 0
)

and
(
M∆(2,C)

t (F ), t ≥ 0
)

are the martingale parts of the corre-
sponding left-hand sides. The first martingale is not uniformly integrable ; the second one is
uniformly integrable. In fact, we have :

M∆(2,C)

t (F ) = W (2)

(∫ ∞

0
k(C)
s (F )dL(C)

s |Ft
)

(2.4.31)

with, from (2.4.20),

∫ ∞

0
k(C)
s (F )dL(C)

s ∈ L1(F∞,W
(2)).

iii) The ”explicit formula” :

Σ
(2,C)
t (F ) =

1

π
log+(|Xt|) · ̂̃E

(2,log)

Xt(ωt)

(
F (ωt, ω̂

t)
)

(2.4.32)

holds, where in (2.4.32) the expectation is taken with respect to ω̂t, and the argument ωt is
frozen. Ẽ(2,log) denotes the expectation with respect to the law P̃ (2,log) defined in Theorem
2.2.2. In particular :

• Σ
(2,C)
t vanishes on {t ; |Xt| ≤ 1}, as we already observed,

• π
Σ

(2,C)
t (F )

1 + log+(|Xt|)
−→
t→∞

F W(2) a.s. (2.4.33)

and, from (2.4.16)

π
∆

(2,C)
t (F )

1 + log+(|Xt|)
−→
t→∞

0 W(2) a.s. (2.4.34)

Corollary 2.4.5. Let F ∈ L1(F∞,W(2)).

One has M
(2)
t (F ) = 0 for every t ≥ 0 such that |Xt| ≤ 1, if and only if :

k(C)
g

C
(F ) = 0
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