CHAPTER 5

Part 1. Elliptic modular functions mod p and I' = PS Ly(Z®). -

Our purpose in Part 1 of this chapter is to formulate and prove a fundamental relation
between the classes mod P (Pp) of the special values of elliptic modular functions J(z)
and the group I' = PS L,(Z®)) (Theorems 1, 1’; §5). This is a fruit of

(i) Deuring’ s work on complex multiplication of elliptic curves [4] [6] [7],

(i) a new standpoint.
Roughly speaking, (ii) is of:
“A fixed p and variable imaginary quadratic fields and lattices”, ‘
instead of “a fixed imaginary quadratic field and variable p”, which was the standpoint of
classical complex multiplication theory. However, besides this new standpoint, nothing
more is to be added to Deuring’ s work. In fact, the proof of Theorems 1, 1’ based on
Deuring’s results is quite elementary.

As described in [18], our Theorems 1, 1’ give a starting point of our problems. Gen-
eralizations to congruence subgroups of I' (announced in §10) will be given in Part 2 of
this chapter.

Elliptic modular functions mod p and ' = PS L,(Z¥).

§1. Throughout this chapter, p is a fixed prime number and IT is the cyclic subgroup
of Q* generated by p. Put Z®) =11- Z = U, p™"Z, and put

1) T = PSL,(Z®).
It is a discrete subgroup of
G = Gr X G, = PSL,(R) X PSL,(Qp).

We already know that the quotient G/I" has finite invariant volumé and that I'g, T are
dense in Gg, G, respectively (see Chapter 1, §1, §2). Put

) I ={x € GLy(Z®)|detx € T}/ + I1.
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Then this is a discrete subgroup of G* = Ggr X G}, where
#)) G, = {x € GLy(Qp)ldetx € IT}/ + I1.

Since T is isomorphic to {x € GL,(ZP) | detx € I1?}/ + I, T can be considered as a
subgroup of I'" of index two, and in the same manner, G, and G can be considered as
subgroups of G, and G"* respectively with index two. So, it is clear that G*/I'™" has finite
invariant volume, the projections I'y, I', of I are dense in GR, G, respectively, and that
I"rnG=T.

§2. o) and p(I'*). Now let p(I') be as in §3 of Chapter 1. So, it is the set of all
I'-equivalence classes of all I'-fixed points on § = {z € C|Im z > 0}. Recall that a point
z € § is called a I -fixed point if its stabilizer in I (identified with I'gr) is infinite. Since
I =T C Gp, this definition also carries over at once to the group I'*;

3) (") = {I""-fixed points on H}/I"*-equivalence.

Note that a point z € $ is a [*-fixed point if and only if it is a I'-fixed point. In fact, if
the stabilizer I'; of z € $ in I'* is infinite, then I'; = I' N I} is also infinite, for (T; : I';) <
(I : T) = 2. Ttis also easy to see that if z is a I'*-fixed point, then the I'*-equivalence class
containing z consists of either one or two I'-equivalence classes, and that it is the latter if
and only if T'; is contained in I'. Such relations will be expressed as:

P =P P e p(I)
4 oI>P = or
P*=PPy; P,P,ep),P#P,.

(Such relations between p(I') and p(I”) for normal subgroups I"” of I'" with nonabelian
quotients, and their arithmetic meanings will be the main subject of our study in Part 2 of
this chapter.)

§3. Let P* € p(I"™) and let z be a I'*-fixed point contained in the class P*. Let I'; be
the stabilizer of z in I'*. Then the argument of §4 of Chapter 1 can be applied to I';, which
asserts that I'; , is an infinite discrete abelian subgroup of G}, and that there exists x € G,
such that x“I';,px c T,, where T is the diagonal subgroup of G,. For each y* € I';, put
xlyx = (t(; g) and t = t,;' € Q. Then the map y* - ord, ¢ is a homomorphism of I’;
into Z, and since I'; , is infinite and discrete in G}, the image of this homomorphism is not
{0}. Denote the image by aZ (a > 0) and the kernel by I';°. Then, since I, = y*Tiy*!
holds for all y* € I'* and since #; : £, is the ratio of two eigenvalues of y}, for every y* € I,
the positive integer a is independent of the choice of z. So, we shall denote it by Deg P*.
Also, for each y* € I'; we put Degy* = |ord, #|. Then it is clear that I';° is the torsion
subgroup of I'; and that Deg P* = Deg y* holds if y* is a generator of I'; modulo I';°. Now
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recall Chapter 1 (§4, §5) for the definition of deg P (P € p(I')). Then we can check easily
that ~

o oerefir rerrem

2degP;(i=1,2) ---P*=P\P;, P;, P, e p().
holds for all P* € p(I'™*). Moreover, Deg P* is odd in the former case.

§4. Let k be an algebraically closed field. Then, for each elliptic curve E over &,
a number j € k called the absolute invariant of E is defined, and the map E — j gives
a one-to-one correspondence between the set of all (k-isomorphism classes of) elliptic
curves over k and that of all elements of the field k. If the characteristic of k is neither 2
nor 3, then E is k-isomorphic to an elliptic curve defined by the equation y* = 4x>—g,x—g3
(92,93 € k; g3 — 27g% # 0), and j is given by j = 123—;—3— In the case of characteristic 2
or 3, j is also defined, and the bijectivity of the map E - j is proved in M. Deuring [5].

Let k = C. Then, elliptic curves over C are given by complex tori C/[w;, w:]. For
each z € 9, we shall denote by J(z) the absolute invariant of the elliptic curve given
by the torus C/[1,z]. It is well-known that J(z), called elliptic modular function, is an
automorphic function with respect to PS L,(Z).

Now let & be of characteristic p # 0, let F, be the prime field, and let F be the
algebraic closure of F, (hence F c k). For each elliptic curve E over k, we denote by
A(E) the endomorphlsm ring of E Then, (i) if j ¢ F,, A(E) = Z; (ii) if j € F,,, ¢ S, then
A(E) is an order of an imaginary quadratic field; (iii) if j € S, then A(E) is a maximal
order of a certain quaternion algebra over Q. Here, S is a certain finite set contained in
F,2, and elements of S are called supersingular (cf. Deuring [4]). Put S = §; U S, with
§1=SNF, 8, =5-S; =8 N(F,—F,). Then S, (and hence also §) is invariant by the
automorphisms of F,. over F,, and we have the following formulae for the cardinalities
of § and S (cf. [4] ).

1 ...p_—_—2’3,
(6) IS ={ _
El gl s ¢l ...p=1,5,-5-1(mod12)
respectively;
1 --- p=2]3,
M ISlI—{eh - p#2,3

where 4 is the class number of Q(/~p) and & = 1/2,2,1 for p = 1(mod 4), 3(mod 8),
7(mod 8) respectively.

§5. Now we are going to state our Theorem. We use the following notations:

6 the algebraic closure of Q in C.
Z: the ring of integers of Q
B: a prime divisor of p in Q, and fix an isomorphism Z/P = F

1A table of S for p < 100 is.given in [4].
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J1~J2 (1, 2 € E,) & Ji1, Ja are conjugate over Fp,
j1 = ja (1, j2 € Fp) © j1, j» are conjugate over F 2,
The degree of ~-class of j,= the degree of j; over F,, denoted by Deg{j},
The degree of ~-class of j,= the degree of j, over F., denoted by deg{;,}.

THEOREM 1. Let P* be an element of p(I'*), and let z be a I"*-fixed point which defines
the class P*. Then J(2) is contained in Z, and the map

® T :P'— Jiz) modP
gives a one-to-one correspondence between p(I'"*) and (l‘_‘p - S8)/ ~. Moreover,
® Deg J"(P") = Deg(P")
holds for all P* € p(I'™).
The corresponding Theorem for I' = PS L,(Z?) is the following:

TheOREM 1”. Let P be an element of p(I'), and let z be a T-fixed point which defines
the class P. Then J(z) is contained in Z, and the map

®) J:P->Jiz) modP

gives a one-to-one correspondence between p(I') and (fp ~8)/ =
Moreover,

®) deg J(P) = deg P

holds for all P € p(I).

These results are entirely based on the theory of complex multiplication of elliptic
curves mainly by M. Deuring [4] [6] [7]. So, before the proof, we shall give a summary
of the main results of Deuring.

Deuring’s results?

§6. Let O’ be an imaginary quadratic field. Then, a lattice A in O’ is a free Z-module
in @ with rank two, and two lattices «A, U’ are equivalent (or belong to the same class) if
W = pA holds with some p € ¢’*. An order O in (' is a subring of O’ containing 1 which
is at the same time a lattice in Q’. The ring of all algebraic integers is an order, denoted
by O,. Then all orders O are contained in O,, and for every positive integer f, there is one
and only one order O such that (O : O) = f. So, O & f is one-to-one. We shall denote
as O = Oy and call f the conductor of O. If A is a lattice, then Oy = {x € O'|xU c U}
is an order, called the order of U. In this case, U is called a proper Og-ideal. It is clear

2Cf. [4] for H. Hasse’s contribution which precedes Deuring’s.
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that equivalent lattices have a common order. Given an order O, the set of all proper O-
ideal classes form a finite multiplicative group, denoted by Go. Therefore, we have the
following one-to-one correspondence:

(10) All lattice classes in O — L=J1 Go,-

§7. Let O = Oy be an order of an imaginary quadratic field Q’. By (%) = 1, we
mean that both () = 1and f # 0 (mod p) hold;

a11) (9)= e {(%) =1, and
p f#0 (mod p).

For each O with ( ) =1,putp = PN Q and pp = p N O, where P is the fixed prime

divisor of p in Q. Denote by {po} the class of py in G, by Py the cyclic subgroup of Go
generated by {po}, and by dp the number of elements of Py;

(12) Go > Po={{O}{po), -+, {PR7'} ).

Finally, for any lattice % in any imaginary quadratic field, we denote by j(¥) the absolute
invariant of the elliptic curve given by the complex torus C/. Then it is well-known that

Jj e Z. Now, denoting by j() the element of F, (= Z/B) defined by j(A) mod P, we
can formulate a main result of Deuring [6] [7] as follows:

TueoreM D (M. Deuring). Let O run over all orders of all imaginary quadratic fields
such that (%) = 1. Then the map

(13) (A} — (W)

gives a one-to-one correspondence between U( 9)=1 Go and F, »—3S.
p

Remark 1. Deuring has also proved that if % is a lattice in Q' such that ( ) # 1, then
J(W) € 8 (cf. [4]).

Moreover, by the congruence relation for the modular equation of degree p, we have
the following Theorem (cf. e.g., [4]).

TueoreM C. Let U be a lattice in an imaginary quadratic field, and let 0 be another
lattice contained in W such that (A : W) = p. Then we have

(14) | Fary = oy,

CoroLLARY . Let ¥, W' be two lattices in an imaginary quadratic field such that W c A
and (U : W) = p" with some n. Then j(X) and F() are con]ugate over F,. If moreover n
is even, then they are conjugate over F 2.
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Now, by Theorem C, if (g) =1, {A} € Gp, and W = poA so that W c A and (A :
A’) = p hold, then j(po%) = j(AY"'. But in:such a special case, we have a more precise
result, which is well-known in complex multiplication theory (cf. e.g., [7]); namely,

(15) Hpo¥) = jWY". |

Therefore, by (15) and by the injectivity of the map (13), the complete set of conju-

gates of j(¥) over F, is given by

(16) JO), j(PoW), - -+ , J(pL™' ).
In particular, its degree over F, is equal to dp,
17) Deg j(%) = d.

ReMARk . By the same reason, the degree of j(U) over F,2 is the cardinality of Pé
hence it is equal to dp (if dp is odd) or to -zl-do (if dp is even).

| Proof of Theorems 1, 1’.

§8. Here, we shall prove Theorem 1. Then, the proof will show that Theorem 1’ is
an immediate consequence of Theorem 1 and the corollary of Theorem C.

Let z be a I'*-fixed point. Let y be an element of I'; of infinite order represented by
(z Z) € My(Z),(a,b,c,d) = 1,ad— bc = p". Then, by the ellipticity of y, we have ¢ # 0,
and since vy is moreover of infinite order, n cannot be 0. Hence n > 0. Put 1 = cz + d.
Then (z z) (T) = l(i); hence A is a quadratic integer with N(1) = p". Moreover, by
A = cz +d, A is imaginary; hence, in particular, irrational. Let m be a positive integer and
apply this result for y™. Then we see that A™ is also irrational. Therefore, A™ is not of the
form (a power of p) x (a root of unity), for if 1™ were of such a form, its suitable (positive
integral) power must be rational. In particular, the ideal (1?) cannot be a power of (p).
But since () is integral with p-power norm, it must be of the form (1) = p? zf ( ) #1,

where p is the unique prime factor of p in Q(A). But then, we get (1?) = p** = (p)® or
(p)**, which is impossible. Therefore, we get (9—2) = (ﬂl) =1.

P
Now let us prove that the map J* is well-defined. First, J(z) € Zis trivial, for we

have J(z) = j([1,z]). Let § € I'*, and put

6= (‘é g) € M;(Z), AD-BC =p'.
‘Put 2 = §z. Then J(z) = j([1,Z]) and [1,2'] ~ [4z + B,Cz + D] c [1,2], and the
group index is p”. Therefore, by the Corollary of Theorem C, j([1,z]) and j([1,2']) are
conjugate over F,. Hence J(z) mod B ~ J(z’) mod P. Moreover, if § € T, then r is
even; hence we get J(z) mod P =~ J(z') mod P by the same corollary. Now, to show
that J(z) mod P € F, — S, put A = [1,z] and let O = O be the order of A. Put f = fop*



CHAPTER 5. 1. ELLIPTIC MODULAR FUNCTIONS MOD P ANDT = PSLy(Z®). 165

with f # 0 (mod p), and put Oo = O, Ao = OpU. Then A C Ay, and (Uo : A) =
Therefore, j() is conjugate to j(‘llo) over F,. But since %, is a proper Op-ideal and since
Jo # 0 (mod p), we get (W) € F, — S (Theorem D). Therefore, J(z) mod P = F(U) is
contained in F,, — S. Therefore, the map J~ is well-defined.

Surjectivity of J*. Let j € F, — S. Then by Theorem D, j = j(W) with some
{°A} € Gy, (%) = 1. By multiplying some scalar to %, we can assume that %A = [1, z] with

ZEY. Put‘BnO=po,pZ"=7ro-0,andput

x 4 ap bo V4
°A1) " \eo do)\1
with ag, by, ¢y, dy € Q. Then, since mp € O and O is the order of A, ay, by, co, dp must be

. — ap bg
integral. Moreover, aydy — boco = monp € II. Therefore, y; = (Co P ) is an element of
0o do

I'", and y; - z = z. Since all positive integral powers of 7y are irrational, y; is of infinite
order in I"*. Therefore, z is a I'"*-fixed point. Therefore, by

J(z) mod P = jA) = J,
we get the surjectivity of J*.

Injectivity of 72 Let z, z’ be two I'*-fixed points, put % = [1,z], W’ = [1,2’}; put O =
Ou =0y, 00 = Oy, Up = Oy - W as above, and let O’, O, U; be the correspondmgs for A’'.
Suppose that J(2) mod B and J(z’) mod P are conjugate over F so that ](‘lI) ~ J(‘ZI')
Then, since we have j(QI) J(‘IIO) and ](‘lI') ](‘JI’) we get j(%Uo) ~ J(QI’) So, by the last

part of §7, we obtain ](‘JI ) = J(‘Jlopo) for some m. But then, by Theorem D, %, and %
belong to the same field @’ and Ay = pAqp}, holds for some p € Q'. Therefore,

W @z ZP) = W, @2 ZP = pU, 07 ZP) = pU ®7 2P;

hence [Z’, 11z = [pz, plz». Therefore, we have

z\ _(4 B\(Z\ _. A B ®
p(l) = (C D)(l) with some (C D) € GLy,(Z7).
But since Im z, Im 2 > 0, we get AD — BC > 0, and hence AD — BC € II. Therefore, z
and 2’ are ["*-equivalent.

That 7" is Degree-preserving. Let the notations be as in the proof of the surjectivity
of J*. By the definition of Deg, we have

Deg vy = | ordg mom, | = ordy mo = do.

On the other hand, by (17), we have Deg j(X) = dp. Therefore, it suffices to prove that vy}
generates I'; modulo the torsion subgroup I';° of I'; (see §3). For this purpose, let y* € T;
be any element of infinite order and put

¥ = (‘; Z) € My(Z) with (a,b,c,d) = 1 and ad — bc = p" (n > 0).

3The injectivity of J follows easily by well-definedness and surjectivity of 7, and by the decomposition
(4). Therefore, we need not worry about it here.
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dj\1
positive power of either pp or pp. But dp is the smallest positive integer, for which po is
principal. Therefore, we see that dp|n, and that either A/ "0 or A /_"/ % is a root of unity.
Therefore, A/ is a power of mp/mp modulo a root of umty 'I’herefore by §2, y; must be a
generator of I'; modulo I':°. o

Then, if we put (a b) (z) = A(f), we have 2 € O and A ¢ pO. Therefore, 10 is a

A corollary and an announcement of generalizations.

§9.
CoroLLARY . Let {r-(u) and {1(u) be defined by
[]a-wP#")", and [T -ubsPy?

Prep(T™) Pep(I’)
respectively. Then we have
(1% ) = (1- u)(ll - pu) x (1 —u)"51 5 (1 - o2)159,
a®) () = u)(l o XA -0

Proor. By Theorem 1, there is a Degree-preservmg one-to-one correspondence be-
tween p(I'™*) and (F — §)/~. But there is also a Degree-preserving natural one-to-one
correspondence between F,/~U{co} and the set of all prime divisors of the rational func-
tion field over F,. Therefore, the computation of /r-(u) reduces to the computation of
the congruence ¢ function of the rational function field over F,, which is nothing but
(1_—“)(17“) This proves (18*). The formula (18) for {r(u) is obtained exactly in the same
manner, by using Theorem 1. D

§10. As above, identify the set I_?;, /~ U{oo} with the set of all prime divisors of the
rational function field K* over F, and denote by p(K*) the set of all prime divisors of K*
which do not belong to S U {co}. Then by Theorem 1, J* gives a one-to-one correspon-
dence between p(I"™) and p(K*). In Part 2 of this chapter, we shall generalize this and
prove the following theorem.

Let I” be any congruence subgroup * of T* and let 1 : p(I") — p(™) be the natural
map defined by the inclusion I C T'*. Then there exists a finite extension K’ of K* whose
constant field is either F, (if T ¢ T) or Fzx (if I’ c T'), and a degree preserving one-
to-one correspondence J' between p(I"") and p(K’) such that the following diagram (19)

YTe. a subgroup of I'* containing some principal congruence subgroup. See Chapter 4 §3, and J.
Mennicke [23].
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is commutative. Here, p(K') denotes the set of all prime divisors of K’ which lie above
9(K*).

J’ ,
pI) = oK)
(19 Lt L the natural projection
% J. *
pI™) = pKY)
Moreover, the prime divisors of K which belong to S are “essentially” decomposed com-
pletely in K’ in a certain sense.

This theorem will give the law of decomposition of prime divisors of K* in K’ com-
pletely, and hence will solve our Congruence Monodromy Problems partly for the group
T = PSL,(ZP). Its relation with J. Igusa’s work [14] will be explained.
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