
CHAPTER 5

Part 1. Elliptic modular functions $mod p$ and $\Gamma=PSL_{2}(Z^{(p)})$ .

Our purpose in Part 1 ofthis chapter is to fomulate and prove a fimdamental relation

between the classes $mod \mathfrak{P}(\mathfrak{P}|p)$ of the special values of elliptic modular functions $J(z)$

and the group $\Gamma=PSL_{2}(Z^{(p)})$ (Theorems 1, 1’; \S 5). This is a fruit of

(i) Deuring’ $s$ work on complex multiplication of elliptic curves [4] [6] [7],
(ii) a new standpoint.

Roughly speaking, (ii) is of:
“A fixed $p$ and variable imaginary quadratic fields and lattices”,

instead of $a$ fixed imaginary quadratic field and variable $p$”, which was the standpoint of

classical complex multiplication theory. However, besides this new standpoint, nothing

more is to be added to Deuring’ $s$ work. In fact, the proof of Theorems 1, 1’ based on
Deuring’s results is quite elementary.

As described in [18], our Theorems 1, 1’ give a starting point of our problems. Gen-

eralizations to congmence subgroups of $\Gamma$ (announced in \S 10) will be given in Part 2 of

this chapter.

Elliptic modular functions $mod p$ and $\Gamma=PSL_{2}(Z^{(p)})$ .

\S 1. Throughout this chapter, $p$ is a fixed prime number and $\Pi$ is the cyclic subgroup

of $Q^{\times}$ generated by $p$ . Put $Z^{(p)}=\Pi\cdot Z=u_{n=0}^{\infty}p^{-n}Z$ , and put

(1) $\Gamma=PSL_{2}(Z^{(p)})$ .

It is a discrete subgroup of

$G=G_{R}\times G_{p}=PSL_{2}(R)\times PSL_{2}(Q_{p})$ .

We already know that the quotient $ G/\Gamma$ has finite invariant volume and that $\Gamma_{R},\Gamma_{p}$ are
dense in $G_{R},G_{p}$ respectively (see Chapter 1, \S 1, \S 2). Put

$(1^{*})$
$\Gamma^{*}=\{x\in GL_{2}(Z^{(p)})|\det x\in\Pi\}/\pm\Pi.$
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Then this is a discrete subgroup of $G^{*}=G_{R}\times G_{p}$ , where

(2) $G_{p}^{*}=\{x\in GL_{2}(Q_{p})|\det x\in\Pi\}/\pm\Pi.$

Since $\Gamma$ is isomorphic to $\{x\in GL_{2}(Z^{(p)})|\det x\in\Pi^{2}\}/\pm\Pi,$ $\Gamma$ can be considered as a
subgroup of $\Gamma^{*}$ of index two, and in the same mamer, $G_{p}$ and $G$ can be considered as
subgroups of $G_{p}^{*}$ and $G^{*}$ respectively with index two. So, it is clear that $G^{*}/\Gamma^{*}$ has finite
invariant volume, the projections $\Gamma_{R}^{*},$ $\Gamma_{p}^{*}$ of $\Gamma^{*}$ are dense in $G_{R},$ $G_{p}^{*}$ respective$1y$, and that
$\Gamma^{*}\cap G=\Gamma.$

\S 2. $\wp(\Gamma)$ and $\wp(\Gamma^{*})$ . Now let $\wp(\Gamma)$ be as in \S 3 of Chapter 1. So, it is the set of all
$\Gamma$-equivalence classes of all $\Gamma$-fixed points on $\mathfrak{H}=\{z\in C|{\rm Im} z>0\}$ . Recall that a point
$z\in \mathfrak{H}$ is called a $\Gamma$ -fixed point if its stabilizer in $\Gamma$ (identffied with $\Gamma_{R}$) is infinite. Since
$\Gamma^{*}\cong\Gamma_{R}^{*}\subset G_{R}$ , this definition also carries over at once to the group $\Gamma^{*}$ ;

(3) $\wp(\Gamma^{*})=$ { $\Gamma^{*}$ -fixed points on $\mathfrak{H}$ } $/\Gamma^{*}$ -equivalence.

Note that a point $z\in \mathfrak{H}$ is a $\Gamma^{*}$ -fixed point if and only if it is a $\Gamma$-fixed point. In fact, if
the stabilizer $\Gamma_{z}^{*}$ of $z\in \mathfrak{H}$ in $\Gamma^{*}$ is infinite, then $\Gamma_{z}=\Gamma\cap\Gamma_{z}^{*}$ is also infinite, for $(\Gamma_{z}^{*}:\Gamma_{z})\leq$

$(\Gamma^{*} : \Gamma)=2$ . It is also easy to see that ifz is a $\Gamma^{*}$-fixed point, then the $\Gamma^{*}$ -equivalence class
containing $z$ consists of either one or two $\Gamma$-equivalence classes, and that it is the latter if
and only if $\Gamma_{z}^{*}$ is contained in $\Gamma$ . Such relations will be expressed as:

(4) $\wp(\Gamma^{l})\ni P\Rightarrow\left\{\begin{array}{ll}P=P; & P\in\wp(\Gamma)\\or & \\P=P_{1}P_{2}; & P_{1},P_{2}\in\wp(\Gamma),P_{1}\neq P_{2}.\end{array}\right.$

(Such relations between $\wp(\Gamma^{*})$ and $\wp(\Gamma’)$ for normal subgroups $\Gamma’$ of $\Gamma^{*}$ with nonabelian
quotients, and their arithmetic meanings will be the main subject of our study in Part 2 of
this chapter.)

\S 3. Let $P\in\wp(\Gamma^{*})$ and let $z$ be a $\Gamma^{*}$-fixed point contained in the class $P$ . Let $\Gamma_{z}^{\cdot}$ be
the stabilizer of $z$ in $\Gamma^{*}$ . Then the argument of \S 4 ofChapter 1 can be applied to $\Gamma_{z}^{*}$ , which
asserts that $\Gamma_{z,p}$ is an infinite discrete abelian subgroup of $G_{p}^{*}$ and that there exists $x\in G_{p}^{*}$

such that $x^{-1}\Gamma_{zp}^{*}x\subset T_{p}^{*}$ , where $T_{p}^{*}$ is the diagonal subgroup of $G_{p}$ . For each $\gamma\in\Gamma_{z}^{\cdot}$ , put

$x^{-1}\gamma_{p}^{*}x=\left(\begin{array}{ll}t_{l} & 0\\0 & t_{2}\end{array}\right)$ and $t=t_{1}t_{2}^{-1}\in Q_{p}^{\times}$ . Then the map $\gamma^{*}\mapsto ord_{p}t$ is a homomorphism of $\Gamma_{z}$

into $Z$, and since $\Gamma_{z,p}^{*}$ is infinite and discrete in $G_{p}^{*}$ , the image ofthis homomorphism is not
$\{0\}$ . Denote the image by $aZ(a>0)$ and the kemel by $\Gamma_{z}^{*0}$ . Then, since $\Gamma_{\gamma z}^{*}=\gamma\Gamma_{z}^{*}\gamma^{*-1}$

holds for all $\gamma^{*}\in\Gamma^{*}$ and since $t_{1}$ : $t_{2}$ is the rabo oftwo eigenvalues of $\gamma_{p}^{*}$ for every $\gamma^{*}\in\Gamma_{z}^{*},$

the positive integer $a$ is independent of the choice of $z$. So, we shall denote it by Deg $P.$

Also, for each $\gamma^{*}\in\Gamma_{z}^{*}$ we put Deg $\gamma^{*}=|ord_{p}t|$ . Then it is clear that $\Gamma_{z}^{*0}$ is the torsion
subgroup of $\Gamma_{z}^{*}$ and that Deg $P=$ Deg $\gamma^{*}$ holds ify is a generator of $\Gamma_{z}^{*}$ modulo $\Gamma_{z}^{*0}$ . Now
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recall Chapter 1 (\S 4, \S 5) for the definition of $\deg P(P\in\wp(\Gamma))$ . Then we can check easily

that

(5) Deg $P=\left\{\begin{array}{ll}\deg P & \cdots P=P, P\in\wp(\Gamma) ,\\2 \deg P_{i}(i=1,2) & \cdots P=P_{1}P_{2}, P_{1}, P_{2}\in\wp(\Gamma) .\end{array}\right.$

holds for all $P\in\wp(\Gamma^{*})$ . Moreover, Deg $P$ is odd in the former case.

\S 4. Let $k$ be an algebraically closed field. Then, for each elliptic curve $E$ over $k,$

a number $j\in k$ called the absolute invariant of $E$ is defined, and the map $E\rightarrow j$ gives

a one-to-one correspondence between the set of all ($k$-isomorphism classes of) elliptic

curves over $k$ and that of all elements of the field $k$. If the characteristic of $k$ is neither 2
nor 3, then $E$ is $k$-isomorphic to an elliptic curve defined by the equation $y^{2}=4x^{3}-g_{2}x-g_{3}$

$(g_{2}, g_{3}\in k;g_{2}^{3}-27g_{3}^{2}\neq 0)$ , and $j$ is given by $j=12^{3}\frac{g_{2}^{3}}{g_{2}^{3}-27g_{3}^{2}}$ . In the case of characteristic 2

or 3, $j$ is also defined, and the bijectivity ofthe map $E\mapsto j$ is proved in M. Deuring [5].

Let $k=$ C. Then, elliptic curves over $C$ are given by complex tori $C/[\omega_{1}, \omega_{2}]$ . For

each $z\in \mathfrak{H}$ , we shall denote by $J(z)$ the absolute invariant of the elliptic curve given

by the toms $C/[1,z]$ . It is well-known that $J(z)$ , called elliptic modular function, is an
automorphic function with respect to $PSL_{2}(Z)$ .

Now let $k$ be of characteristic $p\neq 0$ , let $F_{p}$ be the prime field, and let $\overline{F}_{p}$ be the

algebraic closure of $F_{p}$ (hence $F_{p}\subset k$). For each elliptic curve $E$ over $k$, we denote by
$\mathcal{A}(E)$ the endomorphism ring of $E$ . Then, (i) if $j\not\in\overline{F}_{p},\mathcal{A}(E)\cong Z$ ; (ii) ifj $\in\overline{F}_{p},$ $\not\in S$ , then
$\mathcal{A}(E)$ is an order of an imaginary quadratic field; (iii) if $j\in S$ , then $\mathcal{A}(E)$ is a maximal

order of a certain quatemion algebra over Q. Here, $S$ is a certain finite set contained in
$F_{p^{2}}$ , and elements of $S$ are called supersingular (cf. Deuring [4]). Put $S=S_{1}\cup S_{2}$ with
$S_{1}=S\cap F_{p},S_{2}=S-S_{1}=S\cap(F_{p^{2}}-F_{p})$ . Then $S_{2}$ (md hence also $S$ ) is invariant by the

automorphisms of $F_{p^{2}}$ over $F_{p}$ , and we have the following formulae for the cardinalities

of $S$ and $S_{1}$ (cf. [4] 1).

(6) $|S|=\left\{\begin{array}{ll}1 & \cdots p=2,3,\\\frac{p-1}{12},\frac{p+7}{12},\frac{p+5}{12},\frac{p+13}{12} & \cdots p\equiv 1,5, -5, -1 (mod12)\end{array}\right.$

respectively;

(7) $|S_{1}|=\left\{\begin{array}{ll}1 & \cdots p=2,3,\\\epsilon h & \cdots p\neq 2,3;\end{array}\right.$

where $h$ is the class number of $Q(\cap-p and \epsilon=1/2,2,1 for p\equiv 1(mod 4),$ $3(mod 8)$ ,

$7(mod 8)$ respectively.

\S 5. Now we are going to state our Theorem. We use the following notations:
$\overline{Q}$ : the algebraic closure of $Q$ in C.
$\overline{Z}$ : the ring of integers of $\overline{Q}$

$\mathfrak{P}$ : a prime divisor of $p$ in $\overline{Q}$ , and fix an isomorphism $\overline{z}/\mathfrak{P}\cong\overline{F}_{p}.$

1A table of $S$ for $p<100$ is given in [4].
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$j_{1}\sim j_{2}(j_{1}, j_{2}\in\overline{F}_{\lrcorner},)\leftrightarrow j_{1},$ $j_{2}$ are conjugate over $F_{p},$

$j_{1}\approx j_{2}(j_{1}, j_{2}\in F_{p})\leftrightarrow j_{1},$ $j_{2}$ are conjugate over $F_{p^{2}},$

The degree of $\sim$-class of $j_{1}=$ the degree of $j_{1}$ over $F_{p}$ , denoted by $Deg\{j_{1}\},$

The degree of $\approx$-class of $j_{2}=$ the degree of $j_{2}$ over $F_{p^{2}}$ , denoted by $degU_{2}$ }.

THEOREM 1. Let $P$ be an element $of\wp(\Gamma^{*})$, and let $z$ be a $\Gamma^{\cdot}$-fixedpoint which defines
the class P. Then $J(z)$ is contained in $\overline{Z}$

, and the map

(8) $\mathcal{J}^{\cdot};P\mapsto J(z) mod \mathfrak{P}$

gives $a$ one-to-one correspondence between $\wp(\Gamma^{*})$ and $(\overline{F}_{p}-S)/\sim$ . Moreover,

(9) Deg $\mathcal{J}^{*}(P^{*})=Deg(P)$

holdsfor all $P\in\wp(\Gamma^{*})$.

The correspondming Theorem for $\Gamma=PSL_{2}(Z^{(p)})$ is the following:

THEOREM 1’. Let $P$ be an element of $\wp\sigma$), and let $z$ be a $\Gamma-\beta ed$point which defines
the class P. Then $J(z)$ is contained in $\overline{Z}$

, and the map

(8’) $\mathcal{J}:P\rightarrow J(z) mod \mathfrak{P}$

gives a one-to-one correspondence between $\wp(\Gamma)$ and $(\overline{F}_{p}-S)/\approx.$

Moreover,

(9’) $\deg \mathcal{J}(P)=\deg P$

holdsfor all $P\in\wp(\Gamma)$.

These results are entirely based on the theory of complex multiplication of elliptic
curves mainly by M. Deuring [4] [6] [7]. So, before the proof, we shall give a summary
of the main results ofDeuring.

Deuring’s results.2

\S 6. Let $Q’$ be an imaginary quadratic field. Then, a lattice $\mathfrak{A}$ in $Q’$ is a free $Z$-module
in $Q’$ with rank two, and two lattices $\mathfrak{A},$

$\mathfrak{A}’$ are equivalent (or belong to the same class) if
$\mathfrak{A}’=\rho \mathfrak{A}$ holds with some $\rho\in Q^{\prime x}$ . An order $O$ in $Q’$ is a subring of $Q’$ containing 1 which
is at the same time a lattice in $Q’$ . The ring of all algebraic integers is an order, denoted
by $O_{1}$ . Then all orders $O$ are contained in $O_{1}$ , and for every positive integer $f$, there is one
and only one order $O$ such that $(O_{1} : O)=f$. So, $O\leftrightarrow f$ is one-to-one. We shall denote
as $O=O_{f}$ and call $f$ the conductor of $O$. If $\mathfrak{A}$ is a lattice, then $O_{\mathfrak{U}}=\{x\in Q|x\mathfrak{A}\subset \mathfrak{A}\}$

is an order, called the order of $\mathfrak{A}$ . In this case, $\mathfrak{A}$ is called a proper $O_{\mathfrak{U}}$-ideal. It is clear

$2Cf.$ $[4]$ for H. Hasse’s contribution which precedes Deuring’s.



CHAPTER 5. 1. ELLIPTIC MODULAR FUNCTIONS MOD $P$ AND $\Gamma=PSL_{2}(Z^{(P)})$ . 163

that equivalent lattices have a common order. Given an order $O$, the set of all proper $O$-

ideal classes fom a finite multiplicative group, denoted by $G_{O}$ . Therefore, we have the
following one-to-one correspondence:

(10) All lattice classes in $Q’\xleftrightarrow[1:1]{}\bigcup_{f=1}^{\infty}G_{O_{f}}.$

\S 7. Let $O=O_{f}$ be an order of an imaginary quadratic field $Q’$ . By $(\frac{O}{p})=1$ , we

mean that both $\left(\begin{array}{l}Z\\p\end{array}\right)=1$ and $f\not\equiv O(mod p)$ hold;

(11) $(\frac{O}{p})=1\ovalbox{\tt\small REJECT}\left\{\begin{array}{l}(_{p}^{\Omega 1})=1, and\\f\not\equiv 0 (mod p) .\end{array}\right.$

For each $O$ with $(\frac{o}{p})=1$ , put $\mathfrak{p}=\mathfrak{P}\cap Q’$ and $\mathfrak{p}_{0}=\mathfrak{p}\cap O$, where $\mathfrak{P}$ is the fixed prime

divisor of $p$ in $\overline{Q}$ . Denote by $\{\mathfrak{p}_{o}\}$ the class of $\mathfrak{p}_{o}$ in $G_{O}$ , by $P_{O}$ the cyclic subgroup of $G_{O}$

generated by $\{\mathfrak{p}_{0}\}$ , and by $d_{O}$ the number of elements of $P_{O}$ ;

(12) $G_{O}\supset P_{O}=\{\{O\}, \{\mathfrak{p}_{0}\}, \cdots, \{\mathfrak{p}_{O}^{d_{O}-1}\}\}.$

Finally, for any lattice $\mathfrak{A}$ in any imaginary quadratic field, we denote by $j(\mathfrak{A})$ the absolute

invariant of the elliptic curve given by the complex toms $C/\mathfrak{A}$ . Then it is well-known that
$j(\mathfrak{A})\in\overline{Z}$ . Now, denoting by $j(\mathfrak{A})$ the element of $\overline{F}_{p}(\cong\overline{z}/\mathfrak{P})$ defined by $j(\mathfrak{A})mod \mathfrak{P}$ , we
can formulate a main result ofDeuring [6] [7] as follows:

THEOREM D (M. Deuring). Let $O$ run over all orders ofall imaginary quadraticfields
such that $(\frac{o}{p})=1$ . Then the map

(13) $\{\mathfrak{A}\}\rightarrow\overline{j(}\mathfrak{A})$

gives a one-to-one correspondence between $\bigcup_{(\frac{O}{p})=1}G_{O}$ and $\overline{F}_{p}-S.$

REMARK 1. Deuring has also proved that if $\mathfrak{A}$ is a lamce in $Q’$ such that $(_{p}^{Z})\neq 1$ , then
$\overline{j}(\mathfrak{A})\in S$ (cf. [4]).

Moreover, by the congmence relation for the modular equation of degree $p$ , we have

the following Theorem (cf. e.g., [4]).

THEOREM C. Let $\mathfrak{A}$ be a lattice in an imaginary quadraticfield and let $\mathfrak{A}’$ be another

lattice contained in $\mathfrak{A}$ such that $(\mathfrak{A} : \mathfrak{A}’)=p$ . Then we have

(14) $\overline{j(}\mathfrak{A}’)=\overline{j(}\mathfrak{A})^{p^{\pm 1}}$

COROLLARY. Let $\mathfrak{A},\mathfrak{A}’$ be two lattices in an imaginary quadraticfield such that $\mathfrak{A}’\subset \mathfrak{A}$

and $(\mathfrak{A}:\mathfrak{A}’)=p^{n}$ with some $n$. Then $\tilde{j(}\mathfrak{A}$) and $\overline{j(}\mathfrak{A}’$) are conjugate over $F_{p}$ . Ifmoreover $n$

is even, then they are conjugate over $F_{?}.$
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Now, by Theorem $C$ , if $(\frac{o}{p})=1,$ $\{\mathfrak{A}\}\in G_{O}$ , and $\mathfrak{A}’=\mathfrak{p}_{0}\mathfrak{A}$ so that $\mathfrak{A}’\subset \mathfrak{A}$ and $(\mathfrak{A}$ :
$\mathfrak{A}’)=p$ hold, then $\tilde{j(}\mathfrak{p}_{0}\mathfrak{A}$) $=\tilde{j}(\mathfrak{A})^{p^{*1}}$ But in.such a special case, we have a more precise
result, which is well-known in complex multiplication theory (cf. e.g., [7]); namely,

(15) $\overline{j(}\mathfrak{p}_{O}\mathfrak{A})=\overline{j(}\mathfrak{A})^{p^{-1}}$

Therefore, by (15) and by the injectivity of the map (13), the complete set of conju-
gates of $\tilde{j(}\mathfrak{A}$) over $F_{p}$ is given by

(16) $\overline{j(}\mathfrak{A}),\overline{j(}\mathfrak{p}_{0}\mathfrak{A}), \cdots,\overline{j(}\mathfrak{p}_{O}^{d_{O}-1}\mathfrak{A})$ .

In particular, its degree over $F_{p}$ is equal to $d_{O},$

(17) Deg $\overline{j(}\mathfrak{A}$) $=d_{O}.$

REMARK. By the same reason, the degree of $\overline{j(}\mathfrak{A}$) over $F_{F}$ is the cardinality of $P_{O}^{2}$ ;

hence it is equal to $d_{O}$ (if $d_{O}$ is odd) or to $\frac{1}{2}d_{O}$ ($ifd_{O}$ is even).

Proof of Theorems 1, 1’.

\S 8. Here, we shall prove Theorem 1. Then, the proofwill show that Theorem 1’ is
an immediate consequence ofTheorem 1 and the corollary ofTheorem C.

Let $z$ be a $\Gamma^{*}$ -fixed point. Let $\gamma$ be an element of $\Gamma_{z}^{*}$ of infinite order represented by

$(_{c}^{a}db)\in M_{2}(Z),$ $(a,b,c,d)=1,$ $ad-bc=p^{n}$ . Then, by the ellipticity of $\gamma$, we have $c\neq 0,$

and since $\gamma$ is moreover of infinite order, $n$ camot be $0$ . Hence $n>0$ . Put $\lambda=cz+d.$

Then $\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\left(\begin{array}{l}Z\\1\end{array}\right)=\lambda\left(\begin{array}{l}z\\1\end{array}\right)$ ; hence $\lambda$ is a quadratic integer with $N(\lambda)=p^{n}$ . Moreover, by

$\lambda=cz+d,$ $\lambda$ is imaginary; hence, in particular, irrational. Let $m$ be a positive integer and
apply this result for $\gamma^{m}$ . Then we see that $\lambda^{m}$ is also irrational. Therefore, $\lambda^{m}$ is not ofthe
form (a power of $p$) $\times$ ($a$ root ofunity), for if $\lambda^{m}$ were of such a fom, its suitable (positive
integral) power must be rational. In particular, the ideal $(\lambda^{2})$ cannot be a power of $(p)$ .
But since $(\lambda)$ is integral with $p$-power norm, it must be of the form $(\lambda)=\mathfrak{p}^{a}$ if $(^{9\fbox{} $\lambda$}p)\neq 1,$

where $\mathfrak{p}$ is the unique prime factor of $p$ in $Q(\lambda)$ . But then, we get $(\lambda^{2})=\mathfrak{p}^{2a}=(p)^{a}$ or
$(\rho)^{20}$ , which is impossible. Therefore, we get $(_{p}^{\mathfrak{B}^{z}})=(^{g_{p}u\lambda})=1.$

Now let us prove that the map $\mathcal{J}^{*}$ is well-defined. First, $J(z)\in\overline{Z}$ is trivial, for we
have $J(z)=j([1,z])$ . Let $\delta\in\Gamma^{*}$ , md put

$\delta=(_{C}^{A}DB\rangle\in M_{2}(Z), AD-BC=p^{r}.$

Put $t=\delta z$. Then $J(z’)=j([1,z’])$ and $[$ 1, $z’]\sim[Az+B,Cz+D]\subset[1,z]$ , and the
group index is $p^{r}$ . Therefore, by the Corollary of Theorem $C,\overline{j(}[1,z])$ and $\overline{j(}[1,z’])$ are
conjugate over $F_{p}$ . Hence $J(z)mod \mathfrak{P}\sim J(z’)mod \mathfrak{P}$ . Moreover, if $\delta\in\Gamma$, then $r$ is
even; hence we get $\underline{J}(z)mod \mathfrak{P}\approx J(z’)mod \mathfrak{P}$ by the same corollary. Now, to show
that $J(z)mod \mathfrak{P}\in F_{p}-S$ , put $\mathfrak{A}=[1,z]$ and let $O=O_{f}$ be the order of $\mathfrak{A}$ . Put $f=f_{0}p^{v}$
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with $f_{0}\not\equiv\underline{0}(mod p)$, and put $O_{0}=O_{f_{0}},$ $\mathfrak{A}_{0}=O_{0}\mathfrak{A}$ . Then $\mathfrak{A}\subset \mathfrak{A}_{0}$ , and $(\mathfrak{A}_{0} : \mathfrak{A})=p^{v}.$

Therefore, $j(\mathfrak{A})$ is conjugate to $\overline{j(}\underline{\mathfrak{A}}_{0}$) over $F_{p}$ . But since $\mathfrak{A}_{0}$ is a proper $O_{0}$-ideal and since
$f_{0}\not\equiv 0(mod \underline{p})$ , we get $j(\mathfrak{A}_{0})\in F_{p}-S$ (Theorem D). Therefore, $J(z)mod \mathfrak{P}=\tilde{j(}\mathfrak{A})$ is

contained in $F_{p}-S$ . Therefore, the map $\mathcal{J}^{*}$ is well-defined.
Surjectivity of $\mathcal{J}^{*}$ . Let $\overline{j}\in\overline{F}_{p}-S$ . Then by Theorem $D,\overline{j}=\tilde{j}(\mathfrak{A})$ with some

$\{\mathfrak{A}\}\in G_{O},$ $(\frac{o}{p})=1$ . By multiplying some scalar to $\mathfrak{A}$ , we can assume that $\mathfrak{A}=[1,z]$ with
$z\in \mathfrak{H}$ . Put $\mathfrak{P}\cap O=Po,$ $P_{O}^{d_{O}}=\pi_{O}\cdot O$, and put

$\pi_{O}\left(\begin{array}{l}z\\l\end{array}\right)=\left(\begin{array}{ll}a_{0} & b_{0}\\c_{0} & d_{0}\end{array}\right)\left(\begin{array}{l}Z\\1\end{array}\right)$

with $a_{0},$
$b_{0},$

$c_{0},$ $ d_{0}\in$ Q. Then, since $\pi_{O}\in O$ and $O$ is the order of $\mathfrak{A},$

$a_{0},$
$b_{0},c_{0},$ $d_{0}$ must be

integral. Moreover, $ a_{0}d_{0}-b_{0}c_{0}=\pi_{O}\overline{\pi}_{O}\in\Pi$ . Therefore, $\gamma_{0}^{*}=(_{c_{0}}^{a_{0}}$ $d_{0}b_{0\rangle}$ is an element of

$\Gamma^{*}$ , and $\gamma_{0}^{*}\cdot z=z$ . Since all positive integral powers of $\pi_{O}$ are irrational, $\gamma_{0}^{*}$ is of infinite
order in $\Gamma^{*}$ . Therefore, $z$ is a $\Gamma^{*}$ -fixed point. Therefore, by

$J(z)mod \mathfrak{P}=\overline{j(}\mathfrak{A})=\overline{j,}$

we get the $su\dot{\eta}$ectivity of $3^{*}$

Injectivity of $\mathcal{J}^{*3}$ Let $z,z’$ be two $\Gamma^{*}$ -fixed points, put $\mathfrak{A}=[1,z],$ $\mathfrak{A}’=[1,z’]$ ; put $O=$

$O_{\mathfrak{A}}=O_{f},$ $O_{0}=O_{f_{0}},$ $\mathfrak{A}_{0}=O_{0}\cdot \mathfrak{A}$ as above, and let $O’,O_{0}’,\mathfrak{A}_{0}’$ be the correspondings for $\mathfrak{A}’.$

Suppose that $J(z)mod \mathfrak{P}$ and $J(z’)mod \mathfrak{P}$ are conjugate over $F_{p}$ so that $\overline{j(}\mathfrak{A}$) $\sim\overline{j(}\mathfrak{A}’)$ .
Then, since we have $\overline{j(}\mathfrak{A}$) $\sim\overline{j(}\mathfrak{A}_{0})$ and $\overline{j(}\mathfrak{A}’$ ) $\sim\overline{j}(\mathfrak{A}_{0}’)$ , we get $\overline{j(}\mathfrak{A}_{0}$) $\sim\overline{j}(\mathfrak{A}_{0}’)$ . So, by the last

part of \S 7, we obtain $\overline{j(}\mathfrak{A}_{0}’$) $=\overline{j}(\mathfrak{A}_{0}\mathfrak{p}_{O}^{m})$ for some $m$ . But then, by Theorem $D,$ $\mathfrak{A}_{0}$ and $\mathfrak{A}_{0}’$

belong to the same field $Q’$ and $\mathfrak{A}_{0}’=\rho \mathfrak{A}_{0}\mathfrak{p}_{O}^{m}$ holds for some $\rho\in Q’$ . Therefore,

$\mathfrak{A}’\otimes_{Z}Z^{(p)}=\mathfrak{A}_{\acute{0}}\otimes_{Z}Z^{(\rho)}=\rho \mathfrak{A}_{0}\otimes_{Z}Z^{(p)}=\rho \mathfrak{A}\otimes_{Z}Z^{(p)}$ ;

hence $[z’, 1]_{ZCp)}=[\rho z,\rho]_{Z(P)}$ . Therefore, we have

$\rho\left(\begin{array}{l}z\\1\end{array}\right)=\left(\begin{array}{ll}A & B\\C & D\end{array}\right)\left(\begin{array}{l}z’\\1\end{array}\right)$ with some $\left(\begin{array}{ll}A & B\\C & D\end{array}\right)\in GL_{2}(Z^{(p)})$ .

But since ${\rm Im} z,$ ${\rm Im} z’>0$ , we get $AD-BC>0$ , and hence $ AD-BC\in\Pi$ . Therefore, $z$

and $z’$ are $\Gamma^{*}$ -equivalent.
That $\mathcal{J}^{*}$ is Degree-preserving. Let the notations be as in the proof ofthe surjectivity

of $\mathcal{J}^{*}$ . By the definition ofDeg, we have

Deg $\gamma_{0}^{*}=|ord_{\mathfrak{P}}\pi_{O}\overline{\pi}_{o}^{-1}|=ord_{\mathfrak{P}}\pi_{O}=d_{O}.$

On the other hand, by (17), we have Deg $\overline{j(}\mathfrak{A}$) $=d_{O}$ . Therefore, it suffices to prove that $\gamma_{0}^{*}$

generates $\Gamma_{z}^{*}$ modulo the torsion subgroup $\Gamma_{z}^{*0}$ of $\Gamma_{z}^{*}$ (see \S 3). For this purpose, let $\gamma^{*}\in\Gamma_{z}^{*}$

be any element of inhnite order and put

$\gamma^{*}=(_{c}^{a}db\rangle\in M_{2}(Z)$ with $(a, b,c,d)=1$ and $ad-bc=p^{n}(n>0)$ .

3The injectivity $of\mathcal{J}$ follows easily by well-dehnedness and surjectivity $of\mathcal{J}$, and by the decomposition

(4). Therefore, we need not worry about it here.
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Then, if we put $(_{c}^{a}db)(_{1}^{z}\rangle=\lambda(_{1}^{z})$ , we have $\lambda\in O$ and $\lambda\not\in pO$. Therefore, $\lambda O$ is a

positive power of either $\mathfrak{p}_{O}$ or $\overline{P}_{O}$ . But $d_{O}$ is the smallest positive integer, for which $\mathfrak{p}_{o}^{d_{o}}$ is
principal. $Th\underline{er}$efore, we see that $d_{O}|n$, and that either $\lambda/\pi_{O}^{n/d_{O}}$ or $\lambda/\overline{\pi_{o}}^{n/d_{O}}$ is a root ofunity.
Therefore, $\lambda/\lambda$ is a power $of\pi_{O}/\overline{\pi}_{O}$ modulo a root ofunity. Therefore by \S 2, $\gamma_{\dot{0}}$ must be a
generator of $\Gamma_{z}^{*}$ modulo $\Gamma_{z}^{*0}.$

$\square $

A corollary and an announcement of generalizations.

\S 9.

COROLLARY. Let $\zeta_{\Gamma}\cdot(u)$ and $\zeta_{\Gamma}(u)$ be defined by

$\prod_{P\epsilon\rho(\Gamma)}.(1-u^{DegP})^{-1}$
, and

$\prod_{P\epsilon p(D}(1-u^{\deg P})^{-1}$

respectively. Then we have

(18*) $\zeta_{\Gamma}\cdot(u)=\frac{1}{(1-u)(1-pu)}\times(1-u)^{1+|S_{1}|}\times(1-u^{2})^{\downarrow|S_{2}|},$

(18) $\zeta_{\Gamma}(u)=\frac{1}{(1-u)(1-p^{2}u)}\times(1-u)^{1+|S|}.$

PROOR By Theorem 1, there is a Degree-preserving one-to-one correspondence be-
tween $\wp(\Gamma^{*})$ and $(\overline{F}_{p}-S)/\sim$ . But there is also a Degree-preserving natural one-to-one
correspondence between $F_{p}/\sim U\{\infty\}$ and the set of all prime divisors of the rational func-
tion field over $F_{p}$ . Therefore, the computation of $\zeta_{\Gamma}\cdot(u)$ reduces to the computation of
the congmence $\zeta$ function of the rational fimctim field over $F_{p}$ , which is nothing but
$\frac{1}{(1-u)(1-pu)}$ . This proves (18). The fomula (18) for $\zeta_{\Gamma}(u)$ is obtained exactly in the same
manner, by using Theorem 1’. $\square $

\S 10. As above, identify the set $\overline{F}_{p}/\sim U\{\infty\}$ with the set of all prime divisors of the
rational fimctim field $K^{*}$ over $F_{p}$ and denote by $\mathfrak{p}(K^{*})$ the set of all prime divisors of $K^{*}$

which do not belong to $S\cup\{\infty\}$ . Then by Theorem 1, $\mathcal{J}^{*}$ gives a one-to-one correspon-
dence between $\wp(\Gamma^{\cdot})$ and $\wp(K^{*})$ . In Part 2 of this chapter, we shall gmeralize this and
prove the following theorem.

Let $\Gamma’$ be any congruence subgroup 4 of $\Gamma^{*}$ and let $\iota$ : $\wp(\Gamma’)\rightarrow\wp(\Gamma^{*})$ be the natural
map defined by the inclusion $\Gamma’\subset\Gamma^{*}$ . Then there exists afinite extension $K’$ of $K^{*}$ whose
constantfield is either $F_{p}$ (if $\Gamma’\not\subset\Gamma$) or $F_{p^{2}}$ (if $\Gamma’\subset\Gamma$), and a degree preserving one-
to-one correspondence $\mathcal{J}’$ between $\wp(\Gamma’)$ and $\wp(K’)$ such that thefollowing diagram (19)

4I.e. a subgroup of $\Gamma^{\cdot}$ containing some principal congruence subgroup. See Chapter 4 \S 3, and $J.$

Mennicke [23].
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is commutative. Here, $\wp(K’)$ denotes the set ofall prime divisors of $K’$ which lie above
$\wp(K^{*})$ .

$\wp(\Gamma’) \rightarrow \mathcal{J}’ \wp(K’)$

(19) $\downarrow\iota$ $\downarrow$ the naturalprojection
$\wp(\Gamma^{*})\mathcal{J}\rightarrow\wp(K^{*})$

Moreover, theprime divisors of$K$ which belong to $S$ are “essentially” decomposed com-
pletely in $K’$ in a certain sense.

This theorem will give the law of decomposition of prime divisors of $K^{*}$ in $K’$ com-
pletely, and hence will solve our Congmence Monodromy Problems partly for the group
$\Gamma=PSL_{2}(Z^{(p)})$ . Its relation with J. Igusa’s work [14] will be explained.
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