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Part 1. The G,-fields over C.

The G,-fields.

§1. Let L be a discrete field, on which the group G, = PSL,(k;) acts effectively
and continuously as a group of field-automorphisms; namely, each g, € G, gives a field
automorphism x — g,(x) of L, and the induced map G, — AutL is an injective homo-
morphism;

(9php)(%) = go(h(x)) Vg, by € Gy, x € L;

o) g(x)=x (VYxel)o g, =1.

Since L is a discrete field, the continuity of the actions of G, amounts to saying that, for
each x € L, its stabilizer in G, is open. For each open compact subgroup ¥ of G,, put

@) Ly={xeL|uvx)=x Vve V).

Since open compact subgroups form a basis of neighborhoods of the identity of G, we
get L = |J, Ly. Moreover, it follows that for each V, L/Ly is separably algebraic, V is
the group of all automorphisms of L/Ly, and the topology of V induced by that of G,
coincides with the Krull topology of ¥ = Aut(L/Ly). In fact, let x € L, and let ¥’ be its
stabilizer in G,. Then since V” is open, we have (V' : V'NV) < co. Put ¥ = T4 ovav).
Then o(x), - - ,04(x) are mutually distinct, and their elementary symmetric functions
are all contained in Ly; hence L/Ly is separably algebraic. Now consider Aut(L/Ly) as
equipped with the Krull topology. Then the injection ¢ : ¥V — Aut(L/Ly) is continuous,
since the action of G, on L is so; hence ¢(¥) is also compact. On the other hand, ¢(V) is
dense in Aut(L/Ly), since for any o~ € Aut(L/Ly), we have o(x) = o(x) for some i (c;
being as above, for this x). Therefore, (V) = Aut(L/Ly), and ¢ is bicontinuous (since V'
is compact).
Let & be the fixed field of G,;

?3) k={xeL|gy(x)=xVg, € Gp}.

We shall call L a one-dimensional G,-field over k, or simply, a G,-field over k, if

(L1) dimy L =1,

and if for every open compact subgroup ¥ of G,, the condition:

(L2) Ly is finitely generated over k, and almost all prime divisors of Ly over k are unram-
ifiedin L;

is satisfied. We note that since L/Ly is algebraic, (L1) implies dim; Ly = 1; hence Ly isan

algebraic function field of one variable over £, in the sense that Ly/k is finitely generated
and is of dimension one. By a prime divisor of Ly over k, we mean an equivalence class
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of non-trivial discrete valuations of Ly over k or equivalently, an equivalence class of non-
trivial places of Ly over k. Since open compact subgroups of G, are commensurable with
each other, the condition (L2) is satisfied for all V if it is satisfied for one V.

The subfield k of L given by (3) will be called the constant field of L. Two G,-
fields L, L’ with the common constant field k are called isomorphic if there exists an
isomorphism of the field L onto L’ which is trivial on k¥ and which commutes with the
actions of all elements of G,.

§2.
ExampLE . Let p be a prime number, and put
C)) AP = {xeSLy(Z)| x = +1 (modp™)}/ £1 (n>0).

Consider A™ as fuchsian groups acting on the complex upper half plane $, and let L,

(n > 0) be the field of automorphic functions with respect to A®. Put L = (J2, L,

Define the action of the group PSL;(Q,) on L in the following manner. As in Chapter

1, §2 (Example), put Z? = (2, p"Z, T = PSL,(Z®), and consider T as a discrete

subgroup of G = GrXG,, with Gr = PSL,(R) and G, = PSL,(Q,). Then,I', =Tg € Gg
acts on L as

®) ;37 :L3 f@)~ v(f@) = fOR - D € L,

where yr is the element of I'r which corresponds to y,. Now, we lift the action of T',, to
that of G,; namely, for each f(z) € L, and g, € Gp, put g,(f(2)) = y,(f(2)) with any
v, € T, N g,UY, where

(6) UP ={xeSLyZ,)| x = +1 (modp™)}/ +1 (n20).

Then, this defines an action of G, on L, which is effective and continuous. By noting that
L, is the fixed field of Ug') (n > 0), we see immediately that L is a PSL;(Q,)-field over
the complex number field C.

We shall show later (§5-§9) that all G,-fields over C are obtained in this manner from
discrete subgroups I' of G = Ggr X G, such that I'g, I', are dense in Gg, G, respectively
and G/TI have finite invariant volumes. ‘

§3.
ProrosrTioN 1. Let L be a Gy-field over k. Then k is algebraically closed in L.

Proor. In fact, let x € L be algebraic over k. Then for any g, € G,, g,(x) is conjugate
to x over k. This shows that the stabilizer of x in G, is of finite index in G,. Butif H is a
subgroup of G, of finite index, then N = N, g, g,'Hg, is a normal subgroup of G, with,
finite index; hence by the simplicity of the group G, = PSL,(k,) we get N = G,; and
hence H = G,. Therefore, the stabilizer of x in G, must be G, itself; hence x € . o
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ProposrrioN 2. Let L be a G,-field over k. Let L' be a G,- : L
invariant subfield of L, not contained in k. Put k¥ = L' N k. '
Then, \ " : '

_ | : L'k
() L’ and k are linearly disjoint over k. r—
(i) [L: L’-k] < oo.
(iii) With the restricted action of G, on L', L' is a G -field over -
kJ-, .

k’/k

Proor. (i). Suppose, on the contrary, that L’ and k were not linearly disjoint over £’
Then, there exists a set of elements ¢y, - , ¢, € k that are linearly independent over &/,
but not over L’. We can assume that ¢y, - -- ,c,_; are linearly independent over L’, since
otherwise, we can replace ¢;,--- ,¢, by ¢1,---,cs-1. Now, ¢y, -+, ¢, being linearly
independent over L’ and ¢y, - - - , ¢, not being so, we get ¢, = xj¢1 + -+ + X,_1Cpy With
some x,--- ,Xx,-1 € L', and with, say, x; ¢ kK. Since x; € L' and ¥’ = L' Nk, this
implies x; ¢ k, and hence there exists some g, € G, for which g,(x;) # x;. Now by
Cn = X1C1 + -+ + Xy—1Cy1, WE gEL Cp = gp(X1)C1 + - -+ + gp(Xu-1)Cn-1; hence

(x1 — gp(x1))er + -+ - + (Xn-1 = gp(*n-1))cn-1 = 0.

Since L’ is G,-invariant, all coefficients of c; are contained in L’, and x; — go(x1) # 0.
This contradicts the assumption on linear independence of ¢y, - - - ,c,_; over L’. Thus (i)
is settled. :

(ii), (iii). It is clear that G, acts continuously on L’, and that the fixed field is k. Let
A be the kernel of the action of G, on L’. Then, A is a normal subgroup of G,, and since
L’ 2 k', A is not G, itself. Hence, by the simplicity of the group G, = PSL,(k,), we get
A = {1}; hence the action of G, on L’ is effective. By k¥ ¢ L’k c L and by Proposition
1, we get dim; L’k = 1, and hence by the linear disjointness of L’ and k over k', we get
dimy L’ = 1. Now let ¥ be any open compact subgroup of G, and let L, be the fixed field
of V|p.. It is clear that L}, = L’ N Ly. Moreover, the argument of §1 shows that L’ /L, is
separably algebraic (hence L}, /K’ is of dimension one), and that Aut(L’/L},) = V.. Also,
since k € L},-k C Ly, L},-k/k is finitely generated and is of dimension one (by Proposition
1). Hence, by the linear disjointness of L’ and & over k', we see that L},/k’ is also finitely
generated. Since Ly/L), - k is finitely generated and algebraic, we get [Ly : L}, - k] < co.

Now,put M= L' -kand My = MN Ly. We claimthat M- Ly = Land My = L}, - k.
In fact, since G, acts effectively on M = L’ - k, the subgroup of G, which acts trivially on
M- Ly is {1}. On the other hand, ¥ = Aut(L/Ly) with the Krull topology (see §1), and the
Galois theory is valid between compact subgroups of 7 and intermediate fields of L/Ly
(Krull’s Galois theory). This shows M- Ly = L. Let us now check My = L}, - k. First,
every element x of M = L’ - k can be written in the form:

x=ay cx, withaeLy kciek xel (1<i<n).

i=1
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This follows easily ° from the fact that L’/L), is normal and separable, and that L’ and &
are linearly disjoint over k.

Now let x be contained in M. We can assume thatc,, - - - , ¢, are linearly independent
over k', and hence also over L’. By v(x) = x (v € V), we get v(x;) = x; (1 < i < n) for all
v € V. This shows x; € L}; hence we get x € L}, - k. Hence My C Lj, - k. On the other
hand, the inclusion My > L}, - k is obvious. Hence we get My = L}, - k.

So, we get the following diagram, in which every “branch” is linearly disjoint: (M, Ly
are linearly disjoint over My since M/My is Galois, Ly/My is algebraic, and since M N
LV = MV)

L=M-L
" — |4
L /Lk—M '

L',,~k=MV/LV

K
¥

L, —

So,by [Ly: My] = [Ly : L}, - k] < oo, we get [L : M] = [Ly : My] < oco. This settles
(ii). Finally, since almost all prime divisors of Ly over k are unramified in Z, and since
[Ly : My] < o, it follows immediately that almost all prime divisors of My over k are
unramified in L, and hence a priori in M. Thus, by the linear disjointness of L’ and k over
k', it follows immediately that almost all prime divisors of L}, over k' are unramified in L’.
Therefore, together with what we have proved already, we have completed the proof that
L’ is a G,-field over k. m)

We have also proved the following:

CoROLLARY . The situation being as in Proposition 2, let V be an open compact sub-
group of G, and let L}, = L' N Ly. Then L}, - k consists of all V-invariant elements of L’ -k,
andwe have [L : L'k} = [Ly : L}, - k] < oo.

SFirst, express x in the form 2'.,;1 cix;/ Yy dix;, with ¢;, d; € k, x; € L' (1 < i < n), and then consider
the norm over L}, - k of the denominator.
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§4. Let L be a G,-field over £, and let L’ be a G-invariant subfield of L, with L’ ¢ k.
Put ¥ = L’ n k. Such L’ will be called a G,-subfield (of L) over k’. Thus, if L’ is such,
and if ¥ c k) C k, then L’ - k, is a G,-subfield over k;. In particular, L’ - k is a G;-subfield
over k, and by Proposition 2, we have [L : L'k] < oo.

We shall call L’ a full G,-subfield over k', if moreover the
condition L’ - k = L is satisfied. Since L’ and k are linearly L
disjoint over &', it implies that L is identified with the constant
field extension L' ®y k of L’. We shall call a G,-field L over & ir- L'k
reducible if L has no G,-subfields over k other than L itself, i.e., r—
there is no proper intermediate G,-invariant subfield between & ’
and L. Thus, if L is irreducible, then all G,-subfields of L are
full G,-subfields. K=

We shall prove in Part 2 of this Chapter that if L is a G,-
field over the complex number field C, then it contains a full
G,-subfield L over an algebraic number field k. We shall prove, moreover, that under a
certain condition on L which is always satisfied if L is irreducible, such L; is essentially
unique, in the sense that among them there is a smallest field L, over k, and that all other
Ly are obtained as Ly = Ly, -k, k D ky. In other words, all G,-fields over C are the constant
field extensions of some G,-fields over an algebraic number field of finite degree, and if
the former is irreducible, then the latter is essentially unique.

This will be proved by using the one-to-one correspondence between G-fields over
C and certain discrete subgroups I' of G = Ggr X G, (Theorem 1), and then by using some
group theory of G, and analysis of I" (Part 2).

Analytic construction of G,-fields over C.

§5. LetT be a discrete subgroup of G = Ggr X G, = PSL,(R) x PS Ly(k;) such that
the projections I'g, T, are dense in Gg, G, respectively and that the quotient G/T" has finite
invariant volume. For each open compact subgroup V of G,, put

@) I"=T'n(Grx V),

and let T'Y be its projection to Gr. By Proposition 2 (Chapter 1, §3) I} is a discrete
subgroup of G and the quotient Gg/I'} has finite invariant volume. Let Ly be the field
of automorphic functions with respect to the fuchsian group I'y acting on the complex
upper half plane . Put L = |, Ly. Then it is obvious that dim¢ L = 1, that Ly is finitely
generated over C, and that almost all prime divisors of Ly over C are unramified in L. In
fact, if z € $ is not an elliptic fixed point of I'y, then the prime divisor of Ly given by z
(mod I'})) is unramified in L.

Now we define the action of the group G, on L in the following manner. Let g, € G,
and f(z) € L. Take V such that f(z) € Ly, and take y € I N (Gr X g,V) (# ¢, since
T, is dense in G,). Put g,{f(2)} = f(yg! - 2). Then, it is easy to check that g,{f(2)} is
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well-defined (does not depend on the choice of ¥ or vy), that g,{ f(z)} € L, and that

L> f)- gof@} €L

gives a field-automorphism of L. Moreover, (5,g,){f(2)} = hp{g, f(2)} holds for all g, h, €
G,; hence G, acts as an automorphism group on L. We see easily that Ly is the fixed field
of V. In fact, first, it is clear that all elements of Ly are fixed by V. Conversely, if f(z) € L
is fixed by ¥, then f(2) is invariant by I'y; hence f(z) € Ly. Hence Ly is the fixed field
of V. This shows in particular, that the action of G, on L is continuous. If f(z) € L is
fixed by the whole group G,, then we get f(yg' - 2) = f(z) for all y € I'. But since I'y is
dense in Gg, this implies f(z) € C. Hence the fixed field of G, is C. Finally, the action
of G, on L is effective. In fact, the kernel of the action is a normal subgroup of G,; hence
by the simplicity of G,, it must be G, itself if not {1}. But that is impossible, since the
fixed field of G, is C. Therefore, G, acts effectively on L. Thus, starting from I', we have
constructed a G,-field L over C.

§6.. Now, we shall show that conversely, given any G,-field L over C, we can define
T, and that the G,-fields over C (up to isomorphisms) are in one-to-one correspondence
with I (up to conjugacy in G).

Let L be a Gy-field over C, and let X be the set of all non-equivalent, non-trivial
discrete valuations of L over C. To give T more explicitly, let ¥, be an open compact
subgroup of G, which has no elements (# 1) of finite order? and let

Voo ViD---DV,D---

be a decreasing sequence of open compact subgroups of G,, such that ",~, ¥,, = {1}. Put
L, = Ly, (n 2 0), and let R, (n > 0) be the Riemann surface of L,. Then, we get a
sequence of coverings :

‘Pn+1

Let 7; (1 < i < N) be the points on R, that are ramified in the covering sequence (8).
For each i, consider T; as a discrete valuation of Ly, and let I; be a valuation of L with
Tilz, = T;. Then, since Aut(L/Lo) has no non-trivial finite subgroup, the inertia group of
I, over L, is infinite; hence its ramification index in L/L, is infinite. Therefore, I; is not
a discrete valuation of L. Put

Ro=Ro—{T1,--- . T}, Ri=¢7 Ry, Ry= ‘le(m ), -+ etc.
Denoting ¢,l%; again by ¢, We get a sequence of unramified coverings
) - RERE... R

It is now clear that the set T can be identified with the set of all sequences of points

‘Pn+l

(10) - p&p & p

- Oltis well-known, and easy to prove, that such Vg exists.
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with P, € R, and P, = ¢,.1(P,s1) for all n > 0. So, we shall denote the elements of £
simply as ‘ ‘

(11) E3P=({P, &P &)

Now Wc shall define a complex structure on X. Let X 5 P = {Ppe~Py«---}, and let
Up be any simply connected neighborhood of Py on Rj;. For each n > 0, let U, be the
connected component of (¢; o - - - o ,)"! Uy containing P,;

Uy «« U & -+ &« U, &
(12) w w w
Py « P « -+ &« P, &

Since Up is simply connected, Uy « U, is a simple covering; hence ¢, induces an
isomorphism of U, onto U,_;; and each point P; € U, defines a unique element
P = (P, « P| « --.} of X, with P, € U, for all n > 0. Therefore, by taking such
Up = {Uy « Uj « ---} as a coordinate neighbourhood of P, we can define a complex
structure on X, by which X is a one-dimensional complex manifold.

An important point is that this complex structure of T is independent of the choice
of the sequence Vo > Vi D --- of open compact subgroups of G,. To check this,
let V{ > V] > --- be another sequence such that V] is torsion-free and N2, ¥V, = {1}.
Then, they are cofinal; i.e., every ¥, contains some V,, and vice versa. So, we get a new
sequence V; D V]’.1 >V, D v, o, withiy <ip <-.--and j; < j» < ---. Now it is
clear that the complex structure of £ defined by the sequence ¥y O ¥} O --- is equivalent
to that defined by ¥V}, © Vi>Vy,>V, >, and hence is also equivalent to that defined
by Vo ¥V{>---.

Let o be an automorphism of the field L over C. Then, the actionX 3P+ o -P€ X
is defined by

vop(x) = vp(0™ (X)) (x € L),

where vp, v, p are the normalized additive discrete valuations of L contained in the classes
P, o P respectively. Now, by this action, o leaves the complex strucure of T invariant. In
fact, consider the sequence o(Ly) C o(L;) C ---, and let » be sufficiently large. Then
o(L,) contains Ly; hence there is an open compact subgroup ¥}, of ¥, such that o(L,) =
Ly,. Therefore, by the above remark, the complex structure of ¥ defined with respect to
o(Ly) € 0(Lps1) C --- is equivalent to the original one. But this implies that o leaves the
complex structure of X invariant. In particular, G, acts on X as a group of automorphisms
of the complex manifold Z, and hence G, also acts on the set of all connected components
of X as a permutation group.

§7. We shall now prove that:

(1) Each open compact subgroup of G, acts transitively on the set of all connected com-
~ ponents of X.
(ii) Each connected component of X is isomorphic to the complex half plane $.
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Prooror (i). Let P = {Py « P; « ---}and Q = {Qp « Q) « ---} be any two
elements of I, and let £p, Xy be the connected components of ¥ containing P, O respec-
tively. It is enough to prove that for each n > 0, there is an element v € ¥, such that
v(Zp) = Zg. Now fix n, and let P,(#) (0 < ¢ < 1) be a curve on R,, with P,(0) = P, and
P,(1) = Q,. Then there is a unique (continuous) curve P(f) (0 < ¢ < 1) on X satisfying
P0) = Pand P(f) = {--- « P,(f) « ---}forall?z (0 < ¢ < 1). Then P(1) € Zp, and
P1) ={Qy « --- « Oy « Q.. « -} Since the restrictions to L, of P(1) and O
coincide with each other, there is an element v € Aut(L/L,) = V, such that Q = »(P(1));
hence Xy = v(Zp). This settles (i).

Proor oF (ii). First of all, we note that the universal covering surface ﬁ; of R, (n > 0)
is isomorphic to $. In fact, since the covering sequence (9) is unramified and non-trivial,
R’ cannot be the Riemann sphere. Moreover, since ¥, is nonabelian, (9) is a nonabelian
covering sequence. Hence ﬁ; cannot be the whole complex plane. Therefore, R, = $.

Now let X, be an arbitrary connected component of X, and let f_o be the universal
gf)vering ~surfacc of Xy. Then, by the unramified covering R, « X, « Xy, we can identify
R, with X,. Therefore, we get a sequence of unramified coverings :

(13) R & e RE TS

Now fix an isomorphism %o = $. Then we get an isomorphism Autfo = Aut9 = Gg.
Let A, (n > 0) be the covering group of R, « o, considered as a subgroup of Gg. Then
it is a torsion-free discrete subgroup of Gg, and the quotient Gr/A, has finite invariant
volume (the quotient is compact if and only if {T,--- , Ty} = ¢#). It is also clear that the
covering group A of ¥y « ¥, is the intersection of all A, (n>0);

(14) GrRDODAyDAI DA D -+ A:ﬂA,,.
n=0
We shall identify R, with $/A,, and X, with H/A.
Now put
(15) INo=1{gp € G, gp(zo) = Xo}.

Then by (i), we get G, = V-T',, for any open compact subgroup ¥ of G; hence I, is a dense
subgroup of G,. On the other hand, I'; acts on Zy = $/A as a group of automorphisms, and
hence we can also consider I'; as a subgroup of Aut($/A). We shall denote this subgroup
of Aut($H/A), identified with I', by I'r;
(16) Aut(9/A) oI = T,cG,.

identified
Let N(A) be the normalizer of A in Gg. Then we have Aut($/A) = N(A)/A; hence we can
putT'g = Tr/A, with A c T c N(A). Further, put I, = T, " ¥, (n > 0), and denote by I'y
the corresponding subgroup of I'r. Then we have

(17 I =AJA (n20).

Now, we have
Tr:A)=@r:TR) = @ : D) = Gy : V) = o0,
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and A, is a discrete subgroup of Gg whose quotient is of finite invariant volume. There-
fore’ fR is dense in Gg; hence N(A) is dense in Ggr. But since A is discrete in Ggr, N(A) is
closed in Gg; hence N(A) = Gr. Therefore, A is a discrete normal subgroup of Gg. But
Gr is a simple group; hence we get A = {1}. Therefore X, = $; which settles (ii). We
have also proved thatI'gr = fg and that it is dense in Gg; :

(18) Ggr O T c Gy

dense R iden?iﬁed ° dense

§8. Now let I be the subgroup of G = Ggr x G, formed of all elements yr X 7, such
that yg, y, are corresponding elements of I'g, I', respectively. Then the projection maps
I' - I'g, I’ - T, are obviously injective, and it was shown that I'g, I'; are dense in Gg, G,
respectively. Moreover,

{n (GR X Vn)}R = F”R =A, (n 2 0),

and A, is a discrete subgroup of Gg whose quotient has finite invariant volume. Therefore
by Proposition 2 of Chapter 1 (§3), I' is a discrete subgroup of G, and the quotient G/I"
has finite invariant volume. The quotient G/T" is compact if and only if Gg /A, is so; hence
if and only if L/L, is unramified.

Finally, it can be checked immediately that these two processes of defining L from I,
and of defining I" from L are the inverse of each other. We have thus proved the following
Theorem.

§9.

THEOREM 1. The G, fields L over C are in one-to-one correspondence with the discrete
subgroups T of G = Gr X G, whose quotients G|T are of finite invariant volume and
whose projections I'r,T, are dense in Gr, G, respectively. Here, L are counted up to
isomorphisms of Gy-fields (§1), andT are counted up to conjugacy in G.

More precisely, if T is given, then L is obtained as the union of fields of automorphic
functions with respect to T} (§5). Conversely, if L is given, the set X. of all non-equivalent
non-trivial discrete valuations of L over C can be considered as a one-dimensional com-
plex manifold, on which G, acts as an automorphism group. If V is an open compact
subgroup of G,, then V acts transitively on the set of all connected components of X. Take
any connected component Xy of X, and let T, be the stabilizer of Zy in G,. Then X, is
isomorphic to the complex upper half plane 9, and hence I, can also be identified with a
subgroup Tr of Gr = Aut(9). In this manner, by the identificationI” = I'r = T, and by
the diagonal embedding, we get the discrete subgroup I of G (§6,87,8§8).

Remark 1. Let L be a G,-field over C, and let {I'} be the corresponding G-conjugacy
class of discrete subgroups of G = Gr X G,. Then, choosing one I" from among {T'}¢ is
equivalent to choosing one connected component Xy of X together with an isomorphism
o = 9. Infact, if T is given, we can identify L as the union of the fields Ly of automorphic

See Supplement §1.
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functions f(z) with respect to I'y (see §5), and moreover, each point z, € $ defines a
discrete valuation v,, of L by v,,(f(z)) = ord,, f(z). Therefore, we can regard $ as a
connected component of . Conversely, if L, Xy, and an isomorphism X, = § are given,
then we get a discrete subgroup I in the above described manner (X, defines I';, by (15),
and the isomorphism X, = $ defines the isomorphism I', =I'g C Gg ).

RemArk 2. The cardinality of the set of all connected components of X is R-infinity,
since it is in one-to-one correspondence with G, /T, and I, is countable (since I is finitely
generated; see §30).

Remark 3. The quotient G/T is compact if and only if L/Ly is unramified for some
open compact subgroup ¥ of G,. When this is satisfied, I is torsion-free if and only if
L/Ly is unramified for all open compact subgroups ¥ of G,.

§10. Now we shall show that given I and the corresponding G,-field L over C, the
subgroups A of G = Gr X G, containing I" with (A : ') < oo and the G,-subfields M of L
over C correspond naturally in a one-to-one manner. We begin by proving the following:

ProposiTioN 3. Let L be a G,-field over C, and let M be a G,-subfield of L over C. Let
P be a non-trivial discrete valuation of L over C. Then P is unramified in L/ M.

Proor. Suppose, on the contrary, that there exists a discrete valuation P, of L over C
which is ramified in L/M. Since L and M are G,-invariant, this implies that g,(P,), for any
gp € Gy, is also ramified in L/M. Let V be a torsion-free open compact subgroup of G,,
and let Ly be the fixed field of V. Let P be any discrete valuation of L over C. Then, by the
discreteness of P, the inertia group of P in L/Ly is a finite subgroup of ¥ = Aut(L/Ly);
hence it must be {1}. Hence P is unramified in L/Ly. This iniplies that if P is ramified in
L/M, then P|;, must be ramified in Ly /My, where My = M N Ly. Therefore, gvo(Po)lz,,
for every g, € G,, must be ramified in Ly/My. Since [Ly : My] < oo (see Corollary of
Proposition 2, §3), there are only finitely many discrete valuations (up to equivalence) of
Ly over C, which are ramified in L/ M. Therefore, the set

19 ‘ {95(Po)lLys gv € Gy)

must be finite. We shall show that this is a contradiction. Let £, be the connected compo-
nent of T containing Py, and let I, be the stabilizer of £ in G,. We know that ¥y = $, and
that by this I', can be identified with a subgroup I'g of AutX, = Aut $ = Gr. By putting

I' = {yr X vp € G = Gr X Gy | YR, ¥, are corresponding elements of Iy, I},

L can be considered as the union of fields of automorphic functions with respect to I’y , for
all open compact subgroups ¥’ of G,. A discrete valuation P* € X, of L over C is given by
the corresponding point z* € $ as L 3 f(2) 2 ord,. f. If P*, P** € %, then P*|, = P**|,

is valid if and only if the corresponding pomts 2*,2" € $ are '} -equivalent. Now, since
I'; is dense in G,, the set (19) is the same as the set :

19) {¥o(Po)l,s ¥e € T}
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Let zp be the point on $ corresponding to Py € Z;. Then the points corresponding to
vo(Po) are yr(zo); and since I'g is dense in Gg, yr(Zo) (yr € I'r) give infinitely many
non-equivalent points modulo I‘{ This shows that the set (19’), and hence the set (19),
is infinite. Therefore, the finiteness of the set (19) is a contradiction. Hence P, must be
unramified in L/M. . m]

Now we are in the situation to prove the one-to-one correspondence between A and
M stated at the beginning of this section. First, we shall show that A gives M. Let A
be a subgroup of G containing I' with (A : I') < oco. Then, it is clear that A is also a
discrete subgroup of G, G/A has finite invariant volume, and that Ag, A, are dense in
GR, G, respectively. Therefore, for each open compact subgroup ¥ of G,, the projection
AR of AV = AN (Gr x V) is a discrete subgroup of Gr, and the quotient Gg/A) has finite
invariant volume. Let My be the field of automorphic functions with respect to A%, and
put M = {Jy My. Since A} D T'y, we have My C Ly; hence C ¢ M c L. We shall check
that M is G,-invariant in L, and that the restriction to M of the action of G, on L gives
the G,-field M corresponding to A. To check this, let f(z) € M and g, € G,. Take V
such that f(z) € My. By definition, g,{f(2)} = f(yg' - ) with y € T N (Gr X g, V); hence
g»{f(2)} is an automorphic function with respect to yrARYg' = AR, with ¥V = y,Vy; .
Hence g,{f(2)} € My» c M, which shows the G,-invariance of M. Since y is also in
A N (Gr X g,¥), our second assertion is obvious (see also §5). Thus we have shown that

A gives M. We note that
A:D=QA":T=[Ly: My]=[L: M]

holds for each V. In fact, the first equality is an immediate consequence of A, = A;’ Ty
(since I is dense in G,), the second is obvious, and the last equality follows from the
corollary of Proposition 2 (§3). |

Conversely, let M'be a G,-subfield of L over C; i.e., M is Gy-invariantand C ¢ M c L.
Then by §3, [L : M] < oo, and M is also a G,-field over C. Let X (resp.X’) be the space
of all non-equivalent non-trivial discrete valuations of L (resp.M) over C. They are one
dimensional complex manifolds, of which each connected component is isomorphic to .
Consider the restriction map

(20) 0:ZoY.

Then it is clear that ¢ is holomorphic, and by Proposition 3, ¢ is unramified and gives an
[L : M]-fold map of X onto ¥’. In fact, ¢ induces an [L : M]-fold map ¢ of the set C(X) of
all connected components of Z onto the set C(Z’) of all connected components of X’; and
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if Xy € C(Z), Ty € C(X') and Zj = (o), then ¢ gives an isomorphism of Z, onto Xf.

connected components of X connected components of X’

P,

P
( 5 —— L >
P,

IR

IR

P, P=¢(P)="=¢@(Pn)
| 27 ~ 5 m = [L: M).

These can be checked immediately by recalling the definition of the complex structure
of . We also note that the actions of G, on X and on ¥’ are consistent with the map ¢.
Now let ¥, be any connected component of £, and let X; (1 < i < m, m = [L : M]) be the
connected components of X such that ¢(X;) = ¢(X;). Put

22) Ip= {9y € Gyl gp(Zh) = X4}

Ay = {gy € Gy | gp(Z1) = Z; for some i (1 <7 < m)}.
Then A, can be identified with '
(23) Ay = {gy € Golzr | go((1)) = @)}

Therefore, I'y = I'r C Aut(X;) = Gg, and A, = AR C Aut(p(Z;)) = Gr. Define I', A by
these identifications and by the diagonal embeddings into G = Gr X G,. Then, it can be
checked immediately that A D T, (A : T') < oo, that M is the G,-field corresponding to A,
and that A and M correspond in a one-to-one manner in such a way that the Galois theory
holds between them.

So, we have proved the following Theorem.

THEOREM 2. Let L be a G,-field over C, and let T be the corresponding discrete sub-
group of G. Then, the G,-subfields M such that C & M c L and groups A such that
I' c A ¢ G with (A : T') < o correspond naturally in a one-to-one manner satisfying the
Galois theory (in particular, we have [L : M] = (A : I')). Moreover, the group A is the
discrete subgroup of G which corresponds to M in the sense of Theorem 1.

We shall call I' maximal if there is no such A other than I' itself. Thus we obtain the
following:

CoroLLARY 1. The G,-field L over C is irreducible if and only if the corresponding
group I is maximal.

CoroLLARY 22 Let L be a G,-field over C. Then, L contains an irreducible G,-subfield
over C.

8We can prove further that L contains only finitely many Gp-subfields over C (see Supplement §3
(Corollary 2)).
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Proor. LetI" be the discrete subgroup of G corresponding to L. Let A be any subgroup
of G containing I' with (A : T') < co. Let ¥ be any fixed open compact subgroup of G,,
and put IV =T N (Gr X V), AY = AN (Gr x V). Thensince T, - A = A,, we have
(A:T) = (A" : T") = (A} : T}). But I'} is a discrete subgroup of Gr and the quotient
Gr/T§ has finite invariant volume. Hence the index (A} : T}) is bounded. It follows then
that the index (A : I') is also bounded. Therefore, among all A, there is a maximal one.
Now, our Corollary is a direct consequence of Theorem 2. o

The above argument also shows the following:

CoroLLARY 3. Ifthere is an open compact subgroup V of G, such that T} is a maximal
Suchsian group, then the G,-field over C which corresponds to T is irreducible.

The full automorphism group of L over C.

§11. Let L be a G,-field over C, and let Autc L be the group of all automorphisms
of the (abstract) field L which are trivial on C. Then G, can be considered as a subgroup
of Autc L, and in general, may not coincide with the whole group Autc L. However, we
can prove that G, is of finite index in Autc L. This fact will be basic for our later studies.

THeOREM 3. Let L be a G,-field over C, and let Autc L be the group of all automor-
phisms of the abstract field L which are trivial on C. Then G, is a subgroup of Autc L
with finite index.

For the proof, we need some preliminaries (§12, §13).

§12. Let I be the discrete subgroup of G which corresponds to L. Let V; o ¥, >
-+ D ¥V, D --- be any descending sequence of open compact subgroups of G, satisfying
Moz Ve = {1}, Pt I = T N (Gr X V) (n > 1). Then we get a descending sequence
TR 2% >-.-DIg D - of discrete subgroups of Gr whose quotient spaces have finite
invariant volumes. Now let I'” be the subgroup of Gr formed of all elements x € Gg such
that for any n > 1, there exists some m > 1 for which the inclusions x™'I%x > I'y and
xI'px~! > I'R hold;

(24) I" = {x € Gr | Vn,3m; x'Thx > T}, x[{x' OTg ).

It is obvious that I'” contains I'g;
(25) GrOI'DIRDI{DOI3 D mF§={l}.
n=1

Now I, carries a topology induced by that of G,, and by the identification of I'g with I,
we shall consider I'g as a topological group (p-adic topology; not the real topology). So,
the subgroups I' (7 > 1) form a basis of neighborhoods of 1. By the definition of I,
we see that Iy (n > 1) satisfies the axioms for a basis of neighborhoods of 1 for I", and
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hence by taking I'g (n > 1) as a basis of neighborhoods 1, I becomes a topological group
which contains I'y as an open subgroup. Take completions with respect to this topology,
and letI'"” be the completion of I". - :

">TRoIy> --- o>
(26) - completions | "l | l
‘ 'sG,>o"M> -+ OV,>

Thus I” contains G, as an open subgroup. Now we claim the following:
ProposrTiON 4. The group Autc L is canonically isomorphic to r.

Proor. We can identify L with the union of the fields of automorphic functions L,
with respect to I'y; L = U,.; L». Now by the following action, the group I'"" acts on L as
an automorphism group over C:

27 I"'sx:L>f@@ f(x!-2)el.

(It follows immediately from the definition of I'"" that f(x™! - z) € L). As in §5 where we
defined the action of G, on L, we can also lift the action of I (on L) to that of I” on L.
Namely, for each % € T’ and f(z) € L, take n such that f(z) € L,, take x € I" N XV, (where
I", V, are considered as subgroups of i‘"), and put ¥{f(2)} = f(x! - z). Then,

T'sx: Laf@ #f@}el

defines an action of I” on L. It is clear that its restriction to G, coincides with the original
action. We shall show that this action is effective. Suppose that X € I” acts trivially on L.
Then for any n > 1 and for any x € I'” N XV, we get f(x! - 2) = f(2) for all f(2) € L,.
Fix any z = z, € §. Then since f(x™! - zy) = f(zo) holds for all f(z) € L,, there exists
6 € Ty such that x~! - zp = § - 2. If zo is not an elliptic fixed point of I}, then § is uniquely
determined by z,. Consider § as a I'y-valued function of z, defined on $ — E, where E
is the discrete subset of $ formed of all elliptic fixed points of I'y. Since xl.zisa
continuous function of z, 6 must also be continuous. But Iy is discrete. Therefore, &
must be a constant on $ — E. So, put § = yg € I'. Then, x - yg stabilizes all points of
$—E; hence x = (yr)™! € I'y; hence X € V,. Since n is arbitrary, we get % = 1. Therefore,
the action of T” on L is effective. Thus we get

(28) T’ c Autc L.

Now we shall show that they are in fact equal. First, each point z* on § gives a
discrete valuation of L by f(z) — ord,- f(2); and in this manner, $ can be considered as a
connected component of Z. Let this be denoted by Xo. We have seen (§6) that Autc L acts
on X, leaving the complex structure of X invariant. Hence, if o is any element of Autc L,
then o+(Z,) is another connected component of £. Since G, acts transitively on the set of
all connected component of T, we get 0°(Zo) = gp(Zo) with some g, € G,. Putg; l.o=oy.
Then, oo(X0) = Zo; hence o induces an automorphism of £ = $. So, we can consider
oo also as an element of Gg = Aut($) = AutX,. By the definition of the action of Autc L
on X, we have oo{f(2)} = f(op 1. z) for any f(z) € L (z is a variable on $). Hence we
have f(o;! -z) € L for any f(z) € L. Now letn > 1, and let £i(2), - - , f(2) be a generator
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of L, over C. Then fi(o;;' - 2) € L for all i. Take m for which L,, contains f(c;' - z) for
alli(1 < i< N). Then f(z) € L, implies f(o5' - z) € L,.. Since {f(cy' - 2)|f(z) € L}
is the field of automorphic functions with respect to o oI'io5!, we get ool %oy! > I
By applying the same argument for o;' instead of o7, we get o5'Thoo > 'y for some
m’ > 0. Therefore,

ool roy! N o' Thoo o Tk holds for I = Max(m, m’).

This implies og € ["; hence c € G, - " = f’; hence we get Autc L C r. O

§13. Now, by (26) and by Proposition 4, we have
29) | (Autc L : Gy) = (" : Tr);

hence our problem is to prove the finiteness of (I” : I'g). For this purpose, we need a
lemma on local automorphisms of the group PL,(k,). Here, by a local automorphism
of a topological group X, we mean any isomorphism o of an open subgroup U; of X
onto another open subgroup U, of X; and if ¢~ is another local automorphism of X; o :
Ul = U,, then o and ¢~ are called equivalent if they coincide on some open subgroup
Ul c Uy nUj. To distinguish from local automorphisms, we use the terminology “global
automorphisms” for usual (topological) automorphisms of X. Of course, every global
automorphism of X defines an equivalence class of local automorphisms.

Lemma 1.
(1) Every local automorphism of PLy(k,) is equivalent to a global automorphism of
PL;y(k,).
(if) Every global automorphism of PLy(k,) is a product of an inner automorphism and
an automorphism of PL,(k,) obtained by a field automorphism of k, over Q,,.
(iii) Every global automorphism of G, = PS Ly(k,) is induced from that of PL,(k,).

The proof is given in Supplement §4. It is a direct consequence of Dynkin’s theory of
normed Lie algebras [8].

Remark 1. (ii) implies that the group of all global automorphisms of PL,(k,) is iso-
morphic to the semi-direct product of PL,(k,) and Autg, k,, where Autq, k, is the group
of all automorphisms of the field &, over Q,, which acts on PLy(k,) in a natural manner,

(30) Aut PLy(k,) = PLy(k,) - Autg, k, (semi-direct).

This also shows that distinct global automorphisms of PL;,(k,) give distinct (equivalence)
classes of local automorphisms of PL,(k,). Hence, if we denote by Aut’ X the group of
all equivalence classes of local automorphisms of a topological group X, then we get

3 - Aut’ G, = Aut’ PLy(k,) = PLy(k,) - Autg, &y,
where G, = PSLy(k;). | |
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REMARK 2. The automorphism x > ‘x~! of PL,(k,) is an inner automorphism. In fact,

we have 'x~! = b~xb for any x € PL,(k,) with b = (_01 (1)) But for PL,(k,) with n > 2,
x > 'x7! is not inner.
§14.
Proor oF THEOREM 3. As a descending sequence V; > V; D --- of open compact
subgroups of G, with (., V, = {1}, we shall take
Vi= PSL R
(32) 1 S L,(0y)
Vo= {xeV|x=1(modp™")} (n>1).

Now, since G, is an open subgroup of ", an inner automorphism ofT” induces a local
automorphism of G,. Thus we get a homomorphism ¢ of I into the group Aut’ G, of all
equivalence classes of local automorphisms of G,;

(33) 7:T' > Aut' G,.

By (31), we can identify Aut’ G, with PL,(k,) - Autg, k;, and hence by the restriction of
¢ to I, we get a homomorphism:

(34) ¢ : T = PLy(k;) - Autg, k,.

Consider the subgroup Y = PS L, (k,)PL,(O,)- Autq, k, of PLy(k,)- Autg, k,. It is of index
two. Let I'” be the inverse image of Y by ¢. Since ¢(I'g) is contained in G, = PS L,(k,),
I'” contains ', and we get

(35) 'S5 @ :I")<2.

So, to prove (I'" : I'r) < o0, it suffices to prove (I”” : Tr) < oo.

For this purpose, let x € I'””. Then there exist ng > 1, g, € G, = PSLy(k,), w, €
PLy(0;), and o € Autq, k, acting on PLy(k,), such that x"'vx = g;'w;'v"w,g, for all v €
Vo Take y € T'rNV1g,, and puty = v1g, with v; € V). Since PL;(0,)-Autq, k, normalizes
all ¥, (n > 1), we have w;'v"w, € V,, for all v € V,; hence g,x' = v;'yx~! normalizes
all ¥, for n > ng. Since v; also normalizes all V,, it follows that yx~! normalizes ¥, for
all n > ng. But since yx™' € I c I, it normalizes I" N V,, =Tr N V,, = T for all n > ny.
So, if we put

(36) H" = {x€Gr|x'Thx =Tk foralln>m} (m>1),
this implies that yx~! € H™; hence every element of I"” is contained in H™ - I'g for some
ng > 1.
Now, since I'y normalizes all I'; (7 > 1), we get
37 o DH*OH' DTy OIED---

But, in general, if A is a discrete subgroup of Gg whose quotient space has finite invariant
volume, then its normalizer N(A) in Gg satisfies (N(A) : A) < oo; and there exist only
finitely many subgroups A’ of Gg such that A’ 5> A and (A’ : A) < oo.



CHAPTER 2. 1. THE Gg-FIELDS OVER C. 81

Apply this to A = I'y. Since H™ c N(I'g), we get (H™ : I} < (H" : Tg) < o, and
hence we also get H" = H™! = ... for sufficiently large m. Now put H = \J;., H".
Then (H : I‘}l) < oo, and by what we have shown we have I’ ¢ H™I'g for some ny,
and hence I ¢ H-Tr. Put H = Y| MT} with M; € H (1 < i < f). Then we get
I c H-Tr = Y., MTg; hence (T : Tr) £ (H : T}) < co. o

So, we have also proved:

CoRroLLARY 1. We have
(3%) (Autc L : Gy) = (I" : Tr) < 2(H : TR,

whereI" is given by (24), Ty = [[ N (Gr X Vi)Ir (n 2 1), with V,, defined by (32), and H
is the subgroup of all elements of Gr which normalize I'y, for all sufficiently large n.

§15. Some direct consequences of Theorem 3.
CoroLLARY 2. The group G, is a characteristic subgroup of Autc L.

Proor. Since G, is a simple group (as an abstract group), it is enough to show that if
a group A contains a subgroup B with (4 : B) < oo and if B is an infinite simple group,
then B is invariant by every automorphism of 4. Let o~ be any automorphism of 4. Then
B N B is of finite index in B. Therefore, M,cp x~!(B N B”)x is a normal subgroup of B
with finite index. But B is infinite and simple. Therefore, (N, x™!(B N B)x = B; hence
BN B? = B; hence B° > B. Since (4: B)= (4" : B°) = (A : B”), we get B = B. m]

CoroLLARY 3. Let 3 be the centralizer of G, in Autc L. Then
(1) 3 is finite.
(ii) 3 reduces to {1} if and only if L contains no G,-subfield M over C such that LM is
normal. In particular, if L is irreducible, then 3 = {1}.

Proor. (i) Since G, has no center, we get 3 N G, = {1}; hence by (Autc L : Gy) < oo,
we get the finiteness of 3.

(i) If 3 # {1}, let M be the fixed field of 3 in L. Since 3 centralizes G,, M is G,-
invariant. Also it is clear that L/M is normal and [L : M] = (3 : 1) # 1. Conversely, let
M(# L) be a G,-subfield of L over C such that L/M is normal, and put 3’ = Aut(L/M) #
{1}. Then for each g, € G,, the fixed field of g, 3'g, is g;' (M) = M. Hence 4;'3'g, = 3';
hence G, normalizes 3’. Let X be the centralizer of 3’ in G,. Then X is a normal subgroup
of G, with finite index (since 3’ is finite). But G, is a simple group. Therefore, X = G,;
hence G, centralizes 3’; hence 3 contains 3’ # {1}. Therefore, 3 # (1}. o

CoroLLARY 4. Let N(T) be the normalizer of T in G. Then

(@) (N@) : T) < oo;
(ii) N(I') =T holds if and only if L contains no G,-subfield M # L over C such that L|M
is normal. '
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Proor. First, we claim that the projections N(I') — N(I')g and N(I') — N(I), are
injective. In fact, let 6 = 6r X 6, € N(I') with, say, 6p = 1. Lety = ypxy, € T
Then 67'y6 = yr X 8,6, € I'. But by the injectivity of I' — I'y, we get 6; Ys0p = Yp-
Therefore, 6, commutes with all elements of I',; hence &, = 1.

Now, it is clear that N(IDg c I, where I"” is as in §12. Hence (N(I) : I') = (N(D)r -
I'R) < oo; which settles (i). Now (ii) is a direct consequence of (i) and Theorem 2. m]

§16. A G,-field L over C will be called quasi-irreducible if L contains no G,-
subfields M # L over C such that L/M is normal. By Corollary 3, L is quasi-irreducible
if and only if the centralizer of G, in Autc L is trivial, and by Corollary 4, if and only if
N() =T. In particular, if L is irreducible or if G, = Autc L, then L is quasi-irreducible.
Quasi-irreducible G,-fields over C play central roles in Part 2 of this Chapter.

§17.

ExampLE . Let L be the G,-field over C which corresponds to I' = PSL,(Z®) (see
§2). Here, G, = G, = PSL,(Q,). Since I'y = PSL,(Z) is a maximal fuchsian group, we
getH = I‘}i; hence by (38) we get (Autc L : Gp) = (I : T'r) < 2. But if we put

39) = {x € GL,(ZP)| detx = powers of p}/ + { powers of p},
then I'* can be considered as a subgroup of Gr with > g, T :TR) = 2 and it is clear

that I c I'". Therefore, we get I” = I'*. Therefore, Autc L = I'*, where i:‘ is the p-adic
completion of I'™* given by

(40) I'={xe GLy(Qp)ldetx = powers of p}/ + { powers of p}.
Since I'y = PS L,(Z) is maximal, L is irreducible by Corollary 3 of Theorem 2.
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