CHAPTER V

Numerical Kodaira dimension

We give a criterion for an R-divisor to be pseudo-effective in §1]by applying the
Kawamata—Viehweg vanishing theorem. In §2] we introduce two invariants, denoted
by k,(D) and k, (D), respectively, both of which seem to be the candidates and
deserve to be called the numerical D-dimension for a pseudo-effective divisor D.
Both invariants have many properties expected for numerical D-dimension, which
we prove using the results in §1. In §3, we introduce the notion of w-sheaves, which
is useful for the study of direct images of relative pluricanonical sheaves. The
notion of weak positivity introduced by Viehweg is refined also in §3] We prove
some addition theorems for x and k, and for log-terminal pairs in §4) These are
slight generalizations of Viehweg’s results in [147]. In the last part of §4 we prove
the abundance theorem in a special case where k, = 0, as an application of the
addition theorems.

81. Pseudo-effective R-divisors

§1.a. Base-point freeness.

1.1. Lemma Let A and D be effective R-divisors without common prime com-
ponents on a normal variety X and let x be a point of X.

(1) If (X,bD) and (X,b/(b—1)A) are log-terminal at x for some b > 1, then
(X, D+ A) is log-terminal at x.

(2) Suppose that X is non-singular at x and mult, A < 1. Then (X,A) is
log-terminal at x.

(3) Suppose that X is non-singular at z, (X,bD) is log-terminal at x, and
mult, A < (b—1)/b for some b > 1. Then (X, A+ D) is log-terminal at
x.

ProOOF. (1) Let f: Y — X be a bimeromorphic morphism from a non-singular
variety such that the union of the exceptional locus G = ) G, the proper transform
Dy of D, and the proper transform Ay of A is a simple normal crossing divisor.
Then we can write

N N b b
Ky =f (Kx-i-bD)—FZaiGi—bDy =f (Kx—Fl)_lA)—FZCZG,—b_lAY
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for real numbers a;, ¢;. If © € f(G;), then a;, ¢; > —1. Furthermore, bDy =
(b/(b—1))Ay =0 over a neighborhood of x. Since 1/b+ (b—1)/b= 1, we have

i+ (b—1)c;
KYZf*(Kx-l-D-l-A)—&-ZuGi—Dy—Ay.

b

Thus (X, D + A) is log-terminal at x.

(2) Suppose that the bimeromorphic morphism f: Y — X in the proof of
is a succession of blowups

Y=X5X - >X 25 X,=X
along non-singular centers Wy C X;_1. Let Ay be the proper transform of A in X,
and set wg := codim Wy, Ey := u,:l(Wk), and rg = multy, Ax—1. We may assume
that the image of Wy, in X contains = and that r; < mult, A < 1 by replacing X
with an open neighborhood of z. Then
Kx, = up(Kx,_, + Ap—1) + (wi, — 1 — 1) B — Ag

where wy, — 1 —r, > 1 —rp > 0. Therefore,

.
Ky = [*"(Kx +4) + Zkzl(wk — 1 —rg)¢pEx — Ay,

where ¢y, is the composite Y = X; — X and Ay = A;. Thus (X, A) is log-terminal
at x.
(3) follows from (1)) and (2). O

1.2. Proposition Let x be a point of an n-dimensional non-singular projective
variety X and let A be an effective R-divisor such that (X, A) is log-terminal at x.
Let E, be the exceptional divisor for the blowing-up p,: Z — X at x and let L be
a Z-divisor of X. If pi(L — (Kx + A)) — nE, is ample, then « ¢ Bs|L|.

PrOOF. For the proper transform Az of A in Z, we have

Kz=pi(Kx+A)+ (n—1—mult, A)E, — Ag.
There exists a birational morphism p: Y — Z from a non-singular projective variety
such that the union E of the exceptional locus for f := p,opu:Y — X and
f~1(Supp A) is a simple normal crossing divisor. Let E = Zé:o FE; be the prime
decomposition in which Fjy is the proper transform of F,. By comparing Ky with
Kx + A, we have real numbers a; for 0 < i <[ such that

l
Ky = ["(Kx + M)+ ak

Here ag = n—1—mult, A. If x € f(F;), then a; > —1, since (X, A) is log-terminal
at . Now the R-divisor

l
L+ Zi:o @By —np*Ey, — Ky
is nef and big. We define
1

R := Zi’:o rib; = Zi:o a;E; — np* E,.
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Then rg = =1 —mult, A < —1. If € f(F;) and if {z} # f(E;), then r; > —1.
Hence there exist ideal sheaves Jy, J1 of Oz such that

(1) Oy ("R =TJoNT C Oy,
(2) SuppOyz/Jo = E, and E, NSupp Oz/F = 0.

Thus J = f*(’)y(rR—') is an ideal sheaf of Ox and x is an isolated point of
Supp Ox /J. On the other hand,

H'(X, 1.0y ("R") ® Ox(L)) =0,
by the vanishing theorem Therefore, the composite
H'(X, Ox(L)) — H°(X,0x (L) ® (Ox/J)) — Ox(L) ® C(x)
is surjective and hence x ¢ Bs|L|. O

1.3. Theorem Let D be a pseudo-effective R-divisor of a non-singular projec-
tive variety X. Then there exists an ample divisor A such that

z ¢Bs|tD' + A|UBs| tD, + 4]
for any t € Ry and for any point x € X with o,(D) = 0.

PRrROOF. Let p: Z — X be the blowing-up at a point  with o, (D) = 0 and let
E, be the exceptional divisor. If H is a very ample divisor of X, then |p*H — E,|
is base point free. Therefore p*(kH) — nE, is ample for k > n :=dim X. We fix a
number 0 < o < 1. Then we can take an ample divisor A such that

pP(1—a)A—Kx +(—tD)) —nE, and p"((1—-a)A—Kx — (tD)) —nkE,

are both ample for any ¢ > 0 and for any =z € X, since {c¢1((tD))} is bounded
in N'(X). Then, for any t > 0, there exists a member A € [tD + aA|yum with
mult, A < 1, since 0,(D) = 0. Here (X,A) is log-terminal at = by [1.1. We set

Li:="tD'+Aand Ly := tD, + A. Then
p(Ly — (Kx +A) —nE, and p*(Ly — (Kx +A)) — nE,
are both ample by
p"(Ly — (Kx + A)) = nE, & p*((1 - a)A — Kx + (~tD)) - nE,,
5 (Lz — (Kx + A)) = nE, & p*(1 - a)A — Kx — (D)) — nE,.
Therefore, x ¢ Bs|L1| U Bs|Lg| by [1.2. O
1.4. Corollary Let A be an ample divisor of X such that A— Kx — (dim X)H

is ample for some very ample divisor H. Then the following two conditions are
equivalent for an R-divisor D of X:

(1) D is pseudo-effective;
(2) h°(X, "tD' + A) # 0 for any t € Ry.
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PRrROOF. It is enough to show (1) = (2). In the proof of 1.3] we choose a point
x € X with 0,(D) = 0 and = ¢ Supp(D), and choose a number 0 < a < 1 with
(1 — a)A — Kx) — nE, being ample. Let us fix ¢ > 0 and choose a member
A € |tD 4 aAlpum with mult, A < 1. We set L = D' + A. Then
p* (L1 — (Kx + A+ (=tD))) —nE, 8 p*((1 —a)A — Kx) — nE,

is ample. Here (X, A + (—tD)) is log-terminal at x by [1.1] Thus = ¢ Bs|L;1| by
In particular, HY(X, L) # 0. O

We have the following generalization of [IIL{1.7-(3):

1.5. Corollary Suppose that o,(D) = 0 for a pseudo-effective R-divisor D and
a point x € X. Then, for any ample R-divisor A, there is an effective R-divisor A
such that AR D + A and x & Supp A.

Recall that the numerical base locus NBs(D) is the set of points with o, (D) > 0.
This is a countable union of proper subvarieties. In fact,

NBs(D) = _ Bs|'mD'+ 4]

by 1.3. If N,(D) = 0, then codim NBs(D) > 2. If NBs(P, (D)) is not a Zariski-
closed subset, then D admits no Zariski-decompositions.

1.6. Corollary The numerical base locus NBs(D) has no isolated points: if
04(D) > 0, then there is a curve v C NBs(D) passing through x.

PROOF. Assume that z is an isolated point of NBs(D). Since NBs(D) depends
only on the Chern class ¢1(D), we may assume that Supp(D) Z z. By x is
also an isolated point of Bs| mD, + A| for an ample divisor A and for infinitely
many m € N. By [151], for such m, there exists k € N with « & Bs|k(,mD, + A)|.
Since k(mD + A) = k(,mD, + A) + k(mD), we have o,(mD + A) = 0. This is a
contradiction. O

1.7. Corollary Let I" be a prime divisor.

(1) For a pseudo-effective R-divisor D, there is an ample divisor A such that
or(tD + A)z < tor(D) for any t € Rsg and
1
tlim ZO'F(tD + A)Z = O’F(D).
(2) If B is a big R-divisor, then or(tB)y — tor(B) is bounded for t > 0.
PrOOF. (1) By[1.3] there is an ample divisor A such that or(tP,(D)+A)z =0
for any ¢ > 0. Therefore or(tD + A)z < tmultp N, (D) = tor(D). Furthermore,

1 1
%Ur(tkD + A)Z Z %Ur(t(k}D + A))Z

Therefore .
tlim ZUF(tD + Az > klim or(D + (1/k)A) = or(D).
—00 —00
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(2) By (1), we have an ample divisor A with op(tB 4+ A)z < tor(B). Since
B is big, there exist a positive integer k and an effective R-divisor A such that
kB ~ A+ A. Therefore, for t > k,

O‘F(tB)Z < O‘F((t — I{/’)B + A)Z + multr A < (t — k)O'F(B) + multr A. ([l

Remark The author was informed [1.7-(2) from H. Tsuji, who seemed to have
similar results to and [1.3 by applying some L?-vanishing theorem.

1.8. Problem Let D be a pseudo-effective R-divisor, A an ample divisor, and
I' a prime divisor. Then is tor(D) — or(tD + A) bounded for ¢t > 0 7

Let B be a big R-divisor of X. The set

SBs(B) := ﬂAeIB\@ Supp A

is called the stable base locus of B. Since |B|g is the set of effective R-divisors
Q-linearly equivalent to B, we have

SBs(B) = ﬂm:l Bs|mB| = Umultr eV ﬂmzl Bs| mB |.

We introduce the following R-version of the stable base locus:
= A.
SBs(B)r ﬂAe\B\R Supp

Note that SBs(B) and SBs(B)g are Zariski-closed subsets of X containing NBs(B).
For an ample R-divisor A, let us consider the set

G(B,A):={teR| B+1tAis big and NBs(B +tA) # SBs(B + tA)r}.

1.9. Lemma
(1) NBs(B) = U, SBs(B + tA)r.
(2) If B +tA is big, then (t —e,t) NG(B, A) =0 for some £ > 0.
(3) Ift € G(B, A) and if NBs(B +tA) is a Zariski-closed subset, then t is an
isolated point of G(B, A).

ProoF. (1) If z € NBs(B), i.e., 0,(B) > 0, then o,(B + tA) > 0 for some
t > 0. Thus x € SBs(B +tA)g. Suppose that x ¢ NBs(B). Then = & SBs(B + ¢H)
for any ¢ € Q¢ and for an ample Q-divisor H, by For any t € R, we can
find ¢ € Qs such that tA — ¢H is ample. Thus

SBs(B + tA)s C SBs(B + ¢H)r U SBs(tA — ¢H)r C SBs(B + ¢H).

Hence x ¢ SBs(B + tA)g for t > 0.

(2) We consider a sequence {SBs(B+t'A)r} of Zariski-closed subsets. If t1 < to
and B + t1 A is big, then SBs(B + t1A)g D SBs(B + t2A)g. By the Noetherian
condition, we have

ﬂm/ SBs(B + t' A)r = SBs(B + toA)r

for some tog < t. Then SBs(B + t'A)r = NBs(B + t'A)r = SBs(B + toA)r for
t>1 >t
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(3) If NBs(B) is Zariski-closed, then NBs(B) = SBs(B +t; A)r for some ¢; > 0
by (1). Hence SBs(B + tA)r = SBs(B + t1A)r for 0 < ¢t < t;. Thus the assertion
follows from (2). O

Therefore, NBs(B) is Zariski-closed for ‘almost all’ big R-divisors B. Note that if ¢
is an accumulation point of G(B, A), then B+tA admits no Zariski-decomposition.

81.b. Restriction to general subvarieties. We shall generalize the argu-
ment of [1.2.

1.10. Proposition Let C be a non-singular projective curve of a non-singular
projective variety X of dimension n and let A be an effective R-divisor such that
(X, A) is log-terminal around C and C ¢ Supp A. Let E¢ be the exceptional divisor
for the blowing-up p: Z — X along C and let L be a Z-divisor of X. If

p*(L—(Kx +A))—(n-1)Ec
is ample, then the restriction homomorphism H°(X, L) — H®(C, L|¢) is surjective.
PRrRoOOF. The proof is similar to that of [1.2. We have
Kz;=p"(Kx+A)+(n—2)Ec — Ay

for the proper transform Ay of A. We can take a birational morphism p: Y — Z
from a non-singular projective variety and a normal crossing divisor E = Y E; of
Y as the union of the exceptional locus for f := popu: Y — X and Supp(f*A). We
may assume that f is an isomorphism over general points of C. Then

Ky = f*(Kx + M)+ ;B
for a; € R. If f(E;) NC # 0, then a; > —1. Now the R-divisor
"L+ Z a;E; — (n— 1)p*Ec — Ky
is nef and big. We set R := >. 7 F;, = > a;E; — (n — 1)p*Ec. Then r; > —1

if f(E;)NC # 0 and f(E;) ¢ C. Let Ey be the proper transform of Fc. Then
ro = —1. Therefore ,u*(’)y('—R—') = Jo N J: for suitable ideal sheaves Jy and Jp
such that

(1) SuppOz/Jo N Supp Oz /T =0,

(2) SuppOz/Jo = Ec,

(3) Supp Oz(—FE¢)/Jo does not dominate C.

Thus Z¢/p«Jo is a skyscraper sheaf for the defining ideal Z¢ of C. The vanishing
theorem TI/5.9 implies H' (X, f.Oy('R') ® Ox(L)) = 0. Thus

HO(X,0x(L)) = H(X,0x (L) ® Ox/p+Jo)

is surjective. Hence H*(X,L) — H%(C, L|¢) is surjective by H' (X, Z¢/puJo) =
0. a
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1.11. Theorem Let D be a pseudo-effective R-divisor of a non-singular pro-
jective variety X. Suppose that D % 0 and N,(D) = 0. Then there exist an ample
divisor A and a positive number  such that h°(X, mD, + A) > Bm for m > 0.

Proor. NBs(D) is a countable union of subvarieties of codimension greater
than one. Thus there is a non-singular curve C' as a complete intersection of non-
singular ample divisors such that CNNBs(D) = §) and C ¢ Supp(D). Let pc: Z —
X be the blowing-up along C' and let E¢ be the exceptional divisor. We fix a number
0 < a < 1. Then we can find an ample divisor A such that the R-divisor

po((l =)A= Kx — (mD)) — (n—1)Ec

is ample for any m € N. We set L, := mD, + A for m € N. Since o,(D) = 0 for
x € C, there exists an effective R-divisor A,,, ~g mD + aA such that (X, A,,) is
log-terminal around C' and C ¢ Supp(A,,). The R-linear equivalence

Ly, — (Kx+A,) ~ (1—a)A— Kx — (mD)
implies that
po(Lim — (Kx + An)) — (n = 1)Ec
is ample. Thus, by the restriction homomorphism
HO(X» mD, +A) — HO(C» (omD, + A)lc)

is surjective for any m € N. Note that D - C > 0 since D % 0. Hence there is a
positive number 3 such that

hW(X, mD, + A) > h°(C,(,mD, + A)|c) > fm  for m > 0. O

1.12. Corollary Let D be a pseudo-effective R-divisor. Then the following
three conditions are equivalent:
(1) DN No(D);
(2) For any ample divisor A, the function t — h°(X, tD, + A) is bounded;
(3) For any ample divisor A, lim, . (1/t)h°(X, tD, + A) = 0.

PRrROOF. The implication (2) = (3) is trivial and (3) = (1) follows from 1.11!
We shall show (1) = (2)). Now P := P, (D) is numerically trivial. By the argument
of [1.3, there is an ample divisor A’ such that |4’ — A — "tP'| # () for any t > 0.
Thus h°(X, tD, + A) <h°(X, tN, 4+ A") for N := N, (D). Hence we may assume
D = N. There is a number k € R such that op(kN + A) > 0 for any prime
component I of N. Thus or(tN + A) > (t — k)or(N) for ¢ > k by IIL{1.9. Hence
h(X, tN, + A) =h°(X, kN, + A) for t > k. O

The following result is a partial generalization of

1.13. Proposition Let W C X be a non-singular subvariety of a non-singular
projective variety X and let A be an effective R-divisor such that (X,A) is log-
terminal around W and W ¢ Supp A. Let Ey be the exceptional divisor for the
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blowing-up p: Z — X along W and let L be a Z-diwvisor of X. Suppose further that
(Z, Ew + p*A) is log-canonical around Ew and

p (L — (Kx +A)) — (codim W)Ew
is ample. Then H°(X, L) — H°(W, L|w) is surjective.
PrOOF. Now Ay := p*A is the proper transform of A. Thus
Kz =p"(Kx +A)+ (codimW — 1)Eyw — Ag.

Let us take a birational morphism p: Y — Z and let f: ¥ — X be the composite
po . We may assume that Y is a non-singular projective variety and that there is
a normal crossing divisor £ = Zf:o FE; satisfying the following conditions:

(1) Ey is the proper transform of Ey in Y;

(2) Ky = f*(KX + A) + Zf:o a; E; for some a; € R,

(3) If f(E;)NW # 0, then a; > —1.
We look at the R-divisor

k k
R:= Zizo By = Z_fo a; E; — (codim W)p* By .

Then f*L+R—Ky is nef and big. If r; > 0, then E; is p-exceptional. If f(E;)NW #
0 and if f(E;) ¢ W, then r; = a; > —1. If f(E;) C W, then r; > —1, since
(Z, Ew + Ay) is log-canonical around Eyy. Obviously, rg = —1. For the set

I={0<i<k|r,=-1and f(E;) NW # 0},
we have
E; > —u* By

Zie] rzEz Z M EW
Thus 1. Oy ( rR—l) = Oz(—Ew)NJ; for an ideal sheaf [J; with Eyw NSupp Oz/J; =
(. Therefore,

£Oy('R") ~ Iy N p.Jh.
By the vanishing theorem II/5.9, we have
HY(X, £,.Oy('R") ® Ox(L)) = 0.
Thus H(X, L) — HY(W, L|w) is surjective, since W N Supp Ox /p.J1 = 0. O
The following result is a partial generalization of [1.11}

1.14. Proposition Let X be a non-singular projective variety, D a pseudo-
effective R-divisor, and let W C X a non-singular subvariety. Assume that
(1) NBs(D)N'W =,
(2) W ¢ Supp(D),
(3) Supp(D) is normal crossing over a neighborhood of W,
(4) locally on a neighborhood of W, every non-empty intersection of irreducible
components of Supp(D) intersects W transversely.
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Then there exists an ample divisor A such that the restriction homomorphism
HO(X7 D, + A) — HO(Wa (D, + A)lw)
is surjective for any t € Rsg.

PRrROOF. By 1.3] there is an ample divisor H of X such that WNBs| tD,+H| =

) for any t > 0. For a number 0 < ¢ < 1, we choose a general member F of
| (t/e)D, + H|. Then, for the R-divisor A = eF + ¢((t/e)D), we have

o A ~R tD + EH,

o W & Supp A,

e (X,A) is log-terminal around W,
by 1.1. Let p: Z — X be the blowing-up along W and let Ey, be the exceptional
divisor. By construction, p*F + (p*(D))red + Ew is a normal crossing divisor
around Ey . Hence (Z, Ew + p*A) is log-canonical around Eyy. Let us consider
L := tD, + A for an ample divisor A with p*(A—eH — Kx —(tD)) — (codim W) Ey,
being ample. Then p*(L — (Kx + A)) — (codim W)Ey is ample. Thus, by [1.13]
we have the surjection H*(X, L) — H°(W, L|w). O

82. Numerical D-dimensions

§2.a. Numerical D-dimensions for nef R-divisors. We recall an invariant
v(D) = v(D, X) called the numerical D-dimension defined for a nef R-divisor D
of an n-dimensional non-singular projective variety X. The Chern class ¢1(D) is
considered as an element of H''*(X,R) = H?(X,R) N H"!(X). Suppose that

DF . Ak = (D) U e (A kX =0

for an integer £ > 1 and for an ample divisor A. Then ¢;(D)* € H**(X R) is
zero by The invariant v(D) is defined to be the largest integer k& > 0 with
c1(D)* # 0 in H®*(X,R). This is also the largest integer k with D¥ . A"~% +£ 0
for an ample divisor A. For a nef R-Cartier divisor of a projective variety, its v is
defined by the pullback to a desingularization.

Remark Let 7: X — S be a flat projective surjective morphism of varieties
and let D be a m-nef R-divisor of X. Suppose that any fiber X, = 77 1(s) is
irreducible. Then v(D|x,) is constant.

The following lemma is well-known for Q-divisors and proved by the same
argument as usual.

2.1. Lemma Let D be a nef R-divisor of a non-singular projective variety X
of dimension n. Then the following properties hold:
(1) k(D) < v(D);
(2) k(D) =nif and only if v(D) = n;
(3) If v(D) = n, then there is an effective R-divisor A such that D — eA is
ample for any 0 < e < 1.
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2.2. Definition An R-divisor D is called nef and abundant if D is nef and
v(D) = k(D).

2.3. Lemma Let D be a nef R-divisor of a non-singular projective variety X
of dimension n. Then the following properties hold:

(1) If D is nef and abundant, then there exist a birational morphism p:Y —
X, a surjective morphism f:Y — Z of non-singular projective varieties,
and a nef and big R-divisor B of Z such that n*D ~q f*B;

(2) Let m: X — S be a fibration onto a normal variety and let F' be a general
fiber. Then v(D|p) < v(D) <v(D|p)+dimS.

PrOOF. (1) This is also well-known for Q-divisors (cf. [55]). By the same
argument, we can find a birational morphism A: V' — X, an equi-dimensional
surjective morphism ¢: V' — Z, a birational morphism ¢: Y — V a semi-ample
big Q-divisor L of Z and an effective R-divisor E of Y satisfying the following
conditions:

e Y and Z are non-singular projective varieties;
e 1/ is a normal projective variety;

e ¢ is birational to the Iitaka fibration for D;

WD ~q f*L+ E, where p:= X oy and f:=gqo .

Let A be an ample divisor of Y. Then, for v = v(D) = dim Z, we have

0= (‘LL*D)V+1 . Anfufl Z (f*L)V . E. Anfufl > 0.

Therefore, f(Supp E) # Z. Thus E = f*A for an effective R-divisor A, by [IT1/5.9|
Hence pu*D ~q f*B for the nef and big R-divisor B = L + A.

(2) We may assume that S is projective. Let A and H be very ample divisors
of X and S, respectively. We set d := dim S, v := v(D), and v' := v(D|p). Then
DV . frH. An=d=v" 5 0. Hence v > /. In order to show the other inequality,
we may assume that v/ < n—d and v > d. If D is big, then D — €A is ample
for 0 < & < 1 for some effective R-divisor A. Hence (D — cA)| is also ample and
D|r is big. In particular, v = v/ 4+ d. Suppose that v < n. Let V = [ A; be the

complete intersection of (n — v)-general members Ay, Ay, -+, A,—, of |A]. Then
V' is a non-singular projective variety and D|y is a nef and big R-divisor. Thus
Dv=d. f*He. An=¥ > 0. In particular, v/ > v — d. O

82.b. k,. Let X be a non-singular projective variety of dimension n.
2.4. Lemma Let D be an R-divisor and let A be an ample divisor of X. Then
e W (X, A+ "tD")

1m
t—oo t

< Ho00.

PrOOF. We can take an effective R-divisor A and an ample divisor H such
that D + A ~ H. Thus h®(X,A+ tD") < h°(X, A+ 7' H). Hence we are done
by the Riemann-Roch formula. O
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2.5. Definition Let D be a pseudo-effective R-divisor and A a divisor. If
H°(X, A+ mD,) # 0 for infinitely many m € N, then we define:

ot (D; A) :=min{k € Z>o | im,, oo m *h°(X, A+ mD,) < 400},
o(D; A) := max{k € Z>¢ | lim,, oo m ¥ h°(X, A4+ mD,) > 0},
07 (D; A) := max{k € Z>¢ | lim,, .. m *h°(X, A4+ mD,) > 0}.
If H'(X, A+ /mD,) # 0 only for finitely many m € N, then we define o+ (D; A) =

o(D;A) = 07 (D;A) = —oo. We define the following numerical versions of D-
dimension of X:

ko (D) = £, (D, X) := max{o(D; A) | A is a divisor},

kI (D) =k} (D, X) :=max{oc"(D;A) | Ais a divisor},
k(D) =k, (D,X) :=max{oc (D;A) | Ais a divisor}.
2.6. Remark

(1) o(D;0) = oc™(D;0) = x(D).

(2) The definition of o (D; A) is similar to Fujita’s definition [23] of x(L, F)
for a line bundle L and a coherent sheaf F.

(3) In the original version [104], o(D; A) was defined as o~ (D; A) and k, was
defined as & .

(4) There are inequalities

0~ (D;A) <o(D;A) <ot(D;A) <o(D; A) +1,
K, (D, X) < ko(D,X) <k(D,X) < ko(D,X)+ 1.

(5) An R-divisor D is pseudo-effective if and only if x_ (D) > 0, by [1.4.
(6) By replacing o 1 by © 7, we define

o(D; A) :=max{k € Z>o U {—oc0} | Tim m *h°(X,A+ "'mD") > 0}.
m—00

Since ¢;("mD' — mD,) are bounded in N*(X), we have

ko (D) = max{o(D; A)' | A is a divisor}.
In the definition of k£, we can also replace | | by " .
2.7. Proposition Let D be a pseudo-effective R-divisor of a non-singular pro-
jective variety X of dimension n.
(1) If D’ is an R-divisor with D' — D being pseudo-effective, then k,(D’) >
ko (D), kT (D") > kX (D), and k, (D') > k(D). In particular, ks(D),
w}(D), and r; (D) depend only on the first Chern class ¢i(D) € N*(X).
(2) Suppose that kD, is pseudo-effective for some k € N. Then k,(D) =
maxgen ko ( kD), KT (D) = maxgen ) ( kD)), and k(D) = maxgen
ky (kD). In particular, k(D) > k(D).
(3) kX (D) =n if and only if D is big. In this case, t,(D) = K, (D) =n.

o o
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(4) 5o(f*D) = 5o(D), 5E(F*D) = 5£(D), and 5 (f*D) = 15 (D) hold for
any proper surjective morphism f:Y — X from a non-singular projective
variety.

(5) If H C X is a non-singular ample prime divisor and if k,(D) < dim X,
then ke (D) < ke(D|g), (D) < kI (D|g), and k5 (D) < x5 (D|g).

(6) If D is nef, then k(D) = £} (D) = ko (D) = v(D).

(7) Let f: X =Y be a generically finite surjective morphism onto a projective
variety and let E be an effective R-divisor such that N,(D; X/Y) > E.
Then ko (D) = ke (D—E), k(D) = k5 (D—F), and k(D) = k, (D—E).

(8) k(D) =0 if and only if D ® N,(D). In this case, k} (D) = k(D) = 0.

(9) (Easy addition): Let f: X — Y be a fiber space and let F be a ‘general’
fiber. Then ky(D) < ko (D|r) +dimY, k} (D) < k}(D|r) +dimY, and
k(D) <k, (D|fp)+dimY.

PRrROOF. (1) By[1.3] there is an ample divisor A such that
H°(X, m(D' — D), + A) #0

for any m > 0. Hence h°(X, mD’, +24) > h%(X, mD, + A).

(2) Let [ be a positive integer such that Supp(lD) coincides with the union
of prime components I' of (D) with multr(D) ¢ Q. There is a constant ¢ with
(ID) < ¢(kD). We can choose the integer [ above with [ > ck 4+ 1. Then there is
an ample divisor A such that

HO (X, (I —ck—1)D+ckD,), +A)#0
for any m > 0 by [1.3. Since
mID, +2A=mD+2A+m(l —1)D — m(lID)
>mD+ A+ m(l—ck—1)D +mc kD, + A,
we have
h(X,m 1D, 4+ 24) > h%(X, mD, + A),

which implies the expected equalities.

(3) If D is big, then x, (D) = n by (2)). Conversely, assume that (D) = n.
Let A be a very ample divisor such that o (D;A) = n. Let H be another non-
singular very ample divisor such that H — A is ample. There is an exact sequence

0— HYX, mD,+A—H)—H' X, mD, + A) —» H°(H,(,mD, + A)|x).
We note that
lim m " hO(H, (imD, +A)|g) < +oo, Tim m """ h%(X, mD,+A) = +o0.

Hence mD — (H — A) is pseudo-effective for some m > 0. Thus D is big.

(4) Let H be an ample divisor of Y. Then f,Oy(H) C Ox(A)®* for some
ample divisor A of X and a positive integer k. Hence h°(Y, mf*D, + H) <
Eh(X, "'mD"' + A). Thus k,(f*D) < ks (D), and the same inequalities for £F and
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k. hold. For the converse, it is enough to take an ample divisor H of Y such that
H — f*A is very ample for a given ample divisor A of X.

(5) We may assume that H ¢ Supp(D). For an ample divisor A, let us consider
the exact sequences:

0— Ox(mD,+A—(j+1)H) - Ox(,mD,+A—jH) — Og( mD,+A—jH) — 0

for integers 7 > 0. There is an integer k such that kH — A is ample. Then
h(X, mD, + A—kH) =0, since D is not big. Therefore

h(X, mD, + A) < kh(H, (. mD, + A)|g)

for any m > 0. Therefore k,(D) < k,(D|g), and the same inequalities for £} and
k2 hold.

(6) We may assume that D is not big. Let v := v(D) < n. Let Ay, A, ..., Ap_,
be general non-singular ample prime divisors of X. Then the intersections V; :=
i<, Ai are non-singular, Dly; is not big for j < n — v, and Dly,_, is big. Then,
by (5), k5 (D) < k}(Dly,) < dimV,_, = v(D). The converse inequality s, (D) >
v(D) follows from[1.14} since we may replace D so that Supp(D) is a simple normal
crossing divisor.

(7) Let H be an ample divisor of Y. Then

mE < N,(mD; X/Y) = N,(mD + f*H; X/Y) < N,(mD + f*H)

for any m > 0. Therefore H*(X, mD, 4+ f*H) ~ H*(X, m(D — E), + f*H).

(8) follows from[1.12]

(9) Let A be an ample divisor of X. We shall prove the following assertion by
induction on dimY: there is a constant ¢ > 0 such that

hW(X, mD, + A) < em®™Y 1WO(F, (\mD, 4+ A)|r)
for m > 0. Let H C Y be a ‘general’ ample divisor of Y. Then there is a positive

integer | such that D — [f*H is not pseudo-effective. Thus hO(X, mD, + A —
mlf*H) =0 for m > 0. Hence

B(X, mD, +A) < Zz;lho(f*Hv(LmDJ +A—if H)ln)
<mih’(f*H,(mD, + A)|pn).
Thus we are done by induction. O
§2.c. Numerical domination.

2.8. Definition Let D; and Dy be two R-divisors of a non-singular projective
variety X. We say that Dy dominates Do if tD; — D5 is Q-linearly equivalent to an
effective R-divisor for some t € Q<. In this case, we write D1 = Dy or Dy < D;.

2.9. Remark
(1) If D1 t DQ and DQ t D3, then D1 t D3.
(2) If D; and Dy are effective R-divisors with Supp Dy O Supp D, then
D1 > Ds.
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(3) If Dy = Do, then k(D7) > k(D3).

2.10. Definition Let D be an R-divisor and let W be a Zariski-closed proper
subset of a non-singular projective variety X. We say that D dominates W and
write D = W or W =< D if the following condition is satisfied: let u: Y — X be
a birational morphism from a non-singular projective variety such that u=*(W) is
the support of an effective divisor E. Then p*D = E. Note that this condition
does not depend on the choices of p: Y — X and F.

2.11. Lemma For any R-divisor D with 0 < k(D) < dim X,
k(D) = min{dim W | W £ D}.

ProoF. If (D) = 0, then {z} £ D for a point = & J,,-Bs| 'mD' |. Thus,
we may assume 0 < k(D) < dim X. Let ®: X --— Z be the Iitaka fibration for D.
If W C X is a general subvariety of dim W = k(D) = dim Z, then u*D — SE is not
pseudo-effective for any 8 > 0, for a birational morphism p: Y — X, and for an
effective divisor F with Supp E = p~1(W). On the other hand, if dim W < dim Z,
then p~'W is contained the pullback of an ample divisor H of Z and H is dominated
by pu*D. Hence D = W. O

We shall give a numerical version of the notion of domination as follows:

2.12. Definition Let D; and D5 be two R-divisors of a non-singular projective
variety. If the following condition is satisfied, we say that Dy dominates Do numer-
ically and write Dy 3= Dy or Dy < D1: for an ample divisor A and for any positive
number b > 0, there exist real numbers > b and y > b such that xD; — yDy + A
is pseudo-effective.

For an ample divisor A and for a number © € R>(, we consider the set
D(z) :={y € R>g | zD1 — yD2 + A is pseudo-effective}
and define a function

@) = {sup{y €D(z)}, if D(x) #0,

—00, otherwise
with values in {#o0} UR>g. Then D; = D, if and only if lim,_,4 o p(x) = +o0.

2.13. Lemma
(1) If D1 %= Dy and Ds = D3 and if Dy is pseudo-effective, then Dy %= Ds.
(2) IfDl t DQ, then D1 = DQ.
(3) If D1 and Dy are nef R-divisors with Dy = Ds, then v(D1) > v(D3).

Proor. (1) For a given positive number b, we choose numbers u, v € Ry} so
that uDs —vD3+ A is pseudo-effective. Let ¢ be a positive number with ve/(u4c¢) >
b and we choose numbers z, y € Rs. so that zD; — yDy + A is pseudo-effective.

Then
UL YU

D3+ A=

Yy
u+y ! u+y u—l—y( ! y2 ) u

(UDQ — UD3 + A)
Y
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is pseudo-effective. Since y > ¢, we have yv/(u + y) > b. Since D; is pseudo-
effective, we can choose x to satisfy uz/(u +y) > b. Thus Dy = Ds.

(2) Let t be a positive number such that ¢D; — Dy is pseudo-effective. Then,
for any b > 0, there is a number m such that mt > b and m > b. Then (mt)D; —
mDsy 4+ A is pseudo-effective.

(3) Let b be an arbitrary positive integer. Then there exist real numbers 2 > b
and y > b such that zD; —yDs + A is pseudo-effective. Then, for any 0 < k < v :=
v(D1), we have inequalities

.TDlll+17kD§An_V_1 4 An—uDllfkaé' Z yDlllkal26+1An—y—1’

since D1 and D> are nef. Hence, we infer that if DfH*kD’zC is numerically trivial,
then DY ~*DE* is also numerically trivial by [I1i6.3. Therefore D5+ is numerically
trivial since D11/+1 is so. Thus v > v(D3). O

2.14. Lemma Let X be a non-singular projective variety, D a nef and abun-
dant R-divisor, and E an effective R-divisor. If D = E, then D = E.

PROOF. We can reduce to the following situation by[2.3-(1): there is a fibration
f+ X — Y onto a non-singular projective variety such that D ~gq f*B for a nef and
big R-divisor B. Let F be a ‘general’ fiber of f. Then F|r < D|p ~g 0. It follows
that —FE is relatively pseudo-effective over Y. Thus f(Supp E) # Y. Hence, there
is a positive integer [ such that [f*B — E is Q-linearly equivalent to an effective
R-divisor. ]

2.15. Corollary Let f: X — Y be a surjective morphism from a non-singular
projective variety onto a projective variety, D a nef and abundant R-divisor of X,
and A an ample divisor of Y. Then the following conditions are equivalent:

(1) D= f*4;

(2) D= f*A;

(3) f is the composite of the Iitaka fibration X «~— Z for D and a rational
map Z — Y.

2.16. Definition Let D be an R-divisor and let W be a proper Zariski-closed
subset of a non-singular projective variety X. If the following condition is satisfied,
then we say that D dominates W numerically and write D = W or W < D: let
1Y — X be a birational morphism from a non-singular projective variety such
that u~*(W) is the support of an effective divisor E. Then pu*D = E. Note that
this condition does not depend on the choices of : Y — X and FE.

2.17. Lemma Let D be an R-divisor of a non-singular projective variety X,
W C X a Zariski-closed proper subset with W < D, and Z C X x U a dominant
family of closed subvarieties of X parameterized by a complex analytic variety U
such that general members Z,, C X are non-singular. Then the restriction D]z,
numerically dominates W N Z,, for a ‘general’ member Z,.
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ProoOF. Let p: X’ — X be a birational morphism from a non-singular pro-
jective variety such that p~1(W) is an effective reduced divisor E. Let Z' — Z
be a bimeromorphic morphism from a non-singular variety such that the induced
meromorphic map p: Z’ -+— X’ from the first projection Z — X is a holomorphic.
For an ample divisor A of X’ and for any positive number b, there exist z, y € Rsp
such that zp*D — yE + A is pseudo-effective. Then p*(xp*D —yE + A) is relatively
pseudo-effective over U. Therefore, D|z, = W NZ, for a ‘general’ member Z,,. O

2.18. Lemma Let m: X — S be a flat projective surjective morphism of com-
plex analytic varieties and let W C X be a proper closed analytic subspace such
that

(1) every fiber Xy = n~1(s) is irreducible and reduced,
(2) the sheaf Ox /TE, is flat over S for any k > 1 for the defining ideal Ty
of W.
Let D be an R-Cartier divisor of X such that D|x, = W N X for a ‘general’ fiber
Xs. Then D|x, = WN X, for any s € S.

PrOOF. We may assume that S is a non-singular curve. Let p: Y — X be the
blowing-up along W and let E be the effective Cartier divisor such that Oy (—E) ~
p*Iw /(tor). Note that, for the composite f := mop: Y — S, every fiber Yy :=
f~Y(s) is irreducible and reduced, and Yy — X is the blowing-up along the defining
ideal of Wy := W xg {s}. For an f-ample divisor A of Y and for positive numbers
x, y, suppose that xp*D — yE + A is f-pseudo-effective. Then the restriction
(zp*D — yE + A)ly, to any fiber Y5 is also pseudo-effective. Hence D|x, = W for
any s € S. O

2.19. Lemma Let D be a pseudo-effective R-divisor of a non-singular pro-
jective variety X, H C X a non-singular ample prime divisor, and W C H a
Zariski-closed subset with D = W. Then D|g = W.

PROOF. Let p: Y — X be a birational morphism from a non-singular projec-
tive variety such that p~1(W) is a reduced divisor E and that the proper transform
H’ of H is non-singular. For an ample divisor A of Y, we consider

o(x,y) =op(xp*D —yE + A)
as a function on
D = {(z,y) € RE, | zp*D — yE + A is pseudo-effective}.
Note that xp*D — yE + A — o(x,y)H' is pseudo-effective for (x,y) € D, and that
Dy :={(z,y) € D | x,y > b} is non-empty for any b > 0.
Suppose that sup{o(z,y) | (z,y) € Dp} = oo for any b > 0. Then p*D =
E+ H' = p~'H. Hence D = H and D is big. Since H is ample, D|y is still big.
Thus D|g = W.

Next suppose that 3 := sup{o(x,y) | (z,y) € Dp} < +00 for some b > 0. Let
¢ be a positive number with cA + BH’ being ample. Then cA + o(x,y)H' is ample
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for (z,y) € Dy. Since
zp*D —yE+ (1+c)A = (zp*D —yEF+ A —o(z,y)H') + cA+ o(z,y)H',

zp*D — yE + (1 4 ¢)A and its restriction (zp*D — yE + (1 + ¢)A)| g+ are pseudo-
effective. Therefore, D|gy = W. O

82.d. k.

2.20. Definition For an R-divisor D, we define k, (D) = k, (D, X) as follows:
(1) If D is not pseudo-effective, then k, (D) := —o0;
(2) If D is big, then k, (D) := dim X;;
(3) In the other case, k, (D) := min{dim W | D # W}.

2.21. Lemma If x,(D) = k < dim X = n, then, for any ample divisor A,
there exist a positive integer m and ‘general” members Ay, As, ..., Ap_r € |mA]
such that D %% A1 NN A, _k.

PrOOF. Let W be a subvariety of X of dimension k with D % W. Then
there exist a positive integer m and members Ay, A9, ..., A% . € |mA]| such that
V0= AN AJn---nAY , is a k-dimensional subspace with W C VY. Hence
D # VO Let m: Z — U be a flat family of closed subspaces of X whose fibers are
complete intersections V.= A;N---NA,_j for some members Ay, ..., A, € |mA|.
Suppose that V'V is the fiber 771(0) for a point 0 € U. By applying [2.18 to the
flat morphism X x U — U and the closed subspace Z C X x U, we infer that D
does not dominate numerically a ‘general’ fiber V of . O

In particular, if D is a non-big pseudo-effective R-divisor, then k, (D) is the
minimum of dim W for non-singular complete intersections W with D % W.

The following is an example of pseudo-effective divisor D such that k,(D) is
not the maximum of k(L) for semi-ample Q-divisors L of non-singular projective
varieties Y with birational morphisms p: Y — X such that u*D %= L (cf.[2.22}(5)).

Example Let L be a divisor of degree zero of an elliptic curve E such that
mL 7 0 except for m = 0. Let X — E be the P'-bundle associated with Op @®
Og(L) and H a tautological divisor. Then H is nef and v(H) = 1. Suppose that
there exist a birational morphism p: Y — X and a fiber space f: Y — Z such
that p*H = f*B for an ample divisor B of Z. Then we can show that Z is a
point as follows: Assume the contrary. Then Z is a curve. Let F' be a fiber of
f- I pw*(xH 4+ A) — yF is pseudo-effective for an ample divisor A and for positive
numbers x, y > 0, then A- H > yF - p*H and hence F' - p*H = 0. There is a
surjection

Or ® Op(t"L) - Op(1"H|F)
for 7: F — E. Since Og(L) is not a torsion element in Pic(E), the surjection
above factors through the first projection or the second projection. Therefore,
w(F) is contained in one of two sections of X — E corresponding to the splittings
of O @ Og(L). This is a contradiction.
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2.22. Proposition Let D be a pseudo-effective R-divisor of a non-singular
projective variety X of dimension n.

(2)
3)

)

N

ku(D) > k(D).

ku(D) =0 if and only if D ® N, (D).

Let H C X be a non-singular ample prime divisor. If k,(D) < n, then
tiy(D) < ki (Dlm).

ku(f*D) = k(D) for any proper surjective morphism f:Y — X.

If D is nef, then k, (D) = v(D).

Let f: X — Y be a generically finite surjective morphism onto a projective
variety and let E be an effective R-divisor with N,(D; X/Y) > E. Then
k(D) =k, (D — E).

(Easy Addition): For a fiber space m: X — S, k,(D) < k,(D|x,)+dim S
holds for a ‘general’ fiber X, = 7~ 1(s).

PRrROOF. (1) Let A be a very ample divisor of X and let W C X be a non-
singular subvariety of dimension w < k(D) that is the complete intersection () A4;
of (n —w)-general members of |A|. Tt is enough to show that D = W by[2.21. The
conormal bundle N IYV/ « is isomorphic to Ox (—A)®(~*) We consider the exact

sequence:

0 — HY(X,Z4 " Ox (A + mD))) — H' (X, T4, Ox (A + mD,)) —

— HO(W, Sym?(Nyy x) ® Ow (A + mD,)),

for positive integers g, where Ty is the defining ideal sheaf of W. Thus

h(X, 7L O(A+ mD))) > hO(X, A4+ mD,)— <

n—w-+q
n—uw

) hO(W (A4 mD,)|w).

Let us consider a function ¢: N — N such that lim,, 4 g(m) = +o0 and

ke(D) —e—w

1 <
og a(m) < n—w

logm

for a fixed positive number . Then the boundedness of m~* h"(W, (A4 mD,)|w)
implies that there is a constant ¢ such that

(n—w+q(m)

n—uw

) hO(I/V7 (A+ mD)|w) < em/fio(P)—e

for m > 0. Hence HO(X,I%m)HO(A + mD),)) # 0 for m > 0, since

limyy oo m™ P 00X, A+ mD,) > 0.

Therefore, D = W.

(2) By (1) and 1.12] D & N,(D) if k,(D) = 0. Conversely, assume that
D ™ N, (D). We may assume that D = N, (D), since &, depends on the numerical
equivalence class. Let x be a point of X \ Supp D, p: Z — X the blowing-up at
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x, E the exceptional divisor, and A a sufficiently ample divisor of X. Suppose that
D = {z}. Then, by [1.4] there is a function [: N — N such that

ho(Z,p*(;mD, + A) —I(m)E) #0 and lim,, .. [(m) = +oc.

Since E ¢ Bs|p*(,mD, + A)|, we have h®(X, mD, + A) > I(m) contradicting
1.12]

(3) Let W C H be a non-singular subvariety of dim W < £, (D). Then D = W.
By|2.19, D|g = W. Hence k,(D|g) > dim W by[2.21]

(4) Let W C Y be a non-singular subvariety of dimension w < k, (D) that is
the complete intersection of general ample divisors. Then dim f(W) = w. Thus
f*D = W by the same argument as in [2.21] Hence «,(f*D) > k,(D). By (3)
above, if dimY > dim X, then k,(f*D|g) > k., (f*D) for a general ample divisor H.
Therefore, in order to show the equality: k,(f*D) = k., (D), we may assume that f
is generically finite. Let V C X be a general non-singular subvariety of dimension
v < Kk, (f*D), p: X’ — X the blowing-up along V', and E the exceptional divisor.
Let pw: Y’ — Y be the blowing-up along W := f~1(V), Ey the exceptional
divisor, and 7: Y/ — X’ the induced generically finite morphism. Note that Y’ ~
Y xx X' and Eyw ~ Y x x E. There exist an ample divisor H on X’ and positive
numbers x, y > 0 such that 7*(zp*D + H) — yEw is pseudo-effective. Thus
zp*D + H — yF is pseudo-effective. Hence D > W and we have the equality.

(5) Let W C X be a general non-singular subvariety of dimension w = v(D),
p: Z — X the blowing-up along W, and Eyy the exceptional divisor. We take an
ample divisor A with p*A — Ey being ample. If p*(zD + A) — yEw is pseudo-
effective for some z, y > 0, then

0< (p*(xD + A) —yEw) - (p"D)* - (p"A — Ew)" 17"
=p*A-(p*D)" - (p*A— Ew)" """ — ye(D|w)"
for a positive constant c¢. Hence y is bounded. Therefore, D % W and «,(D) <
v(D). The other inequality follows from (1) and[2.7-(6).

(6) Let W C X be a non-singular subvariety of dimension w < &, (D), p: Z —
X the blowing-up along W, Ey the exceptional divisor, and H an ample divisor
of Y. Then there exist positive numbers z, y > 0 such that p*(zD + f*H) — yEw

is pseudo-effective. Let I' be a prime component of E and let IV be the proper
transform of I". Note that IV = p*I". We have

zmultr E < op(2D; X/Y) =or(zD + f*H; X/Y)
<or(p*(xD+ fTH) — yEw).
Therefore, the R-divisor
p*(xD + f*H) —yEw — xp"E

is pseudo-effective. Thus D — FE = W.
(7) Suppose that &, (D) > k,(D]|x,)+dim S for ‘general’ s € S. Let W C X be
a non-singular subvariety of dimension #,(D|x,) + dimS. Since D = W, we have
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Di|x, = WnN X, for ‘general’ s € S by 2.171 Thus k,(D|x,) > dimW — dim S.
This is a contradiction. O

Problem
(1) ko(D) = kE(D) = £k, (D) for all pseudo-effective R-divisors D?
(2) Ko(D) = ko (Pe(D))? k(D) = k(P (D))?

The affirmative answer to[1.8 implies the expected equalities in (2).
82.e. Geometrically abundant divisors.

2.23. Definition Let X be a non-singular projective variety and let D be an
R-divisor.
(1) D is called abundant if k, (D) = k(D).
(2) D is called geometrically abundant if the following conditions are satisfied:
(a) k(D) > 0;
(b) let X -— Z be the litaka fibration for D and let u: ¥ — X be a
birational morphism from a non-singular projective variety such that
the composite f: Y — X --— Z is holomorphic. Then

ko (W Dly.) =0
for a ‘general’ fiber Y, = f~1(2).

A geometrically abundant R-divisor is abundant by[2.7 and[2.22. A nef and abun-
dant R-divisor is geometrically abundant by [2.3-(1). The Zariski-decomposition
problem for a geometrically abundant R-divisor D is reduced to that of a big R-
divisor of the base variety of the Iitaka fibration for D.

2.24. Notation Let f: X — Y be a projective morphism from a normal
complex analytic space into a complex analytic space and let X — Y’ — Y be
the Stein factorization. Let F be a ‘general’ fiber of X — Y’. Note that F is a
connected component of a ‘general’ fiber of X — f(X). For an R-Cartier divisor
D of X, we denote

ku(D; X)Y) = 5y (D|p)  and  ko(D; X/Y) = ko (D|F).

If D|p is abundant, then D is called f-abundant. If D|p is geometrically abundant,
then D is called geometrically f-abundant. Let D’ be another R-divisor of X. If
Di|p = Da|p (resp. Di|p = Ds|p), then we write Dy =5 Dy (resp. Dy =¢ D>).

2.25. Lemma Let f: X — Y be a projective surjective morphism of non-
singular varieties with connected fibers. Let D be an R-divisor of X with k(D; X/Y)
= ko (D; X/Y) = 0. Then there exist a positive integer m, a reflexive R-sheaf = of
rank one of Y, and an f-exceptional effective R-divisor E of X such that

mP,(D; X/Y) ~ f*E — E.

If E #0, then Supp E ¢ Supp N,(D; X/Y). If D is a Q-divisor, then E is also a
reflexive Q-sheaf.
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If every reflexive sheaf of rank one on Y admits a meromorphic section, then we
can take E above as an R-divisor.

PROOF. We can consider the relative o-decomposition with respect to f by
since f.Ox( mD,) # 0 for a positive integer m. Suppose that mD is
linearly equivalent to an effective divisor A. This is satisfied, for example, if Y
is Stein. Here we have N,(A; X/Y) = mN,(D; X/Y) and the effective R-divisor
P,(A; X/Y) =A— Ny(A; X/Y) is linearly equivalent to mP,(D; X/Y). By 1.12]
Py(D; X/Y)|x, ™ 0 for a ‘general’ point y € Y. Thus f(Supp P,(A; X/Y)) #Y
and hence P,(A; X/Y) = f*Ey — E for an R-divisor Zy of Y and an f-exceptional
effective R-divisor E of X by II1l5.8 Even if mD is not linearly equivalent to
any effective divisor, we can patch E locally defined over Y to the globally defined
effective R-divisor E of X. Thus mP,(D; X/Y)—E ~ f*E for some E € Ref;(Y)r.

Suppose that £ # 0 and let T' be an irreducible component of E. Then
or(—E;X/Y) = 0 and morp(D; X/Y) = or(—E + mN,(D; X/Y); X/Y) by the
formula

mD ~ f*E — E+mN,(D; X/Y).
In particular, for 0 < o < 1, we have
or(—aE +mN,(D; X/Y); X/Y) =mor(D; X/Y)
from the triangle inequality
or(—E +mNy(D; X/Y); X/Y) < or(—aE + mN,(D; X/Y); X/Y)
+ (1 —a)or(—E; X/Y).
Suppose that Supp E C Supp N, (D; X/Y). Then mN,(D; X/Y) > «FE for some
0<a<1and

or(—aE 4+ mN,(D; X/Y); X/Y) =mor(D; X/Y) — amultr E

by [III}1.8. This is a contradiction.

We shall show that 2 € Ref;(Y)g if D is a Q-divisor. It is enough to consider
locally on Y. Hence we have only to show that =y above is a Q-divisor. For any
prime divisor @Q C Y, there is a prime divisor © C X with © ¢ Supp N,(D; X/Y)
and f(©) = Q. Thus

multe A = multe f*Z¢ = multe f*Q multg =o.
Hence = is a Q-divisor. O
2.26. Corollary Under the same situation as|2.25, let p: Z — 'Y be a bimero-
morphic morphism flattening f, f': X' — Z a bimeromorphic transform of f by u

from a non-singular variety, and v: X' — X the induced bimeromorphic morphism.
Then there exists a reflexive R-sheaf 25 of rank one on Z such that

v'D ~q f"Bz + N,(v*D; X'/ 2).

If D is a Q-divisor, then 2z is a reflexive Q-sheaf of rank one.
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ProOF. By [2.25] there exist a positive integer m, a reflexive R-sheaf 25 of
rank one on Z, and an f’-exceptional effective R-divisor E’ of X’ such that

mv*D ~mf "2y — E' + mN,(v*D; X'/ Z).

If D is a Q-divisor, then 2z € Ref1(Z)g by [2.25] Let X3 be the normalization
of the main component of X xy Z and let A\: X’ — X be the induced morphism.
Then A\, E = 0. In particular,

0 <mANANN,(v*D; X'/Z) =mN,(v*D; X' /Z) — E'.
Hence E’ = 0 by [2.25] O

2.27. Lemma Let f: X — Y be a surjective morphism of normal projective
varieties and let D be a pseudo-effective geometrically f-abundant R-Cartier divisor
of X. Then D + f*H is geometrically abundant for any big R-Cartier divisor H
of Y. More generally, if D %= f*H, then D —ef*H is geometrically abundant for
some € > 0.

PrROOF. We may assume that X and Y are non-singular and that there exist
morphisms h: X — Z and ¢g: Z — Y such that Z is a non-singular projective
variety, f = g o h, and that h is the relative Iitaka fibration for D. Let P be the
positive part P,(D; X/Z) of the relative o-decomposition of D over Z. Then P is
pseudo-effective, since N,(D; X/Z) < N,(D). By[2.25]and [2.26] we may assume
that P ~g h*E for a pseudo-effective g-big R-divisor = of Z. Here, = — A is g-
ample for some effective R-divisor A of Z. Hence, for any big R-divisor H of Y,
= — A+ kg*H is big for some k € N. Thus mZ + kg*H is big for any m > 1.
Therefore, D 4+ f*H is geometrically abundant.

Next, suppose that D = f*H. It is enough to show that the R-divisor = above
is big. For an ample divisor A of X and for any b > 0, there exist rational numbers
x, y > bsuch that D — yf*H + A is pseudo-effective. Thus

ah*E —yf*H +c¢N,(D; X/Z)+ A

is pseudo-effective for a constant ¢ by Hence, by the same argument as in
[[1/5.6:(2), we infer that = = ¢g*H. Since = + g*H is big,

22 —yg*H+ (E4+g*H)
is pseudo-effective for x, y > b > 0. Thus = is big. O
Applying to the case where D is nef, we have:

2.28. Corollary Let f: X — Y be a surjective morphism of normal projective
varieties and let D be a nef and f-abundant R-Cartier divisor. Then D + f*H is
nef and abundant for any nef and big R-Cartier divisor H of Y. More generally, if
D = f*H in addition, then D is nef and abundant.
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2.29. Definition Let X be a non-singular projective variety. The numerical
Kodaira dimensions of X of type o and of type v, respectively, are defined to be
the following numbers:

ko (X) = ko (Kx) and kK, (X) =k, (Kx).
These are birational invariants by [2.7}(7) and[2.22-(6). Thus, even for a projective

variety V' with singularities, we define k,(V) 1= k,(X) and £, (V) := k,(X) for a
non-singular model X of V.

Remark If a non-singular projective variety X admits a minimal model X iy,
then k,(X) = ko (X) = v(Kx,,,,)-

Conjecture (abundance) Ky is abundant: k(X) = k,(X).

In below, we shall show that if Kx is abundant, then Kx is geometrically
abundant.

83. Direct images of canonical sheaves

§3.a. Variation of Hodge structure. A (pure) Hodge structure (cf. [10])
consists of a free abelian group H of finite rank, a descending filtration

- D FP(Hg) DFP‘H(H@) BEEE

of vector subspaces of Hc = H ® C, and an integer w such that

(1) FP(H¢) = Hc for p < 0 and FP(Hg) =0 for p > 0,

(2) FP(Hc)® F*~P+(Hc) = Hc for any p,
where ~ denotes the complex conjugate. If we set HP*? := FP(H¢) N F9(Hc), then
HP4 =0 unless p+ ¢ # w, Hc = @D, -, H"?, and FP(Hc) = @, H"*~". The
filtration {FP(Hc)} is called the Hodge filtration and w is called the weight. A
polarization (defined over Q) of the Hodge structure is a non-degenerate bilinear
form Q: H x H — Q satisfying the following conditions:

(1) Q is symmetric if w is even, and is skew-symmetric if w is odd;

(2) Q(F*(Hc), F*~P*(Hc)) = 0;

(3) (V—1)P79Q(z,T) > 0 for any 0 # x € HP9.
The map C': He — Hg defined by Cz = (/—1)P~ %z for x € HP? is called the Weil
operator, which is defined over R.

An example of Hodge structure is the cohomology group H* (M, Z) modulo

torsion for a compact Kahler manifold M. It is of weight w and the Hodge filtration
is given by the hyper-cohomology group

FP(H"(M,C)) = H"(M, 0>p23) ~ @m HY7H (M, Q)
for the complex

O2py = = 0= 0= 0 S O S AR ]
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for p. If M is a projective variety and if | = ¢;(A) € H?(M,Z) is the Chern class of

an ample divisor A, then we have the Hard Lefschetz theorem: the homomorphism
L' := (u)': H"Y(M,Q) — H" (M, Q)

given by the cup-product with I =1 Ul U --- Ul is isomorphic for 0 < i < n. For

w < n, the primitive cohomology group P*(M,Z) is defined as the kernel of
L=ty HY(M,Z) — H*"~"“"2(M,Z)

modulo torsion. Then we have the Lefschetz decomposition

H"(M.Q) =(D._, L'PY~%(M,Q).
The primitive cohomology P*(M,Z) has a Hodge structure by

PPY(M,7) = PPYI(M,Z) N HP9(M)
and has a polarization given by

Qu(z,y) = (=)D Pz Uy uin[M].
Thus HY(M,Q) also has a polarization as the direct sum of the polarizations on
PU=2(M, Q).
Let S be a complex analytic manifold. A variation of Hodge structure (cf. [32])

of weight w on S consists of a locally constant system H of free abelian groups of
finite rank on S and a descending filtration

) ]-‘P(H) Dfp+1(H) PREEE
of holomorphic subbundles of H = H ®7 Og such that
(1) Hs and FP = FP(H) ® C(s) form a Hodge structure of weight w for any

point s € S,
(2) the connection V: H — QL ® H associated with H induces

V(FP(H)) C Qg @ FP~H(H)
for any p.

The second condition is called the Griffiths transversality condition. A polarization
of the variation of Hodge structure is a locally constant bilinear from Q: H x H —
Qs whose fiber Q4: Hy x Hy — Q is a polarization of the Hodge structure Hy;. An
example of variation of Hodge structure is the higher direct image sheaf R f.Zx
modulo torsion for a proper smooth surjective morphism f: X — S from a K&hler
manifold X. If f is projective and if | € H°(S, R%f,Qx) is induced from an f-ample
line bundle, then the primitive part of R f,Zx for w < dim X — dim S admits a
polarization.

Let H = (H,FP(Hc),Q) be a polarized Hodge structure of weight w. We
consider groups

Gg:={g € Aut(Hg) | Q(gz,9y) = Q(z,y)}
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for R=7,Q, R, and C. Then G¢ is a complex algebraic group and G is a discrete
subgroup. Let D and D be the following sets of descending filtrations {FP} of
vector subspaces of Hc:

D: = {{F?} | dim F? = dim FP(Hc), Q(F?, F*~?*") = 0},

D:={{F"} € D | (V-1)’"Q(z,T) > 0 for non-zero x € F¥ N Fv=7r},
Then the Hodge filtration {FP(Hc)} defines an element o of D. We write FP =
FP(Hg), HP := FPNFY, and H, := (H, F?). The set D has a structure of complex
projective manifold and D is an open subset, which is regarded as the classifying
space of Hodge structures on the abelian group H with the polarization @. There
are a natural transitive action of G¢ on D and that of Gg on D. Let B be the
stabilizer of G¢ at o:

B:={g € Gc|g(Fy)=F7}.
Then B is an algebraic subgroup and D is regarded as the homogeneous space
Gc/B. The intersection V' = B N Gg preserves the Hodge structure H,. Thus Q
and the Weil operator C, of H, are preserved. Hence V is contained in a unitary

group and is compact. The tangent space of the homogeneous space D = Gg/V at
o is isomorphic to g/b for

g:={T € End(Hc) | Q(Tz,y) + Q(z,Ty) =0}, b:={T €g|T(F})CF}},
where g and b are the Lie algebras of G¢ and B, respectively. We have the decom-

position
_ p,—p _ p,—p
g @pGZ g and b @pzo g ’

g» P :={T eg|TH® C H, PP}

We also have an injection

g/b — EB Hom(FP, He/FP).

for subspaces

Let H = (H,F*(H),Q) be a polarlzed variation of Hodge structure defined
on a complex analytic manifold S. Let 7: S — S be the universal covering map.
Let us fix a point s € S and denote the polarized Hodge structure (Hg, F? =
FP(H) ® C(s),Qs) by (Ho,FJ,Q,). Then 7'H ~ H, ® Zz, 7 '(FP(H)) is a
subbundle of the trivial vector bundle H,®O7, and we have a period map p: S—D
into the classifying space D of Hodge structures on H, compatible with Q.

We have also a monodromy representatlon p: m(S,s) — Gy compatlble with

p: it satisfies p(yz) = p(7)p(z) for z € S and v € 71 (S, s). For a point § € S over
s, the tangent map of p at § is written as

O3, 0ss —~ (b@g™"")/bCg/b
by the Griffith transversality. The composite
©ss — g/b — Hom(F?, He /F?)
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is given by the Og-linear map
FP(H) L QL @ H — Q% ® (H/FP(H)).

Suppose that S is isomorphic to the Zariski-open subset M ~. D for a complex
analytic manifold M and a normal crossing divisor D. Then the local monodromies
of H around D is quasi-unipotent by a lemma of Borel (cf. [126, 4.5]). Let ¢
be the lower-canonical extension (cf. [T1], [92]) of H, which is called the canonical
extension in the sense of Deligne. The upper-canonical extension “H" is defined as
the dual of the lower-canonical extension of the dual HV. If the local monodromies
of H are unipotent, then two canonical extensions coincide with each other, and are
denoted by H®". For e = ¢ and u, V extends to a logarithmic connection (cf. [13]):

v oHcan N Ql (log D) ® chan'

We set
FP(OHS™) := j FP(H) N *H®" C . H
for the open immersion j: S < M. Then FP(*H ") are locally free Op/-modules

and are subbundles of *H". This is a consequence of the nilpotent orbit theorem
by Schmid [126} 4.12].

3.1. Definition A locally free sheaf of a projective variety is called numerically
semi-positive if its tautological line bundle is nef.

Kawamata [50, §4] has proved the following semi-positivity for variations of
Hodge structure:

3.2. Theorem Let M be a compact Kdhler manifold, D a normal crossing
divisor, and let H be a polarized variation of Hodge structure of weight w de-
fined on S = M ~. D. Suppose that FO'(H) = H, F*T(H) = 0, and that H has
only unipotent local monodromies along D. Then F*(H®) @ O¢ is a numerically
semi-positive vector bundle for any compact curve C C M. In particular, if M is
projective, then F*(H") is numerically semi-positive.

For the proof of [3.2, we may assume that D is a simple normal crossing divisor

by a suitable blowing-up of M, since the canonical extension is compatible with

pulling back for variations of Hodge structure with unipotent local monodromies.
Kawamata [53, Theorem 3] has proved another positivity:

3.3. Theorem Under the same situation as[3.2, if
©s,s — Hom(F", F' ™ /F!)
is injective at a point s € S, then det(F™ (H™))™ > 0, where n = dim S = dim M.
Kollér [72] pointed out a gap in the proof of [53, Theorem 3] and gave a modifica-
tion. Kawamata’s original modification was mentioned there, but it does not seem
to be published yet. These modifications are applications of SLo-orbit theorem of

several complex variables (cf. [7], [48], [49]).
It is natural to consider the following:
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3.4. Conjecture In the situation of 13.2, if M is projective, then the line
bundle det(F™(H")) is nef and abundant.

This is considered as a version of the abundance conjecture. We have a partial
answer as follows:

3.5. Proposition The conjecture [3.4 is true if w < 2.

PRrROOF. By assumption, the natural homomorphism
(b@g™"")/b — Hom(F,', F,'~ ' /F,")
is injective. In fact, if F'* is given, then F'! is determined by
F'={z € Hc|Q(z,F”) = 0}.
We may assume that D is a simple normal crossing divisor by the same reason as
above. If the local monodromy around a prime component D; is trivial, then H
extends to M ~\ Supp(D — D;) as a variation of Hodge structure. Hence we may
assume that all the local monodromies around any prime component D; are non-
trivial. Let I' be the image of the monodromy representation p: m1(S,s) — Gz.
Then I' is a discrete subgroup of Gg and the quotient I'\D exists as a normal
complex analytic space, since VNI is a finite group. The period mapping p: S — D
induces m: S — T'\D. We infer that 7 is a proper morphism by [32, III, 9.6] or
by the nilpotent orbit theorem [126, 4.12]. By [53| Theorem 11], there exist a
birational morphism v: M’ — M from a non-singular projective variety, a fiber
space ': M' — Z onto a non-singular projective variety, an open subset Z* C Z,
and a generically finite proper surjective morphism 7: Z* — I'\D such that

I/il(S):ﬂ'/il(Z*) and TO7T/|V71(S) :7TOV|V*1(S’)-
Let W be the image of (v,7'): M’ — M x Z. By considering the flattening of 7',
we may assume that any 7’-exceptional divisor is exceptional for M/ — W. Let F
be a general fiber of 7. For the numerically semi-positive vector bundle F* (H"),

the restriction F* (H") ® Op is a flat vector bundle with only finite monodromies,
since it is associated with a constant variation of Hodge structure. Hence

V* det(F2 (HE)®™ ~ 14 £ © Opp (—E)

for an invertible sheaf £ of Z, a m’-exceptional effective divisor F, and a positive
integer m. Since E is exceptional for M’ — W, we have

v* det(FY (HP) O™ ~ 7/* L

and thus £ is nef. Let Y C M be the complete intersection of general smooth ample
divisors with dimY = dim Z. Then p: Y NS — I'\D is generically finite. Thus

Oy,y — Hom(F*(H) ® C(y), (F*~'(H)/F*(H)) @ C(y))
is injective for a general point y € Y N .S. Hence
det(FU(HM))MW™Y Y >0 and  LYMZ >0,
by Therefore, det(F™(H*")) is nef and abundant. O
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By applying a similar argument to the Kuranishi space of a compact complex
manifold, we have:

3.6. Proposition Under the same situation as [3.2, assume that M s pro-
jective and the variation of Hodge structure H is isomorphic to R™ f.Zx modulo
torsion for a projective smooth morphism f: X — S with w = dim X — dim S.
Assume in addition that, for the fiber F = f~'(s), the homomorphism

H'(F,0p) — Hom(H"(F,Qp), H' (F,QE "))
given by the cup-product is injective. Then det(F™¥(H™)) is nef and abundant.

83.b. w-sheaves. Let f: X — Y be a proper surjective morphism from a
normal variety into a non-singular variety. For the dualizing sheaves wyx and wy,
we denote wx y = wx ® f*w{,l and call it the relative dualizing sheaf. For the
twisted inverse f' (cf. [37], [116], [117]), we have

L
f!OY ~qis w;([_ dim Y] & f*w;l.

In particular, H=4(f'Oy) ~ wx,y for d =dim X —dimY and H=*(f'Oy) =0 for
k>d.

We recall the following results on the higher direct images of dualizing sheaves
proved by [71], [97], [13], [92], [121], [122], [135].

3.7. Theorem Let f: X — Y be a proper surjective morphism of complex
analytic varieties with d := dim X — dimY . Suppose that X is a Kahler manifold.
Then the following properties hold:

(1) (Torsion-freeness) R* f,wyx is a torsion free sheaf for any i;
(2) (Vanishing) Let g: Y — Z be a projective surjective morphism and let H
be a g-ample invertible sheaf. Then, for any p > 0 and i > 0,

R? g.(H® R fuwx) = 0;

(3) (Injectivity) In the situation of (2) above, suppose that Z is Stein. Let
s € H(Y,H®!) be a non-zero section for an integer | > 0. Then the
induced homomorphism

HP (X, wx @ fH) 225 HP (X, wy ® frHO)

is injective for any p > 0;

(4) (Hodge filtration) Suppose that'Y is non-singular and f is smooth outside
a normal crossing divisor D C Y. Fori > 0, let “H* be the upper-
canonical extension for the variation of Hodge structure

H™ = R™ £.Zx)|y<p-
Then there is an isomorphism

R fuwxyy = FUHT).
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(5) (Splitting) Suppose that d > 0 and let Z C X be an f-ample non-singular
divisor. Then the surjection

fuwz - R fuwx
derived from the short exact sequence
OHWXwa(Z):wX@)Ox(Z)—)wz—?O

admits a splitting;
(6) (Decomposition) In the derived category D.(Oy) of Oy -modules with co-
herent cohomologies,

d .
Rf*wX ~qis @z‘:o R’ f*wX[—i].

Remark Kawamata [50] showed (4) for ¢ = 0 by applying some results of
Schmid [126]. Kollar [71] proved [3.7 in the case: X and Y are projective. The
argument in |71, I] implies (1) and (3) also in the case: X is compact Kahler and Y is
projective. Esnault—Viehweg [13] gave simple proofs of (1)), (2), and (3) in the same
case. The assertion (4) in the algebraic case was proved by a different argument in
[97], which is effective for other cases. Moriwaki [92] proved (I) in the case: f is a
projective morphism, by applying the relative Kodaira vanishing theorem I1.5.12|
The assertion (5) is derived from (4)) by the same argument as [71} II]. If X is
projective, then (6)) follows from (5). On the other hand, Saito [119] developed the
theory of Hodge modules and proved [3.7 in the case: f is a projective morphism,
in [120] (cf. [122]), where (6) is derived from the decomposition of related perverse
sheaves. In the case: f is a Kédhler morphism, (3.7 is proved implicitly in [122].
Takegoshi [135] also proved the Kihler case by an L?-method and by analyzing
the Hodge *-operator. Takegoshi’s result is more general than [3.7; in the most
statements, wx can be replaced with wx ® £ for a Nakano-semi-positive vector
bundle £.

3.8. Definition A coherent sheaf F of a complex analytic variety Y is called
an w-sheaf if there exists a proper morphism f: X — Y from a non-singular Kéhler
space such that F is a direct summand of R' f,wx for some 3.

An w-sheaf F is a torsion-free Oy-module if Supp F =Y.

Remark (cf. [71]) If f: X — Y is a morphism from a non-singular projective
variety, then R? f,wy is a direct summand of h,wy for another morphism h: Z — Y
from a non-singular projective variety. This is shown as follows: let Z C X be a
non-singular ample divisor and let us consider the exact sequence

0—>wxy mwx(Z) 2wz — 0.

By[3.7:(5), R! f.wy is a direct summand of f,wz. We have R f*wX(Z) =0fori >
0 by the relative Kodaira vanishing theorem II.5.12, Hence R"™! f.w; ~ R fiwx
for i > 2. Thus we are done by induction.
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Remark It may be possible to generalize the notion of w-sheaves in terms of
Hodge modules, etc. For example, it is expected that we can include in “w-sheaves”
the sheaves of the form F%(“H)®wys, where M is a Kihler manifold and F%(“H) is
the bottom filtration of the upper canonical extension “H of an abstract polarized
variation of Hodge structure defined outside a normal crossing divisor of M.

3.9. Corollary Let f: X — Y be a morphism of complex analytic varieties
and let F be an w-sheaf on X. Then the following properties hold:
(1) (Torsion-freeness) R’ f.F is an w-sheaf for any i;
(2) (Vanishing) Let g: Y — Z be a projective morphism and let H be a g-
ample invertible sheaf. Then, for any p >0 and i > 0,
R? g.(H @ R’ £,F) = 0;
(3) (Decomposition) In the derived category D.(Oy),

Rf*]: ~qis @120 RZ f*]:[—Z]

PROOF. Suppose that F is a direct summand of RY hywyr for a morphism
h: M — X from a Kihler manifold. Then R’ f,F is a direct summand of R“"7(f o
h)«war by 3.7-(6). Hence (1) and (2) hold for F. By[3.7-(6) for R h.wys and by a
projection R’ h,wy; — F, we have a projection
R (f oh)wwns — RY fo (R hawn) — RY f. F
for any ¢ such that the composite
R f.F — R f.(R? howpr) — R (f o h)wwnr — R fuF

is identical. Hence we have a quasi-isomorphism
R f.F = R(foh)wmlj] = @ _ R'(foh)wm[—i+j]— @ R f.F[-i]. O

i>0
3.10. Lemma Let X be a non-singular variety and let L be a Q-divisor with
Supp(L) being normal crossing. Suppose either that mL ~ 0 or that mL ~ D for
a non-singular divisor D for some m > 2 in which any component of D is not
contained in Supp(L) and D U Supp(L) is a normal crossing divisor. Then there
erists a generically finite proper surjective morphism M — X from a non-singular
variety M such that wx('L') = Ox(Kx + 'L') is a direct summand of f.was.

In particular, if X is Kahler, then wx ("L') restricted to a relatively compact open
subset is an w-sheaf.

i>0

Proor. First we consider the case: mL ~ 0. By applying TII5.10, we have a
cyclic covering 7: V' — X from a normal analytic space with only quotient singu-
larities such that

m—1 ro
TeWy =~ @i:O Ox (KX + L ) .
Let 4: Y — V be a Hironaka’s desingularization. It is a finite succession of blowups
over a relatively compact open subset of V. Let f: ¥ — X be the composite. Then
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wx ( rL—l) is a direct summand of f.wy, since p.wy ~ wy. Since wx ( I—Lj) is of rank
one, it is a direct summand of f.wy; for a connected component M of Y. If X is
Kahler, then f~'U is Kahler for any relatively compact open subset U C X, since
f is a projective morphism over U. Thus wx('L')|y is an w-sheaf.

Next, we consider the other case. Then Supp(L’) is normal crossing and mL’ ~
0 for the Q-divisor L' := L—(1/m)D. Thus wx('L') = wx('L’") and the assertion
follows from the first case. O

3.11. Proposition Let m: X — S be a proper surjective morphism from a
non-singular variety into a Stein space and let L be an R-divisor of X such that
Supp(L) is a normal crossing divisor. Suppose either

(1) L is a w-semi-ample Q-divisor, or
(2) 7 is a projective morphism and L is w-nef and mw-abundant.

Then, for a relatively compact open subset S, C S and for the pullback X, = n~1S,,
there exist

e a generically finite proper surjective morphism ¢: M — X. from a non-
singular variety

e a projective surjective morphism h: Z — S, from a non-singular variety
with dim Z = dim S + k(L; X/S),

e a proper surjective morphism f: M — Z over S., and

e an h-ample divisor H of Z

such that wx,("L") is a direct summand of ¢p.wpr(f*H). In particular, if X is

Kabhler, then wx ( rL—l) restricted to any relatively compact open subset of X is an
w-sheaf.

PROOF. In the proof, we replace S by a relatively compact open subset freely
without mentioning it. By [II\4.3] we may replace X and L with X’ and L/,
respectively by a generically finite proper surjective morphism p: X’ — X and
L' = p*L. In fact, Ox is a direct summand of p,Ox/(R,) for the ramification
divisor R, and[ITi4.3 implies that wx('L') is a direct summand of p.wx/("L"").

In the case (2), we may assume that there exist a projective morphism hy: Z; —
S from a non-singular variety, a surjective morphism f;: X — Z; over S, and an hq-
nef and hq-big R-divisor D of Z; such that L ~q f{D by the same argument as[2.3-
(T). In the case (1), we also have the same morphisms hy: X — Zy, f1: X — 77,
and the same R-divisor D with L ~g f{D, where D is a Q-divisor.

We may also assume that there is an effective R-divisor B of Z; such that

e H, := D — B is an hj-ample Q-divisor,

N I—L—fikB—l _ V_L—I’

e Supp f7(B) USupp(L) is a normal crossing divisor.
Then Ly := L — fiB ~q fy(H;) is a m-semi-ample Q-divisor such that Supp(L;)
is normal crossing and 'L' = "L, .
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Let A: Z — Z; be a finite surjective morphism from a non-singular variety
such that H := M\*(H;) is a Z-divisor (cf. IIi5.11). Let Y — X Xz Z be a
bimeromorphic morphism from a non-singular variety into the main component of
X Xz Z and let ¢: Y — X and fo: Y — Z be the induced morphisms. Then
Y*L ~q f3H. We can take Y so that Supp*(L) is normal crossing. Let m > 1 be
an integer such that ¢*(mL) is Cartier and ¢*(mL) ~ f5(mH). Then, by 11]5.10|
we have a cyclic covering 7: V' — Y from a normal complex analytic space V with
only quotient singularities such that

T Wy ~ Wy ®@::)1 Oy ('—iqp*L—' —ifsH).

Thus wy ("Y*L') is a direct summand of 7,wy (7* fH). Since V has only rational
singularities, wy is isomorphic to the direct image of the dualizing sheaf of a desin-
gularization M — V. Let ¢: M — X and f: M — Z be the induced morphisms.
Then wx (L") is a direct summand of ¢.wps(f*H). Since wx('L') is of rank one,
we can replace M by a connected component. O

3.12. Corollary Let m: X — S be a projective surjective morphism from a
normal variety into a Stein space. Let A and L be an effective R-divisor and a
Q-Cartier Z-divisor, respectively, on X. Suppose that (X, A) is log-terminal and
L—(Kx+A) is m-nef and w-abundant. Then the reflexive sheaf Ox (L) restricted to
any relatively compact open subset of X is an w-sheaf. Furthermore, for a relatively
compact open subset S, C S and for the pullback X. = 7~1S,, there exist

e a generically finite surjective morphism ¢: M — X. from a non-singular
variety,

e a projective morphism h: Z — S, from a non-singular variety with dim Z—
dim S = (L — (Kx + A); X/S),

e a surjective morphism f: M — Z over S, and

e an h-ample divisor H of Z

such that Ox_(L) is a direct summand of ¢.wp (f*H).

ProoOF. We also replace S by a relatively open subset freely. Let u: X' —
X be a bimeromorphic morphism from a non-singular variety projective over S
such that the union of the proper transform of A and the p-exceptional locus
is a normal crossing divisor. Then 'R’ is a p-exceptional effective divisor for
R:=Kx/ — ,u*(KX + A) Now

WL+ R—Ky=p"(L—-(Kx+A))
is (m o p)-nef and (7 o p)-abundant. Therefore, by Ox/("w*L+R") is an
w-sheaf. Since "p*L+ R' > ML, we have
Ox (L) ~ p.Ox/("w*L+R"). O

The following is a generalization of [3.7+(3) and also is that of a similar injec-
tivity obtained in [55]:
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3.13. Proposition (Injectivity) Let m: X — S be a proper surjective mor-
phism from a Kdhler manifold and let L and D be R-divisors X such that D is
effective, and Supp(L) and Supp(L + D) are normal crossing. Suppose that one of
the following two conditions is satisfied:

(1) L is a w-semi-ample Q-divisor and k(aL — D; X/S) > 0;
(2) 7 is a projective morphism and L is a w-nef and w-abundant R-divisor
with L =, D.

Then the natural homomorphism
R'1.0x(Kx 4+ 'L') = R'm,Ox(Kx + 'L+ D")
is injective for any 1.

PRrROOF. Since the statement is local, we may assume that S is Stein. Fur-
thermore, we replace S by an open subset freely without mentioning it. By [2.14
and by the proof of [3.11, we may assume that there exist a projective morphism
h: Z — S from a non-singular variety, a surjective morphism f: X — Z, and an
h-ample divisor H of Z such that L = f*H and that aL — D is linearly equivalent
to an effective R-divisor for some a € N. Then the result follows from 3.7+(3). O

We have also the following generalization of [3.7-(2):

3.14. Proposition (Vanishing) Let f: X — Y and g: Y — S be proper
surjective morphisms such that g is projective and X is a Kdhler manifold. Let
7 be the composite go f and let L be an R-divisor of X with Supp(L) being normal
crossing. Suppose that one of the following conditions is satisfied:

(1) L is a m-semi-ample Q-divisor with k(aL — f*A; X/S) > 0 for some g-
ample divisor A of Y,

(2) f is a projective morphism, L is a w-nef and f-abundant R-divisor such
that L = f*A for a g-ample divisor A of Y.

Then RP g, (R" fuwx ("L")) = 0 for any p > 0 and for any i > 0.

PROOF. Similarly to the above, we replace S by an open subset freely. We
note that L is m-abundant in the case (2), by [2.28. We may assume that there is
an effective g-ample divisor H of Y. Then

RP m.wx('L') = RP muwx ('L + f*H)
is injective for any p > 0, by [3.13] Applying [3.9-(2) and [3.9}(3), we infer that if
p > 0, then
R? g, (R’ fiwx (L") = R g, (Oy (H) ® R’ fowx("L")) = 0. O

3.15. Corollary Let f: X — Y and g: Y — S be projective surjective mor-
phisms where X is normal, and let w be the composite go f. Let A be an effective
R-divisor and L be a Q-Cartier Z-divisor of X satisfying the following conditions:

(1) (X,A) is log-terminal;
(2) L—(Kx + A) is m-nef and w-abundant;
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(3) L—(Kx 4+ A) =, f*A for a g-ample divisor A on'Y'.
Then R f,Ox (L) restricted to any relatively compact open subset of Y is an w-sheaf
for anyi. If p > 0, then
R? ¢g.(R" f,Ox (L)) = 0.

3.16. Definition Let f: X — Y be a surjective morphism of normal projective
varieties.

(1) An w-sheaf F on X is called w-big over Y if there exist surjective mor-
phisms ¢: M — X, p: M — Z, and q: Z — Y satisfying the following
conditions:

(a) M is a compact Kéhler manifold and Z is a non-singular projective
variety;

(b) fogp=qop; A

(¢) F is a direct summand of R" ¢p.wpr(p*A) for some ¢ and for some
ample divisor A of Z.

(2) A coherent torsion-free sheaf F of X is called an &-sheaf if there exist
an w-sheaf G and a generically isomorphic injection § — F” into the
double-dual F” of F.

(3) An@-sheaf G on X is called w-big over Y if there is a generically isomorphic
injection F < G” from an w-sheaf F that is w-big over Y.

By (3.9 and[3.14] we have:

3.17. Corollary Let f: X — Y be a surjective morphism of normal projective
varieties and let F be an w-sheaf on X that is w-big over Y. Then any higher direct
image sheaf R' f.F is w-big over Y and H? (Y, R f.F) =0 for p > 0.

3.18. Lemma Let F be an w-sheaf of a non-singular projective variety X of
dimension n and let A be an ample divisor of X. Suppose that pi(A) — nE, is
ample for a general point x € X, where p;: Q(X) — X is the blowing-up at x and
E, is the exceptional divisor. Then F ® Ox(A) is generically generated by global
sections.

ProoOF. We may assume that F = RP h,wy for a surjective morphism h: Z —
X from a non-singular projective variety and for some p > 0. For a general point
x € X, set X' :=Q(X), Z/ :=Z7Z xx X', and let h': Z — X’ be the induced
morphism. Then R? hiwy /x ~ pi(RP howyz/x), since h is smooth along h™'(x).
Hence

pr(RP hywz) @ Ox/(phA— Ep) ~RPhlwz @ Ox/(pi A —nE,)
is an w-big w-sheaf and
HY (X', p2 (R huwz) © O/ (pA — Ey)) = 0
by [3.14] Thus we have the surjection
H°(X,R? howz ® Ox(A)) = RP howyz ® Ox(A) @ C(x). O
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The following result is similar to|3.18:

3.19. Lemma Let 7: X — S be a projective morphism from a normal variety
into a Stein variety. Let F be a coherent sheaf on X such that
RP 1 (F @ Ox(A)) =0
for any p > 0 and for any w-ample divisor A’. Then F @ Ox(A) is w-generated for
a divisor A such that A — (dim Supp F)H is w-ample for a w-very ample divisor H.

PROOF. By the same argument as [71}, I, 3.1], we shall prove by induction
on dimSupp F. Let z € SuppF be an arbitrary point. Suppose first that the
local cohomology sheaf F' := H?m}(}" ) is not zero. Then, for the quotient sheaf

F" .= F/F', we have H?x}(}"’) = 0. Since F’ is a coherent skyscraper sheaf, we
have only to show the surjectivity of
1.(F' @ O(4)) - F" @ O(A) @ C(x).
Therefore we can reduce to the case H?x} (F) = 0 and dimSuppF > 0. Let
X1 € |H| be a general member containing z. Then the homomorphism
.7: ® Ox(—Xl) — .7:

is injective. Let F; := F ® Ox,(H). Then A — H — (dim Supp F;)H is m-ample,
since dim Supp F; < dim Supp F — 1. We have a surjective homomorphism

T(F ® Ox(A)) - m(F1 ® Ox, (A — H))
and a vanishing
RP 1,(FL ® Ox(A) ~ RFM 1 (F @ Ox(A") =0
for p > 0 for any m-ample divisor A’. Thus, by induction, the homomorphism
T (F @ Ox(A)) = F® Ox(A) @ C(x)

is surjective. O

83.c. Weak positivity and pseudo-effectivity.

3.20. Definition Let F be a torsion-free coherent sheaf of a non-singular
projective variety Y.

(1) For a point y € Y, F is called (globally) generated at y or generated by
global sections at vy if the evaluation homomorphism H°(Y, F) ® Oy — F
is surjective at y.

(2) §m(f ) denotes the double-dual of the symmetric tensor product Sym"™ (F)
for m > 0, where S(F) = Ox.

(3) ®@™(F) denotes the double-dual of the tensor product F&™ for m > 0,
where ®@°(F) = Ox.

(4) (@5(.7-") denotes the double-dual of A" F for r = rank F > 0.
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Let @ be an R-divisor and let y be a point of ¥ ~\ (1, ., Supp(m@). We
introduce the symbol F[Q]. If Q is a Z-divisor, then we identify F[Q] with the
double-dual of F ® Oy (Q).

(5)

(6)
(7)

(®)

FIQ] is called dd-ample at y if S™(F) ® Oy (,mQ, — A) is generated by
global sections at y for an ample divisor A and m > 0 with y & Supp(m@Q).
(Here, “dd-ample” is an abbreviation for “ample modulo double-duals.”)
If F[Q] is dd-ample at some point y as above, then it is called big.

Let A be an ample divisor. F[Q)] is called weakly positive at y if for any
a € N, there is b € N such that y ¢ Supp(ab@) and

S (F) ® Oy (LabQ, + bA)

is generated by global sections at y. Note that the condition does not
depend on the choice of A.

If F[Q] is weakly positive at a point of Y, then F[Q] is called weakly
positive.

Remark

(1)

Let F — G be a homomorphism of torsion free coherent sheaves that is
surjective over an open neighborhood of y. Then, if F is generated by
global sections at y, then G is so. Thus if F is dd-ample at y and weakly
positive at y, respectively, then so is G. In particular, if F is generated by
global sections at y, then F is weakly positive at y.

If F[Q] is dd-ample at y, then F[Q] is weakly positive at y. Conversely,
if F[Q] is weakly positive at y, then F[Q + A] is dd-ample at y for any
ample Q-divisor A.

F[Q] is dd-ample at y if and only if F[Q — A] is weakly positive at y for
an ample Q-divisor A.

The set of points at which F is generated by global sections is a Zariski-
open subset. In fact, its complement is the support of the cokernel of

H(Y,F)® Oy — F.

In particular, the set of points y at which F[Q] is dd-ample is also Zariski-
open. However, the set of points at which F[Q] is weakly positive is only
an intersection of countable Zariski-open subsets. A weakly positive sheaf
in the sense of Viehweg [147] is a sheaf that is weakly positive at every
point of some dense Zariski-open subset.

3.21. Lemma Let f: X — Y be a surjective morphism from a non-singular
projective variety onto a projective variety, L an R-divisor of X, and F = f~1(y)
the fiber over a point y € Y such that f is smooth along F and Supp(L) N F = {).
If one of the following conditions is satisfied, then there is an ample divisor H of
Y such that

HY(X, IL, + f*H) — H(F,IL|F)

is surjective for any [ > 0:
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(1) k(L) >0, SBs(L) N F =0, and the evaluation homomorphism
F f+Ox(maL, —mKx) — Ox(maL, —mKx)

s surjective along F for some positive integers m and a;
(2) L is pseudo-effective, NBs(L) N F = (), and L|p is ample.

PrOOF. We may replace X by a blowing-up X’ — X such that X’ — Y is still
smooth over y. Let H be an ample divisor of Y.

(1) By replacing m, we may assume that F N Bs|mL| = () and F N Bs|m(aLl +
bf*H — Kx)| = 0 for some b € N. Hence we may assume that there are effective
R-divisors Ay, Ay such that Supp(A; + Aj) is a normal crossing divisor and

Bs|mL — Aq| =Bs|m(aL +bf*H — Kx) — Aol = F N Supp(A; + Ag) = 0.

Since f is flat along F, y is a non-singular point of Y. Let 1: Y' — Y be the blowing-
up at y and let v: X’ — X be the blowing-up along F. Then X' ~ X xy Y’. Let
'+ X’ — Y’ be the induced morphism and let £ = y~!(y) and G = v=(F) be
exceptional divisors. Then cu*H — E is ample for ¢ > 0. We set

l—a

Dl =L — Al_lA2+(b+C)f*H
m

m
Then, for any [ > a,

- 1
VD — G — Ky = may*(mL ~ A+t <aL — Dy bf'H - KX)

+ " (ep*H — (dim V) E)

is semi-ample and
HY (X', "v*D;' —G) — HY X', v*D;")

is injective by [3.7+(3). Therefore,
HY(X, L, + (b+¢)f*H) — H(F,IL|r)

is surjective.

(2) For some ample divisor A of X, the restriction homomorphism

H(X, UL, + A) — H(F, (UL, + A)|F)

is surjective for any I > 0 by [1.14. Since L|r is ample, L + bf*H is big and
¢o(L+bf*H)— A— A is ample for some b, ¢ € N, and an effective R-divisor A with
F N Supp A = 0. By the proof of

HY(X, mL+c(L+bf*H),) — H(F,(m+c)L|r)
is also surjective for any m > 0. O

3.22. Lemma Let f: X — Y be a surjective morphism from a non-singular
projective variety onto a projective variety, L an R-divisor of X, and F = f~1(y)
the fiber over a point y € Y such that f is smooth along F and Supp(L) N F = {.
Suppose that f*f.Ox(mL,) — Ox( mL,) is surjective along F' for some m > 0.
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Let H be an ample divisor of Y. Then (1) = (2), (3) = (4), and (4) = (5) hold
for the following conditions:

(1) fuOx(aL,)®0Oy(—H) is generated by global sections at y for some a > 0;

(2) k(L) =k(L,X/Y)+dimY and SBs(L) N F =

(3) There is a positive integer b such that f.Ox( aL,)® Oy (bH) is generated
by global sections at y for any a > 0;

(4) For any a > 0, there is a positive integer b such that f.Ox(abL,) ®
Oy (bH) 1is generated by global sections at y;

(5) L is pseudo-effective and NBs(L) N F = ().

If L|p is ample, then (2) = (1) and (5) = (3) also hold.

PROOF. (1) = (2): The equality for x follows from [T1.3.13] since h°(X, \aL, —
J*H) #0. Let ¥ = &, /y: X = P = Py(f.Ox( mL,)) be the meromorphic
mapping associated with f*f.Ox(,mL,) — Ox( mL,) which is surjective along
F. Then ¥ is holomorphic along F. We may assume that ¥ is holomorphic by
replacing X by a blowing-up and that ¥ induces the Iitaka fibration for L restricted
to a general fiber of f. Then, for the tautological line bundle Op(1), we have
U*0Op(1) ~ Ox(mL — A) for an effective R-divisor A with F N SuppA = 0.
On the other hand, Op(1) @ p*Oy (bH) is very ample for the structure morphism
p: P — Y for some b € N. By assumption, Bs|m(aL — f*H)| N F = (. Thus
K(L) = kK(L,X/Y)+dimY and SBs(L) N F = 0.

(2) = (1): Here, we assume L|p is ample. Let ® = ®5: X --— |kL|Y be the
Tlitaka fibration for L associated with the linear system |kL| for some k € I(L).
Then ® and ¥ are birational to each other, since kK(L; X/Y) = dim X —dimY and
k(L) = dim X. Furthermore, ® is holomorphic along F' and is an embedding near
F. By replacing X by a blowing-up with center away from F, we may assume
that kL — Ay, is ample for an effective R-divisor Ay with "N Supp Ay = (). Then
(kL — Ay) — f*H is ample and free for some ¢ > 0. By [3.21, there is a positive
integer b such that

HO(X, IL, +bf*H) — H(F,IL|F)
is surjective for [ > 0. By the proof of [3.21,
HO(X, (1 + (b+ 1)ek)L, — f*H) — HO(F, (L + (b+ 1)ck) L] )

is also surjective. In particular, f.Ox( L, — f*H) ® C(y) ~ H°(F,IL|r) and
f+Ox (1L, — f*H) is generated by global sections at y for [ > 0.

(3) = (4) is trivial.

(4) = (5): For any a > 0, we can choose b > 0 so that F'NBs |b(aL+ f*H)| = 0.
Thus (5) follows.

(6) = follows from under the assumption: L|r is ample. O

Let F be a non-zero torsion-free coherent sheaf on a non-singular projective
variety Y and let p: P(F) = Py(F) — Y be the associated projective morphism
defined as Projan Sym(F). Let U be the maximum open subset of ¥ over which F
is locally free. Let P'(F) — P(F) be the normalization of the component of P(F)
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containing p~1(U) and let X — P'(F) be a birational morphism from a non-singular
projective variety that is an isomorphism over U. We assume that X ~ f~1U is a
divisor for the composite f: X — P(F) — Y. Let Ox(1) be the tautological line
bundle of P(F) associated with F and let Lo be a Cartier divisor of X linearly
equivalent to the pullback of Oz(1). There is a natural inclusion F — f.Ox(Lo)
which is an isomorphism over U. By TIT|5.10-(3), there is an f-exceptional effective
divisor E such that f,Ox (a(Lo+E)) ~ S*(F) for any a € N. We now fix the divisor
E above and set L := Ly + E. Note that N,(L + E’; X/Y) > E’, for another f-
exceptional effective divisor E’. In particular, if L + E’ is pseudo-effective, then L
is so and NBs(L + E’) = NBs(L) U Supp F’.
By applying we have the following criterion.

3.23. Theorem In the situation above, let y be a point of U and let QQ be an
R-divisor of Y with y & Supp(Q). Then the equivalences (1) < (2) < (3), and (4)
< (5) < (6) hold for the following conditions:

(1) S*(F) [aQ— H] is weakly positive at y for some a > 0 for an ample divisor
(2) FIQ] is dd-ample at y;
(3) L+ f*Q is big and SBs(L + f*Q) N f~(y) = 0;

(4) There is an ample divisor H of Y such that S™(F) @ Oy (,mQ, + H) is

globally generated at y for any m > 0;
(5) FlQ] is weakly positive at y;
(6) L+ f*Q is pseudo-effective and NBs(L + f*Q) N f~(y) = 0.
ProoFr. (1) = (2): There is a surjection Sym™(Sym®(F)) — Sym™(F).

Hence S™ (§“ (F)) — S™a(F) is induced and it is surjective over the open subset U
where F is locally free. Hence, by definition,

S%™(F) ® Oy ( 2mQ, — 2mH) ® Oy (mH) ~ S**™(F) ® Oy ( 2mQ, — mH)
is generated by global sections at y for some m > 0.

2) = is trivial.
(2) & (3) and (4) < (5) < (6) are shown in[3.22. O

Remark A numerically semi-positive vector bundle on Y is a locally free sheaf
that is weakly positive at every point of Y.

3.24. Corollary Let F be a torsion-free coherent sheaf of Y and let Q) be an
R-divisor.
(1) If FIQ'] is weakly positive for an R-divisor Q" with Q — Q' being pseudo-
effective, then F[Q] is weakly positive.
(2) Let Qr (k = 1,2,...) be a sequence of R-divisors such that ¢1(Q) =
limy, oo ¢1(Qr) in N*(Y). If F[Qx] are all weakly positive, then F[Q]
s weakly positive.

PROOF. We consider the morphism f: X — Y and L above and apply (6) <
of
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(1) L+ f*Q is pseudo-effective. If y is a ‘general’ point, then NBs(L + f*Q') N
f(y) =0 and y € NBs(Q — Q). Thus NBs(L + f*Q) N f~(y) = 0.

(2) L+ f*Q is pseudo-effective since it is a limit of pseudo-effective R-divisors.
Let A be an ample divisor of X. Then, for any positive integer m, there is a number
km such that mf*(Q — Q) + A is ample for any k > k,,,. For a point x € X, we
have

ox(m(L+f*Q)+A) < ou(m(L+f*Qx))+o,(mf* (Q—Qr)+A) = or(m(L+f*Qk))
for k > k,,. Hence, if NBs(L+ f*Qr) N f~1(y) = 0 for any k, then NBs(L + f*Q)N
i) =0. O

3.25. Lemma (cf. [36, Theorem 5.2], [148, Lemma 3.2]) Let F and G are
torsion-free coherent sheaves on'Y, Q an R-divisor, and y a point of Y ~ Supp(Q)
such that F and G are locally free at y.

(1) If FIQ] and G[Q] are weakly positive (resp. dd-ample) at y, then so is
(Fag)lQl

(2) If FIQ] is weakly positive (resp. dd-ample) aty and if G is generated by
global sections at y, then (F @ G)[Q] is weakly positive (resp. dd-ample)
at y.

(3) If FIQ] is weakly positive (resp. dd-ample) at y, then

SYF)[aQ], @ (F)[aQ], and det(F)[(rank F)Q]
are weakly positive (resp. dd-ample) aty, for a > 0.

(4) If FIQ] and G[Q] are weakly positive (resp. dd-ample) at y, then so is
(F26) [2Ql.

(5) If S“(F)[aQ] is weakly positive (resp. dd-ample) at y for some a > 0,
then F[Q] is weakly positive (resp. dd-ample) at y.

(6) Let 7: Y/ — Y be a morphism (resp. generically finite morphism) from
a non-singular projective variety such that T is smooth along 7 (y).
Let E be a T-exceptional effective divisor. Then F[Q] is weakly posi-
tive (resp. dd-ample) at y if and only if T*F @ Oy (E)[7*Q] is so at any
point of 7" (y).

PRrROOF. (1) Suppose that F[Q] and G[Q] are weakly positive at y. By
there exist an ample divisor H of Y and ko € N such that S¥(F) ® Oy ( kQ, + H)
and S¥(G)® Oy ( kQ, + H) are generated by global sections at y for any k > ko. Let
b be a positive integer such that S¢(F) @Oy (iQ, +bH) and $?(G)® Oy ( jQ, +bH)
are generated by global sections at y for any 0 < 4,5 < kg — 1. For integers m > 2k
and 0 < n <m, if n < kg, then m —n > kq. Hence

~ ~ A
(5™ "(F) @ Oy (Lm —m)Q,) ©5(0) ® Oy (@) @ Ov((b+ 1))
is generated by global sections at y. Since

S"Feg =" (§m—”(f) ®§"(g))A :

n=0
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g’”(}" ®G)®O0y(mQ, + (b+ 1)H) is generated by global sections at y. Hence
(F @ G)[Q] is weakly positive at y.

The case in which F[Q] and G[Q] are dd-ample at y is reduced to the case
above by the following property: F[Q] is dd-ample at y if and only if F[Q — 4] is
weakly positive at y for some ample Q-divisor A with y & Supp A.

(2) There is a homomorphism O;‘?T — @ surjective at y. Thus F®" — F®§ is
also surjective at y. Since FO"[Q] is weakly positive or dd-ample at y by (1), so is
F®g[Q].

(3) This is proved by the same argument as [36, Theorem 5.2] with properties
obtained in (1), (2), and [3.23-(1), -(4).

(4) S%(F @ G)[2Q] is weakly positive (resp. dd-ample) at y and (F ® G)" is a
direct summand of S?(F & G). Thus (4) follows.

(5) It is derived from the homomorphism S™(S%(F)) — S™a(F).

(6) Let X’ — X xy Y’ be a birational morphism from a non-singular projective
variety into the main component. Then we can define a divisor L’ on X’ for
7*F similarly to L for F. Let \: X’ — X and f’: X’ — Y’ be the induced
morphisms. Then we can write B/ — G = L' — A*L for effective divisors E' and G
which are exceptional for X’ — Y. If L' + f'*(7*Q + E) is pseudo-effective, then
L'+ f*(7*Q + E) + G is pseudo-effective and

NBs(L' 4+ f“(7*Q+ E) N A\~ f~1(y) DNBs(L' + f“ (1" Q+ E) + G) N A~ Lf~1(y).

There is an f-exceptional effective divisor E” of X such that E' + f*E < \*E",
since X \ f~!U is a divisor. Thus

A INBs(L + f*Q) € NBs(\*(L + f*Q + E"))
C NBs(\*(L + f*Q) + E' + f"E) U X' (Supp E")
=NBs(L' + f"(7*Q + E) + G) U X" *(Supp E").

Hence if 7%(F) ® Oy (E)[r*Q] is weakly positive at any point of 77!(y), then
L+ f*Q is pseudo-effective and NBs(L + f*Q) N f~1(y) = 0. Thus F[Q] is weakly
positive at y. The inverse implication is trivial. We can reduce the case of dd-
ample to the case of weakly positive above by replacing @ by @ — A for some ample
Q-divisor A. O

§3.d. w-sheaves and weak positivity.

3.26. Lemma Let H be a polarized variation of Hodge structure of weight
w > 0 defined on M ~ D for a non-singular projective variety M and a normal
crossing divisor D. Suppose that FO(H) = H and F¥+(H) = 0 for the Hodge
filtration F*(H) of H = H®Opr p. Then, without the assumption of monodromies,
F(WH™) is weakly positive at every point of M ~ D.

PROOF. We may assume that D is a simple normal crossing divisor. By Kawa-
mata’s covering lemma I1/5.11, we have a finite Galois morphism 7: Y — M from
a non-singular projective variety such that 7= 1D is also a simple normal crossing
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divisor and 7~ 'H has only unipotent local monodromies along 7~ 'D. Let Fy;
be the w-th filter F*(*H") and let Fy be the corresponding w-th filter to the
canonical extension of 77!H. Then there is a natural injection

Fy — 17" Fu

which is isomorphic outside 7~'D. Since Fy is numerically semi-positive by
Fr is weakly positive at every point of M ~ D. O

3.27. Corollary For a torsion-free w-sheaf F on a non-singular projective

variety Y, F ® w;l is weakly positive at every point of a dense Zariski-open subset
of Y.

PrROOF. We may assume F = R’ f,wx for a surjective morphism f: X — Y
from a compact Kéhler manifold and for some ¢ > 0. Let u: Y’ — Y be a birational
morphism from a non-singular projective variety such that X xy Y’ — Y” is smooth
outside a normal crossing divisor F of Y’. Then there is a bimeromorphic morphism
X' — X xy Y’ into the main component from a compact Kéahler manifold such that
'+ X' = Y’ is smooth outside E. Then R’ fiwx: )y is weakly positive at every
point of Y’ \. E by[3.7-(4) and[3.26] Since y is birational, R? p, (R’ flwx/) = 0 for
any p > 0, by [3.14] Thus there is a natural injection

1 (R flwxjyr) = pa (R flwxryy) = Ri(pwo fawxy ~ R fuwxyy.

Therefore, F ® w;l = R’ fswx/y is weakly positive at every point of a dense
Zariski-open subset. O

We shall give in §3.e below a generalization of the following weak positivity
theorem by Viehweg [147]:

3.28. Theorem Let f: X — Y be a surjective morphism of non-singular
projective varieties. Then f, (w?;’/"y) is weakly positive for any m > 1.

Here, the case m = 1 is derived from [3.27 (cf. [50, Theorem 5]).

We recall the following lemma by Viehweg [147, 3.2] which is important for
the proof of [3.28} let f: X — Y be a proper surjective morphism of non-singular
varieties, 7: Y/ — Y a finite surjective morphism from a non-singular variety,
0:V — X xy Y’ the normalization map, and §: X’ — V a bimeromorphic mor-
phism from a non-singular variety. Let f': X’ — Y be the induced morphism and
let p1, p2 be the projections from X xy Y.

x 2

1% g XXyY/p—1>X

lpz lf
Y’ T .V
3.29. Lemma Suppose that f is smooth over an open subset Uy CY and T is
étale over an open subset Uy CY. Let Uy CY be an open subset such that

(1) f is flat over U,
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(2) f~Y(y) is reduced for any y € Us,
(3) the branch diwvisor of V. — X is a normal crossing divisor over Us.

Then, for any m € N, there exist injections
0 (W) = B and  fUwy) = 7 (LWF5)
which are isomorphic over T=1(Uy U Uy U Us).
PROOF. Since 7 is flat, we have isomorphisms

WxxyY' )y 2 Piwxyy  and  Wxx,yr/x ~ Powyr)y,

by [37], [145]. Thus X xy Y is Gorenstein. Since f~1U,; — Us is smooth outside a
Zariski-closed subset of f~1U, of codimension greater than one, X xy Y is normal
over Us. Therefore, o is isomorphic over 771 (Uy U Uy U Uy). There is a trace map
0wy — Wxxyy/, where wy = Oy (Ky). Since o is finite and bimeromorphic,
o*owy — wy is surjective and its kernel is a torsion sheaf. Hence the trace map
induces an injection
wv/y/ = Wy ® O*pSw;} — U*wXXyY//Y’ ~ O'*pTWX/y.
For m € N, let ww]y, denote the double-dual of w?ﬁ}g’/,. Then we have

* % @(m—1
w&;n]y, — WV/Y’ & o ple;”; )

and the composite
m] x ®(m=1) _ x @m
TxWy yr T Oy yr @ P1Wy )y DiWx)y-
There is a natural injection
® [m]
Ou(Wy)yr) = Wiy

given by the double-dual. This is also isomorphic over 7=1(Uy U Uy U Uy), since V
has only rational singularities over 77 'Uy. Thus we have the first injection. The
second injection is derived from the flat base change

D2 (p’{w?;;ny) ~ * (f*(w§7 )) . [l
3.30. Lemma Under the same situation as 3.29| there is an injection
RP fiwx: vy — 7 (R fuwxy)
for any p, which is an isomorphism over 7= (Uy U U; U Uy).
ProOOF. The composite of trace maps
0L 0.Wx1 )y — TxWy )y — WX xyY'/ Y = PIWX/Y

is an isomorphism over 7~(Uy UU; UUs). The vanishing RY(c o 8)swx/yr = 0 for
q > 0 by [30] (cf.[3.14, I1!5.12) induces the expected injection

RP fiwx: )y ~ RP pa, (0.0.wx/yr) = R po,piwxyy ~ 7°RP fiwyxy. O
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3.31. Proposition (cf.[3.27) Let F be an w-big &-sheaf on a non-singular
projective variety Y. Then F ® w{,l 18 big.

PROOF. Let f: X — Z and g: Z — Y be surjective morphisms of non-singular
varieties in which X is compact Kéhler and Z is projective. Let A be an ample
divisor of Z and set h = go f. It is enough to show that R” h.wx,y (f*A) is
big for any p > 0. Let H be an ample divisor of Y and let us take m € N with
mA — g* H being ample. Then there exist a finite surjective morphism 7: Y’ — Y
a non-singular projective variety and an ample divisor H' of Y’ with 7*H ~ mH’
by [II.5.11] Let X’ and Z’ be desingularizations of the main components of the
fiber products X xy Y’ and Z xy Y”, respectively. Let h': X' =Y’ f': X' — Z,
g:7Z —Y' and 17z: Z' — Z be the induced morphisms. By [3.30, we have a
generically isomorphic injection

R L (wx v (75 A)) = 7 (R? awxpy (7 A))

In particular, the tensor product 7*(R” h.wx,y(f*A)) ® Oy/(—H') contains a
sheaf R? hiwy v/ (f"" (15 A — ¢’"H')), which is weakly positive by Hence

3.32. Theorem Let Y be a normal projective variety and let L be an invertible
w-sheaf. Then there exist a birational morphism ¢: M — Y from a non-singular
projective variety M and a nef Q-divisor D of M such that Supp(D) is a normal
crossing divisor and

L~ p.wy('DY).

PROOF. Let u: Z — Y be a birational morphism from a non-singular projective
variety, f: X — Z a surjective morphism from a compact Kéhler manifold, and L
a Cartier divisor of Y such that

(1) £~ Oy (L) is a direct summand of p.(R? f.wx) for some j,

(2) f is smooth outside a simple normal crossing divisor E = . F;, and

(3) the u-exceptional locus is contained in E.
The sheaf R’ f,w x/z is isomorphic to the upper-canonical extension of the d-the
Hodge filtration of the variation of Hodge structures associated with R f,Cx,
where d = dimX — dimY. Let 7: Z’ — Z be a finite Galois morphism from a
non-singular projective variety Z’ that is a unipotent reduction for the variation of
Hodge structure; here, the local monodromies of the pullback are unipotent. We
may assume that the branch locus of 7 is contained in a normal crossing divisor
as in IIl5.11. Then we have the canonical extension £ of the d-th filtration of the
induced variation of Hodge structure. This is numerically semi-positive by
For the Galois group G of 7, the G-invariant part of 7,& is the lower-canonical
extension and that of 7,(€ ® wy) is isomorphic to R? f,wx. Now we have an
injection Oz (u*L) — R’ f.wx and a generic surjection R? fuwx — Oz (u*L + F)
for a p-exceptional effective divisor E7, which is surjective outside a Zariski-closed
subset of codimension greater than one. Since R? f.wx is the G-invariant part of
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T«(€ ® wyz'), we have an injection Oz (T*u*L) — & @ wz. Similarly, we have an
effective divisor A’ C Z’ such that there is a generic surjection

5 ®wZ/ — OZ/(T*,U*L + T*El + A/)

whose cokernel is supported on a Zariski-closed subset of codimension greater than
one. Then A’ < R, for the ramification divisor R, = Kz —7* K, since there is an
injection £ — 7* (Rj f«wx/z) by[3.30. There exist effective Q-divisors A and Ry
of Z such that A’ = 7*A and R, = 7* Rz, since A’ and R, are G-invariant. Note
that Rz, = 0. Let v: Z”” — Z’ be a birational morphism from a non-singular
projective variety such that there exist a v-exceptional effective divisor E} and a
surjection
VM€ @wz) = Oz (" r* (W L+ Er + ) — B}).
Since £ is numerically semi-positive, the divisor
VT (W L+ By +A)— v Ky — By =vT"(W*L+ FE1 — (Rz — A)— Kz) — E)

is nef. Furthermore, v*7*(F; + A) — EJ is an effective Cartier divisor. We may
assume that the Galois group G acts holomorphically on Z”. Since Ej is also G-
invariant, there is an effective Q-Cartier divisor E5 on the quotient variety Z”/G
such that F) = A\*F,, where \: Z” — Z"/G is the quotient morphism. Let
p: Z" |G — Z be the induced morphism. Then p*(u*L+ E; +A— Kz — Rz) — E»
is nef and p*(E; + A) — E5 is an effective Q-divisor. Let §: M — Z”/G be a
birational morphism from a non-singular projective variety such that the union of
the exceptional locus for ¢ := popod: M — Y and the proper transform of £ C Z
is a normal crossing divisor. Let Ry be the Q-divisor Ky —0*p*(Kz + Rz). Then
I_RM—l > 0. We know the Q-divisor

D:=¢"L+§p"(F1+A)—0"Ey— Ky + Ry
is nef. We shall consider the Q-divisor

Let T be a prime component of of Ejps. Since p*(E; + A) — Es is effective, ¢ :=
multr Eyy > multy Ry > —1. On the other hand, if T" is not y-exceptional, then
¢ = ¢1 — ¢, where ¢; := multr §*p*A and ¢y := multr §*p*Rz. Since A < Ry,
¢ < 0. Hence rEM—' is a p-exceptional effective divisor on M. Therefore

0O (K + "D = 0,00 (0" L+ "Ep') ~ Og(L). a

83.e. Direct images of relative pluricanonical sheaves. Let f: X — Y
be a proper surjective morphism from a normal variety onto a non-singular variety.
We denote the relative canonical divisor Kx — f*Ky by Kx/y. Then Ox (Kx/y) ~
wx,y. For a Cartier divisor D of X, we denote wy,y (D) = wx)y ® Ox (D) and
wx (D) =wx ® Ox (D), for short.

3.33. Lemma Let A be an effective R-divisor of X, L a Cartier divisor of X,
and k a positive integer. Suppose that Kx + A is R-Cartier.
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(1) Let p: X = X bea bimeromorphic morphism from a non-singular va-
riety. For the R-divisor R := K5 — p*(Kx + A), let 'R =R, — R_
be the decomposition into the positive and the negative parts of the prime
decomposition and set

A:=(-R)+R_ and L:=p*L+kR,.
Then

L—k (K)?/Y + E) = p* (L — k(Kx/y + A))

and there is an isomorphism
p.0%(L) ~ Ox(L).

(2) Suppose that X is non-singular and Supp A is a normal crossing divisor.
Let 7:Y' — Y be a generically finite surjective morphism from a non-
singular variety and let §: X' — X Xy Y’ be a bimeromorphic morphism
from a non-singular space. Let f': X' — Y and A\: X' — X be the
induced morphisms. For the R-divisor Ra := Kx — A (Kx + A), let
"Ra' = R!_ — R"_ be the decomposition into the positive and the negative
parts of the prime decomposition, and set R, := Ky — 7* Ky,

A":=(-Ra)+ R, and L :=XL+kR, —kf"R,.
Then
L' = k(Exyy +A") = N(L = k(Kx/y + A)).
(3) Under the situation of (2), suppose that T is finite. Then there is a gener-
tcally isomorphic injection
fLOx/(L') = 7 (f.O0x (L)) .

(4) Under the situation of (2), suppose that T is bimeromorphic and the mor-
phism from the main component of X xy Y’ to Y’ is flat. Then

T (fLOx/ (L))" C f.Ox(L).

(5) Under the situation of (2), there exist a T-exceptional effective divisor E
and a generically isomorphic injection

fLOx:/(L') = (7% £.0x (L))" @ Oy (E).

PROOF. (1) The equality is straightforward and the isomorphism follows from
that EJF is p-exceptional.

(2) The equality is also straightforward.

(3) For the ramification divisor Ry := Kx» — A*Kx, we have Ra = Ry — A*A.
Hence 'Ra' < Ry and R/, < Ry. We have an injection

®m *, @M
0u(wyys) = Plwy)y
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for any m € N by [3.29] where p; is the first projection X Xy Y’ — X. The
injection is isomorphic over a dense Zariski-open subset of Y. Hence we also have
an injection
0.0x/(k(R.. — f""Ry)) = 6. 0x:(k(Rx — " R:)) = Oxxyv,

which is an isomorphism over a dense open subset of Y’, equivalently, the injec-
tion 0,O0x/ (kR ) — 0,Ox/(kRy) is so. In fact, it follows from that Oxx,y’ —
3.Ox/(kR)) is an isomorphism over a dense open subset of Y’ along which 7 is
étale. Thus we have the expected generically isomorphic injection

fi0x/(L') = p2, (p1Ox (L)) = 7" (f.Ox (L))
by a flat base change.

@) (fi0x:/(L')N ~ flOx/(L' + E) for an f’-exceptional divisor E. On the
other hand, \,Ox (L' + E) C Ox (L), since FE is also A-exceptional.

(5) Let Y — V — Y be the Stein factorization of 7, where we write u: Y’ — V
and ¢: V — Y. Then there is a Zariski-open subset U C Y such that codim(Y ~
U) > 2 and ¢~!U is non-singular. Hence we have a generically isomorphic injection

paFLOxo (L) = ¢ (£.0x (L))"
by (3) and by taking j. for the open immersion j: ¢~'U < V. Let G be the
cokernel of
W fLOxo (L) = fLOx/(L') @ ™ (6" (£.0x(L))") .
Then f.Ox: (L") C G/(tor) and
G/(tor) C (7° f.Ox (L))" ® Oy+(E)

for a u-exceptional effective divisor £. Thus we are done. (|

3.34. Lemma (cf. [147] 5.2]) Suppose that X and Y are projective varieties.

Let L be a Cartier divisor of X, A an effective R-divisor of X, and let k be an
integer greater than one satisfying the following conditions:

(1) Kx + A is R-Cartier;
(2) (X,A) is log-terminal over a non-empty open subset of Y;
(3) L —k(Kx/y + A) is nef and f-abundant.

Let H be an ample divisor of Y and let | be a positive integer such that
Oy (lH) ® f.Ox (L)
s big in the sense of 3.20. Then
wy ((I = I/k)H) © f.Ox (L)
is an w-big W-sheaf. In particular,
wy((k—1)H)® f.Ox (L)

is an w-big w-sheaf for any ample divisor H of Y.
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ProOF. By[3.33}(1), we may assume that X is non-singular and Supp A is nor-
mal crossing. We can replace X by a further blowing-up. There is an f-exceptional
effective divisor E such that f,Ox(mL+mkE) is the double-dual of f,Ox (mL) for
any m € N, by [IITI5.10-(3). Replacing X by a blowing-up, we may assume that
the image of

is an invertible sheaf which is written as Ox (L + E — B) for an effective divisor B
of X. There is a positive integer a such that the sheaf

Oy ((al — 1)H) © S*(f.Ox (L))
is generically generated by global sections. Note that the inequality

(al —)(k—1)  "l(k—1)"
ak S Tk

holds. The natural homomorphism

Sym®(f+Ox (L + E)) — f:Ox(a(L + E))

=1—=/k

factors through S%(f,Ox (L)) and the image of the composite
frSym®(f.Ox (L + E)) — f*f.Ox(a(L + E)) — Ox(a(L + E))

is Ox(a(L + E — B)). Therefore, if we replace X by a further blowing-up, then
there exist an f-exceptional effective divisor E’ and an f-vertical effective divisor
C of X such that Ox(a(L 4+ E — B) + E’) is the image of

Fr8U(£.0x (L)) = Ox(a(L + E))
and Ox (P') is the image of
O (Y, Oy ((al — 1)H) ® §“(f*(’)X(L))) ® Ox — Ox(a(L + E) + (al — 1) f*H)
for the divisor
P':=a(L+E—-B)+E' —C+ (al—1)f"H.

Here, Bs|P’| = 0. We may assume that Supp(F + B + E' + C + A) is a normal
crossing divisor. For any € > 0, L — k(K x/y + A) +¢cf*H is nef and abundant by
Let us consider an R-divisor

P=L—(Kxy+8)+ @ m e Ew oy a-

ak
Then
k-1 1

P'— —(L—-k(Kx)y +A)+ef*H)=af " H

P_
ak k
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for some €, & > 0. Thus P is nef and abundant, and P > f*H. Hence f.Ox(Kx +
'P") is an w-big w-sheaf and there is a generically isomorphic injection

1Ox(Ex + ) wy (= k) H) @ LOx (- S

—wy((l = 1/k))H)® f.Ox(L - B)"
=wy (L= 1/k)H) ® f.Ox(L)".

Thus the first assertion is proved. Let lop be the minimum of [ € N such that
wy (loH) ® f.Ox (L) is an w-big @&-sheaf. Then Oy (IoH) ® f.Ox (L) is big by [3.31]
Thus Iy — [lo/k, > lo, equivalently, o < k — 1. Thus we are done. O

A
B+A,)

3.35. Theorem Let f: X — Y be a surjective morphism from a normal projec-
tive variety onto a non-singular projective variety. Let A be an effective R-divisor
of X, L a Cartier divisor of X, @ an R-divisor of Y, and k a positive integer
satisfying the following conditions:

(1) Kx + A is R-Cartier;
(2) (X,A) is log-terminal over a non-empty open subset of Y,
(3) L+ fQ —k(Kx)y + A) is nef and f-abundant.

Then f.Ox(L)[Q] is weakly positive. Suppose the following condition is also satis-
fied:
(4) L+ f*Q — k(Kxy +A) = f*H for an ample divisor H of Y.
Then
wy('Q") ® £.O0x(L)

is an w-big W-sheaf.

PrOOF. Step 1. A reduction step. We can replace X by a blowing-up by
[8.33}(1). Thus we may assume that X is non-singular and Supp f*@Q U Supp A
is normal crossing. Furthermore, we may assume that Supp @ is normal crossing,
which is related to the proof of the second assertion. In fact, for a suitable birational
morphism 7: Y’ — Y from a non-singular projective variety, we may assume that
X — Y factors through Y’, and 7= (Supp Q) is normal crossing. Then

for the effective divisor R, = Ky — 7*Ky. Thus X — Y’ and 7*Q satisfy the
conditions above. For the morphism f’: X — Y, we have a generically isomorphic
injection
A
T (v ('7°Q") @ fLOx (L)) C (wy('Q") ® fuwx (L))

Thus we may assume that Supp @ is normal crossing.

Step 2. The first assertion in the case Q = 0. We fix an ample divisor H
of Y. Let 7: Y’ — Y be a finite Galois surjective morphism from a non-singular

projective variety such that 7*H = mH’ for a divisor H' of Y’ for m > 0. Let
X -5 Xxy Y N X' =X, f: X' >Y' Ra, R, A, and L’ be the same objects
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as in [3.33}(2). Here we assume that Supp A’ is a normal crossing divisor. Then
(X', A’) is log-terminal over a non-empty open subset of Y,

L' — k(KX//y/ + AI) = )\*(L — k(KX/y + A))
is a nef and f’-abundant R-divisor, and there is a generically isomorphic injection
fiO0x/(L') = 77 (f:Ox(L)).

If K =1, then wy/(H') ® flOx/(L' — |A’)) is an w-big w-sheaf by [3.12 and
2.28| Since fiOx/(L' — A’)) — flOx/(L') is generically isomorphic, wy (H') ®
T*(f+Ox (L)) is an w-big @-sheaf. If k > 2, then wy/((k — 1)H') @ 7*(f.Ox (L))
is an w-big @-sheaf by [3.34. Hence, by 3.27] 7*(f.Ox (L)) ® Oy/(kH') is a big
weakly positive sheaf in the both cases above. Thus f,.Oy (L)[(k/m)H] is big for
m > 0 and hence f.Oy (L) is weakly positive.

Step 3 The second assertion in the case Q = 0. Assume that L — k(K x/y +
A) = f*H. Then we may assume that there are surjective morphisms p: X — Z

and q: Z — Y with f = gop for a non-singular projective variety Z, and a nef and
big R-divisor A’ of Z such that

(1/k)L — (Kx/v + A) ~g p" A’

by [2.3] and[2.28. There is an effective R-divisor G of Z such that A’ — G is
an ample Q-divisor and (X, A+ p*G) is log-terminal over a non-empty open subset
of Y. Therefore, we may assume that A is a Q-divisor and

(1/k)L — (Kx/y +A) ~qp"A
for an ample Q-divisor A. We can find a rational number o > 0 such that L —
k(Kx;y +A)—af*H is semi-ample. Let 7: Y' — Y be the finite Galois surjective

morphism in Step 2 for m > (k— 1)/« and let H' be the same ample divisor. Then
the Q-divisor
X kE—1
L'—k(Kx/ jy +A") = (k=1)f"H = X* <L —k(Kx/y +4) - —f*H)
m
is semi-ample. Thus wys ® fIOx/(L') is an w-big w-sheaf by [3.34. By the proof
of we have an w-big w-sheaf ' with a Gal(r)-linearization and a generically
isomorphic injection
F' = wyr @ (f,0x/(L))"
which is compatible with Gal(7)-linearizations. Hence there is a generically isomor-
phic injection
F > wy ® (f*Ox(L))/\

from a direct summand F of 7.F’. Hence wy ® f.Ox (L) is an w-big @-sheaf.

Step 4 The case Q@ # 0. By Step 1, we assume Supp () and Supp AUSupp f*Q
are normal crossing divisors. We set Ag := A+ (—(1/k)f*Q). Then Ag, is f-
vertical and

L+k("2 Q") —k(Kx)y + Ag) =L+ f*Q — (Kx/y + A)
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is nef and f-abundant. Thus
£O0x (L+ k("1 7QY)
is weakly positive by Step 2. If the condition (4) is satisfied, then
wy ® f.0y (L+k("Lf*Q))
is an w-big @-sheaf by Step 3. Since '(1/k)f*Q' < f*("(1/k)Q"),
Fi = f.0x(L)® Oy (k("3Q"))

is weakly positive. If the condition (4) is satisfied, then wy ® F; is an w-big @-sheaf.
For a positive integer m > 0, let 7: Y/ — Y be a finite surjective Galois morphism

from a non-singular projective variety such that 7*('mQ') = mkQ’ for a Cartier
divisor Q' with Supp @’ being normal crossing. Let X’ — X xy Y’ f: X' =Y,
Ra, A’, and L' be the same objects as in3.33-(2). Since

L'+ Q- E(Kxi yr +A") =X (L+ fQ — k(Kx/y + A))
is nef and f’-abundant, and since "(1/k)7*Q' < @',
Fo = fiOx/(L') ® Oy (kQ')

is weakly positive. If the condition is satisfied, then wys ® Fy is an w-big w-sheaf.
By the injection of [3.33-(3),

FOx (D)5 ("'mQM)]
is weakly positive for any m > 0. Thus so is f.Ox(L)[Q] by 13.24-(2). If the
condition (4) is satisfied, then we have a generically isomorphic Gal(r)-linearized
injection

F' o (wy (kQ) @ 7 (£0x (L))"

from an w-big w-sheaf F”. Hence, by the same argument as above, wy (' Q') ®
f+Ox (L) is an w-big @-sheaf. O

3.36. Corollary Suppose that X is non-singular. Let A and D be R-divisors
of X and let Q be an R-divisor of Y satisfying the following conditions:

(1) Supp A U Supp(D) is a normal crossing divisor;

(2) A, is f-vertical;

(3) D+ f*Q — (Kx/y + A) is nef and f-abundant.
Let k be a positive integer such that

1
A+ E(—kD)J
is f-vertical. Then f.Ox('kD")[kQ] is weakly positive, and wy(H + "kQ') ®
f+Ox( I—k:Dj) is an w-big W-sheaf for any ample divisor H of Y.
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Proor. We have
1
kD' — k(Kx/y + A+ E<—kD>) =kD — k(Kx;y + A).
Apply 3.35/to the divisors L = kD' and L = "kD' + f*H. U

3.37. Corollary For a big divisor H of Y, there is a positive integer a satis-
fying the following condition: if a Cartier divisor L of X, an effective R-divisor A
of X, an R-divisor Q of Y, and a positive integer k satisfy the conditions (1)—(3)
of 13.35, then

Oy(aH + Q") ® f.Ox (L)

is generically generated by global sections.
PROOF. wy(H + 'Q') ® f,Ox (L) is an &-sheaf by [3.35. Thus we can find a
positive integer a such that
Oy(aH + Q") ® (£.0x (L))"

is generically generated by global sections by [3.18.

Let 7: Y/ — Y be a birational morphism from a non-singular projective variety
flattening f such that 7=!(Supp Q) is a normal crossing divisor. Let X’ — X xy Y”,
A X - X, f: X' >Y' Ra, R, A, and L' be the same objects defined in[3.33-
(4). Then L', A’, k, and 7*Q satisfy the same conditions as (1)—(3) of [3.35 for the
morphism f’: X’ — Y’. Therefore, there is a positive integer a such that

Oy (ar*H + "7Q") ® fLOx/(L')"
is generically generated by global sections. Since 'p*Q' < p*('Q"),
Oy(aH + Q") ® f.O0x(L)
is generically generated by global sections by [3.33-(4). O

3.38. Corollary Suppose that X is non-singular. Let A and D be R-divisors

of X and let Q be an R-divisor of Y satisfying the following conditions:

(1) Supp A U Supp(D) and Supp Q are normal crossing divisors;

(2) A, is f-vertical;

(3) D+ f*Q — (Kx/y + A) is nef and f-abundant;

(4) D+ f'Q— (Kx/y +4) = f*H.
Then, for any big divisor H of Y, there exist positive integers b and d such that

f:O0x("mbD") @ Oy ("mbQ' — (m — d)H)

is generically generated by global sections for any m > 0.

PrOOF. The R-divisor P := D + f*Q — (Kx/y + A) is nef and abundant by
[2.28] Furthermore, by [2.27, there exist a positive integer ¢ and an effective R-
divisor G on X such that ¢P — f*H ~g G. We may assume that Supp(A+(—D) +
G) U Supp f*Q is a normal crossing divisor. For m, b > 0, we set

1 1
Am,b = A+ %<*me> + EG
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Then, for any m > 0, there is an integer b > ¢ such that (X, A,, ;) is log-terminal
over a non-empty open subset of Y and
(b—c)mP ~g mbD + f*(mbQ) — mb(Kx/y +A) —mf*H —mG
= "'mbD" + f*(mbQ — mH) — mb(Kx/y + Amp)
is nef and abundant. Thus there is a constant d such that
Oy (dH) ® f.Ox("mbD") ® Oy ("'mbQ' — mH)
is generically generated by global sections by [3.37. 0

3.39. Lemma Let L be a Cartier divisor of X, A an effective R-divisor of X,
O a divisor of Y, and k > 2 an integer satisfying the following conditions:
(1) Kx + A is R-Cartier;
(2) (X,A) is log-terminal over a non-empty open subset of Y;
(3) L —k(Kx/y +A) is nef and f-abundant;
(4) there is an injection Oy (0) — f.Ox(L)".

Then there is a number o € Qs such that f,Ox (L)[—a®] is weakly positive and
wy(H — 100,) ® f,.0x(L)
is an w-big W-sheaf for any ample divisor H.

Proor. We follow the proof of and fix an ample divisor H of Y. We may
assume that X is non-singular and Supp A is normal crossing. We can replace X
by a further blowing-up. Let E and B be effective divisors appearing in the proof
of [3.34. Then, after replacing X by a blowing-up, we have an effective divisor D
such that

D+ fO~L+E—B.

We may assume Supp(A+ E+ B+ D) is a normal crossing divisor. We fix a positive
integer b > 1 such that (1/b)D + A, is f-vertical. Now f,Ox (L) is weakly positive
by 13.35] We have a positive integer d such that

Se=U(£,0x(L)) ® Oy (dH)

is generically generated by global sections for a > 0 by[3.23. We fix such an integer
a. As in the proof of [3.34, we may assume that Ox(a(b—1)(L+ E — B) + F’) is
the image of

£85IV (£,0x(L)) = Ox(a(b = 1)(L + E))
for an f-exceptional effective divisor E’ and that Ox (P’) is the image of
HO(Y, SO~V (£,0x(L) @ Oy (dH))) © Ox — Ox(a(b —1)(L + E — B) + E')

for the divisor
P i:=alb-1)(L+E—-B)+FE —C+df'H
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for an f-vertical effective divisor C. Moreover, we may assume Supp(C + E' + B +
E + A + D) is a normal crossing divisor. Let D" and DV be the f-horizontal and
the f-vertical parts of D, respectively. Note that Bs|P’| = () and

P =a(b(L+ E— B) —D") —af*© —aD" + E' — C + df*H.

We set

k—1 k
P::Lf(Kx/erA)ﬁLT(EfB)f

L k—1
abk
for 6 > (k —1)d/(abk). Then

k-1, . 1 (k .

is nef and abundant for some £ > 0 by We can take § < 1 if a > 0. Since

k=1 k—1_, 1
S Bt A <B+ Dt A,

—1
Dh
bk

(E' —C —aD®) + f* (5H - %@)

. —1)d

we can write

k-1 k-1, k-1
BB Dy
for an effective R-divisor A’ with A’ = 0, an f-exceptional effective divisor E”,
an f-vertical effective divisor G, and an effective divisor B’ with f,Ox (L — B")" ~
f:Ox(L)". Weset L:= L+ E" —G — B’ and a := (k —1)/(bk). Then there is an
inclusion f,Ox(L)" C f.Ox(L)" and

L+ f*(6H —a®) — (Kx)y + A') =P = f*H.
Hence, f.Ox(L)[0H — O] is big and
wy(H — a0,) ® f.Ox(L)

is an w-big w-sheaf, by 3.35. Taking § — 0, we infer that f.Ox(L)[—a®] is also
weakly positive by [3.24}(2). O

—A (E'—=C—aD")=—-A +E"'—G—B

Let f: X — Y be a surjective morphism of non-singular projective varieties.
The morphism f is called a semi-stable reduction in codimension one or a semi-
stable morphism in codimension one if there is a Zariski-open subset Y° C Y with
codim(Y \ Y°) > 2 such that, for any prime divisor I' C Y, f*T" is a reduced
and normal crossing divisor over f~'(Y°). Even though f is not a semi-stable
reduction in codimension one, there exist a finite surjective morphism 7: Y/ — Y
from a non-singular projective variety and a desingularization X’ — X xy Y’ such
that the induced morphism f’: X’ — Y’ is a semi-stable reduction in codimension
one (cf. |62], [147, Proposition 6.1], [88, 4.6]). This (f’,7) is called also a semi-
stable reduction of f in codimension one.
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3.40. Lemma Let f: X — Y be a surjective morphism of non-singular projec-
tive varieties that is a semi-stable reduction in codimension one. Let L be a divisor
of X, A an R-divisor, and k a positive integer satisfying the following conditions:

(1) (X,A) is log-terminal over a non-empty open subset of Y;
(2) L —k(Kx/y +A) is nef and f-abundant.
Then, for any positive integer m, there is a positive number « such that

F.Ox(mL)[~a det(£.Ox (L))]

is weakly positive.

PROOF. Let r be the rank of f,Ox(L). Let X"} be the r-fold fiber product
X xy---xy X over Y. Then X"l has only toroidal singularities over a Zariski-open
subset Y° C Y with codim(Y . Y°) > 2. Let p;: XI"l — X be the i-th projection
for 1 <i<7r. Then

”
*
Wxlirl )y = ®i:1 Piwx/y

over Y°. Let §: X() — X[l be a birational morphism from a projective non-
singular space which is an isomorphism over a dense Zariski-open subset of Y. Let
f: X0 Y and m; = p;0d: X — X be the induced morphisms. We can
write

E—-G=Kxe/— Zi:l m Kx/y

for effective divisors E and G such that E is 6-exceptional over Y° and £ (Supp G)
is contained in Y N\ Y°. We set

OIS e T
L) .= Zi:1w1L+kE and A" Zi:1w1A+G.
Then (X, A(") is log-terminal over a non-empty open subset of Y and
L0 = k(Ko +80) =30 (L= k(Kxyy +A)).
Thus fy)(’)xm (L(T)) is weakly positive by [3.35 and we have an isomorphism
) Y N
( FPO o (L0 )) ~ " (f.Ox(L)).
Since &\et( f+Ox (L)) is a subsheaf of the right hand side, we have an injection
— A
det(£,0x(1)*™ = (1O (mL))

for m > 0. Note that, for m > 0, fi*’ox<r> (mL")) is weakly positive and there is
an isomorphism

/\ o~
(050 (ML) = & (£.Ox (mL)).
Hence, by [3.39]
00 (ML) [~adet(f.0x(L))]
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is weakly positive for some « > 0. From the generically surjective homomorphism
87 (f.0x(mL)) = §"(f.0x(mL)),
we infer that f.Ox(mL)[—(a/r) (I&(f*OX(L))]] is also weakly positive. O

84. Abundance and Addition
84.a. Addition Theorem.

4.1. Theorem Let f: X — Y be a fiber space from a normal projective variety
into a non-singular projective variety, A an effective R-divisor of X such that
Kx + A is R-Cartier and (X, A) is log-canonical over a non-empty open subset of
Y. Let D be an R-Cartier divisor of X such that D — (Kx/y + A) is nef.

(1) For any R-divisor Q of Y,
ko (D + Q) > ko (D; X/Y) + £4(Q).
In particular, for a ‘general’ fiber X, = f~(y),
ko(Kx +A) > ko (Kx, + Alx,) + ko (Ky).

(2) Suppose that (X,A) is log-terminal over a non-empty open subset of Y
and that D — (Kx,y + A) is f-abundant. Then

o(D; f*H) > k(D; X/Y)

for some ample divisor H of Y, where o( ; ) is defined in 2.6 If
D — (KX/Y + A) = f*H, then

k(D,X)=r(D;X/Y)+dimY.
In particular, if Y is of general type, then
H(KX + A) = H(ny + A|Xy) + dimY.

PRrROOF. By [3.33-(1), we may assume that X is non-singular and Supp A U
Supp(D) is normal crossing. For a divisor A of X and for m € N, we set

r(mD; A) :=rank f,Ox ('_mD—l + A).

Then we have

— D; A
U(D|Xy;A|Xy)’:max{kEZZOU{—oo} ‘ lim T(W:nk’)>0}
for a ‘general’ fiber X, = f~!(y). Note that
ke(D; X/Y) = max{o(D|x,; Alx,)" | A is ample}.
If x(D; X/Y) > 0, then, by [3.9]
— 1 D;0
(D X)Y) = Tom 1287(mDs0)
m—o0 logm

(1) Let A be an ample divisor of X such that (1/2)A+ (—mD) is ample for any
m € Z. Since D + (1/2)A — (Kx,y + A) is ample, we can find a positive rational
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number ¢ < 1 such that D + (1/2)A — (Kx,y + (1 —¢)A) is also ample. Then
(X, (1 —¢/m)A) is log-terminal over a non-empty open subset, and
'mD' + A — m(Kxy + (1 —¢/m)A)
=(m—-1)(D— (Kx/y +A)) + (D+ (1/2)A - (Kx/y + (1 —¢)A))
+((1/2)A+ (—=mD))
is ample for any m € N. There exists an ample divisor H of Y such that Oy (H) ®

f*OX('_mD—| + A) is generically generated by global sections for any m € N, by
In particular, there exists a generically isomorphic injection

0P " — Oy (H) @ f.0x("mD" + A),
which induces the injection
Oy (\mQ, + H)*""PA) — Oy (1mQ, +2H) ® [.Ox('mD' + A).
Therefore,
h (X, 'm(D+ Q)" + A+2f*H)
>0 (X, 'mD' + f*(unQ,) + A+ 2f H) = r(mD; A) -h°(Y, mQ, + H).

Varying m € N, we have the expected inequality.

(2) We may assume that «(D; X/Y) > 0. By [3.36 and we have an
ample divisor H of Y such that, for each m > 0 with r(mD;0) > 0, there exists a
generically isomorphic injection

o&rmPO) . 0y (H)  f,0x("mD").

Therefore,

hO(X, 'mD" 4+ 2f*H) > r(mD;0) - h°(Y, H).
By varying m and H we have the first inequality. Next, suppose that D — (K x/y +
A) = f*H. By[3.38, there exist positive integers b and d such that a generically
isomorphic injection

O;‘?T(me;O) AN Oy(f(m o d)H) ® f*OX( l’meT)

exists for any m > 0. Therefore,

hO(X, "'mbD") > r(mbD;0) - h°(Y, (m — d)H).

By varying m and by the easy addition for x, we have the expected equality. If Y
is of general type, then the equality above for D = Kx/y + A+ f*H for an ample
divisor H of Y and the property Ky = H imply the last equality. O

4.2. Corollary Let X be a normal projective variety, A an effective R-divisor,
and D an R-divisor such that (X, A) is log-canonical and D — (Kx + A) is nef.
Then the following three conditions are equivalent:

(1) D is abundant: k,(D) = k(D);
(2) ko (D) = K(D);
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(3) D is geometrically abundant.

PRrOOF. It is enough to show (2) = (3). Let m be an integer in I(D). We may
assume the Iitaka fibration ® = ®,,p: X ~-— Y is holomorphic. Then D > ®*H
for an ample divisor H of Y. By /4.1, we have

k(D) = ke(D) = ko (D + ®*H)
= ko(D; X/Y) + dimY = k,(D; X/Y) + r(D)
Hence k,(D; X/Y) = 0. O

Remark (1) The abundance conjecture: k(X) = k,(X) for projective
varieties X is reduced to the following conjecture by [4.2: if x,(X) > 0,
then k(X) > 0.

(2) By the abundance theorem [59] (cf. [83], [84]) and the existence of min-
imal models [89] for threefolds, the abundance conjecture is true for a
projective variety X with dim X < 3 or with x(X) > dim X — 3.

Let f: X — Y be a fiber space from a normal projective variety onto a non-
singular projective variety. Let D be a Q-Cartier divisor of X and let A be an
effective R-divisor of X such that Kx + A is R-Cartier and that (X,A) is log-
terminal over a non-empty open subset of Y. Let b be a positive integer with bD
being Cartier.

Let 7: Y/ — Y be a generically finite morphism from a non-singular projective
variety. Let X’ — X xy Y’ be a birational morphism from a projective non-singular
variety and let A\: X’ — X and f': X’ — Y’ be the induced morphisms. We assume
that the union of the non-étale locus of A and A~!(Supp A) is a normal crossing
divisor. As in[3.33] we set Ra := Kx' — M (Kx +A) and R, := Ky — 7" Ky. Let
"Ra' = R/ — R’ be the decomposition into the positive and the negative parts of
the prime decomposition, and set

A":=R +(-Ra) and D' :=XND+R, - f"R..
Then (X', A’) is log-terminal over a non-empty open subset of Y/ and the equalities
Kxi +A =)\ (Kx +A)+ R,
D' — (Kxiyr + A') = X(D — (Kx/y +4))
hold. Here, bD’ is also Cartier.

4.3. Claim If (X, A) is log-terminal, then f.Ox/(bD’) is independent of the
choice of birational morphisms X’ — X xy Y.

PrROOF. R’ = 0 by assumption. For a birational morphism ¢: X" — X’ from
a projective non-singular space such that the composite X" — X' — X xy Y’
satisfies the same conditions as X’ — X xy Y, if we set

R :=Kxn — "X\ (Kx +A), 'RY' =R[-R",
AH = RI_/ + <7Rg>, D/I = QD*)\*D‘i’Rl *QO*f,*Rr,
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then R} = R, + ¢*Ra and R” = 0. Hence, by TIl4.3}(2),
R} =R,+ "¢*Ra' > ¢"("Ra") = ¢"R),.
Since R![ — p*R!, is p-exceptional, we have an isomorphism
Ox/(bD") =~ ¢.Oxn(bD"). |
There exists a Zariski-open subset Y° C Y such that codim(Y \Y°) > 2 and
T is a finite morphism over Y°. Thus there exist a 7-exceptional effective divisor
Ey and a generically isomorphic injection
JL0x:(6D") = (7*(£.0x (bD)) @ Oy (Ey))
by [3.331(5). In particular, we have inequalities
k(det(fLOx: (bD")),Y") < r(det(f,Ox (bD)),Y),
ko (det(f/Ox/ (bD')),Y") < ko (det(f.Ox (bD)),Y).

We note that, if f is a semi-stable reduction in codimension one and if D — (K x /vy +
A) is nef and f-abundant, then

o (det(£.0x (mbD)),Y) > kg (det(f.Ox (bD)),Y)
for m > 0, by [3.40.
4.4. Definition
o (D, det f1Y7) := max g (det(f10x/ (bD")), Y"),
ko (D,det f) := yminy ko (D, det f;Y).

4.5. Theorem Let f: X — Y be a fiber space from a normal projective variety
onto a non-singular projective variety. Let D be a Q-Cartier divisor on X and let
A be an effective R-divisor such that

(1) Kx + A is R-Cartier,
(2) (X,A) is log-terminal over a non-empty open subset of Y,
(3) D~ (Kx/y +A) is nef and f-abundant.
Then, for an ample divisor H and for b € N with bD being Cartier,
o(bD; f*H) > k(D; X/Y) + ko (D, det f).
If ky(D,det f) = dim Y, then
k(D,X)=r(D;X/Y)+dimY.
PrOOF. We may assume that x(D; X/Y) > 0 and X is non-singular.
Suppose first that f is a semi-stable reduction in codimension one. Let b be a

positive integer such that bD is Cartier and b € I(D|x,) for a ‘general’ fiber X,.
For m > 0, let G,,, be the image of the multiplication mapping

S™(f,0x(bD)) — f,Ox(mbD)".
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Then
Tm m " PX/Y) prank Gm > 0.

m—00

By [3.40, we infer that
£.0x (bD)[~a det(f.,Ox (bD))]
is weakly positive for some o € Q<. Thus there is a big divisor H on Y such that
G, @ det(f.0x (bD)))®™) © Oy (H)

is generically generated by global sections for a large integer m with ma € Z by
3.23| In particular, there is an injection

OETkGn @ det(f,Ox (bD)))2™* @ Oy (H) — f.Ox(mbD)" @ Oy (2H).
Therefore,
o(bD + E; f*H) > k(D; X/Y) + ko (det(£.0x (bD))),Y)

for an f-exceptional effective divisor E of X. If d/e\t( f+Ox(bD))) is big, then there
is a positive integer d such that G}, @ Oy (—(m — d)H) is generically generated by
global sections for m > 0. Thus there is an injection

O;‘; rank G,, ® OY((m — d)H) s f*OX (me)/\
Therefore,
k(bD + E) = k(D; X/Y) + dimY.

Next, we consider the general case. Let Y — Y be a birational morphism from
a non-singular projective variety flattening f. Let Y/ — Y be a finite surjective
morphism from a non-singular projective variety and let X’ — X xy Y’ be a bi-
rational morphism from a non-singular projective variety into the main component
such that the induced morphism f’: X’ — Y’ is a semi-stable reduction in codi-
mension one. Let A\: X’ — X and 7: Y’ — Y be the induced morphisms. We
consider R-divisors Ra, R/,, A’, and D’ as before. Then we have

o(bD' + E; {7 H) > k(D; X/Y) + ko (det(f.Ox/ (bD")), Y")
> k(D; X/Y) + kg (D, det f)

for a A-exceptional effective divisor E. Since bR/ + E is A-exceptional, from the
inequality 0D’ 4+ E < X\*(bD) + bR/, + E, we have

o(bD' + E; f"m*H) < o(bD; f*H).
Therefore,
o(bD; f*H) > k(D; X/Y) + ko (D,det f).
If k,(D,det f) = dimY, then
k(D,X) > k(bD'+ E) = k(D; X/Y) + dimY > (D, X). O
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84.b. Abundance theorem for k, = 0.

4.6. Theorem Let f: X — Y be a fiber space from a normal projective variety
onto a mon-singular projective variety. Let L be a Cartier divisor of X and let A
be an effective R-divisor of X such that

(1) Kx + A is R-Cartier,
(2) (X,A) is log-terminal over a non-empty open subset of Y,
(3) L — (Kx/y +A) is nef and abundant.
Suppose that rank f,Ox (L) =1 and ks (f+Ox (L)) =0. Then k(f.Ox (L)) = 0.

ProOOF. We may assume that X is non-singular, Supp A is normal crossing
by [3.33-(1). Since f.Ox(L — (4A,) is weakly positive by [3.35, we may assume
that (A, = 0. Furthermore, we can replace Y by a generically finite morphism
Y =Y, by[3.833. Then wy ® f.Ox(L) is an w-sheaf and moreover, there exists
a surjective morphism h: M — Y from a non-singular projective variety M such
that wy ® f,Ox (L) is a direct summand of h,wys by [3.10, Replacing Y by
a generically finite morphism Y’ — Y, we may assume that

e h is smooth outside a normal crossing divisor B C Y,
e the local monodromies of the locally constant system H = R?h,C Mly-B
along B are unipotent, where d = dim M — dim Y.

Then the d-th filter F¢(H*") of the canonical extension H" of H = H ® Oy p
is a numerically semi-positive vector bundle by ([50, Theorem 17]). Since
howary = FUH), f.Ox (L) is a nef line bundle. Therefore, f.Ox (L) is numer-
ically trivial, since r,(f«Ox (L)) = 0. The metric induced on F¢(H") has only
logarithmic singularities along B and is semi-positive on ¥ \ B. Hence f,Ox (L)
is a flat subbundle of H over Y \ B (cf. [22], [126], [52], [53], [72]). Then

(f*OX(L))®k =~ OY

for some k € N by a result [10, 4.2.8.(iii)(b)] of Deligne concerning with the semi-
simplicity of monodromies. Thus &(f.Ox (L)) = 0. |

4.7. Proposition Let f: X — Y be a fiber space from a normal projective
variety onto a non-singular projective variety. Let D be a Q-Cartier divisor of X,
and A an effective R-divisor of X such that
(1) Kx + A is R-Cartier,
(2) (X,A) is log-terminal over a non-empty open subset of Y,
(3) D — (Kx/y +A) is nef and abundant.

Suppose that K(D; X/Y) =0 and k,(D,det f) =0. Then (D) > 0.

PROOF. We may assume that X is non-singular, Supp A U Supp(D) is normal
crossing, and that f is semi-stable in codimension one. There is an f-effective
divisor E of X such that f.Ox(m(D + E)) is isomorphic to the invertible sheaf
f+«Ox(mD)™ for any m > 0 with mD being Cartier. Let N(D, f) be the set
of natural numbers m € N with mD being Cartier and f,Ox(mD) # 0. Let
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F,, := |m(D + E)|ax, s be the relative fixed divisor of mD with respect to f for
m € N(D, f), which is determined by:

F*fOx(m(D+E)) ~Ox(m(D+ E) - F,) C Ox(m(D + E)).

Let G, be the maximum effective Q-divisor of Y satisfying F,, > f*G,,. Here, for
a prime divisor B of Y,

multr F},

5 G = minf 2200 P
multg G min Ty

‘ I' is a prime divisor with f(I") = B}.
We have an injection

X l
[*(£:0x(m(D + E)))™ < Ox(im(D + E))
for [ > 0. Thus [F,, — F,,; is the pullback of an effective divisor of Y. Therefore,
IFy, — Fpy = [*(IGp — G).

In particular, the Q-divisor
1
N :=Ngo(D+E):= E(Fm —f*Gn)

does not depend on m € N(D, f). If IG,, is Cartier, then so is G,,; and hence
G =0, since f.Ox(Fyn) ~ Oy. Thus N coincides with the negative part

1
N = lim —F,
N(D,f)am—oco M
of the f-sectional decomposition of D 4+ E. Then we can take a Q-divisor Z on Y’
such that mZ is Cartier and

f-Ox(mD)" ~ Oy (mE)

for m € N(D, f) with G,,, = 0 (cf. [88} §5 Part II]). In particular, D+ E—N ~q f*E.
We have k,(E) = 0, since k,(D,det f) = 0. We fix a positive integer m € N(D, f)
with G,, = 0. Then mN and mZE are Cartier, and m(D + E — N) ~ f*(mE).

Let 7: Y/ — Y be a finite Galois surjective morphism from a non-singular pro-
jective variety such that 7*Z is Cartier. For a birational morphism §: X’ — X xy Y’
from a non-singular projective variety into the main component, let A\: X’ — X
and f’: X’ — Y’ be the induced morphisms. We consider the same R-divisors Ra,
R\, R_, R, A, and D' = X*D + R/, — f'"R. as before. We may assume that the
union of Supp A~'(D), Supp R/,, Supp R’_, Supp A’, and Supp f*R; is a normal
crossing divisor. We define

C'i=m\'D + (m = DX'E — (m = DX'N = (m — 1)f "=+ R, — {"R..
Then C' is a Q-divisor and
C—(Exiyr+A)=D"—(Kx//ys+A)+(m—1)\(D+E—N - f5)
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is nef and abundant. We set L = 'C — A’'. Then
6.0x/(L) = 0, 0x:/("=NE+ XN - A" + R, — f""R;) @ p3Oy (7°E)
— 8,0x/ ("N N") @ p3Oy/ (T7E)

for projections p;: X Xy Y’ — X" and pg: X xy Y’ — Y'.

We shall show the natural injection

Oy/ — fLOX/ ( I_>\*.]V_\ )

is isomorphic as follows: Assume the contrary. Then there exists a prime divisor B’
of Y/ such that Supp A* N contains all the prime divisors IV of X’ with f/(I'") = B’.
The same property hold for the prime divisors conjugate to B’ over Y. Hence
Supp N contains all the prime divisors I' of X with f(I") = 7(B’). This contradicts
G =0.

Therefore, we have an injection

f;OX/ (L) C Oy/(775).

Here L — (Kx//y' + (—C + A’)) is nef and abundant. Thus xq(f.Ox/(L)") =0
and hence x(f,Ox/(L)") = 0 by [4.6. Therefore k(=) = 0 and k(D + E) > 0. By
an argument using a flattening of f, we infer that (D) > 0. (]

4.8. Theorem Let X be a normal projective variety and let A be an effective
R-divisor such that (X, A) is log-terminal. Let D be a Q-divisor such that D —
(Kx + A) is nef and abundant. If k,(D) =0, then k(D) = 0.

PROOF. We may assume that X is non-singular and Supp A is a normal cross-
ing divisor by [3.33-(1). Let D = P,(D) + N,(D) be the o-decomposition. Then
P,(D) A0 by 1.12] Then N,(D) - C € Q for any irreducible curve C' C X. Since
the prime components of N, (D) are numerically linearly independent, N, (D) is an
effective Q-divisor.

Suppose that the irregularity ¢(X) = 0. Then any divisor numerically equiva-
lent to zero is Q-linearly equivalent to zero. Thus P,(D) ~g 0 and (D) = 0.

Thus we may assume that ¢(X) > 0. Let a: X — Alb X be the Albanese
mapping and let X — Y — Alb X be the Stein factorization. Then, by [4.1]

0= ko(D) > ks(D|x,) + ko(Y) >0

for a ‘general’ fiber X, of y € Y. Thus 0 = xk,(D|x,) = x(Y). Therefore, by
[50] Theorem 13], Y — Alb X is isomorphic and hence the Albanese mapping
« is a fibration. In particular ¢(X) < dim X. Since « induces an isomorphism
a*: Pic?(Y) — Pic’(X), there exist an integer b € N and a numerically trivial
divisor L of Y = Alb X such that bN, (D) and bD are Cartier with bN,(D) —bD ~
a*(bL). Thus x(D|x,) = 0. Then we have xq(D,det f) = 0 by|[4.5. Since Ky =0,
we have k(D) > 0 by [4.7. O

4.9. Corollary Let X be a normal projective variety and let A be a Q-divisor
such that (X, A) is log-terminal. If ky(Kx + A) =0, then k(Kx + A) = 0.
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Remark The abundance [4.8 was proved for L = Kx for a non-singular pro-
jective variety X admitting a minimal model, by Kawamata [56]. The idea of
applying litaka’s addition formula for x to the Albanese map is originally by Tsun-
oda (cf. [114]).



