Chapter 10

Gauss-Manin Connections

10.1 Fibration

Let A € A,(CY) be essential. We fix A in the rest of this section and write
B = B_4. We saw in the previous section that B may be considered a moduli space
of the family of essential simple affine {-arrangements which are combinatorially
equivalent to A. Recall that t are homogeneous coordinates for ((CP¢)*)". Let
u = (uy,...,u) be standard coordinates for C¢. Define

L
M= {(u,t) e C'x (CP)*)" [t e B, 17 + YtV u; 20 (i=1,...,n)}.

j=1
Let
™ M—B

be the projection defined by w(u,t) = t. Then the fiber My = 771(t) is the
complement of the affine arrangement At whose hyperplanes are defined by a; =
tgo) + Zﬁzltgj)uj (i =1,...,n). Thus 7 : M — B is the complete family of
essential simple affine arrangements in C¢ which are combinatorially equivalent to
A. A result of Randell [Ra] implies that 7 is a fiber bundle over (the smooth part
of) B.

Recall that d is the exterior differential operator with respect to the coordinates
u = (ug,...,up) of Cin the fiber, w; = dloga; = da;/a; for 1 <i < n and

n
W)\:Z)\iwi, V)\:QI;\/[%Q];\;F, Van=dn+wyAn.
i=1

In this section we compute covariant derivatives of differential forms in the fiber
along the direction of the base.

89



90 CHAPTER 10. GAUSS-MANIN CONNECTIONS

Definition 10.1.1. Let d’' be the exterior differential operator with respect to the
homogeneous coordinates t of ((CPY)*)". For1 <i <n define

do; d't)

o
Wi =d log(t(—O’)) =
i

(07} tEO)
and
n
Wh=Y Al VRO - b An = d'n+whAn.
i=1
Our next aim is to compute the operator V explicitly. For S = (ji,...,Jm),

jl < e < jma write Sk: = (j17~~'7jk—lajk+17"'7jm)(1 S k S m) and (Si.]) =
(jlv"' 7jm7j) fOl’j € [TL-{-].} \S

Definition 10.1.2. Let T = (i1, ... i), with i € [n] (1 <k < (). Write
i
wr =wi, A Awi,,  (r= Z(—l)kﬂwgk Awr, .
k=1

The following computation was suggested by a method employed in [AK].
Proposition 10.1.3. Recall that Ag = det(Tg) when |S| ={+ 1. Then

(41
A
Viwr = =Vx(r + Z Aj Z(_1)€+k+1d/ log <A¢> Az
[R\T k=1 ((T,5)k,m+1)

This result is an immediate consequence of the following two lemmas.

Lemma 10.1.4.

+1
Vier+Vacr = Y A ) (CDFF Awr),.
JEMN\T k=1

Proof. Since d and d’ operate in different variables, dd’ + d’d = 0. This gives
d'wr + d(r = 0 used in the calculation below.

VS\L«JT + Vlr :d/wT + wi\ Awr + dlr + wx A (T
L L
= Z(—l)k“(d’wik) Awr, +wh Awr + Z(—l)k“(dw;k) Awr,
k=1 k=1

t ¢
- Z)\ikwgk Awr + Z Aj Z(—l)HkHW;k AW(Ty,5)
k=1 JEM\T k=1



10.1. FIBRATION

4
Z )\w ANwr + Z )\]Z(— Z+k+1 / . N (T

JeNT JeMNT k=1
041

Z A Z Z+k+l / W(T )

JEMN\T k=1

Lemma 10.1.5. For S € <<[7£111]>>, we have

+1 +1 A
Z( M Aws, = Z(—l)k+1d’ log <A—S> A wg,.
k=1 k=1 (Sk,n+1)

Proof. Note that

+1 441
0 .
As = Z(_l)k+1t.§'k)A(5k7n+1) = Z<_1)k+laJkA(Sk n+1)
k=1 k=1

by the Laplace expansion. Let

ag = Qg - Qg du =duy A+ Nduy.
We compute
0+1
Y (—1)F(d log Ag) Aws,
k=1
+1

:@ Z Df A, mi1)(d'log Ag) A (du)

:—As(d’ log Ag) A (du) = %(d’As) A (du)

{+1
:_d/ (Z a]k Sk,n+1)> A (du)

1 {41
:Oé_s [Z( k+1{ O‘Jk A(Sk,nﬂ) + ag, (d/A(Smn-l-l))}] A (dw)

k=1
(+1
:Z(_l)kH {w), Nws, + (d'1og Ay 1)) Aws, } -
k=1

This proves the lemma.
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10.2 General Formulas

For A = (A1,...,\,) and t € B, recall the rank-one local system £ on Mg = 7~ 1(t)
defined in Proposition 2.1.3. Assume that A € W of Definition 6.5.1. It follows
from Theorem 6.2.3 that

(1) HP(My, Lt) = 0 for p # £ and dim HY(My, L¢) = B(A).
It follows from Theorem 4.2.6 that

(2) there exisits a natural (twisted) de Rham isomorphism

BYJwy A B 5 HY (M, L),

where B" = @gZOBq is the Brieskorn algebra of Ay.
Since Vy o V4 4+ V4 0 V) =0 and

HY My, L¢) ~ B Jwy A B! = BY)v,\B* 1,
the operator V/ induces a C-linear map
vl)\ : HZ(Mh ‘Ct) - Ql(log D) ® He(Mh ['t)

by Proposition 10.1.3. Here 0! (log D) is the space of meromorphic 1-forms on (the
smooth part of) B with logarithmic poles along D = B\ B. Let

be the irreducible decomposition. For each irreducible component Dy and S’ €
J(Ax)¢, define

mult(S’, Dg) = the order of zeros of Ag/|p along Dy
and

['(Ds) = {9 € J(Ax)® | mult(S’,Ds) > 1}
= {9 € J(Ax)¢| Ags/|p vanishes on Dg}.
We denote the logarithmic 1-form on B with simple logarithmic pole along D,
by d’log D by abuse of notation. It can be expressed locally as dlog f where f =0

is a local defining equation for Dy. For w € B, let [w] € H' (Mg, Ly) be its (twisted)
de Rham cohomology class. Proposition 10.1.3 implies:

Theorem 10.2.1. We have

¢
f = Zd’ logD, ® VY ,

s=1
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where V' , € End(H'(My, Ly)). For T € <<[” i ”)),

(+1
+1
Vidorl= Y mult((T.5). D)X Y (-1 wery.)
(T,5)€r’(Ds) k=1
- > mlt(((T, )i, 1+ 1), De) (=1) TN [wir . )

((T,j)k,n+1)er(Ds)

Although Theorem 10.2.1 determines V/\ and V, ; completely, it is desirable to
express each V' . explicitly in terms of a basis for H {(My, L) and thereby exhibit
the Gauss-Manin connection matrix ). We propose to use the fnbc basis of
Section 6.3 for this purpose. In general, it is not difficult to see from [FT, 3.9] that
[wr] € HY(Mg, L) is uniquely expressed as a linear combination of the fnbc basis

1], ..., [E5] € HY My, L) with coefficients lying in Q[A] = Q[A1, ..., An, {AS'}],
where Ax = ) . Aj runs over the set {X | X is a dense edge }. Recall that H,
is the rank £ local sfystem coming from the topological fibration 7 : M — B. Then
we have

Theorem 10.2.2. The 8 X [B-matriz ), which satisfies the system of differential
equations

Jo ®rZ1 Jo %1
7 . _an .
fa Dy\=5 fg ®)\Ep
for any (local) section o of Hy, the fubc basis [Z1),...,[Z5] € HY (Mg, Ls) and

D) = 041\1 ...}, has logarithmic poles along D with coefficients lying in Q[A].

Proof. The integral fa ®, = depends only on the cohomology class [Z] € H'(Mg, Ly).
By Theorem 10.2.1, there exists a unique § x f-matrix €2 such that

A1) [E4]

_anl -

V4 s[E5] [=s]
Since ®Vyn = d'(®n), we get [ ®Vin = [ d'(®n) = d' [ ®n because o is a
section. Thus  satisfies the desired equation. O

It follows that the connection d’ — QA on (’)g is a logarithmic Gauss-Manin
connection and its flat sections are given by

Jo ®AE
{ h | o is a local section of H}.

[, s
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In the rest of this chapter it is convenient to use the notation
e(T.T') = (-1)'*

T, T Cn), |T|=T=4|TNT|=0-1,U=TUT,T=U, and T' = U,,
where the subscript notation was introduced just before Definition 10.1.2. Define
e(T,T") = 1if T = T'. For example, €(23,35) = 1 because U = 235, T = 23 =
Us, T' =35 =Uj.

10.3 Codimension Zero

Suppose that the codimension of B 4 in ((CP)*)" is zero. In other words, A is in
general position. The set

{{nr] € H'(M¢, L¢) | T € Bnbe}
is a fnbc basis, where
/Bnbc:{(¢717"'7‘7f)|2§]1<“‘<‘]ZS’]’L}’ nT:)‘h"'/\ing-

This basis was first obtained in [Al, p.292] in a slightly different form. The ex-
pression of each V) , in terms of the ﬂnbc basis was essentially given in [AK,
Ch. 3 §8]. Let Dy = C{g5}. Then I'(D,) = {S} and mult(S,Ds) = 1. There are
four cases distinguished by SN {l,n —|— 1} We will express V) ([nr], T € fnbc
as a linear combination of {[nr] € HYMy, Lt) | T' € fnbe} with coefficients
in 31" | Z);. The following formulas are obtained from Theorem 10.2.1 through
routine computations.

Case 1: Suppose SN {l,n+ 1} =0.
If SO T € fnbc, then

+1
l)\,s[nT] = Z G(Tv Sk))‘S\Sk [775’;.-]7
k=1
where Sk = (il, ey ik—l,ik+1, .. .,’Lj+1) and )\S\Sk = Aik if S= (il, . .,ig+1).

Otherwise V| ([nr] = 0.

Case 2: Suppose SN{l,n+ 1} ={n+1}.
If SO T € fnbe, then T = Spy =S\ {n+1} and

Vislrl == >_ A | Inal.
JEMN\T

If T € fnbc with [T'N S| =¢ —1, then

VA snr] = —€(T, Sex1) A\ s[0s,4, )
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Otherwise V) ;[nr] =0.

Case 3: Suppose SN{l,n+ 1} ={1}.
If SO T € fnbe, then T =5, = S\ {1} and

V)\ ) nT Z )\ 7’]T Z E(T, T/))\T\T’ [’I]T/].
JES T'€fBnbc
|TNT'|=6-1

Otherwise V' /[nr] = 0.

Case 4: Suppose SN{l,n+ 1} ={1,n+1}.
If T € fnbc with [TNS| =¢—1, then S\ {1,n+ 1} C T and

Vislnrl = =Anshrl +dms Y e T)nr).

T’ €Bnbc
TNT'=TNS

Otherwise V' /[nr] = 0.

Example 10.3.1. Suppose that A is in general position with { = 2 and n = 4
shown in Figure 10.1.

1 2 3

A

Figure 10.1: A Codimension Zero Arrangement

Write 123 for (1,2,3) etc. The boundary divisor D = B 4\ B4 has ten irreducible
components shown in Figure 10.2. The connection matrices Qs(s = 1,...,10) in
terms of the fnbc basis {[n23], [n24], [134]}, are given below.

41 23 1 32 14 23 1 23
|

Dy = C{234} Dy = C{235} D3 = C{245} Dy = C{345}
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1 2 3 1 23 1 23 2 1 3
4
. X d
| ‘ N |
D5 = C{123} D = Cy124) D7 = C{134) Ds = C{125)
13 2 41 2 3
Dg = C{135) D10 = Cy145

Figure 10.2: Ten Boundary Components

DYEEEES PR V) “A1—X\ 00
M=1-M A3 —X|(Casel), Q= M 0 0] (Case2),
0 0

)\4 —>\3 )\2 _)\4
0 A3 0 0 0 -2
Q=10 =X —XA3 0] (Case2), Q4=1{0 0 A2 (Case2),
0 A3 0 0 0 —M\—AX
MFXM+A3 A3 =X 0 0 0
Qs = 0 0 0 |(Cased), Q= |A A +A+A Ao (Case3),
0 0 0 0 0 0

0 0 0 A3 =3 0
Q7 = 0 0 0 (Case3), Qg = —)\4 —>\4 0 (Case4),
—A A3 A+ A3+ M 0 0 0

A 0 A 0 0 0
Q=] 0 0 0 |(Cased), Qu=[0 —Xa —Xo| (Cased).
A 0 =Ny 0 —A3 —X3

Using the notation in Theorem 10.2.2, we have

J ©2123 |, @anps
A" [ @amaa | = QA | [ Pamoa |

I, ®anza J, ®amza
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where () is the Gauss-Manin connection matrix given by

10
Q=> dlogD, ® Q.

s=1

10.4 Codimension One

Suppose that the codimension of B 4 in ((CP*)*)" is one. Then J(As) = {S} for

n+1]
some S € << 041
(Case B). By permuting the hyperplanes if necessary, we can assume that S =
(1,2,...,0+1) (Case A)or S = (n—{+1,n—L€+2,...,n+1) (Case B). It is easy to
see that the Anbc basis for H!(My, L) is given by {[n7] € H (M, L) | T € fnbc},
where

>> There are two cases : n+1¢ S (Case A)orn+1€ S

pnbe = {(j1,...,je) |2<j1 <---<je#L+1} (Case A)
or
pnbe = {(j1,...,Je) [ 2<j1 <---<je,j1 #n—L+ 1} (Case B).

We will express V4 [n7], T € fnbc as alinear combination of {[n:] € H (Ms, L¢) |

T € ffnbc} with coefficients in Q[A]. (It will turn out that all the coefficients lie
in Y"1 | Z\;.) The following formulas are obtained from Theorem 10.2.1 through
routine computations.

Case A:Let S =(1,2,...,0+1).

Type A.L: Let Dy = Cigg) for &' € < [Zj——ll] with [SN S| < (-1

(Proposition 9.3.3 (iii)). In this case, I'(Ds) = {S, S} and mult(S’, Ds) = 1 because
the ideal (Ag,Ags) is prime by Lemma 9.3.2 (ii).

Case A.L.1: Suppose S’ N{l,n+ 1} = .
If S O T € fnbc, then

+1
Vislnr) =Y (T, Sp)Asn sy sy
k=1
where S;c = (i1, .. -,ik—l, ik+1, ceey ie+1) and AS/\S]/,‘, = )\,‘k if 8" = (il, .. .,ie+1).

Otherwise V' ([nr] = 0.
Case A.IL.2: Suppose S'N{l,n+ 1} ={n+1}.
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If ' DT € fnbe, then T = S),; = '\ {n+1} and

V,\s[ﬁT ( Z )‘)
JEMN\T

If T € fnbc with [T'NS'| =€ —1, then

vl)\,s[nT] = _G(T’ Sé{-l)/\T\S’ [775’ ]

£+1
Otherwise V| /[nr] =0

Case A.L3: Suppose S’ N{l,n+1} = {1}.
If S DT € fnbc, then T = 8] = 5"\ {1} and

Visli] = (Z Aj ) Y. TV ).

jeS T’ €fnbc
ITAT’ |=(—1

Otherwise V| ([nr] = 0.
Case A.IL.4: Suppose S'N{l,n+1} ={1,n+1}.
If T € fnbc with [TNS"| =¢—1, then "\ {1,n+ 1} C T and

Vislrl = -Anslirl+dne Y, «T.T)hrl.

T’Eﬁnbc
T'ns’=Tns’

Otherwise V/\ /[nr] = 0.
Type A.II: Suppose £ > 2. Let Dy = Cig_p) wherep € S = (1,2,...,£+1),
S—p=S\{p}, and (S—p) = {9 € <<[zii]>> | S © S —p}. In this case,

I'(Ds) = (S — p) and mult(S’,Ds) =1 for S" € (S —p), S # S, because the ideal
(Ag,Ag) is a radical ideal by Lemma 9.3.2 (i).

Case A.IL.1: Suppose p # 1.
If T € fnbc with [T'N (S —p)| =€ — 1, then

Nslir] = ( > A) Y. dTT)nnr)-

JES—p T'€fnbe
|TNT | =01
IT'N(S—p)|=t-2

Otherwise V| ([nr] = 0.
Case A.IL.2: Suppose p = 1.
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If T € fnbe with |TN (S —1)| = £ —1, then

Vit = Asooelrl + Y T Tl
T’ €Bnbc
|TNT|=—1
T'cSuT

Otherwise V| /[nr] = 0.

\S=(l+2,0+3,....n+1),
and S+q¢=SU{q},and (S+¢)={59" € (([n—l—l})) | S C S+g¢}. In this case,

I'(Ds) = (S +¢) and mult(S’,Ds) = 1 for §” € (S +q), " # S, because the ideal
(Ag, Ag) is a radical ideal by Lemma 9.3.2 (i).

Case A.III.1: Suppose ¢ #n + 1.
If T € fnbc with T C S + ¢, then

s[nT ( Z >\ nT Z €<T, T/)AT\T’ [77T/].

JES+q T'€Bnbce
|TNT'|=¢-1
(TS 4g) =61

Otherwise V| ([nr] =0.
Case A.III.2: Suppose ¢ =n+ 1.
If T € fnbc with [T'N S| =¢— 1, then

Vil == s >, [l
T'€fnbce
T'NnS=TNS

Otherwise V'  [nr] = 0.

Case B: Let S=(n—(+1,...,n+1).

Type B.I: Let Dy = Cyg gy for §' € <<[Z:||__1”>> with [SN S| <¢—1. For

this type, we have the exact same formulas as Case A.IL
Type B.II: Suppose £ > 2. Let Dy = Cig_p).

Case B.II.1: Suppose p #n + 1.
If T € fnbc with TN (S —p)| = £ — 1, then

Vil =—1{ Y. A | ).
JjE€S—p
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If T € fnbc with TN (S —p)| = — 2, then

Aslr] = = Y (7. T") A\ 7).
T’ €Bnbc
|TNT'|=¢-1
IT'N(S—p)|=t—1

Otherwise V| ([nr] = 0.
Case B.II.2: Suppose p=n+ 1.
If T € fnbc with [TN (S — (n+1))| =€ —1, then

el = Ns—mepnrlirl+ Y. T T ).

T'€pBnbe
|TNT'|=€-1
T'CSuT

Otherwise V| /[nr] = 0.

Type B.III: Let Dy = Cg4q) Where g € [n+1]\S=(1,2,...,n—{).

Case B.III.1: Suppose ¢ # 1.
If T € pnbc with T' C S + ¢, then

Vil == Y A | Inrl.
JgS+aq

If T € fnbc with [T N (S +q)| =€ — 1, then
Vishrl == Y eT.T)np ).
T'€fnbc
|TNT' |=t—1
T'C(S+q)
Otherwise V| /[nr] = 0.
Case B.IIIL.2: Suppose ¢ = 1.
If T € fnbc with |T'N S| =¢ — 1, then

Vil == > [mr):
T’ €fnbc
T'NnS=TNS
Otherwise V| /[nr] = 0.

We summarize Cases A and B.
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Theorem 10.4.1. Suppose that B = B4 has codimension one in ((CP*)*)". Let
J(Asx) = {S}, D=B\B and D = U._,D; be the irreducible decomposition. Then

(1) the logcmthmzc Gauss-Manin connectwn matriz () in Theorem 10.2.2 can be
eapressed as @ = Y _ d'log D@9 such that each Qg has its entries in Y1, Z\;.

(2) The ezgenvalues of Qs are:

(i) deS' Aj with multiplicity one and the rest are zero (if Dy = Cyg g1y is of
type I in Proposztwn 9.3.3),

(ii) Y jes_pAj with multiplicity n — € —1 and the rest are zero (if Dy = C(s—p)
is of type II), or

(i) 3= ;5442 with multiplicity € and the rest are zero (if Dy = Cgq) is of
type I1I),

where we define Apt1 = —A1 — —Aa — - — Ay.

(The explicit formulas for Qs are given above when S = (1,2,...,£+ 1) (Case
A)orS=n—-L+1,n—L+2,...,n+1) (Case B).)

Proof. Although the fnbc basis depends on the linear order on A, it is known
[FT, 3.11] that two fnbc bases are connected by an integral unimodular matrix
(without A). Thus one can assume that S = (1,2,...,£+ 1) (whenn+1¢ S) or
S=mn-{l+1,n—L+2,....,n+1) (when n+ 1 € S). Use the above-mentioned
explicit formulas for Cases A and B. O

Example 10.4.2. Let { = 2, n = 4, S = (1,2,3) and J(Ax) = {S}. The
arrangement is shown in Figure 10.8
1 2 3

A

Figure 10.3: A Codimension One Arrangement

Write 123 for (1,2,3) etc. The boundary divisor D = B4 \ B4 has eight irre-
ducible components shown in Figure 10.4.

A A KA

= C{123,145) Do = C{123,245) = C{123,345} Dy = Ci123-3)
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13 2 1 23 1 2 3 1 2 3

D5 = C(123-2) Ds = C(123-1) D7 = Cl123+44) Ds = C(123+45)

Figure 10.4: Eight Boundary Components

The matrices Qs(s = 1,...,8) in terms of the fnbc basis {[n24], [134]}, are

A2 —A -A1—X 0
0= <_)\§ _/\z) (CaseA.I4), ng( 1/\3 ’ 0> (CaseA.1.2),

0 A A +X A
Q3 = (0 A 2_/\2> (CaseA.L2), Q= ( 1 . 2 02> (CaseA.TL1),

Q5 = <)\3 A+ /\3> (CaseA.IL1), Qg = <_/\3 Mo > (CaseA.IL.2),

0 _<A1+A2+A3+>\4 0
-

0 AL+ Mg+ A+ )\4> (CaseA.IIL1),

A 0
Qg = ( 04 _/\4> (CaseA.IIL.2).

Using the notation in Theorem 10.2.2, we have

(13- 132)

Jo Pan34 J. ®ansa

where (2 is the Gauss-Manin connection matrix given by

8
Q=> dlogD,® Q.

s=1

For an arbitrary arrangement A € A,(C’) and B = B 4, it seems to be diffi-
cult to find explicit matrix presentations for V). Based upon our result for the
codimension one case, it might be natural to ask the following questions:

Question 1. Does each entry of the matrix Q lie in Y | ZX;?

Question 2. Is B smooth?





