Chapter 10

Gauss-Manin Connections

10.1 Fibration

Let $A \in A_n(\mathbb{C}^{\ell})$ be essential. We fix A in the rest of this section and write $B = B_A$. We saw in the previous section that B may be considered a moduli space of the family of essential simple affine ℓ -arrangements which are combinatorially equivalent to A. Recall that \mathbf{t} are homogeneous coordinates for $((\mathbb{CP}^{\ell})^*)^n$. Let $\mathbf{u} = (u_1, \ldots, u_{\ell})$ be standard coordinates for \mathbb{C}^{ℓ} . Define

$$\mathsf{M} = \{ (\mathbf{u}, \mathbf{t}) \in \mathbb{C}^{\ell} \times ((\mathbb{CP}^{\ell})^{*})^{n} \mid \mathbf{t} \in \mathsf{B}, \ t_{i}^{(0)} + \sum_{j=1}^{\ell} t_{i}^{(j)} u_{j} \neq 0 \ (i = 1, \dots, n) \}.$$

Let

$$\pi:\mathsf{M}\longrightarrow\mathsf{B}$$

be the projection defined by $\pi(\mathbf{u}, \mathbf{t}) = \mathbf{t}$. Then the fiber $M_{\mathbf{t}} = \pi^{-1}(\mathbf{t})$ is the complement of the affine arrangement $\mathcal{A}_{\mathbf{t}}$ whose hyperplanes are defined by $\alpha_i = t_i^{(0)} + \sum_{j=1}^{\ell} t_i^{(j)} u_j$ ($i = 1, \ldots, n$). Thus $\pi : M \longrightarrow B$ is the complete family of essential simple affine arrangements in \mathbb{C}^{ℓ} which are combinatorially equivalent to \mathcal{A} . A result of Randell [Ra] implies that π is a fiber bundle over (the smooth part of) B.

Recall that d is the exterior differential operator with respect to the coordinates $\mathbf{u} = (u_1, \dots, u_\ell)$ of \mathbb{C}^ℓ in the fiber, $\omega_i = d \log \alpha_i = d\alpha_i/\alpha_i$ for $1 \leq i \leq n$ and

$$\omega_{\lambda} = \sum_{i=1}^{n} \lambda_{i} \omega_{i}, \qquad \nabla_{\lambda} : \Omega_{M}^{p} \to \Omega_{M}^{p+1}, \qquad \nabla_{\lambda} \eta = d\eta + \omega_{\lambda} \wedge \eta.$$

In this section we compute covariant derivatives of differential forms in the fiber along the direction of the base.

Definition 10.1.1. Let d' be the exterior differential operator with respect to the homogeneous coordinates \mathbf{t} of $((\mathbb{CP}^{\ell})^*)^n$. For $1 \leq i \leq n$ define

$$\omega_i' = d' \log(\frac{\alpha_i}{t_i^{(0)}}) = \frac{d'\alpha_i}{\alpha_i} - \frac{d't_i^{(0)}}{t_i^{(0)}}$$

and

$$\omega_{\lambda}' = \sum_{i=1}^{n} \lambda_{i} \omega_{i}', \qquad \nabla_{\lambda}' : \Omega_{M}^{p} \to \Omega_{M}^{p+1}, \qquad \nabla_{\lambda}' \eta = d' \eta + \omega_{\lambda}' \wedge \eta.$$

Our next aim is to compute the operator ∇'_{λ} explicitly. For $S = (j_1, \ldots, j_m)$, $j_1 < \cdots < j_m$, write $S_k = (j_1, \ldots, j_{k-1}, j_{k+1}, \ldots, j_m) (1 \le k \le m)$ and $(S, j) = (j_1, \ldots, j_m, j)$ for $j \in [n+1] \setminus S$.

Definition 10.1.2. *Let* $T = (i_1, ..., i_{\ell})$, *with* $i_k \in [n]$ $(1 \le k \le \ell)$. *Write*

$$\omega_T = \omega_{i_1} \wedge \cdots \wedge \omega_{i_\ell}, \qquad \zeta_T = \sum_{k=1}^{\ell} (-1)^{k+1} \omega'_{i_k} \wedge \omega_{T_k}.$$

The following computation was suggested by a method employed in [AK].

Proposition 10.1.3. Recall that $\Delta_S = \det(\mathsf{T}_S)$ when $|S| = \ell + 1$. Then

$$\nabla_{\lambda}' \omega_T = -\nabla_{\lambda} \zeta_T + \sum_{j \in [n] \setminus T} \lambda_j \sum_{k=1}^{\ell+1} (-1)^{\ell+k+1} d' \log \left(\frac{\Delta_{(T,j)}}{\Delta_{((T,j)_k,n+1)}} \right) \wedge \omega_{(T,j)_k}.$$

This result is an immediate consequence of the following two lemmas.

Lemma 10.1.4.

$$\nabla_{\lambda}' \omega_T + \nabla_{\lambda} \zeta_T = \sum_{j \in [n] \setminus T} \lambda_j \sum_{k=1}^{\ell+1} (-1)^{\ell+k+1} \omega_{i_k}' \wedge \omega_{(T,j)_k}.$$

Proof. Since d and d' operate in different variables, dd' + d'd = 0. This gives $d'\omega_T + d\zeta_T = 0$ used in the calculation below.

$$\nabla'_{\lambda}\omega_{T} + \nabla_{\lambda}\zeta_{T} = d'\omega_{T} + \omega'_{\lambda} \wedge \omega_{T} + d\zeta_{T} + \omega_{\lambda} \wedge \zeta_{T}$$

$$= \sum_{k=1}^{\ell} (-1)^{k+1} (d'\omega_{i_{k}}) \wedge \omega_{T_{k}} + \omega'_{\lambda} \wedge \omega_{T} + \sum_{k=1}^{\ell} (-1)^{k+1} (d\omega'_{i_{k}}) \wedge \omega_{T_{k}}$$

$$- \sum_{k=1}^{\ell} \lambda_{i_{k}}\omega'_{i_{k}} \wedge \omega_{T} + \sum_{j \in [n] \backslash T} \lambda_{j} \sum_{k=1}^{\ell} (-1)^{\ell+k+1} \omega'_{i_{k}} \wedge \omega_{(T_{k},j)}$$

10.1. FIBRATION 91

$$= \left(\sum_{j \in [n] \backslash T} \lambda_j \omega_j'\right) \wedge \omega_T + \sum_{j \in [n] \backslash T} \lambda_j \sum_{k=1}^{\ell} (-1)^{\ell+k+1} \omega_{i_k}' \wedge \omega_{(T_k, j)}$$

$$= \sum_{j \in [n] \backslash T} \lambda_j \sum_{k=1}^{\ell+1} (-1)^{\ell+k+1} \omega_{i_k}' \wedge \omega_{(T, j)_k}.$$

Lemma 10.1.5. For $S \in \left(\binom{[n+1]}{\ell+1} \right)$, we have

$$\sum_{k=1}^{\ell+1} (-1)^{k+1} \omega'_{j_k} \wedge \omega_{S_k} = \sum_{k=1}^{\ell+1} (-1)^{k+1} d' \log \left(\frac{\Delta_S}{\Delta_{(S_k, n+1)}} \right) \wedge \omega_{S_k}.$$

Proof. Note that

$$\Delta_S = \sum_{k=1}^{\ell+1} (-1)^{k+1} t_{j_k}^{(0)} \Delta_{(S_k, n+1)} = \sum_{k=1}^{\ell+1} (-1)^{k+1} \alpha_{j_k} \Delta_{(S_k, n+1)}$$

by the Laplace expansion. Let

$$\alpha_S = \alpha_{i_1} \cdots \alpha_{i_{\ell+1}}, \qquad d\mathbf{u} = du_1 \wedge \cdots \wedge du_{\ell}.$$

We compute

$$\sum_{k=1}^{\ell+1} (-1)^{k+1} (d' \log \Delta_S) \wedge \omega_{S_k}$$

$$= \frac{1}{\alpha_S} \sum_{k=1}^{\ell+1} (-1)^{k+1} \alpha_{j_k} \Delta_{(S_k, n+1)} (d' \log \Delta_S) \wedge (d\mathbf{u})$$

$$= \frac{1}{\alpha_S} \Delta_S (d' \log \Delta_S) \wedge (d\mathbf{u}) = \frac{1}{\alpha_S} (d' \Delta_S) \wedge (d\mathbf{u})$$

$$= \frac{1}{\alpha_S} d' \left(\sum_{k=1}^{\ell+1} (-1)^{k+1} \alpha_{j_k} \Delta_{(S_k, n+1)} \right) \wedge (d\mathbf{u})$$

$$= \frac{1}{\alpha_S} \left[\sum_{k=1}^{\ell+1} (-1)^{k+1} \left\{ (d' \alpha_{j_k}) \Delta_{(S_k, n+1)} + \alpha_{j_k} \left(d' \Delta_{(S_k, n+1)} \right) \right\} \right] \wedge (d\mathbf{u})$$

$$= \sum_{k=1}^{\ell+1} (-1)^{k+1} \left\{ \omega'_{j_k} \wedge \omega_{S_k} + \left(d' \log \Delta_{(S_k, n+1)} \right) \wedge \omega_{S_k} \right\}.$$

This proves the lemma.

10.2 General Formulas

For $\lambda = (\lambda_1, \dots, \lambda_n)$ and $\mathbf{t} \in \mathsf{B}$, recall the rank-one local system \mathcal{L}_{λ} on $\mathsf{M}_{\mathbf{t}} = \pi^{-1}(\mathbf{t})$ defined in Proposition 2.1.3. Assume that $\lambda \in \mathbf{W}$ of Definition 6.5.1. It follows from Theorem 6.2.3 that

- (1) $H^p(\mathsf{M_t}, \mathcal{L_t}) = 0$ for $p \neq \ell$ and dim $H^{\ell}(\mathsf{M_t}, \mathcal{L_t}) = \beta(\mathcal{A})$. It follows from Theorem 4.2.6 that
 - (2) there exisits a natural (twisted) de Rham isomorphism

$$B^{\ell}/\omega_{\lambda} \wedge B^{\ell-1} \xrightarrow{\sim} H^{\ell}(\mathsf{M_t}, \mathcal{L_t}),$$

where $B^{\cdot} = \bigoplus_{q=0}^{\ell} B^q$ is the Brieskorn algebra of $\mathcal{A}_{\mathbf{t}}$. Since $\nabla_{\lambda} \circ \nabla'_{\lambda} + \nabla'_{\lambda} \circ \nabla_{\lambda} = 0$ and

$$H^{\ell}(\mathsf{M}_{\mathbf{t}}, \mathcal{L}_{\mathbf{t}}) \simeq B^{\ell}/\omega_{\lambda} \wedge B^{\ell-1} = B^{\ell}/\nabla_{\lambda}B^{\ell-1},$$

the operator ∇'_{λ} induces a C-linear map

$$\nabla'_{\lambda}: H^{\ell}(\mathsf{M}_{\mathbf{t}}, \mathcal{L}_{\mathbf{t}}) \to \Omega^{1}(\log \mathsf{D}) \otimes H^{\ell}(\mathsf{M}_{\mathbf{t}}, \mathcal{L}_{\mathbf{t}})$$

by Proposition 10.1.3. Here $\Omega^1(\log D)$ is the space of meromorphic 1-forms on (the smooth part of) \bar{B} with logarithmic poles along $D = \bar{B} \setminus B$. Let

$$\mathsf{D} = \bigcup_{s=1}^t \mathsf{D}_s$$

be the irreducible decomposition. For each irreducible component D_s and $S' \in \mathcal{J}(\mathcal{A}_\infty)^c$, define

$$\operatorname{mult}(S', \mathsf{D}_s) = \text{the order of zeros of } \Delta_{S'}|_{\bar{B}} \text{ along } \mathsf{D}_s$$

and

$$\Gamma(\mathsf{D}_s) = \{ S' \in \mathcal{J}(\mathcal{A}_{\infty})^c \mid \operatorname{mult}(S', \mathsf{D}_s) \ge 1 \}$$

= $\{ S' \in \mathcal{J}(\mathcal{A}_{\infty})^c \mid \Delta_{S'}|_{\bar{B}} \text{ vanishes on } \mathsf{D}_s \}.$

We denote the logarithmic 1-form on \bar{B} with simple logarithmic pole along D_s by $d'\log D_s$ by abuse of notation. It can be expressed locally as $d\log f$ where f=0 is a local defining equation for D_s . For $\omega\in B^\ell$, let $[\omega]\in H^\ell(\mathsf{M_t},\mathcal{L_t})$ be its (twisted) de Rham cohomology class. Proposition 10.1.3 implies:

Theorem 10.2.1. We have

$$\nabla_{\lambda}' = \sum_{s=1}^{t} d' \log \mathsf{D}_{s} \otimes \nabla_{\lambda, s}',$$

where
$$\nabla'_{\lambda,s} \in \operatorname{End}(H^{\ell}(\mathsf{M}_{\mathbf{t}},\mathcal{L}_{\mathbf{t}}))$$
. For $T \in \left(\binom{[n+1]}{\ell+1} \right)$,

$$\nabla'_{\lambda,s}[\omega_T] = \sum_{(T,j)\in\Gamma(\mathsf{D}_s)} \mathrm{mult}((T,j),\mathsf{D}_s)\lambda_j \sum_{k=1}^{\ell+1} (-1)^{\ell+k+1} [\omega_{(T,j)_k}] \\ - \sum_{((T,j)_k,n+1)\in\Gamma(\mathsf{D}_s)} \mathrm{mult}(((T,j)_k,n+1),\mathsf{D}_s)(-1)^{\ell+k+1} \lambda_j [\omega_{(T,j)_k}].$$

Although Theorem 10.2.1 determines ∇'_{λ} and $\nabla'_{\lambda,s}$ completely, it is desirable to express each $\nabla'_{\lambda,s}$ explicitly in terms of a basis for $H^{\ell}(\mathsf{M_t},\mathcal{L_t})$ and thereby exhibit the Gauss-Manin connection matrix Ω . We propose to use the $\beta \mathbf{nbc}$ basis of Section 6.3 for this purpose. In general, it is not difficult to see from [FT, 3.9] that $[\omega_T] \in H^{\ell}(\mathsf{M_t},\mathcal{L_t})$ is uniquely expressed as a linear combination of the $\beta \mathbf{nbc}$ basis $[\Xi_1], \ldots, [\Xi_{\beta}] \in H^{\ell}(\mathsf{M_t},\mathcal{L_t})$ with coefficients lying in $\widetilde{\mathbb{Q}[\lambda]} = \mathbb{Q}[\lambda_1, \ldots, \lambda_n, \{\lambda_X^{-1}\}]$, where $\lambda_X = \sum_{X \subseteq H_j} \lambda_j$ runs over the set $\{X \mid X \text{ is a dense edge }\}$. Recall that \mathcal{H}_{ℓ} is the rank β local system coming from the topological fibration $\pi : \mathsf{M} \to \mathsf{B}$. Then we have

Theorem 10.2.2. The $\beta \times \beta$ -matrix Ω , which satisfies the system of differential equations

$$d'\begin{pmatrix} \int_{\sigma} \Phi_{\lambda} \Xi_{1} \\ \dots \\ \dots \\ \int_{\sigma} \Phi_{\lambda} \Xi_{\beta} \end{pmatrix} = \Omega \wedge \begin{pmatrix} \int_{\sigma} \Phi_{\lambda} \Xi_{1} \\ \dots \\ \dots \\ \dots \\ \int_{\sigma} \Phi_{\lambda} \Xi_{\beta} \end{pmatrix}$$

for any (local) section σ of \mathcal{H}_{ℓ} , the β **nbc** basis $[\Xi_1], \ldots, [\Xi_{\beta}] \in H^{\ell}(\mathsf{M_t}, \mathcal{L_t})$ and $\Phi_{\lambda} = \alpha_1^{\lambda_1} \ldots \alpha_n^{\lambda_n}$, has logarithmic poles along D with coefficients lying in $\mathbb{Q}[\lambda]$.

Proof. The integral $\int_{\sigma} \Phi_{\lambda} \Xi$ depends only on the cohomology class $[\Xi] \in H^{\ell}(\mathsf{M_t}, \mathcal{L_t})$. By Theorem 10.2.1, there exists a unique $\beta \times \beta$ -matrix Ω such that

$$\begin{pmatrix} \nabla'_{\lambda,s}[\Xi_1] \\ \vdots \\ \nabla'_{\lambda,s}[\Xi_{\beta}] \end{pmatrix} = \Omega \wedge \begin{pmatrix} [\Xi_1] \\ \vdots \\ [\Xi_{\beta}] \end{pmatrix}.$$

Since $\Phi \nabla'_{\lambda} \eta = d'(\Phi \eta)$, we get $\int_{\sigma} \Phi \nabla'_{\lambda} \eta = \int_{\sigma} d'(\Phi \eta) = d' \int_{\sigma} \Phi \eta$ because σ is a section. Thus Ω satisfies the desired equation.

It follows that the connection $d' - \Omega \wedge$ on $\mathcal{O}_{\mathsf{B}}^{\beta}$ is a logarithmic Gauss-Manin connection and its flat sections are given by

$$\left\{ \begin{pmatrix} \int_{\sigma} \Phi_{\lambda} \Xi_{1} \\ \vdots \\ \int_{\sigma} \Phi_{\lambda} \Xi_{\beta} \end{pmatrix} \mid \sigma \text{ is a local section of } \mathcal{H}_{\ell} \right\}.$$

In the rest of this chapter it is convenient to use the notation

$$\epsilon(T, T') = (-1)^{p+q}$$

if $T,T'\subseteq [n], \ |T|=|T'|=\ell, \ |T\cap T'|=\ell-1, \ U=T\cup T', \ T=U_p \ \text{and} \ T'=U_q,$ where the subscript notation was introduced just before Definition 10.1.2. Define $\epsilon(T,T')=1$ if T=T'. For example, $\epsilon(23,35)=1$ because $U=235, T=23=U_3, T'=35=U_1$.

10.3 Codimension Zero

Suppose that the codimension of $\mathsf{B}_{\mathcal{A}}$ in $((\mathbb{CP}^{\ell})^*)^n$ is zero. In other words, \mathcal{A} is in general position. The set

$$\{[\eta_T] \in H^{\ell}(\mathsf{M_t}, \mathcal{L_t}) \mid T \in \beta \mathbf{nbc}\}$$

is a β **nbc** basis, where

$$\beta$$
nbc = { $(j_1, \ldots, j_\ell) \mid 2 \leq j_1 < \cdots < j_\ell \leq n$ }, $\eta_T = \lambda_{i_1} \cdots \lambda_{i_\ell} \omega_T$.

This basis was first obtained in [A1, p.292] in a slightly different form. The expression of each $\nabla'_{\lambda,s}$ in terms of the $\beta \mathbf{nbc}$ basis was essentially given in [AK, Ch. 3 §8]. Let $\mathsf{D}_s = \mathsf{C}_{\{S\}}$. Then $\Gamma(\mathsf{D}_s) = \{S\}$ and $\mathrm{mult}(S, \mathcal{D}_s) = 1$. There are four cases distinguished by $S \cap \{1, n+1\}$. We will express $\nabla'_{\lambda,s}[\eta_T], T \in \beta \mathbf{nbc}$ as a linear combination of $\{[\eta_{T'}] \in H^{\ell}(\mathsf{M_t}, \mathcal{L_t}) \mid T' \in \beta \mathbf{nbc}\}$ with coefficients in $\sum_{i=1}^n \mathbb{Z}\lambda_i$. The following formulas are obtained from Theorem 10.2.1 through routine computations.

Case 1: Suppose $S \cap \{1, n+1\} = \emptyset$. If $S \supset T \in \beta \mathbf{nbc}$, then

$$\nabla_{\lambda,s}'[\eta_T] = \sum_{k=1}^{\ell+1} \epsilon(T, S_k) \lambda_{S \setminus S_k} [\eta_{S_k}],$$

where $S_k = (i_1, \ldots, i_{k-1}, i_{k+1}, \ldots, i_{\ell+1})$ and $\lambda_{S \setminus S_k} = \lambda_{i_k}$ if $S = (i_1, \ldots, i_{\ell+1})$. Otherwise $\nabla'_{\lambda, s}[\eta_T] = 0$.

Case 2: Suppose $S \cap \{1, n+1\} = \{n+1\}$. If $S \supset T \in \beta$ nbc, then $T = S_{\ell+1} = S \setminus \{n+1\}$ and

$$\nabla'_{\lambda,s}[\eta_T] = -\left(\sum_{j\in[n]\setminus T} \lambda_j\right)[\eta_T].$$

If $T \in \beta \mathbf{nbc}$ with $|T \cap S| = \ell - 1$, then

$$\nabla'_{\lambda,s}[\eta_T] = -\epsilon(T, S_{\ell+1}) \lambda_{T \setminus S}[\eta_{S_{\ell+1}}].$$

Otherwise $\nabla'_{\lambda,s}[\eta_T] = 0$.

Case 3: Suppose $S \cap \{1, n+1\} = \{1\}$. If $S \supset T \in \beta$ nbc, then $T = S_1 = S \setminus \{1\}$ and

$$\nabla_{\lambda,s}'[\eta_T] = \left(\sum_{j \in S} \lambda_j\right) [\eta_T] - \sum_{\substack{T' \in \beta \mathbf{nbc} \\ |T \cap T'| = \ell - 1}} \epsilon(T, T') \lambda_{T \setminus T'} [\eta_{T'}].$$

Otherwise $\nabla'_{\lambda,s}[\eta_T] = 0$.

Case 4: Suppose $S \cap \{1, n+1\} = \{1, n+1\}$. If $T \in \beta$ nbc with $|T \cap S| = \ell - 1$, then $S \setminus \{1, n+1\} \subset T$ and

$$\nabla_{\lambda,s}'[\eta_T] = -\lambda_{T \setminus S}[\eta_T] + \lambda_{T \setminus S} \sum_{\substack{T' \in \beta \mathbf{nbc} \\ T \cap T' = T \cap S}} \epsilon(T, T')[\eta_{T'}].$$

Otherwise $\nabla'_{\lambda,s}[\eta_T] = 0$.

Example 10.3.1. Suppose that A is in general position with $\ell=2$ and n=4 shown in Figure 10.1.

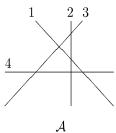
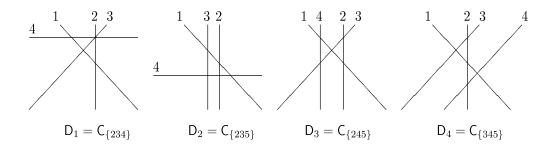


Figure 10.1: A Codimension Zero Arrangement

Write 123 for (1, 2, 3) etc. The boundary divisor $D = \overline{B}_{\mathcal{A}} \setminus B_{\mathcal{A}}$ has ten irreducible components shown in Figure 10.2. The connection matrices $\Omega_s(s = 1, ..., 10)$ in terms of the β **nbc** basis $\{[\eta_{23}], [\eta_{24}], [\eta_{34}]\}$, are given below.



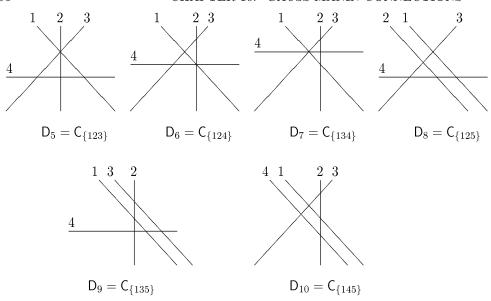


Figure 10.2: Ten Boundary Components

$$\Omega_{1} = \begin{pmatrix} \lambda_{4} & -\lambda_{3} & \lambda_{2} \\ -\lambda_{4} & \lambda_{3} & -\lambda_{2} \\ \lambda_{4} & -\lambda_{3} & \lambda_{2} \end{pmatrix} (Case1), \quad \Omega_{2} = \begin{pmatrix} -\lambda_{1} - \lambda_{4} & 0 & 0 \\ \lambda_{4} & 0 & 0 \\ -\lambda_{4} & 0 & 0 \end{pmatrix} (Case2), \\
\Omega_{3} = \begin{pmatrix} 0 & \lambda_{3} & 0 \\ 0 & -\lambda_{1} - \lambda_{3} & 0 \\ 0 & \lambda_{3} & 0 \end{pmatrix} (Case2), \quad \Omega_{4} = \begin{pmatrix} 0 & 0 & -\lambda_{2} \\ 0 & 0 & \lambda_{2} \\ 0 & 0 & -\lambda_{1} - \lambda_{2} \end{pmatrix} (Case2), \\
\Omega_{5} = \begin{pmatrix} \lambda_{1} + \lambda_{2} + \lambda_{3} & \lambda_{3} & -\lambda_{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} (Case3), \quad \Omega_{6} = \begin{pmatrix} 0 & 0 & 0 \\ \lambda_{4} & \lambda_{1} + \lambda_{2} + \lambda_{4} & \lambda_{2} \\ 0 & 0 & 0 \end{pmatrix} (Case3), \\
\Omega_{7} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -\lambda_{4} & \lambda_{3} & \lambda_{1} + \lambda_{3} + \lambda_{4} \end{pmatrix} (Case3), \quad \Omega_{8} = \begin{pmatrix} -\lambda_{3} & -\lambda_{3} & 0 \\ -\lambda_{4} & -\lambda_{4} & 0 \\ 0 & 0 & 0 \end{pmatrix} (Case4), \\
\Omega_{9} = \begin{pmatrix} -\lambda_{2} & 0 & \lambda_{2} \\ 0 & 0 & 0 \\ \lambda_{4} & 0 & -\lambda_{4} \end{pmatrix} (Case4), \quad \Omega_{10} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -\lambda_{2} & -\lambda_{2} \\ 0 & -\lambda_{3} & -\lambda_{3} \end{pmatrix} (Case4).$$

Using the notation in Theorem 10.2.2, we have

$$d' \begin{pmatrix} \int_{\sigma} \Phi_{\lambda} \eta_{23} \\ \int_{\sigma} \Phi_{\lambda} \eta_{24} \\ \int_{\sigma} \Phi_{\lambda} \eta_{34} \end{pmatrix} = \Omega \wedge \begin{pmatrix} \int_{\sigma} \Phi_{\lambda} \eta_{23} \\ \int_{\sigma} \Phi_{\lambda} \eta_{24} \\ \int_{\sigma} \Phi_{\lambda} \eta_{34} \end{pmatrix},$$

where Ω is the Gauss-Manin connection matrix given by

$$\Omega = \sum_{s=1}^{10} d' \log \mathsf{D}_s \otimes \Omega_s.$$

10.4 Codimension One

Suppose that the codimension of $\mathsf{B}_{\mathcal{A}}$ in $((\mathbb{CP}^{\ell})^*)^n$ is one. Then $\mathcal{J}(\mathcal{A}_{\infty}) = \{S\}$ for some $S \in \left(\binom{[n+1]}{\ell+1}\right)$. There are two cases : $n+1 \not\in S$ (Case A) or $n+1 \in S$ (Case B). By permuting the hyperplanes if necessary, we can assume that $S = (1, 2, \ldots, \ell+1)$ (Case A) or $S = (n-\ell+1, n-\ell+2, \ldots, n+1)$ (Case B). It is easy to see that the $\beta \mathbf{nbc}$ basis for $H^{\ell}(\mathsf{M_t}, \mathcal{L_t})$ is given by $\{[\eta_T] \in H^{\ell}(\mathsf{M_t}, \mathcal{L_t}) \mid T \in \beta \mathbf{nbc}\}$, where

$$\beta$$
nbc = { $(j_1, ..., j_\ell) | 2 \le j_1 < \cdots < j_\ell \ne \ell + 1$ } (Case A)

or

$$\beta \mathbf{nbc} = \{(j_1, \dots, j_\ell) \mid 2 \le j_1 < \dots < j_\ell, j_1 \ne n - \ell + 1\}$$
 (Case B).

We will express $\nabla'_{\lambda,s}[\eta_T]$, $T \in \beta \mathbf{nbc}$ as a linear combination of $\{[\eta_{T'}] \in H^{\ell}(\mathsf{M_t}, \mathcal{L_t}) \mid T' \in \beta \mathbf{nbc}\}$ with coefficients in $\widetilde{\mathbb{Q}[\lambda]}$. (It will turn out that all the coefficients lie in $\sum_{i=1}^n \mathbb{Z}\lambda_i$.) The following formulas are obtained from Theorem 10.2.1 through routine computations.

Case A: Let $S = (1, 2, ..., \ell + 1)$.

Type A.I: Let $\mathsf{D}_s = \mathsf{C}_{\{S,S'\}}$ for $S' \in \left(\binom{[n+1]}{\ell+1}\right)$ with $|S \cap S'| \leq \ell-1$ (Proposition 9.3.3 (iii)). In this case, $\Gamma(\mathsf{D}_s) = \{S,S'\}$ and $\mathrm{mult}(S',\mathsf{D}_s) = 1$ because the ideal $(\Delta_S,\Delta_{S'})$ is prime by Lemma 9.3.2 (ii).

Case A.I.1: Suppose $S' \cap \{1, n+1\} = \emptyset$. If $S' \supset T \in \beta \mathbf{nbc}$, then

$$\nabla'_{\lambda,s}[\eta_T] = \sum_{k=1}^{\ell+1} \epsilon(T, S'_k) \lambda_{S' \setminus S'_k}[\eta_{S'_k}],$$

where $S'_k = (i_1, \ldots, i_{k-1}, i_{k+1}, \ldots, i_{\ell+1})$ and $\lambda_{S' \setminus S'_k} = \lambda_{i_k}$ if $S' = (i_1, \ldots, i_{\ell+1})$. Otherwise $\nabla'_{\lambda,s}[\eta_T] = 0$.

Case A.I.2: Suppose $S' \cap \{1, n+1\} = \{n+1\}.$

If $S' \supset T \in \beta \mathbf{nbc}$, then $T = S'_{\ell+1} = S' \setminus \{n+1\}$ and

$$\nabla'_{\lambda,s}[\eta_T] = -\left(\sum_{j\in[n]\setminus T} \lambda_j\right)[\eta_T].$$

If $T \in \beta \mathbf{nbc}$ with $|T \cap S'| = \ell - 1$, then

$$\nabla'_{\lambda,s}[\eta_T] = -\epsilon(T, S'_{\ell+1}) \lambda_{T \setminus S'}[\eta_{S'_{\ell+1}}].$$

Otherwise $\nabla'_{\lambda,s}[\eta_T] = 0$.

Case A.I.3: Suppose $S' \cap \{1, n+1\} = \{1\}$. If $S' \supset T \in \beta \mathbf{nbc}$, then $T = S'_1 = S' \setminus \{1\}$ and

$$\nabla'_{\lambda,s}[\eta_T] = \left(\sum_{j \in S'} \lambda_j\right) [\eta_T] - \sum_{\substack{T' \in \beta \mathbf{nbc} \\ |T \cap T'| = \ell - 1}} \epsilon(T, T') \lambda_{T \setminus T'} [\eta_{T'}].$$

Otherwise $\nabla'_{\lambda,s}[\eta_T] = 0$.

Case A.I.4: Suppose $S'\cap\{1,n+1\}=\{1,n+1\}.$ If $T\in\beta nbc$ with $|T\cap S'|=\ell-1$, then $S'\setminus\{1,n+1\}\subset T$ and

$$\nabla'_{\lambda,s}[\eta_T] = -\lambda_{T \setminus S'}[\eta_T] + \lambda_{T \setminus S'} \sum_{\substack{T' \in \beta \mathbf{nbc} \\ T' \cap S' = T \cap S'}} \epsilon(T, T')[\eta_{T'}].$$

Otherwise $\nabla'_{\lambda,s}[\eta_T] = 0$.

Type A.II: Suppose $\ell \geq 2$. Let $\mathsf{D}_s = \mathsf{C}_{\langle S-p \rangle}$ where $p \in S = (1, 2, \dots, \ell+1)$, $S-p=S\setminus \{p\}$, and $\langle S-p \rangle = \{S' \in \left(\binom{[n+1]}{\ell+1} \right) \mid S' \supset S-p \}$. In this case, $\Gamma(\mathsf{D}_s) = \langle S-p \rangle$ and $\mathrm{mult}(S',\mathsf{D}_s) = 1$ for $S' \in \langle S-p \rangle$, $S' \neq S$, because the ideal $(\Delta_S,\Delta_{S'})$ is a radical ideal by Lemma 9.3.2 (i).

Case A.II.1: Suppose $p \neq 1$. If $T \in \beta \mathbf{nbc}$ with $|T \cap (S - p)| = \ell - 1$, then

$$\nabla_{\lambda,s}'[\eta_T] = \left(\sum_{j \in S-p} \lambda_j\right) [\eta_T] - \sum_{\substack{T' \in \beta \mathbf{nbc} \\ |T \cap T'| = \ell - 1 \\ |T' \cap (S-p)| = \ell - 2}} \epsilon(T,T') \lambda_{T \setminus T'} [\eta_{T'}].$$

Otherwise $\nabla'_{\lambda,s}[\eta_T] = 0.$

Case A.II.2: Suppose p = 1.

If $T \in \beta \mathbf{nbc}$ with $|T \cap (S-1)| = \ell - 1$, then

$$\nabla_{\lambda,s}'[\eta_T] = \lambda_{(S-1)\backslash T}[\eta_T] + \sum_{\substack{T' \in \beta \mathbf{nbc} \\ |T \cap T'| = \ell - 1 \\ T' \subset S \cup T}} \epsilon(T,T') \lambda_{T\backslash T'}[\eta_{T'}].$$

Otherwise $\nabla'_{\lambda,s}[\eta_T] = 0$.

Type A.III: Let $\mathsf{D}_s = \mathsf{C}_{\langle S+q \rangle}$ where $q \in [n+1] \setminus S = (\ell+2, \ell+3, \ldots, n+1)$, and $S+q=S \cup \{q\}$, and $\langle S+q \rangle = \{S' \in \left(\binom{[n+1]}{\ell+1}\right) \mid S' \subset S+q\}$. In this case, $\Gamma(\mathsf{D}_s) = \langle S+q \rangle$ and $\mathrm{mult}(S',\mathsf{D}_s) = 1$ for $S' \in \langle S+q \rangle$, $S' \neq S$, because the ideal $(\Delta_S, \Delta_{S'})$ is a radical ideal by Lemma 9.3.2 (i).

Case A.III.1: Suppose $q \neq n+1$. If $T \in \beta$ nbc with $T \subset S + q$, then

$$\nabla_{\lambda,s}'[\eta_T] = \left(\sum_{j \in S+q} \lambda_j\right) [\eta_T] - \sum_{\substack{T' \in \beta \mathbf{nbc} \\ |T \cap T'| = \ell-1 \\ |T' \cap (S+q)| = \ell-1}} \epsilon(T,T') \lambda_{T \setminus T'} [\eta_{T'}].$$

Otherwise $\nabla'_{\lambda,s}[\eta_T] = 0$.

Case A.III.2: Suppose q = n + 1. If $T \in \beta \mathbf{nbc}$ with $|T \cap S| = \ell - 1$, then

$$\nabla_{\lambda,s}'[\eta_T] = -\lambda_{T \setminus S} \sum_{\substack{T' \in \beta \mathbf{nbc} \\ T' \cap S = T \cap S}} [\eta_{T'}].$$

Otherwise $\nabla'_{\lambda,s}[\eta_T] = 0$.

Case B: Let $S = (n - \ell + 1, ..., n + 1)$.

Type B.I: Let $\mathsf{D}_s = \mathsf{C}_{\{S,S'\}}$ for $S' \in \left(\binom{[n+1]}{\ell+1}\right)$ with $|S \cap S'| \leq \ell - 1$. For this type, we have the exact same formulas as Case A.I.

Type B.II: Suppose $\ell \geq 2$. Let $\mathsf{D}_s = \mathsf{C}_{\langle S-p \rangle}$.

Case B.II.1: Suppose $p \neq n+1$. If $T \in \beta$ nbc with $|T \cap (S-p)| = \ell - 1$, then

$$abla'_{\lambda,s}[\eta_T] = -\left(\sum_{j \notin S-p} \lambda_j\right)[\eta_T].$$

If $T \in \beta \mathbf{nbc}$ with $|T \cap (S - p)| = \ell - 2$, then

$$\nabla_{\lambda,s}'[\eta_T] = -\sum_{\substack{T' \in \beta \mathbf{nbc} \\ |T \cap T'| = \ell - 1 \\ |T' \cap (S - p)| = \ell - 1}} \epsilon(T, T') \lambda_{T \setminus T'}[\eta_{T'}].$$

Otherwise $\nabla'_{\lambda,s}[\eta_T] = 0$.

Case B.II.2: Suppose p = n + 1.

If $T \in \beta \mathbf{nbc}$ with $|T \cap (S - (n+1))| = \ell - 1$, then

$$\nabla_{\lambda,s}'[\eta_T] = \lambda_{(S-(n+1))\backslash T}[\eta_T] + \sum_{\substack{T' \in \beta \mathbf{nbc} \\ |T \cap T'| = \ell - 1 \\ T' \subset S \cup T}} \epsilon(T,T') \lambda_{T\backslash T'}[\eta_{T'}].$$

Otherwise $\nabla'_{\lambda,s}[\eta_T] = 0$.

Type B.III: Let $D_s = C_{\langle S+q \rangle}$ where $q \in [n+1] \setminus S = (1, 2, ..., n-\ell)$.

Case B.III.1: Suppose $q \neq 1$.

If $T \in \beta \mathbf{nbc}$ with $T \subset S + q$, then

$$abla'_{\lambda,s}[\eta_T] = -\left(\sum_{j \notin S+q} \lambda_j\right)[\eta_T].$$

If $T \in \beta \mathbf{nbc}$ with $|T \cap (S+q)| = \ell - 1$, then

$$\nabla'_{\lambda,s}[\eta_T] = -\sum_{\substack{T' \in \beta \mathbf{nbc} \\ |T \cap T'| = \ell - 1 \\ T' \subset (S+q)}} \epsilon(T, T') \lambda_{T \setminus T'} [\eta_{T'}].$$

Otherwise $\nabla'_{\lambda,s}[\eta_T] = 0$.

Case B.III.2: Suppose q=1. If $T \in \beta \mathbf{nbc}$ with $|T \cap S| = \ell - 1$, then

$$|\mathbf{r}| = \mathbf{v} + \mathbf{j}$$
, then

 $\nabla_{\lambda,s}'[\eta_T] = -\lambda_{T \setminus S} \sum_{\substack{T' \in \beta \mathbf{nbc} \\ T' \cap S = T \cap S}} [\eta_{T'}].$

Otherwise $\nabla'_{\lambda,s}[\eta_T] = 0$.

We summarize Cases A and B.

Theorem 10.4.1. Suppose that $B = B_A$ has codimension one in $((\mathbb{CP}^{\ell})^*)^n$. Let $\mathcal{J}(\mathcal{A}_{\infty}) = \{S\}$, $D = \overline{B} \setminus B$ and $D = \bigcup_{s=1}^t D_s$ be the irreducible decomposition. Then

- (1) the logarithmic Gauss-Manin connection matrix Ω in Theorem 10.2.2 can be expressed as $\Omega = \sum_{s=1}^{t} d' \log \mathsf{D}_s \otimes \Omega_s$ such that each Ω_s has its entries in $\sum_{i=1}^{n} \mathbb{Z} \lambda_i$.
 - (2) The eigenvalues of Ω_s are:
- (i) $\sum_{j \in S'} \lambda_j$ with multiplicity one and the rest are zero (if $D_s = C_{\{S,S'\}}$ is of type I in Proposition 9.3.3),
- (ii) $\sum_{j \in S-p} \lambda_j$ with multiplicity $n-\ell-1$ and the rest are zero (if $D_s = C_{\langle S-p \rangle}$ is of type II), or
- (iii) $\sum_{j \in S+q} \lambda_j$ with multiplicity ℓ and the rest are zero (if $D_s = C_{\langle S+q \rangle}$ is of type III),

where we define $\lambda_{n+1} = -\lambda_1 - -\lambda_2 - \cdots - \lambda_n$.

(The explicit formulas for Ω_s are given above when $S=(1,2,\ldots,\ell+1)$ (Case A) or $S=(n-\ell+1,n-\ell+2,\ldots,n+1)$ (Case B).)

Proof. Although the β **nbc** basis depends on the linear order on \mathcal{A} , it is known [FT, 3.11] that two β **nbc** bases are connected by an integral unimodular matrix (without λ). Thus one can assume that $S = (1, 2, ..., \ell + 1)$ (when $n + 1 \notin S$) or $S = (n - \ell + 1, n - \ell + 2, ..., n + 1)$ (when $n + 1 \in S$). Use the above-mentioned explicit formulas for Cases A and B.

Example 10.4.2. Let $\ell = 2$, n = 4, S = (1, 2, 3) and $\mathcal{J}(\mathcal{A}_{\infty}) = \{S\}$. The arrangement is shown in Figure 10.3

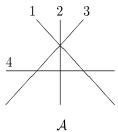
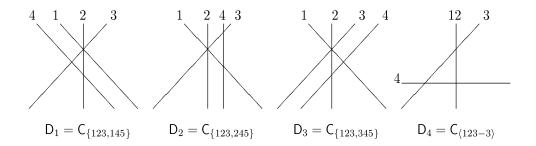


Figure 10.3: A Codimension One Arrangement

Write 123 for (1,2,3) etc. The boundary divisor $D = \overline{B}_{\mathcal{A}} \setminus B_{\mathcal{A}}$ has eight irreducible components shown in Figure 10.4.



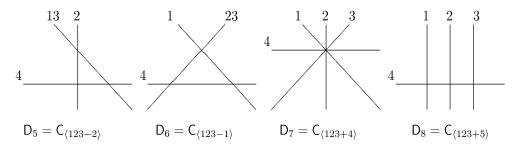


Figure 10.4: Eight Boundary Components

The matrices $\Omega_s(s=1,\ldots,8)$ in terms of the β **nbc** basis $\{[\eta_{24}], [\eta_{34}]\}$, are

$$\begin{split} \Omega_1 &= \begin{pmatrix} -\lambda_2 & -\lambda_2 \\ -\lambda_3 & -\lambda_3 \end{pmatrix} \text{(Case A.I.4)}, & \Omega_2 &= \begin{pmatrix} -\lambda_1 - \lambda_3 & 0 \\ \lambda_3 & 0 \end{pmatrix} \text{(Case A.I.2)}, \\ \Omega_3 &= \begin{pmatrix} 0 & \lambda_2 \\ 0 & -\lambda_1 - \lambda_2 \end{pmatrix} \text{(Case A.I.2)}, & \Omega_4 &= \begin{pmatrix} \lambda_1 + \lambda_2 & \lambda_2 \\ 0 & 0 \end{pmatrix} \text{(Case A.II.1)}, \\ \Omega_5 &= \begin{pmatrix} 0 & 0 \\ \lambda_3 & \lambda_1 + \lambda_3 \end{pmatrix} \text{(Case A.II.1)}, & \Omega_6 &= \begin{pmatrix} \lambda_3 & -\lambda_2 \\ -\lambda_3 & \lambda_2 \end{pmatrix} \text{(Case A.II.2)}, \\ \Omega_7 &= \begin{pmatrix} \lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 & 0 \\ 0 & \lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 \end{pmatrix} \text{(Case A.III.1)}, \\ \Omega_8 &= \begin{pmatrix} -\lambda_4 & 0 \\ 0 & -\lambda_4 \end{pmatrix} \text{(Case A.III.2)}. \end{split}$$

Using the notation in Theorem 10.2.2, we have

$$d' \begin{pmatrix} \int_{\sigma} \Phi_{\lambda} \eta_{24} \\ \int_{\sigma} \Phi_{\lambda} \eta_{34} \end{pmatrix} = \Omega \wedge \begin{pmatrix} \int_{\sigma} \Phi_{\lambda} \eta_{24} \\ \int_{\sigma} \Phi_{\lambda} \eta_{34} \end{pmatrix},$$

where Ω is the Gauss-Manin connection matrix given by

$$\Omega = \sum_{s=1}^{8} d' \log \mathsf{D}_s \otimes \Omega_s.$$

For an arbitrary arrangement $\mathcal{A} \in \mathcal{A}_n(\mathbb{C}^\ell)$ and $\mathsf{B} = \mathsf{B}_{\mathcal{A}}$, it seems to be difficult to find explicit matrix presentations for ∇'_{λ} . Based upon our result for the codimension one case, it might be natural to ask the following questions:

Question 1. Does each entry of the matrix Ω_s lie in $\sum_{i=1}^n \mathbb{Z}\lambda_i$? Question 2. Is B smooth?