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12 Applications to semilinear wave and Klein -

Gordon equations

12.1 Application to semilinear wave equation

In this Chapter we consider semihnear wave equation

(12.1.1) $\square u=F_{\lambda}(u)$

in $R^{n+1}$ . Here the nonlinearity $F_{\lambda}(u)$ is a $C^{1}$ function of $u$ for any real $\lambda>1$ so
that the following estimate

(12.1.2) $|(\frac{\partial}{\partial u})^{j}F_{\lambda}(u)|\leq C|u|^{\lambda-j} j=0,1$

is fulfilled for $u$ close to zero. Here the constant $C$ may depend on $j,$ $\lambda$ , but C. is
independent of $u.$ $A$ typical model is $F_{\lambda}(u)=|u|^{\lambda}$ . If $f,g\in C_{0}^{\infty}(R^{n})$ are fixed, we
shall consider the corresponding Cauchy problem for (12.1.1) with initial data

(12.1.3) $u(O,x)=\epsilon f(x), au(0,x)=\epsilon g(x)$ .

For $\epsilon>0$ small enough solutions of the Cauchy problem (12.1.1) and (12.1.3)
are called small amplitude solutions. Instead of fixing the functions $f,g$ and taking
$\epsilon>0$ small enough we could take initial data of the form

(12.1.4) $u(O,x)=f(x), au(0,x)=g(x)$

and assume that suitable Sobolev noms of the initial data are sufficiently small.
All results of this section $\infty uld$ be formulated for these small data solutions, but
for sake of simplicity we shall consider only the case of small amplitude solutions.

Our main goal then is to find, for a given $n$ , the sharp range of powers for which
one always has a global weak solution of (12.1.1), (12.1.3), if $\epsilon>0$ is small enough.

Note that, even in the linear case, where one solves an inhomogeneous equation
with a Lipschitz forcing term, in general one can only obtain weak solutions.

Let us now give some historical baCkground. In 1979, John [26] showed that
when $n=3$ global solutions always exist if $\lambda>1+\sqrt{2}$ and $\epsilon>0$ is small. He
also showed that the power $1+\sqrt{2}$ is critical in the sense that no such result can
hold if $\lambda<1+\sqrt{2}$ and $F_{\lambda}(u)=|u|^{\lambda}$ . It was shown sometime later by Schaeffer
[47] that there can also be blowup for arbitrarily small data in $(1+3)$-dimensions
when $\lambda=1+\sqrt{2}.$

The number $1+\sqrt{2}$ appears to have first arisen in Strauss’ work [53] on scatter-
ing for small-amplitude semilinear $Schr6dinger$ equations. Based on this, he made
the conjecture in [54] that when $n\geq 2$ global solutions of (12.1.1),(12.1.3) should
always exist if $\epsilon$ is small and $\lambda$ is greater than a critical power which is the solution
of the quadratic equation

(12.1.5) $(n-1)\lambda_{c}^{2}-(n+1)\lambda_{c}-2=0, \lambda_{c}>1.$



APPLICATION TO SEMILINEAR WAVE EQUATION 193

This conjecture was shortly verified when $n=2$ by Glassey [18]. John’s blowup
results were then extended by Sideris [49], showing that, for all $n$ , there can be
blowup for arbitrarily small data if $\lambda<\lambda_{c}$ . On the other hand, Zhou [64] showed
that when $n=4$ , in which case $\lambda_{c}=2$ , there is always global existence for small
data if $\lambda>\lambda_{c}$ . This result has recently been extended to dimensions $n\leq 8$ in
Lindblad and Sogge [33]. Here it was also shown that, under the assumption of
spherical symmetry, for arbitrary $n\geq 3$ global solutions of (12.1.1), (12.1.3) exist
if $\lambda>\lambda_{c}$ and $\epsilon$ is small enough. For odd spatial dimensions, the last result was
obtained independently by Kubo [30].

In [14] it is shown that the assumption of spherical symmetry can be removed.
Specffically, we have the following.

Theorem 12.1.1 Let $n\geq 3$ and assume that $F_{\lambda}$ satisfy $ing$ (12.1.2) is fixed with
$\lambda_{c}<\lambda\leq(n+3)/(n-1)$ . Then if $\epsilon>0$ is sufficiently small (12.1.2) has a unique
(weak) global solution $u$ verifying

(12.1.6) $(1+|t^{2}-|x|^{2}|)^{\gamma}u\in L^{\lambda+1}(R^{n+1})$ ,

for some $\gamma$ satisfy $ing$

(12.1.7) $1/\lambda(\lambda+1)<\gamma<((n-1)\lambda-(n+1))\prime 2(\lambda+1)$ .

Note that our condition on $\gamma$ only makes sense if $\lambda>\lambda_{c}.$

In Theorem 12.1.1 we have only considered powers smaller than the conformally
invariant power $\lambda_{conf}=(n+3)\prime(n-1)$ since it was already known that there is
global existence for powers larger than $\lambda_{conf}$ . (see [33]).

We shall prove Theorem 12.1.1 using the estimate of Theorem 11.1.2.
To do so let us first notice that by shifting the time variable by $R>0$ Theorem

11.1.2 yield
$\Vert((t+R)^{2}-|x|^{2})^{\alpha/2}u\Vert_{L^{q}(R^{n+1})}\leq$

(12.1.8) $\leq C\Vert((t+R)^{2}-|x|^{2})^{\beta/2}F\Vert_{L^{p}(R^{n+1})}$

for
$\frac{n-1}{2(n+1)}\leq\frac{1}{q}\leq\frac{1}{2},\frac{1}{p}=1-\frac{1}{q}$

$\alpha<n-1-\frac{2n}{q} \beta>\frac{2}{q}.$

Here $u$ is a solution of $\square u=F$ with zero initial data and $F$ is satisfying

$suppF(s, y)\subset\{(s, y);|y|\leq s+R-1\}.$

It is more convenient to use this equivalent version of the estimate from Theorem
11.1.2. The key step will be to use it to establish the following
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Lemma 12.1.1 Let $u_{-\iota}\equiv 0$ , and $form=0,1,2,3,$ $\ldots$ let $u_{m}$ be defined recursively

by requiring
$\square u_{m}=F_{\lambda}(u_{m-1})$

$u_{m}(0,x)=\epsilon f(x), au_{m}(0,x)=\epsilon g(x)$ ,

where $f,g\in C_{0}^{\infty}(R^{n})$ vanishing outside the ball of mdius $R-1$ centered at the

origin aoe fixed. Then if $\lambda_{c}<\lambda\leq(n+3)\prime(n-1)$ , fix $\gamma$ satishing

$\frac{2}{\lambda(\lambda+1)}<\gamma<\frac{(n-1)\lambda-(n+1)}{\lambda+1}$

and set
$A_{m}=\Vert((t+R)^{2}-|x|^{2})^{\gamma/2}u_{m}\Vert_{L^{\lambda+1}}(R^{n+1})$ ,

$B_{m}=\Vert((t+R)^{2}-|x|^{2})^{\gamma}(u_{m}-u_{m-1})\Vert_{L^{\lambda+1}(R^{n+1})}.$

Then there is an $\epsilon_{0}>0$ , depending on $\lambda F_{\lambda},$
$\gamma$ and the data $(f,g)$ so that for

$m=0,1,2,$ $\ldots$

(12.1.9) $A_{m}\leq 2A_{0}$ and $2B_{m+1}\leq B_{m}$ , if $\epsilon<\epsilon 0.$

Proof. Because of the support assumptions on the data, domain of dependence
considerations imply that $u_{m}$ , and hence $F_{\lambda}(u_{m})$ , must vanish if $|x|>t+R-1.$
It is also standard that the solution $u_{0}$ of the free wave equation $\square u_{0}=0$ with the
above data satisfies

$u_{0}=O(\epsilon(1+t)^{-(n-1)\prime 2}(1+|t-|x||)^{-(n-1)\prime 2})$ .

For example this estimate is established in [8] by the aid of Penrose confomal
transfom.

Using this estimate one finds that

$A_{0}\leq C_{0}\epsilon,$

for some uniform constant $C_{0}.$

To complete the induction argument let us first notice that for $j,m\geq 0,$ $u_{m+1}-$

$u_{j+1}$ has zero Cauchy data at $t=0$ and

$\square (u_{m+1}-u_{j+1})=V_{\lambda}(u_{m},u_{j})(u_{m}-u_{j})$ ,

where by (12.1.2),
$V_{\lambda}(u_{m},u_{j})=O((|u_{m}|+|u_{j}|)^{\lambda-1})$ .

Since we are assuming that

$\gamma<2n(1/2-1/q)-1$ , and $\lambda\gamma>1/q,$ $q=\lambda+1,$
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if we apply (12.1.8) with $\alpha=\gamma,$ $\beta=\gamma\lambda$ and H\"older’s inequality we therefore obtain
with $ q=\lambda+1,p=(\lambda+1)/\lambda$

$\Vert((t+R)^{2}-|x|^{2})^{\gamma\prime 2}(u_{m+1}-u_{j+1})\Vert_{Lq}$

$\leq C_{1}\Vert((t+R)^{2}-|x|^{2})^{\lambda\gamma/2}V_{p}(u_{m},u_{j})(u_{m}-u_{j})\Vert_{Lp}$

$\leq C_{1}(C_{2}(\Vert((t+R)^{2}-|x|^{2})^{\gamma/2}u_{m}\Vert_{L^{q}}+\Vert((t+R)^{2}-|x|^{2})^{\gamma\prime 2}u_{j}\Vert_{L^{q}}))^{\lambda-1}\times$

$\times\Vert((t+R)^{2}-|x|^{2})^{\gamma/2}(u_{m}-u_{j})\Vert_{L^{q}},$

for certain constants $C_{j}$ which are unifom if above $\lambda,$
$\gamma$ and $F_{\lambda}$ are fixed. Based

on this we conclude that

(12.1.10) $\Vert((t+R)^{2}-|x|^{2})^{\gamma/2}(u_{m+1}-u_{j+1})\Vert_{L^{q}}$

$\leq C_{1}(C_{2}(A_{m}+A_{j}))^{\lambda-1}\Vert((t+R)^{2}-|x|^{2})^{\gamma/2}(u_{m}-u_{j})\Vert_{Lq}.$

If $j=-1$ , then $A_{j}=0$ and hence we conclude that

$A_{m+1}\leq A_{0}+A_{m}/2$ if $C_{1}(C_{2}A_{m})^{\lambda-1}\leq 1/2.$

By the earlier bound for $A_{0}$ , this yields the first part of (12.1.9) if

$C_{1}(2C_{2}C_{0}\epsilon_{0})^{\lambda-1}<1\prime 2.$

If we take $j=m-1$ in (12.1.10), we also obtain the other half of (12.1.9) if this
condition is satisfied, which completes the proof.

Using the lemma we easily get the existence part of Theorem 12.1.1. If $\epsilon>0$ in
(12.1.3) is small and if $u_{m}$ are as above we notice from the second half of (12.1.9)
that $u_{m}$ converges to a limit $u$ in $L^{q}$ and hence in the sense of distributions. Since
(12.1.1) and the bounds for $B_{m+1}$ yield

$\Vert F_{\lambda}(u_{m+1})-F_{\lambda}(u_{m})\Vert_{Lp}=O(2^{-m})$ ,

and hence
$F_{\lambda}(u_{m})\rightarrow F_{\lambda}(u)$

in $L^{p}$ , we conclude that $u$ must converge to a weak solution of (12.1.1) which must
satisfy (12.1.6) by the bounds for $A_{m}$ . Since the proof of the bound for $B_{m+1}$

yields the umiqueness part, this completes our argument showing that the weighted
Strichartz estimates imply Theorem 12.1.1.

12.2 Application to semilinear Klein-Gordon equation

In this section we shall consider the Klein-Gordon equation

(12.2.1) $\square u-u=\pm u|u|^{\lambda-1}$
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in $R^{n+1}$ . If $g_{0},g_{1}\in C_{0}^{\infty}(R^{n})$ are fixed, we $shaU\infty nsider$ the corresponding Cauchy

problem for (12.2.1) with imitial data

(12.2.2) $u(O,x)=\epsilon g_{0}(x), au(0,x)=\epsilon g_{1}(x)$ .

It is easy to see that a combination between the energy identity

$\frac{1}{2}l|\nabla_{t,x}u(t,x)|^{2}dx+$

(12.2.3) $\frac{1}{2}l|u(t,x)|^{2}dx\pm\int\frac{|u(t,x)|^{\lambda+1}}{\lambda+1}dx=const$

and the Sobolev embedding

(12.2.4) $\Vert u(t, .)\Vert_{Lq}\leq C\Vert u(t, .)\Vert_{H^{1}}$

with $1\prime q=1/(\lambda+1)\geq(n-2)\prime 2n$ leads to unifom bound of $\Vert u(t, .)\Vert_{H^{1}}$ for $\epsilon>0$

small enough.
Hence, when $n=1,2$ we have no upper restrictions on $\lambda>1$ and when $n\geq 3$

we need
$\lambda\leq\frac{n+2}{n-2}$

so that for $\epsilon>0$ small enough we shall have a global (weak) solution

$u\in L^{\infty}((0, \infty):H^{1}(R^{n}))$ .

The key problem we shall discuss is the decay of the solution. We $shaU\infty ncen-$

trate our analysis to the case of space dimension $n=1,2,3.$

More precisely, our goal is to establish the following decay of the solution

(12.2.5) $|u(t, x)|\leq C(1+t+|x|)^{-n/2}$

for the solution of the semilinear Klein–Gordon equation.
To establish this type of decay we shall assume that the power $\lambda$ of the nonlin-

earity is strictly bigger than the critical value

$\lambda_{cr}=1+\frac{2}{n}.$

The main difficulty is the fact that singularity of the nonlinear tem is forcing
us to consider only weak solutions and therefore we have no right to differentiate
many times the equation (12.2.1).

Our main idea is to combine the Sobolev inequality on the hyperboloid with
curvature–l, see (9.2.10), together with the energy inequality on this hyperboloid,
see (4.3.10).

To apply this plan we shall derive higher order derivative estimate of type
(4.3.10) for the solution of the linear Klein–Gordon equation

(12.2.6) $\square u-u=-F.$
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Take any real number $\rho 0>1$ . The term

(12.2.7) $v=(1-\Delta_{X}-\Delta_{S^{n-1}})^{s\prime 2}u$

is a solution of the Klein-Gordon equation

(12.2.8) $\square v-v=-G, G=-(1-\Delta_{X}-\Delta_{S^{n-1}})^{\epsilon/2}F$

in the domain $\{t^{2}-|x|^{2}\geq\rho_{0}^{2}, t>0\}$ . Indeed writing the D’Alembert operator in
the form (8.2.9), $\square =-\partial_{\rho}^{2}-\frac{n}{p}\partial_{\rho}+\overline{\rho}^{V}1\Delta_{X}$ , we see that $(1-\Delta_{X}-\Delta_{S^{n-1}})^{s\prime 2}$ and $\square $

commute.
For any fixed $\rho>\rho 0$ we consider the hyperboloid

$X_{\rho}=\{t^{2}-|x|^{2}=\rho^{2}, t>0\}$

and our goal is to control the energy of $v$ over $X_{\rho}$ . Multiplying (12.2.8) by $-av,$

we obtain the identity

(12.2.9) $\sum_{\mu=0}^{n}\partial_{\mu}P^{\mu}=2G\partial_{t}v,$

where

(12.2.10) $\partial_{0}=a, \partial_{j}=\partial_{x_{j}}, j=1, \ldots, n$ ;

(12.2.11) $P^{0}=|\nabla_{t,x}v|^{2}+|v|^{2}, P^{j}=-2av\partial_{j}v, j=1, \ldots, n,$

$P^{0},$ $P^{j}$ are the components of the energy-momentum tensor. We integrate (12.2.9)
into domain

$D_{\rho,\rho 0}=\{(t,x)\in \mathbb{R}+\times \mathbb{R}^{n};t>0, \rho_{0}^{2}<t^{2}-|x|^{2}<\rho^{2}\}.$

Thus we get

(12.2.12) $\int_{\partial D_{\rho,\rho_{0}}}\sum_{\mu=0}^{n}\nu_{\mu}P^{\mu}(t, x)d\Sigma_{t,x}=\int_{D_{\rho,\rho_{0}}}2Gav(t, x)dxdt,$

where $\partial D_{\rho,\rho 0}$ is the boundary of the domain $D_{\rho,\rho 0},$ $v$ is the outward normal and
$\Sigma_{t,x}$ is the surface element with respect to the Riemannian metric. The boundary
$\partial D_{\rho,\rho 0}$ for $\rho>\rho 0$ consists of the hyperboloids $X_{\rho}$ and $X_{\rho 0}$ . For $(t,x)\in X_{\rho}$ we have

(12.2.13) $\nu=\nu(t, x)=(\rho^{2}+2|x|^{2})^{-1\prime 2}(\sqrt{|x|^{2}+\rho^{2}}, -x)$

while

$d\Sigma_{t,x}=\frac{\sqrt{\rho^{2}+2|x|^{2}}}{\sqrt{|x|^{2}+\rho^{2}}}dx.$



198 APPLICATIONS TO SBMILINEAR WAVE AND KLEIN $-$ GORDON EQUATIONS

Applying Lemma 4.3.1, with $\rho>t_{0}$ and $(t,x)\in X_{\rho}$ we get

$\int_{X_{\rho}}\sum_{\mu=0}^{n}\nu_{\mu}(t,x)P^{\mu}(t,x)d\Sigma_{t,x}$

$\geq l_{R^{n}}|v(\sqrt{\rho^{2}+|x|^{2}},x)|^{2}dx+\int_{R^{n}}\rho^{2}|\partial_{\rho}v(\sqrt{\rho^{2}+|x|^{2}},x)|^{2}\frac{dx}{\beta+|x|^{2}}$

(12.2.14) $\geq\rho^{n}\Vert u(\rho\cdot)\Vert_{H^{s,1/2}}^{2}(x)+\rho^{n}\Vert\partial_{\rho}v(\rho\cdot)\Vert_{L^{2}(X)}^{2}.$

Our next step is to estimate from above the term

$\int_{X_{\rho}}\sum_{\mu 0=0}^{n}\nu_{\mu}P^{\mu}(t,x)d\Sigma_{t,x}.$

From the representation fomula (12.2.11) we see that

$\sum_{\mu=0}^{n}\nu_{\mu}P^{\mu}(t,x)\leq C(|v(t,x)|^{2}+|\nabla_{t,x}v(t,x)|^{2})$ .

Using the relation

$(t^{2}-|x|^{2})a=t\rho 0\partial_{\rho}-\sum_{j=1}^{n}x_{j}Y_{0j},$

we see that for $(t,x)\in X_{\rho 0}$ we have

$|av(t,x))\leq C\nu_{0}(|\partial_{\rho}v(t,x)|+\sum_{j=1}^{n}|Y_{0j}v(t,x)|)$ .

In a similar way we get a more general inequality, namely we have

$|\nabla_{t,x}v(t,x))\leq C\nu_{0}(|\partial_{\rho}v(t,x)|+\sum_{j=1}^{n}|Y_{0j}v(t,x)|+\sum_{j,k=1}^{n}|Y_{jk}v(t,x)|)$ .

So we arrive at

$|\int_{X_{\rho_{0}}}(x)$

$C\Vert\partial_{\rho}u(\rho_{0}\cdot)||_{H^{s,3/2}(X)}^{2}.$

An application of the Gronwall inequality for the energy identity (12.2.12) (in

the same way as it was done in the proof of energy estimate (4.3.10) for Klein-

Gordon equation) gives

$\rho^{n\prime 2}\Vert u(\rho\cdot)\Vert_{H^{s,1/2}(X)}\leq C\Vert u(\rho_{0}\cdot)\Vert_{H^{s+1.1/2}}(x)$

(12.2.15) $+C\Vert\partial_{\rho}u(\rho_{0}\cdot)\Vert_{H^{s,S/2}}(x)+C\int_{0}^{\rho}\Vert F(\sigma\cdot)\Vert_{H^{s.1/2}}(x)\sigma^{n\prime 2}d\sigma.$
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Note that the constant $C$ in the above inequality might depend on $\rho_{0}$ , but when this
parameter varies in a bounded interval, the constant $C$ is uniform and independent
of $\rho.$

After small translation in time, namely $t\rightarrow t+t_{0}$ , where $t_{0}=1+R$ and $R$

is the radius of the ball containing the support of the initial data, we can assume
that the Cauchy problem for Klein-Gordon equation is given by (12.2.6) with the
initial data

(12.2.16) $u_{|t=t_{0}}=g_{0}, au|t=t_{0}=g_{1}$

are such that
$suppg_{0}\cap suppg_{1}\subset\{|x|<R\}$

and
$\Vert g0\Vert_{H^{*+1}}(\mathbb{R}^{n})+\Vert g_{1}\Vert_{H^{s}(\mathbb{R}^{n})}<\epsilon.$

For $F$ we assume that

(12.2.17) $suppF\subset\{|x|\leq t-1\}.$

Then a finite dependence domain argument for Klein-Gordon equation assures that

suppu $\subset\{|x|\leq t-1\}.$

To evaluate the weighted Sobolev nom

$\Vert u(\rho_{0}\cdot)||_{H+1,1/2}+\Vert\partial_{\rho}u(\rho_{0}\cdot)\Vert_{H}.,3/2$

we take $\rho 0>t_{0}$ and use the inclusion

$\{t^{2}-|x|^{2}=\rho_{0}^{2} , |x|\leq t-1\}\subset\{|x|\leq t-1,t_{0}\leq t\leq t_{1}\},$

where $t_{1}$ is chosen so that the intersection of $X_{\rho 0}=\{t^{2}-|x|^{2}=\rho_{0}^{2}\}$ with the cone
$\{|x|=t-1\}$ is contained in the plane $\{t=t_{1}\}$ , i.e.

$t_{1}=\frac{1+\rho_{0}^{2}}{2}.$

This argument shows that the restriction of the solution $u$ on the upper branch of
the hyperboloid $X_{\rho 0}$ has a compact support.

Using the property (9.2.5) in combination with Theorem 7.5.1, we get

(12.2.18) $\Vert u(\rho_{0}\cdot)\Vert_{H^{s,a}(X)}\leq C\Vert u(\rho_{0}\cdot)\Vert_{H^{s,0}(X)}$

and

(12.2.19) $\Vert\partial_{\rho}u(\rho_{0}\cdot)\Vert_{H,(X)}a\leq C\Vert\partial_{\rho}u(\rho_{0}\cdot)\Vert_{H^{s,0}(X)}$

for any positive number $a$ . Further, we shall establish the following.
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Lemma 12.2.1 For any integer $s\geq 0$ we have

$\sum_{|\alpha|\leq s+1}\Vert Y^{\alpha}u(\rho_{0}\cdot)\Vert_{L^{2}(X)}+\sum_{|\alpha|\leq s}\Vert Y^{\alpha}\partial_{\rho}u(\rho_{0}\cdot)\Vert_{L^{2}(X)}$

$\leq C(\rho_{0})\Vert go\Vert_{H^{s+1}}+C(\rho 0)\Vert g\iota\Vert_{H^{s}}$

$+C(\rho_{0})\Vert F\Vert_{H^{s}((t_{0},t_{1})\times R^{n})}.$

Proof. Let $|\alpha|=s$ . Then $v=Y^{\alpha}u$ is a solution of the Cauchy problem

$\square v-v=-G, G=Y^{\alpha}u,$

(12.2.20) $v(t_{0},x)=g_{\alpha}^{0}, av(t_{0},x)=g_{\alpha}^{1}.$

Taking the limit $\rho\rightarrow\rho 0$ in the energy estimate (4.3.10), we find

$ l_{\mathbb{R}^{n}}|v(\sqrt{\rho_{0}^{2}+|x|^{2}},x)|^{2}dx+l_{\mathbb{R}^{n}}\frac{\rho_{0}^{2}}{\rho_{0}^{2}+|x|^{2}}|\nabla_{t,x}v(\sqrt{\rho_{0}^{2}+|x|^{2}},x)|^{2}dx\leq$

$\leq C(\Vert g_{\alpha}^{0}\Vert_{H^{1}}^{2}+\Vert g_{\alpha}^{1}\Vert_{L^{2}}^{2})+$

(12.2.21) $+C(l_{t_{0}}^{t_{1}}(l_{\mathbb{R}^{n}}|G(\tau,x)|^{2}dx)^{1\prime 2}d\tau)^{2}$

For $(\sqrt{\rho_{0}^{2}+|x|^{2}},x)\in$ suppu and $\rho 0(\rho 0\geq t_{0}\geq 1)$ varying in a compact set we
see that $|x|$ is bounded and this observation leads to the estimate

$\int_{\mathbb{R}^{n}}|v(\sqrt{\rho_{0}^{2}+|x|^{2}},x)|^{2}dx+\int_{\mathbb{R}^{n}}\frac{\rho_{0}^{2}}{\rho_{0}^{2}+|x|^{2}}|\nabla_{t,x}v(\sqrt{\rho_{0}^{2}+|x|^{2}},x)|^{2}dx$

$\geq C\Vert u(\rho_{0}\cdot)\Vert_{H^{s+1}(X)}+C\Vert\partial_{\rho}u(\rho_{0}\cdot)\Vert_{H^{s}(X)}.$

To evaluate the Sobolev norms of the initial data, we take into account the relation

$v(t_{0},x)=(Y^{\alpha}u)(t_{0},x)=\sum_{|\beta|\leq|\alpha|}c\rho(t_{0},x)\partial_{t,x}^{\beta}u(t_{0},x)$
,

where $c\rho(t, x)$ is a polynomial in $t,$ $x$ of order $|\beta|$ . Using the relation $\partial_{t}^{2}u=\Delta u+F,$

we can compute the time derivatives of $u$ of order $\geq 2$ and in this way we obtain

the estimate

$\Vert v(t_{0}, \cdot)\Vert_{H^{1}(R^{n})}\leq C\Vert g_{0}\Vert_{H^{s+1}}+C\Vert g_{1}\Vert_{H^{s}}$

$+C\sum_{k=0}^{s-1}\Vert\partial_{t}^{k}F(t_{0}, \cdot)\Vert_{H^{s-k-1}(R^{n})}.$

Rom the Sobolev inequality (or the trace theorem) we have

$\Vert\partial_{t}^{k}F(t_{0}, \cdot)\Vert_{H^{s-k-1}}(R^{n})\leq C\Vert F\Vert_{H^{s}((t_{O},t_{1})xR^{n})}$



APPLICATION TO SEMILINEAR KLEIN-GORDON EQUATION 201

so we obtain the estimate

$\Vert v(t_{0}, \cdot)\Vert_{H^{1}\langle R^{n})}=\Vert g_{\alpha}^{0}\Vert_{H^{1}}\leq$

$\leq C\Vert g_{0}\Vert_{H^{s+1}}+C\Vert g_{1}\Vert_{H^{s}}+$

$+C\Vert F\Vert_{H^{s}((t_{0},t_{1})\times R^{n})}.$

In a similar way we have

$\Vert av(t_{0}, \cdot)\Vert_{L^{2}(R^{n})}=\Vert g_{\alpha}^{1}\Vert_{L^{2}}\leq$

$\leq C\Vert g0\Vert_{H^{s+1}}+C\Vert g_{1}\Vert_{H^{s}}+$

$+C\Vert F\Vert_{H^{s}((t_{O},t_{1})xR^{n})}.$

From these estimates and (12.2.21) we get the desired estimate.
This completes the proof.
The above Lemma implies that we have the estimate

$\Vert u(\rho_{0}\cdot)\Vert_{H^{s+1}}(x)+\Vert\partial_{\rho}u(\rho_{0}\cdot)\Vert_{H\cdot(X)}$

$\leq C(\rho_{0})\Vert g_{0}\Vert_{H^{s+1}}+C(\rho_{0})\Vert g_{1}\Vert_{H^{s}}$

(12.2.22) $+C(\rho_{0})\Vert F\Vert_{H^{s}((t_{0},t_{1})xR^{n})}$

for any integer $s\geq 0$ . Using an interpolation argument, we see it is true for any
non-negative real number $s.$

Combining the inequality (12.2.22) together with (12.2.15), we find

$\rho^{n\prime 2}||u(\rho\cdot)\Vert_{H^{s,1/2}}(x)\leq C\Vert g0\Vert_{H^{*+1}}+C\Vert g_{1}\Vert_{H^{s}}$

(12.2.23) $+C\Vert F\Vert_{H((t_{0},t_{1})\times R^{n})}+Cl_{0}^{\rho}\Vert F(\sigma\cdot)\Vert_{H^{s,1/2}}(x)\sigma^{n/2}d\sigma,$

where $\rho_{0}\geq t_{0}>1$ and $t_{1}=(1+\rho_{0}^{2})/2.$

On the other hand, the classical energy estimate (4.3.3) for the Klein-Gordon
equation gives

$\Vert u\Vert_{H^{s+1}((t_{0},t_{1})\times R^{n})}\leq C\Vert g0\Vert_{H+1}+C\Vert g_{1}\Vert_{H^{s}}$

(12.2.24) $+C\Vert F\Vert_{H^{s}((t_{0},t_{1})xR^{n})}.$

Now we can examine the asymptotic behavior of the weak solution $u(t, x)$ of
the semilinear Klein-Gordon equation (12.2.1).

For the purpose we shall study only the case $ t\rightarrow+\infty$ , since the case when $t$

tends $to-\infty$ is similar.
Proof of decay estimate for Klein- Gordon equation. After small trans-

lation in time, namely $t\rightarrow t+t_{0}$ , where $t_{0}=1+R$ and $R$ is the radius of the ball
containing the support of the initial data, we can assume that the Cauchy problem
for Klein-Gordon equation is given by (4.3.1) with $u,F$ supported in the light cone
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$\{|x|<t-1\}$ and the initial data (4.3.2), where $g_{0},g_{1}\in H^{s+1}(\mathbb{R}^{n})\times H^{s}(\mathbb{R}^{n})$ are
fixed and

$suppg0\cap suppg_{1}\subset\{|x|<R\},$

moreover
$\Vert g\Vert_{H^{s+1}(\mathbb{R}^{n})}+\Vert g_{1}\Vert_{H^{s}(\mathbb{R}^{n})}<e.$

Given any $s>n/2,$ $\rho 0\geq t_{0}$ and $\rho\geq\emptyset$ , we define the norm

$X(u)=X_{s,\rho}(u)=$

(12.2.25) $=\sup_{\rho 0\underline{<}\sigma\leq\rho}\sigma^{n\prime 2}\Vert u(\sigma\cdot)\Vert_{H^{s,1/2}}(x)+\Vert u\Vert_{H^{s+1}((t_{0},t_{1})xR^{n})}.$

We recall that $t_{1}=(1+\rho_{0}^{2})/2$ . Our goal is to evaluate the operator

$u\rightarrow N(u)$ ,

defined by
(12.2.26) $\square N(u)-N(u)=\pm|u|^{\lambda}$

with initial data

(12.2.27) $N(u)(t_{0}, x)=g_{0}(x), aN(u)(t_{0},x)=g_{1}(x)$

that satisfy $\Vert g0\Vert_{H^{s+1}}+\Vert g_{1}\Vert_{H^{s}}<\epsilon$ . We shall establish the estimates:

(12.2.28) $X(N(u))\leq C\epsilon+C(X(u))^{\lambda}$

(12.2.29) $X(N(u)-N(\omega))\leq CX(u-\omega)(X(u)+X(\omega))^{\lambda-1}$

It is important to notice that the constant $C$ in these estimates must be inde-
pendent of the parameter $\rho\geq t_{0}$ used in the definition of the nom $X(u)$ . In this
way these estimates lead to the existence of a unique solution of

(12.2.30) $u=N(u)$ .

In fact, taking the recurrent sequence

$ u_{-1}=0, u_{j}=N(u_{j-1}) , j=0,1,2, \ldots$

we apply (12.2.28) and we see inductively that

(12.2.31) $ X(u_{j})\leq C_{1}\epsilon$

where $C_{1}=2C$ and $0\leq\epsilon\leq\epsilon 0$ with $\epsilon 0=\epsilon_{0}(C_{1})$ sufficiently $smaU.$

Once the uniform estimate (12.2.31) is checked, we use (12.2.29) once more and
find

(12.2.32) $X(u_{j+1}-u_{j})\leq C\epsilon^{\lambda-1}X(u_{j}-u_{j-1})<\frac{1}{2}X(u_{j}-u_{j-1})$
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for $\epsilon\leq\epsilon_{0}$ sufficiently small. From (12.2.32) we get inductively

$X(u_{j}-u_{j-1})\leq\frac{C}{2^{j}}$

and we see that $\{u_{j}\}$ is a Cauchy sequence in the Banach space $\{u;X(u)<\infty\}$

converging to the unique sOlutiOn of (12.2.30).
Finally we see that

(12.2.33) $(1+t+|x|)^{n\prime 2}|u(t, x)|\leq CX_{s,\rho}(u)$

provided $\rho\geq\sqrt{t^{2}-|x|^{2}}$. Indeed, for $t+|x|$ bOunded this fOllows frOm classical
Sobolev inequality. FOr $t$ large enOugh $($say $t\geq t_{0}^{2})$ we can chOose $\rho=\sqrt{t^{2}-|x|^{2}}\geq$

$t_{0}$ and $\Omega=(t,x)\prime\rho$ . Then applying SObOlev embedding ffom (9.2.10), we get

(12.2.34) $\rho^{n\prime 2}\Omega_{0}^{n/2}|u(\rho\Omega)|\leq C\rho^{n/2}\Vert u(\rho\cdot)\Vert_{H^{s,1/2}}(x)\leq CX_{s,\rho}(u)$ .

This shows we have (12.2.33).
On the other hand, in view of (12.2.31), the nom $X_{s,\rho}(u)$ is umifomly bounded

with respect to $\rho$ ; we cOnclude

$|u(t, x)|\leq C(1+t+|x|)^{-n/2}$

in $\{|x|<t\}.$

Therefore, to Obtain the decay estimate (12.2.5) it remains only tO establish
(12.2.28), (12.2.29). For simplicity we shall obtain only (12.2.28), since the proOf
Of (12.2.29) is similar.

First, we apply the classical energy estimate (12.2.24) for the Klein-Gordon
equatiOn and find

$\Vert N(u)\Vert_{H^{e+1}((t_{0},t_{1})\times R^{n})}\leq C\Vert g0\Vert_{H^{s+1}}+C\Vert g_{1}\Vert_{H^{s}}$

$+C\Vert|u|^{\lambda}\Vert_{H^{s}((t_{O},t_{1})\times R^{n})}.$

From Lemma 6.6.1 and SobOlev inequality in $R^{n}$ , we get

(12.2.35) $\Vert N(u)\Vert_{H^{s}((t_{0},t_{1})\times R^{n})}\leq C\epsilon+CX(u)^{\lambda}.$

The next step is tO evaluate the first term Of our nom $X(u)$ . From (12.2.23) we
have

$\rho^{n/2}\Vert N(u)(\rho\cdot)\Vert_{H}.,1/2(x)\leq C\Vert go\Vert_{H^{s+1}}+C\Vert g_{1}\Vert_{H^{s}}$

(12.2.36) $+C\Vert|u|^{\lambda}\Vert_{H^{s}((t_{0},t_{1})\times R^{n})}+Cl_{0}^{\rho}\Vert|u(\sigma\cdot)|^{\lambda}\Vert_{H^{s,1/2}}(x)\sigma^{n\prime 2}d\sigma,$

Our assumption On the initial data guarantees that

$\Vert g_{0}\Vert_{H^{s+1}}+\Vert g_{1}\Vert_{H^{s}}\leq\epsilon.$
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As above we have

$\Vert|u|^{\lambda}\Vert_{H^{s}((t_{0},t_{1})\times R^{n})}\leq CX(u)^{\lambda}.$

Applying Theorem 9.2.2, we obtain

$\Vert|u(\sigma\cdot)|^{\lambda}\Vert_{H^{s,1/2}}(x)\leq C\Vert u(\sigma\cdot)\Vert_{H^{s,1/2}}(x)\Vert u(\sigma\cdot)\Vert_{L\infty(X)}^{\lambda-1}.$

A comparison with (12.2.34) shows that

$\Omega_{0}^{n/2}|u(\sigma\Omega)|\leq\frac{C}{\sigma^{n/2}}X_{s,\rho}(u)$ ,

$\sigma^{n\prime 2}\Vert u(\sigma\cdot)\Vert_{H^{s.1/2}}(x)\leq CX_{s,\rho}(u)$ .
Hence, we arrive at

$l_{\rho 0}^{\rho}\Vert|u(\sigma\cdot)|^{\lambda}\Vert_{H^{s,1/2}}(x)\sigma^{n/2}d\sigma\leq CX(u)^{\lambda}\int_{\rho 0}^{\rho}\sigma^{-(\lambda-1)n\prime 2}d\sigma.$

Our assumption that $\lambda>1+2\prime n$ implies that

$l_{\rho 0}^{\rho_{\sigma^{-(\lambda-1)n\prime 2}d\sigma<\infty}}$

so we have
$l_{\rho 0}^{\rho}\Vert|u(\sigma\cdot)|^{\lambda}\Vert_{H^{s,1/2}}(x)\sigma^{n\prime 2}d\sigma\leq CX(u)^{\lambda}.$

This observation leads to the estimate

$\rho^{n\prime 2}\Vert N(u)(\rho\cdot)\Vert_{H^{s,1/2}(X)}\leq C\epsilon+X(u)^{\lambda}.$

This estimate and (12.2.35) give (12.2.28) and completes the proof of (12.2.5).
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