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11 A priori estimates for the wave equation

11.1 Statement of the main weighted estimates for inhomo-
geneous wave equation

The representation of solution of the inhomogeneous problem (10.2.1) have been
expressed by the formula (10.2.21) involving the operator T},o. This is an operator
acting on functions f on X by the formula

Too (F)(Q) =

(n+1)/2 poo g
(1111 o |, s ry@an

Our main estimate for this operator is given in the following.

Theorem 11.1.1 Let p > 40 > 1 and f € S(X). Then for

n-—1 1 1 1 1
<2, =12
2n+1) " g~ 2" p q
we have the estimate
oA
(11.1.2) 1Tp,0 (F)llecx) < Cln(p/v)p—gllfllum,
where 1
A=1+B , B= "; .

Assuming the supports of u and F are in the light cone, we can use the coor-
dinates
p=( |z, =(t2)/r€ X,

and we can represent the LY—norm in the form have

oo 1/q
(11.1.3) Ip%ul La(ro+r) = ( /0 llp"u(p-)lliq(x)p"dp) -
Next step is to use the trivial inequality

(11.1.4) IFl|zemn+ry < C sgpop‘"“)/ | F(p )lLacx)
p

Thus the right side of (11.1.3) can be estimated from above by constant times

supp,,,.|.(n+1)/«+=||u(p Mzaex)
p>0
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From the representation formula (10.2.21) we see that the estimate (11.1.2) guar-
antees that

(11.1.5) lo%ullLemn+ry < C /0 lo?*¢ F(0.)l| 2o (x)do

provided & < B — (n+1)/g =n —1 —2n/q. Now application of the estimate

. (s ]
(11.1.6) /1 IF(p )llzexydp < Cllp*~ " HI/PHF|| L g
leads to the following estimate.

Theorem 11.1.2 Let u be a solution of the Cauchy problem (10.2.1) and let the
assumption

supp F(s,y)'C {(s,9); Iyl <s-1}
be fulﬁlled
Then the solution of (10.2.1) satzsﬁes the estimate

lp%ullLe(mrn+1) < C”PﬂF”LP(R"“)

for
n—1 1 1 1 1
— <<, Z=1-2Z
2n+1) "¢~ 2’ p q
2n 2
a<n—-1—-— ,8>-
q q

Remark: The above estimate was established in [14] by using Fourier integral
techniques. The proof of this estimate, we represent here, is based on the Fourier
transform on the hyperboloid. A similar idea was followed in [61].

11.2 Analytic family of operators associated with inhomo-
geneous wave equation

The solution of the inhomogeneous problem (10.2.1) can be expressed by the for-
mula (10.2.22), where T, , is an operator acting on functions f on X by the formula

Tpo (£)(Q) =
gl H1)/2 1% sin(X In(p/o))
(11.2.1) i /o 2207)) b (f)(@)ax.
Here P, is the spectral projection
Py(f )(Q)

(11.2.2) — le)|? /S R A@] Y w)d.
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In order to have a meaningful definition of the expression above we can choose
the function f to be compactly supported. Then the Fourier transform f A\ w)
shall be smooth in \,w. As we have seen in Theorem 3.2.2 this is not an essential
restriction for the application of this interpolation Theorem. To be sure that the
definition of this operator is correct we need also an uniform convergence of the
integral in A. To assure this convergence we can use the other generalization of
the Stein interpolation theorem represented in Theorem 3.3.2. Therefore we can
introduce the approximation operators

Too,e (f) (Q) =

(n+1)/2 oo g;
(11.2.3) ‘;(ﬂ—_l)ﬁ /0 sind h;(p/ %) p, (£)(@)e~=dA.

If we obtain the corresponding LP — L9 estimates with constant independent of
€ > 0, then the density argument represented in the proof of Theorem 3.3.2 will
complete the proof.

From (11.2.1) and the inverse formula for the Fourier transform on X we get

Tﬁw:f(’\, w) =

(n+1)/2 Aln e
(11.2.4) = sin( (p [9) f5, wye™e>.

To obtain L? — L? estimate we consider a suitable extention of the operator
T = Tp,0,c to a family of operators T; = T ,0,. defined by

(11.2.5) T.(f)=T (x, (\/ - (" - 1)2 _ Ax) f) .

Here x;()) is a function satisfying the properties
a) for any fixed A > 0 the function

z = xz(A)

is analytic in the strip Rez € [0, (n + 1) /2],
b) we have the relation
(11.2.6) x1(A) =1,

c) one can find positive constant D = D(p, o), independent of € > 0 so that

(11.2.7) "‘( ) sin(Aln(p/o))

< D(p, 0),
for Rez = 0 and for d(%, Q’) > 6 > 0 we have

‘/ x:) @, @) sin(Aln(p/o))e*d| <

(11.2.8) < D(p,0)e~ "~ 1)/2
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for Rez = (n 4 1)/2. Here r = d(Q, Q).

Later on we shall see that these requirements are sufficient to derive suitable
L? — L7 estimate on the hyperboloid X for the operator T = T}, ,. Now we can see
how to choose the function x;(A). For this we need more information about the
asymptotic behavior of the spherical function

‘P'\(Qa )=
(11.29) = Ic(A)I‘2/ [, A(w)] "2~ (D2 [, A(w)] A (m= D 2,
Sn—1

A suitable change of w—variables in (11.2.9) shows that
e (92, QI) = <p>‘(gQ,gQ')

for any g € SO(1,n) so :
©x (92, Q’)

is a function of the distance d(f2,Q’) between the points  and ©’. Then formula
(8.3.9) imply with r = d(Q, ')

(11.2.10) PA(r) = caleW)|2L3(r),

where
L} = (shr)~ (=272 0 B/% (chr),

Further, lemma 8.5.2 shows that for n > 3 odd we have
(11.2.11) oa(r) = cn($3,)(",_l)/2 008 A

This representation formula for » > § > 0 gives

1 - iAT —tAr
I‘P/\(T) _W_A(n 1)/2(C+ezA +ec_e i )I

(11.2.12) < Ce—r(n—l)/2A(1 +/\)(n—5)/2.

On the other hand, for n > 2 even Lemma 8.5.3 guarantees that a similar estimate
is valid too. In fact, we have the following representation of the spherical function

ea(r) =
n/2

where the functions P ,(s) and all derivatives of these functions with respect to
s are bounded from above by constant times e~""/2, It is clear that the spherical
function is a linear combination of integrals of type

Pk,r(.e)('izc (cos(As))ds,

Py, (s)eiu‘ds

)‘k/‘“’ shs
r +/chs —chr
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with k = 1,...,n/2. Take a cut-off function ¢(s) € Cg° so that 1(s) =1 for |s| < 1.
Then using an integration by parts, we reduce the analysis of the spherical function
to the following oscillatory integrals

(s <]
k shs _ +ils
A [ T chrz/)(s 7) Py, r(8)e™""ds.

Making the change of variables s & 7 = /s — r and applying the stationary phase
method, we obtain

"PA("') _ sh—(n—-l)/ZTA(n—l)/2(C+(r)eiAr +ec_ (r)e—iAr)l
(11.2.13) < Ce~rr=1/2)(1 4 \)(*=5)/2,

Here the functions ¢4 (r) are uniformly bounded.
Now choosing

(11.2.14) xe(A) = d(z — (n +1)/2) e (1 + X)),
we see that the requirement (11.2.6) is fulfilled for

1

d=-tm-D/2

Further, the inequality (11.2.7) is satisfied with
D(p,0) = C (1 +1n(p/2)).

Finally, from (11.2.12) and (11.2.13) we conclude that the inequality (11.2.8) is
fulfilled too.
It is clear that

Tzlpia)ef(A’ w) =

o(™*t1/2 gin(X In(p/o)) _, 2
(11.2.15) =173 ( ,\(p /7)) N (A, w).

For Rez = Q we have

o.(n+1)/2

(11.2.16) Tepoaf )| < D6 0) Sz f )l

where D(p,0) is the constant from (11.2.7) (modulo multiplier independent of
p,0,€). Now the Plancherel identity (8.4.19) implies that

(n+1)/2
o
(11.2.17) ITxp.0, fllzzex) < Dlps o) Z=gyza I fllzzcx)-
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For Rez = (n+1)/2 we shall derive estimate for the kernel K, , - (€2, Q') defined
by the identity

(11.2.18) | T,,,,,,(f)(ﬂ) = /x K,,p,,(ﬂ,ﬂ’)f(ﬂ')dﬂ’.
Then we have
K, ,+(9, Q’) =

’ o +1)/2 £ gin(\ In(p/c
2y =Ty [7 AR, e, @ 20

Since the estimates (11.2.12) and (11.2.13) require d(2, Q') > § > 0, we need a
suitable decomposition of the operator T of type

Tz = Sz + Zz, ’
where the kernel of the operator S, is supported into

(@, Q) € X x X;d(Q, Q) > 6}.

11.3 Partition of unity on the hyperboloid

Our starting point in this section is the following property of the flat Euclidean
space R™. For any space dimension n > 1 one can find an universal constant
N = N(n) so that for any positive R > 0 one can find a covering {Ua} of R" with
the properties:

a) diamU, < R,

b) any family of N + 1 elements of the covering has empty intersection.

The index a in the above covering is varying in a metric space A. For example,
we can take A C Z* with usual distance d(c,3) = |a — 3| between any two
multiindices a, 3.

A covering {U,}, satisfying the property a) is called R— covering. So the above
property means the existence of a finite integer N = N(n) so that for any R > 0
one can find R—covering so that any family of N + 1 elements of the covering has
empty intersection.

For example, we can take N(n) = n. Sometimes the above property has the
meaning that the topological dimension(defined as the minimal number N in the
above property) of R" is n.

The above property has the following consequence.

Lemma 11.3.1 There ezists a number b(n) > 0 so that for any real number R > 0
there is a covering of R™ formed by a family {U.} of open connected domains in
R"™, so that

(11.3.1) d(Ua,Ug) > R when p(a,fB) > b,

(11.3.2) diam(U,) < R



186 A PRIORI ESTIMATES FOR THE WAVE EQUATION

Here
d"1,Y2) = inf _ d(y1,92)

y1€Y1,12€Y2

for any couple of subsets Y; and Y2 of R™, d(y1,¥2) is the usual distance , while

diam(Y) = sup d(y1,%2).
ylsy2ey

Our main goal in this section is to verify a corresponding property for the case
of manifold of constant negative curvature —1. It is clear that the main difficulty
is the fact that the metric is a Riemannian metric different from Euclidean.

Our construction of the covering shall be explicit.

Thus we want to construct a suitable partition of unity on the hyperboloid

X ={QeR™; [Q, 9 =1, Q > 0}.

having the same properties a) and b).

The covering we are looking for is {Do} and again the index a is varying in a
metric space A.

Then we want to find an integer b so that for any real number R > 0 there is a
covering of X formed by the family {Dq.} of open connected domains in X, so that

(11.3.3) d(Da,Dg) > R when p(a,8) > b,
(11.3.4) - diam(Ds) < R
Here
d(Y1,Y2) = inf _ d(y1,92)

y1€Y1,¥2€Y2

for any couple of subsets Y; and Y2 of the hyperboloid X, d(y,y2) is the distance
on the hyperboloid X, while

diam(Y) = sup d(y1,¥2).
vi1,¥2 GY

If the above conditions are checked, then one can choose suitable N = N(b),
independent of R, so that any family of IV 4+ 1 elements of the covering has empty
intersection.

A more explicit construction of a covering satisfying the above requirements is
given below.

Namely, given any real R > 0 and any nonnegative integer m we consider the
set
(11.3.5) Dn(R)={Q€ X;(m-1)R/4<d(Q,Q") < (m+1)R/4},

where Q* = (1,0,...,0). Then it is clear that these open sets form a covering of X
so that the property (11.3.3) is fulfilled and at most 3 sets of the covering have
nonempty intersection. It is clear also that the diameter of Do(R) and D,(R) is
not greater than R so (11.3.4) is fulfilled for these sets. To arrange the property
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(11.3.4) for the sets Dy, (R) with m > 2, we shall make a more refined covering of
each D,,(R) by means of balls of type

(11.3.6) Dpi(R) = {Q € X;d(R, 2m,) < R/2},
where |
(11.3.7) Qm,1 = (ch(mR/4),wish(mR/4)),

and w; are suitable points on the unit sphere S*1.
Our goal is to find an universal number b = b(n) so that for any R > 0 one can
choose the points w;, so that

(11.3.8) d(Dm,1, Dm,y) > R when |I—1| > b,

(11.3.9) diam(Dm,;) < R

Let us formulate more precisely the corresponding assertion.

Lemma 11.3.2 Let n > 2. There ezists an integer b = b(n), so that for any real
number R > 0 and any integer m > 2 one can find a real number § = §(R,m) > 0
and a finite number M (R, m) of points w;,l = 1,...,M on the unit sphere so that
the balls Dr1(R) defined in (11.8.6) cover

(11.3.10) Dm(R)={Q€ X;(m—1)R/4<d(2,Q%) < (m+1)R/4}

and the properties (11.3.8), (11.8.9) are fulfilled for this choice of b and R.
Proof. Any point on Dy, (R) can be represented as

(11.3.11) Q = (chr, wshr),

where w € S"! and r satisfies the inequalities

(11.3.12) (m—-1)R/4A<r<(m+1)R/A.

Having in mind the assertion of Lemma 11.3.1, we see that our goal is to find
so small § = (R, m) > 0 and a finite number of points w;,l = 1,..., M on the unit
sphere so that the balls Dy, ;(R) with radius R and centers

(11.3.13) Qm,; = (ch(mR/4), wish(mR/4)),

with [ =1,..., M form a covering of D, (R). This means that for any Q € X of the
form (11.3.11), satisfying (11.3.12), one can find

wi, l= 1,...,M,

so that
d(Q,0m,) <R
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or equivalently

(11.3.14) [, Qm,] < chR.

Since 2
[Q, Q'm,l] = Ch(r - mR/4) <+ Sh‘l'sh(mR/4) |w _2wl| :

from (11.3.12) we see that (11.3.14) follows from

2
o —wil* < G TR enmR ) (F ~ ch(E/4).

This observation and Lemma 11.3.1 show that for suitable small § = §(R,m) > 0
we can find w;,l = 1,..., M on the unit sphere so that the conclusions of the Lemma
are true.

Remark. One can also verify that

MEm =0 (G

Therefore, the integer M(R, m) can grow to oo as R grows to co.

The above Lemma shows that the set A = A(R) of indices for the domains D,
from (11.3.3) is included in Z x Z so the corresponding metric is induced by the
Euclidean metric on Z x Z. More precisely, we have

A(R) = {(m’l)al = 11 ’M(Ra m)},

where M(R,m) is chosen according to Lemma 11.3.2. Moreover, for a = (m,1) €
A(R) and o' = (m/,l') € A(R) we have

ple,0') =|m —m/|+ |l =]

For the covering {Da;a € A(R)} of X we can consider the corresponding
partition of unity

(11.3.15) 1= ) ka(9),

acA(R)

where k. (f2) are smooth non-negative functions supported in D,.
Further, we make the following decomposition of the operator T,

(11.3.16) Tz = Sz + 22,

where

(11.3.17) Se= Y, KaTekar
p(a,a’)>b

Here the number b > 0 is chosen according to (11.3.3). The operator X, evidently
is defined by

(11.3.18) Ti= Y. KaTiKar
pla,a’)<b
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Our next step is to localize the estimate (11.2.17). Namely, using the fact that

> lkafliZace,

ac€A(R)
from (11.2.17) and the definition (11.3.18) of the operator ¥, we get for Rez = 0

(n+1)/2

o
(11.3.19) 122 fllz2xy < D(p, U)W”f”ﬁ(x)
and hence

a.(n,+1)/2
(11.3.20) IS fll2(x) < D(P,'U);(n—_f)'/'{“fllm()r)
for Rez = 0.

On the line Rez = (n + 1)/2 we use the representation formula (11.2.19) for
the kernel K, of the operator T;. Therefore, applying the estimate (11.2.8) for the
kernel ' :

Y KaK(Q,Q)ka

p(a,a’)>b
of the operator S, we obtain

a.n

(11.3.21) ISz fllLe(x) < D(p,0) P Il £l (x)

for Rez = (n+1)/2.
Making interpolation (see Theorem 3.3.2) between (11.3.20) and (11.3.21) , we
find '

A
o
(11.3.22) 1S1£llLe(x) < D(p, O')p—B”f”LP(X)
with
1_n-1 1_, 1_ n+3
g 2(n+1)p ~ g 2n+1)
and

(n-1)(n+3) n-1
A =B 1 B - = .
th 2(n+1) p
To obtain L9 — L” estimate for the operator ¥; we use the representation formula
(10.2.2) and conclude that the kernel of the operator X; is

(11.3.23) Y Ka(Q)kar () En-1)/2(pQ — o)™,
p(a,a’)<b

where E.(t,z) is the distribution introduced in (10.1.13).
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Now we can choose the parameter R > 0 used in the construction of the partition
of unity {kq}. Namely, let the integers N and b from the beginning of this section
are fixed. Since for fixed a the set of indices o’ satisfying

ple,a’) < b
is finite, one can find C = C(b) so that
d(Da, Da') S C(b)R

for p(a,a’) < b. Now for p > 40 > 1 we take R = R(p,0) so that

CB)R=In (3%)
?(;1.3.24) d(Da,Dar) < In (-:;-’i;)

for p(e,a’) < b.

First, we consider the case n > 3 odd. In this case the representation formula
(10.1.23) and (10.1.22) show that the distribution E(,_1)/2(¢,z) is supported in
the cone t? — |z|2 = 0. On the other hand, from (11.3.24) we have

[P — o, pQ — o] = p% + 0% — 2p0(Q, V'] >

p P

L s F
30 — 3

for p(a, ') < b. Hence, the kernel in (11.3.23) is identically 0 for the case n > 3
odd. For the case n > 2 even the above observation shows that the kernel in
(11.3.23) is a classical function with absolute value dominated by constant times

(11.3.25) > p? + 0% - 2p0

(11.3.26) > Ka( @Ko ()p~ P Do"

pla,a’)<d

so we have
(11.3.27) IZ1fllLee(x) <C

a.n
= | fll L2 (xy-

On the other hand, from (11.2.4), the estimate

sin(x In(p/2) | < Cla(p/o)

and the Plancherel identity on X we obtain

on+1)/2
(11.3.28) I fllz2(x) < Cm(p/a)WIIfIle(x)-
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Using the argument to extract the localized version (11.3.20) of the estlmate
(11.2.17), we can write the following local version of (11.3.28)

(n+1)/2
(11.3.29) 121 110e) < Clalo/o) Ty 2y

Making an interpolation between (11.3.27) and (11.3.29) we get

A
o
(11.3.30) , HzlfllmmSD(p,a)p—BllfIlu(X)
with
i_n-1 1_, 1_n+3
g 2(n+1)’'p~ g 2(n+1)
and 24 dn =1 (n-1)(n+3) _n-1
n+4n — n—1)(n+ n-
A=—"—_""__=B+1, B= = .
2(n +1) +; 2(n+1) P

From this estimate, (11.3.22) and the decomposition T, = S, + T, we arrive at

A
g
(11.3.31) 1Ty flizexy < D(p, a)h—BIIf |2 (x)

Finally, an interpolation between this estimate and (11.3.28) gives the conclusion
of Theorem 11.1.1.
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