96 WEIGHTED SOBOLEV SPACES ON FLAT SPACE

7 Weighted Sobolev spaces on flat space

7.1 Abstract localized norms

Definition 7.1.1 Let A be a Banach space with norm || - ||4. A Paley-Littlewood
partition of identity (PL partition for short) is a sequence m = {m;};>0 of bounded
operators on A such that: the series 2j>0 m; converges strongly (i.e., pointwise)
to the identity operator on A, and in addition there exists an integer N > 1 such
that

(7.1.1) wjmg =0 for |j—k| > N.

Remark 7.1.1 We shall frequently encounter the following situation: we have two
real valued functions ¢(z) and ¥ (z) defined on some domain D, so that there ezists
a constant C > 0 such that for allz € D

(7.1.2) C'¢(z) < ¥(z) < Co(a).

In such cases we shall say that ¢ and ¢ are equivalent on D, and we shall write
(7.1.3) 8(z) ~ ¥(z)

forz € D.

Example 7.1.1 Let {¢;};i>0 be a Paley-Littlewood partition of unity on R", i.e.,
a sequence ¢; € C°(R"™) such that ¢; >0, Y ¢; =1, and

(7.1.4) suppgo C {|z| <2},  supp¢; C {27! <] <2H'} j>1

More precisely, fiz an arbitrary nonnegative 3 € CP(R"), 0 < ¢ < 1, equal to 1
on the ball B(0,1/2) and vanishing outside B(0,1), and define

(7.1.5) ¢(z) = $(z/2) = ¢(z), ¢o(z) =¥(z/2), ¢5(z)=¢(2z), j 2 1.

This gives a partition of unity satisfying 7.1.4, and we shall call it a (standard)
Paley-Littlewood partition of unity (PL partition for short).

We remark that if we choose A = LP(R"™), p € [1,00], and definen;j : A — A as
the multiplication operator by ¢; then m = {n;} is a PL partition of identity in the
sense of Definition 7.1.1. Moreover, it satisfies the following important property,
which will be used several times in the sequel: for any 1 < p < c©

(7.1.6) lullZommy ~ D_ 1650l E0(mey
Jj20

and similarly
lull Loo ) ~ sup [|@;ull oo (mn)-
Jj20
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The second relation is obvious. On the other hand, for p < oo we have

2p—1 = Z¢J(z d < 1

_7>O

since, at each z € R", at most 2 of the functions ¢; do not vanish. This implies

. / lufPdz < / " gsulPdz < / lu|Pdz
and noticing that | ‘
| / S lgsuldz =3 / \bjulPdz
by monotone convergence, we obtain 7.1.6.

In the sequel wé shall need the following technical

Lemma 7.1.1 Assume {/\J}j:i o 18 a two sided sequence of nonnegative real num-
bers, and let {A;};j>0 be a sequence of positive real numbers such that for some
Co>0andall j k>0

(7.1.7) ; > Ardk—n < CoAg, Z

h>0 h>0

Ah —. AJ
Then for all g € [1,00], for any sequence {a;};>0 of complez numbers,
.
(7.1.8) ZA.?lZAk_jak‘ ) S Cg ZAg'aﬂq
320 k20 320

and also (“g= ")

(7.1.9) sup A; lz /\k_Jak} < Cosup Ajla;].
Jj20 k>0 j20

Proof. Let T be the operator acting on sequences of C

(7.1.10) T({ar}) = {b;}, b =A; Z

k>0

ak, J20.

The operator T is easily seen to be bounded on £°°; indeed, by the second property
in (7.1.7),

Ak—j

I GouDllem ~ s ] 3 2

k>0

akI <

Ak—i
7.1.11 < sup |ag| - sup A; g <
(7.1.11) < supax| -sup Jg) A
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Notice that, when applied to the sequence Axak, this proves (7.1.9). Moreover, T
is bounded on £!; indeed, using the first property in (7.1.7) we have

IT{exDlles ~ 3 A5 —-ak|

i20 k0

a
<SS A <G Y ok
k>0 i>0 k>0

Now, by the Riesz-Thorin interpolation theorem (see e.g. [2]), we see that T is a
bounded operator on £9 for all ¢ (1 < g < o), with norm not greater than Co;
this gives the inequality

(7.1.12) (el ~ A2 e < 8 Y axl®.

i>0 k>0 k>0

If we apply (7.1.12) to the sequence Axax we obtain (7.1.8).

We are now ready to prove an abstract localization lemma, which in the next
section will be applied to produce several equivalent norms on weighted Sobolev
spaces.

Lemma 7.1.2 (localization lemma) Let A, B be Banach spaces with norms
|- lla, || - |8, endowed with PL partitions of identity {n;} and {px} respectively,
with the same integer N from Definition 2.1, and assume F : A — B is an in-
vertible isometry. Let {z\J T or 1A }i>o be two nonnegative sequences satisfying
(7.1.7) and the following additional property: for some C1 > 0

(7.1.13) Aj S Ci1A for |j—k| < N.
Finally, assume that for some C2 > 0 and all j, k
(7.1.14) | F pelluce) + I FreF sy < Cadeos.
Then the following equivalencies of norms hold on A:
1/q 1/q
(7.1.15) (ZA ”kau”B) ~ (ZAgllFﬂjull}’a) y  g€[1,00]
k>0 3>0

(7.1.16) sup ||pxFul|g ~ sup | FrjulB.
k>0 i>0

Proof. Using ) px = I and the property (7.1.1) we can write

(7.1.17) Fw,u—ZFWJF ka'u.—Z Z Fr;F 'pyppFu.
k |L—K|<N
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Hence, by (7.1.14) and (7.1.13),

IFrjulls <C2 3" 3 AejllpeFulls < (2N+ G0 Z)‘k—J”PkF“’”B
k |e—k|<N

Thus we can apply Lemma 7.1.1 to the sequence ax = ||pxFul|g, and we obtain
easily

(7.1.18) > AlFrjulll < C Y AlllpeFulk,

which is the first inequality to prove (the case ¢ = oo is analogous). The reverse
inequality is proved in a similar way, writing

(7.1.19) peFu=Y_ Y pFmnF'Fru.
J |i—-¢<N
7.2 Localized Sobolev norms and weighted spaces

Notation 1 In the following we shall frequently use the operators A* = (1—A)*/2,
s € R, defined as
(7.2.1) A’y =F~1{¢)*Fu,

where (€) = (1 + |€]?)'/2 and F : L2(IR") — L?(R") is the Fourier transform.

Remark 7.2.1 In the sequel we shall exclusively use the complex interpolation in
the sense of Chapter 4 of [2]. We recall briefly the definition already introduced in
the previous Chapter 6. Given a couple A = (Ag, A1) of Banach spaces embedded
continuously in a common Hausdorff topological vector space, let Q) be.the complex
strip 0 < Re z < 1, and denote by F(A) the space of functions bounded and
continuous on  and holomorphic on Q, with values in Ag+A1, such that ||F(iy)| 4,
and |F(1 +iy)||a, are bounded for y € R. F(A) is a Banach space with the norm

Ifllr = sgp[IIF(iy)lle +IF(1+iy)lla,]-

Then Ag = (Ao, A1)s, 0 < 6 < 1, is defined as the Banach space of values {f(0)}
with f € F(A), endowed with the norm

lullas = inf{||f|l» : f € F, £(6) = u}.

7.3 The generalized Sobolev spaces

To give a first example of localized norms we shall consider the spaces
(7.3.1) ‘ H; = H,(R"), seR, pel,o00,

also denoted by L} (IR"), whose norm is defined as follows:

(7.3.2) lullrg = 1A®u] .



100 WEIGHTED SOBOLEV SPACES ON FLAT SPACE

As usual H is defined as the space of all tempered distributions u such that
A’u € L” and the above norm is finite. These spaces are well studied; see e.g. [2],
[59], [62]. We list a few properties of these spaces, whose proofs can be found in
the given references or in the previous Chapter 6.

1. If s > 0 is an integer and 1 < p < oo, then Hj coincides with the usual
Sobolev space W*?(IR").

2. A’ is an isomorphism of Hy onto H™*, s,0 € R,1 < p < oo.

3. We have the Sobolev type continuous embeddings

(7.3.3) H; CCRMNL®R", s> %, 1< p < oo;

(7.3.4) H: C L(R™), 32%-3, 1<p<g<oo;
(7.3.5) H; C Hp, 8§20, 1<p<oo.
4. f se Rand 1 < p < oo, then

1 1
7.3.6 HY =H*  Z4+-=1
(7.3.6) (Hp) = H, st 2

moreover, C2°(IR") and S are dense in Hj.

5. Probably the most useful property of these spaces is their behavior with
respect to interpolation: for all real sp # s; and all pg,p1 €]1,00[ we have

(7.3.7) (Hpd, Hpt)e = Hp,

where

(7.3.8) 0<f<1,

(7.3.9) s=(1-0)so + sy,

(7.3.10) 1_1-6.9
p po h

Remark 7.3.1 The following property will be used frequently in the sequel. Let
o(z) be a smooth function such that

(7.3.11) 0z éllLe < Cn for |a| < N.

Then the multiplication operator by ¢ is a bounded operator on Hy, for all s € R
with |[s)] < N and 1 < p < 0o. This is trivial when s > 0 is an integer (Leibnitz’
rule), hence is true for real s > 0 by interpolation property (7.8.7), and follows
easily by duality for negative s.
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We show now how it is possible to localize the H; norm. A first localization is
trivial, and follows immediately by the equivalence (7.1.6):

(7.3.12) ey ~ D lg5A%ullZs,

320

where ¢;(z) is a PL partition of unity as in Example 7.1.1. The following result is
more subtle: :

Lemma 7.3.1 Fors€ R, 1 < p < o0, we have

(7.3.13) lullfry ~ D Ig5A%ulZs ~ D 1A°(850) 12,

j20 iz0

Proof. Taking into account (7.3.12), we need only to prove the equivalence of
the last two quantities. We shall apply Lemma 7.1.2 with the choices A = Hy,
B = L?, while the partitions of identity p;, 7; are both defined as multiplication
by ¢; as in Example 7.1.1; we can take N = 2. Moreover we choose

(7.3.14) Aj=1, A =2l

where m > 1 will be precised in the following. It is trivial to verify that assumptions
(7.1.7), (7.1.13) are satisfied. Finally we take F' = A® which is an invertible isometry
of A onto B. With these choices, (7.3.13) is exactly (7.1.15) (with ¢ = p), thus
the result will follow as soon as we verify that (7.1.14) is satisfied. Hence we must
prove that for some C independent of u € H, :

(7.3.15) |A*p; A drul|Le <

= W”“HLP,

(7.3.16) kAP A™ ul|Lr < |ul| e

37=*m |

Actually, it is possible to choose any m > 1, as it will be clear at the end of
the proof. Notice that (7.3.16) is a consequence of (7.3.15), since the operator
A*p;A™ ¢y is dual to pxA™°@;A® in the pairing (LP,LP') (with s arbitrary real
and 1 < p < 00). To prove (7.3.15), we begin by remarking that

(7.3.17) ‘ IA°¢; A~ brllLs) < C
with C independent of j, k; this follows from Remark (7.3.1):
A ¢; A~ brull e = [|§;A™ drull g < ClIA™ drullny < ClidrullLr < Cllufirs

(we have used the fact that A=* : Hy — L” is an isometry and that |0°¢;| < Ca
with C, independent of j). Thus it is sufficient to prove (7.3.15) for |j — k| > 3,
i.e., when the supports of ¢; and ¢ are disjoint.



102 WEIGHTED SOBOLEV SPACES ON FLAT SPACE

Let u € C§°(R"). By the standard computation (d¢ = (27)~"dg, D = 8/i)

/ / @8 £y ou(y)(z — ) dydé = / Dg ( / e"@-")‘u(y)dy) (€)*de
= [[ = uty)-De) ) dud,
we see that the kerne‘l K,(z—y) ‘of the operator A, defined by
(7.3.18) Alu(z) = (K,(z — ), u(")),

satisfies for any a

(7.3.19) (@9 Kufz =) = i oKD" ()

which is an ordinary (not osc111atory) integral as soon as |a| > s+n. So K,(z) is
smooth for 2z # 0 and we have

|22 K,(z)| < C(a,s) for any |a| > s+ n.
In a similar way,
|D2°K,(2)| < C(a,B,8) for any |a|—|B] > s+n.
Consequently,
|2°DEK,(2)| < C(a,B,3) for any || —|B] > s +n.

So we arrive at

(7.320)  |DPK.(2)| < ﬂ%@ for any M — |8 > s+n.

Since |j — k| > 3 the supports of ¢;, ¢ are disjoint and more precisely

1
(7.3.21) T € supp¢dj, ¥y € suppdx = |z—y|> 22“’”

as it is readily seen. Thus the operator ¢;jA®¢x has the kernel

(7.3.22) Kij(z,y) = ¢j(z)Ks(z — y)Pe(y)

which is a smooth function. Since

(7.3.23) Dz (¢jA’¢ku) = Dz / 5 (2)Ks(z — y) k() u(y)dy,
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by Leibnitz’ rule and using (7.3.20), (7.3.21), we obtain
|DZ (65A° dru)| <
(132 CYID%@)- [ elutu)idy -2,

- BLa
This implies easily for p=1 or p =00

C(a,s,M)

(7.3.25) | D% (¢ A° prus) || e < W“UHLP

with a little bit larger constant C(e, s, M) and hence for any p € [1, 0] by inter-
polation. In particular we have proved that

(7.3.26) 1A% $;A~* grullL(Le) < C(4, 5, M) - 2719 HIM

for any nonnegative integer £, 1 < p < oo, and any M, j,k > 0. From this, (7.3.15)
follows easily, for 1 < p < oo, by the well known LP boundedness of the operator
A*~2¢ for s < 2¢ (and in fact of any operator in OPS?’O).

7.4 The weighted Sobolev spaces H;(p)

Definition 7.4.1 Let x(z) € C*(IR") be a smooth, strictly positive, radial func-
tion x(z) = p(|z|). We shall say that x(z) (or p(R)) is a weight function, or
simply a weight, if for allk > 0

(7.4.1) [p®(R)| < Crn(R),

and for any § > 0 there ezists C = C(8) > 0 such that

(7.4.2) C7'p(R1)p(R2) < p(R1R2) < Cp(R1)p(R2) for any Ri,R2 > 6.
In some cases it is useful to require the stronger property

(7.4.3) ‘p(k)(R)l < Ck(R)"*p(R);

we shall call such a p a strong weight.
The most typical example of a weight corresponds to the choice

(7.4.4) p(R) = (R)*

for any s € R; notice this is also a strong weight.
We notice two consequences of this definition. There exists C' > 0 independent
of j such that '

(7.4.5) 2971 < |z| < 2% = C7p(2Y) < p(lal) < Cp(2).
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Moreover, the reciprocal of a weight is still a weight, and in particular

()"

In a similar way, the reciprocal of a strong weight is a strong weight. This is easily
proved using the formula

(k) k (41) (dv)
1 k i) ... p

74.7 - = . . N ] g S
( ) (P) Z Z (.71 . ‘Ju) ( ) VpV+1

v=1ji1++j =k

1
< Cg-.

(7.4.6) <G

together with 7.4.1.
We are now ready to introduce the weighted Sobolev space Hj(p), whose norm
is defined, for any s € R and 1 < p < o0, by

(7.4.8) llullzrzo) = 1A [p(lzNu@)]llzr ey = 1A (pu)ll2e = [l ;.-

The properties of the spaces H, can be extended to the case of weighted spaces
H}(p). In particular we have the complex interpolation property: for all real
s0 # 51 and all po,p1 €]1,00[

(7.4.9) (Hp2(po), Hp! (1)) = Hp(p),
where
(7.4.10) 0<8<1,
(7.4.11) p=p5"pt
(7.4.12) 8§ = (1 - 0)80 + s,
(7.4.13) L

p Pbo Dp1

This is an immediate consequence of the corresponding property for the spaces Hy.
Indeed, the operator

(7.4.14) ¢(2) = po*pid(2)

is evidently an isomorphism of F(Hp2(po), Hp! (1)) onto F(Hp2, Hp!) (see Remark
7.2.1 for notations). :
Moreover, we have forany s€ Rand 1 <p < o0

1

(7.4.15) CHOVES AVONEERERY

L
p
( consequence of the duality property of Hp).
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Finally, one can obtain from (7.3.3) — (7.3.5) corresponding embedding proper-
ties for weighted spaces. In particular we notice

(7.4.16) llpullzee < C(syn,p) llullzz (o)

valid for any real s > n/p,1 < p < o0.
Moreover, we have

(7.4.17) leflize < Cllfllmg(e),

provided 1 < p,q < oo and
1 1

2>

n p 49
We can see that some basic properties of H*(IR"™) spaces holds also in H*(p) =

H3(p)-

Theorem 7.4.1 Let s,\ be positive real numbers such that A > 1 and s < A. If
Po, p1 are strong weights and

P= popi‘_l,
then
(7418) “lfl)\”H'(p) < C”f”H’(po)”pl.f”},;l(mn)

for all f such that the norms on the right side are finite.

This result follows in a trivial way from the corresponding result on flat space
without weights. In the same way we obtain the following.

Theorem 7.4.2 Suppose pg,p1 are strong weights. Let p = p(|z|) be such that

P = pop1.

For
f,g9 € H*(p)n L=(R")

and any non-negative s we have

£l e+ o) < CUI Il ms (o) P19l Loo(mm) +
(7.419) +lloo S ll oo mn) g1l 22 (1) )-

We give now several equivalent localizations of the weighted norm.



106 WEIGHTED SOBOLEV SPACES ON FLAT SPACE

Lemma 7.4.1 Let {¢;} be a PL partition of unity, 1 < p < o0, s € R and p(|z|)
be a weight. Then the following norms raised to power p are equivalent on Hy(p):

(7.4.20) = 4l ~ WA (W),

(7.4.21) II=Y" [|6;A°(pu)llZs,
720

(7.4.22) II =) ||A*($50u) 155,
320

(7.429) IV = 3 o2 P IA* (G50)]E

j20
(7.4.24) V = |lpA%ulZs

Proof. I ~ II is a consequence of (7.1.6). II ~ III follows by (7.3.13) of
Lemma 7.3.1 applied to the function p(|z|)u(z). To prove III ~ IV we remark
that, by properties (7.4.1) and (7.4.5) (resp. (7.4.6) and (7.4.5)), the functions

(=)

¥j(z) = ($j-1 + &5 + Sj+1) v (29)"

xi(@) = (65— 1+¢J+¢J+1)”((f |))

(set ¢_1 ~ 0) satisfy for all o
(7.4.25) 623 (z)| + |62 xi(z)| < Ca

with constants C, independent of j. Hence by Remark 7.3.1 multiplication by ;
or x; is a bounded operator on Hy, s € R, 1 < p < 00, with norm uniformly
bounded in j; equivalently,

(7.4.26) IA;A " ey + A" XA ey < C(s)

with C(s) independent of j. Notice that ¢;p = p(27)1;¢;, because ¢;_1 + ¢; +
®ij+1 ~ 1 on the support of ¢;. Thus writing

[1A*(¢50u)lle = p(2))I(A*;A™")A% ($5u) e < Cp(27)IIA*(¢5u)I,

we get III < C-IV, and similarly for the reverse inequality writing p(27)A®(¢;u) =
A’xjA“A‘pquu.

Finally, IV ~ V is a consequence of Lemma 7.1.2. Indeed, we choose A, B, p;,
mj, Aj exactly as in the proof of Lemma 7.3.1 (recall in particular (7.3.15), (7.3.16)
already proved there), the only difference consisting in the choice

(7.4.27) A =p(2Y);
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assumption (7.1.7) is readily verified. Indeed, by property (7.4.1) it follows that,
for a suitable C > 1,

(7.4.28) C7p(1) < p(2%) < ij(l);

hence it is clear that, choosing m large enough in (7.3.15), (7.3.16), we obtain
(7.1.7). Thus by Lemma 7.1.2 we get

(7.4.29) IV ~ ) p(2)Pl|g5A%ulE,
j20
and the last quantity is clearly equivalent to V' by (7.4.5) and (7.1.6).
Remark 7.4.1 When s is a nonnegative integer, 1 < p < 00, we may use the

identity Hy ~ W*P (classical Sobolev spaces) in connection with Lemma 7.4.1 to
give further equivalent representations for the Hy(p) norm (on power p):

(7.4.30) el o) > 1p8%ull%s,
lal<s
(7.4.31) D l16:8%(ewlEss Y 18%(5pu)15ss
320, Jal<s 320, al<s
(74.32) Y p@PI%ulle D p(29)P1650%ullE,
320, |a|<s 320, |a|<s

7.5 Sobolev spaces associated to Lie algebras
Let Z be an N-tuple of smooth vector fields on R™

(7.5.1) Z =(Z,...,2n),

such that their commutators satisfy

(7.5.2) 25, 2] = Y () Zm

for suitable ¢}, € C*°(R"). It is convenient to require also that
(7.5.3) ‘ |1Z%jx(z)| < Ca

for all z, a. Moreover, let p(|z|) be a weight function. Then one can define, for any
integer s > 0 and 1 < p < oo, the Sobolev spaces generated by Z, written Hy(p, Z)
through the norm '

(7.5.4) lalls o2y = D Nl Z°ullZs.
jal<s
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In the following we shall cdnsider only the following choice of Z:
(7.5.5) Z = (z)0; = ((z)81,...,(x)0n).

Of special importance are the weight functions

(156) llal) = (@)}, SeR;

we shall denote the corresponding spaces by H;"’:

(7.5.7) H® ~ H3 ()%, (2)8s),

and in particular we shall omit p when p = 2:
(7.5.8) H*"® ~ Hy® ~ H3((z)®, (2)0z).

The H**% spaces where introduced in [5] for integer s, in connection with elliptic
systems. These spaces are especially well suited to estimate solutions of the wave
equation; in order to obtain optimal results, it will be necessary to extend the
definition to any real s. The simplest way would be to use interpolation and
duality arguments, but the abstract spaces thus obtained are not easy to handle.
Instead, we prefer to give explicit representations of the norms as in the following
definition, and to recover a posteriori the interpolation and duality properties.

To motivate our definition, let us first rephrase the definition in the integer case
in a suitable way:

Remark 7.5.1 Let s > 0 be a positive integer, 1 < p < 0o, § € R. According to
Definition 7.5.7, the norm of the space H;"’, which we shall denote by X for short,
has (on power p)

(7.5.9) lulfe ~ >~ ({2 D)* ((z)°w) 12

lax|<s
Noticing that

(z)D)* = _ ¥p(z)D? with |s(2)| < Cp(z),

B<La

and an identical property for D*(z)|*, (D{(z))?, it is clear that the following equiv-
alencies hold:

(7.5.10) [[ull% ~ 3 (@) D*)ullf, ~ > 1D*((z)1*1+ou)| 3,
le|<s |ler|<a

~ Y (D) (2) ullLs.

jal<s



SOBOLEV SPACES ASSOCIATED TO-LIE ALGEBRAS 109

We use now a PL partition of identity (recall (7.1.6)) to obtain

(7.5.11) lullfe ~ Y )% D*(¢(z)°u)|2,,

j>o0
joa|<s

and by (7.1.4) we get

(7.5.12) lully ~ 3" 1127 D)% (¢5(z)2w) 1%,

320
lal<s

We introduce now the dilation operators S, A > 0, defined by
(Sau)(x) = u(Xx),

and we notice the following properties:

(7.5.13) ISaullLe = A7*/P|ju||Ls,
(7.5.14) D°Syu = A?ISy\Du = S, ((AD)%u),
(7.5.15) S1/2aD%Sxu = (AD)%y,
(7.5.16) FSxu= A"28;/,i.

Thus using (7.5.15) we may write for any even integer s > 0

lullgzs ~ D 11Ss- ,D"‘Sza CHENN]

i>0
|lx|<s

(7.5.17) D 11825 (1 — A)*/283: (¢ (z)w) |

j20
This suggests the following definition.

Definition 7.5.1 Let s € R, 1 < p < 00, let {¢;} be a PL partition of unity, and
let p(|z|) be a strong weight (see (74 3)). The Hy(p,(x)0) norm raised to power p
is defined as

(7518) ”u”p 2(p,( z)a) Z ”S2-J A"S2J (P¢Ju)”Lp

j>0

and Hj(p,(z)0) is the Banach space of all tempered distributions such that the
above norm is (defined and) finite. We shall also write

(7.5.19) : o Aj = S3-iA°Sss;
it is trivial to verify that Aj is a pseudodifferential operator, and more precisely -

(7.5.20) A has symbol (27€)° = (1 + 2% |¢|?)*/2.
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Thus we may write also

(7.5.21) lullig o, 1) = D 145 (0850) 1

320
For integer s > 0, this is equivalent to the norms (7.5.10) and (7.5.9).
The next lemma gives an equivalent form of the norm:

Lemma 7.5.1 For any 1 < p < 00, 8 € R and p(|z|) strong weight, we have the
equivalence

(7.5.22) lullfys(p, 290 = D 145 (0d5) 5 ~ D p(27)P1IA] (#50) 125

j20 Jj20

Proof. The equivalence of the terms with j = 0 is obviousi for j > 1 we shall
prove that

(7.5.23) A3 (pdu)llzs < Cp(27)I1A7(#5%) L

with a constant independent of j, and a similar reverse inequality, from which
(7.5.22) follows immediately.

We recall that, for j > 1, ¢(z) = ¢(277z) (see (7.1.5)). Now, let ¥ € C(R")
be equal to 1 on supp¢ C {1/2 < |z| < 2}, and set

p(2|z|)
p(%)

¥(z).

¥i(z) =
Then it is trivial to verify that
Aj(pdju) = Sa-i A*;A™°Sp A} (¢5u) - p(27),
and in order to prove (7.5.23) it is sufficient to prove that the operators
Sa-i A®1P; A% Sy,

are bounded on L? uniformly in j. Since S3j,S2-; are isomorphisms of L? onto
itself, with norms 2-9%/? 29"/P respectively (see (7.5.13)), it is sufficient to prove
that

(7.5.24) IA°%;A™°||Lwe) < C,

with C independent of j, or equivalently that multiplication by ; is bounded on
Hy, with uniform bound in j. Thus we may use again Remark 7.3.1, and we are
reduced to prove that ' :

|D%9;(z)| < Ca independent of j;
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but this is a simple consequence of property (7.4.3) of the strong weight p.
The proof of the reverse inequality is similar, using a function of the form

p(2%)
p(2z)

and recalling that 1/p is also a strong weight.

xi(z) = Y(z)

Remark 7.5.2 An eguivalent characterization of the Hy(p,(x)d) spaces can be
giwen using the selfadjoint operator

A = D((z)?D).
In fact, A is a selfadjoint (see Section 4.2 in Chapter IV). Indeed, we have
iz o,z ~ 14° (ow)llo
(compare (7.4.8)). Here we shall not use this equivalent norm.

In the sequel we shall restrict ourselves to the spaces H;G defined in (7.5.7),
with norm on power p

lellfyes = D IAG (@) d5u)lEs ~ D 27PA5(850) -

j20 320
The following lemma collects a few properties of these spaces:
Lemma 7.5.2 Let p, po,p1 €|1,>|, a,s, so, 81,0, 00,01 € R.

1. The following duality relation holds:

7.5.25 H*®Y = H;%%, S4+-=1
( ) (Hp") q » ¥ 2

Moreover, the complez interpolation property holds:

(7-5.26) ‘ : (H;g:ao,Hpa;161)o = H;,G’
where
(7.5.27) 0<0<1l,
(7.5.28) 0=(1-6) + 061,
(7.5.29) s = (1-0)sg + 0s4,

- 0
(7.5.30) o l_1-6,

P po P
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2. The following Sobolev type embeddings hold: for any 1 < p < oo, § € R,
s >n/p,

(7.5.31) (@)*™?Plu(z)| < Cllul ga.s

with C = C(p, 8,0,n) independent of u € H;"’; and foranyl <p < q < o0,
JGR; sZn/p—n/q,

(7.5.32) 1)+~ %u|| e < Cllull grz.0

with C = C(p,q, 8,0,n) independent of u € H;"’ . Moreover, if so > 81 and
60 2> 51; P 5
H;O) 0 g H;ls 1

3. Multiplication by a function ¢ € CP(IR") is a bounded operator on H;"s.
More generally, let € C°(R") be a smooth function such that

|D%¢| < Co  for |a] < N.
Then multiplication by v is a bounded operator on H;"s provided |s| < N:
(7.5.33) %l g < Cllul g

with C depending only on s,6,p and on C, for |a] < N.

4. The multiplication operator by (z)® is an isometry of H2® onto H2*~%; more-
P P
over, for any multiindez o,

(7.5.34) z°: H - Ho4-lel pe. gb _y pe-lalé+ial
are bounded operators. Thus in particular

(7.5.35) (z)*!D*,2° D : HY® — H3~lel8

are bounded.

Proof. We begin by introducing the auxiliary spaces A;,’J, defined as follows:

A;'J is the space of all sequences {u;};>0 with u; € Hp, such that the norm on
power p

(7.5.36) s HiYyss = > 27 Ajusl1Es

j20

is finite. Notice that

(7.5.37) lull e = {50}l 4o
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we shall return on this below. The space A;"’ can be regarded as a space of type
£P(A;) of £P sequences with values in a sequence of Banach spaces; indeed, it is
sufficient to define A; as the Banach space of u € Hy with norm

lulla; =27 |AJul| o

and then
||{UJ}||p- 2 Z IuJ“A,
320
as required.
1. To prove the duality property, we remark that
8,0\/ —8,—6 1 1
(7.5.38) } (Ap°) ~ AT57°, ? + 7 =1,

meaning that a T € (A5*®)’ can be identified to a sequence {v;} € A;*~¢ through

the identity
T({u}) ~ Zvj (wj)  V{u;} € 457,

i>0

(and of course vj(u;) = (vj,u;) is the usual duality pairing (S’,S)). The proof
of (7.5.38) is standard. Now, let T € (H2°)' and define an element T} € (A3°)’

according to the rule
Ti({w}) = (Z ¢J'”'J)
320

where

(7.5.39) ¢i = bj-1+ ;i + bjr1, b1~ 0;

notice that 5,- ~ 1 on the support of ¢;. We know T; can be identified with a
sequence {v;} € A;*~%, and

> vi(us) = Ti({us}) = T(Z %-uj)

Jj20 Jj20

for any {u;} € A,’,"’. Thus, in particular, for a fixed u € H;"s we can write

T(w) = T(3_ Gigsu) = 3 vi(dsu) = v(w)

v = Zqﬁjvj;

notice the last sum isilocé,lly finite, and gives an element v € H =8 This proves
the embedding (H;"’)' C Hy %8, the reverse embedding is trivial.

where
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To prove (7.5.26), we start from the interpolation property
(7.5.40) aoy50 Ap1,51 )o = A;,’J,

with indices as for H2'® spaces above (for a proof, see e.g. Section 1.18.1 of [62]).
We notice now that H;"’ can be regarded as a retract of A,’,"s, meaning that
there exist two bounded maps

R:AY 5 HY, S:HY — Ay

with the property
RS=1I on H3’

R and S are called retraction and coretraction respectively (belonging to each
other). Notice that S is an isomorphism of B with a subspace of A.

We recall the following general property of complex (and real) interpolation
with respect to retractions. Assume Aj;, Bj, j = 0,1 are Banach spaces, embedded
in some common Hausdorff vector topological space. Moreover, let R be a bounded
operator from Ag + A; to Bg + B; whose restriction is bounded from A; to Bj,
Jj =0, 1; similarly, let S be bounded from By + B; to Ag + A, and from B; to A4;,
Jj =0,1. Finally, let R be a retraction of A; on B;, j = 0,1, with coretraction S.
Then S is an isomorphism of the complex interpolation space (B, B1)s, 0 < 6 < 1,
onto a complemented subspace of (Ao, A1)e; this subspace is exactly the range of
SR restricted to (Ao, A1)s, and SR is a projection onto it. For a proof see Section
1.2.4 of [62]; see also Section 6.4 of [2].

In the present case, we can define

(7.5.41) R{w}) =) djujy  S(u) = {gsu}.

It is trivial to prove that S : H;"’ - A;;J is bounded, actually it is an isometry
onto its image, in view of (7.5.37). To prove that R : A;;a — H;"s is bounded, we

notice that . _
IR{us DIZns =D 27711 A505 D rusllfes
P ) k>0

now the products ¢k¢J are different from zero only for |j — k| < 2, so that it is
sufficient to estimate the sums

T = Z 27%P||AS i Bjsctitelln,

J20

with € = £2,+1,0. We show e.g. how to estimate ¥_;, the others are identical.
Let v; = ¢;_1¢;; we have, for j > 2, 1; = Sai for a fixed function 9 with compact
support (the terms for j = 0, 1,2 are treated by a similar argument). Then

ASYuj—1]|ze = 27™/P||A*Ssiu; 1| L,
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and noticing that multiplication by 9 is a bounded operator on H; we obtain

(7.5.42) 1AS%5u5-1]lLs < C27™/P||A* Spsujy | Lo
(7.5.43) CllASuj-1]|zs = CAIAT AS_ 101 Lo

If we can prove that AJA;’; is bounded on L? with norm independent of j, we
obtain

5.1 < Y PCIALuja e < Oll{us} e

j=>0
i.e., the thesis. Now, AJA;®; has symbol
(n @, e = L
1+226-Dge ) TXEE XTI ep

To prove the LP-boundedness we can use the Mikhlin theorem (see e.g. [60]), and
we need only to verify that

(7.5.44) l€['*| Dgx (27¢)| < Ca
for |a| < [n/2]+1, with Cy independent of j; but (7.5.44) follows from the condition
(7:5.45) ¢! Dgx(€)] < Ca

and (7.5.45) is obvious by the definition of x ().

Now, let H be the interpolation space (H;g'“,H;;"l)g; by the above general
result S is an isomorphism of H onto a subspace of A;"’, which can be characterized
as the range of SR restricted to A;'J. Thus given v € H we know that S(u) =

{pju} € A;,"s, and this implies u € H;"s at once by the definition; conversely,

if u € H® then it is easy to see that {¢ju} € A%°, hence R({¢;u}) € H, but

R{¢ju}) =% ¢;ibiu = u and this concludes the proof.
2. Recalling (7.3.3) we have, for s > n/p, 1 < p < o0,

vl < CllAV]| L
with C = C(s,n,p) independent of v. By (7.5.13) we get
[ollzee < C279"7)|S5-s(A0) |25
and if we apply this to v = S (¢;u) we obtain
[ pjullzes ~ [|S2i ($5u)llLee < C27I™/P||A3($5u)| Lo

with a constant independent of j. This implies

Igsulfe < CY 27 A3 (G020 ~ Cliulls,—n/s
14
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with C independent of j, and using the fact that

lulize < sup |¢jullz-
320

we obtain
lullzee < Cllull gg.—nro-

This gives (7.5.31) at once, using the definition of the Hy Y norm.

The other properties are proved in a similar way, starting from the correspond-
ing properties of the Hy spaces.

3. The property is trivial for s > 0 integer and follows from Leibnitz rule (recall
(7.5.9)). Thus it can be extended to s > 0 real using the interpolation property
(7.5.26). Finally, it holds also for s < 0 using a duality argument and (7.5.25).

4. The first property is an immediate consequence of the definition of the H;’a
norm. Properties (7.5.34) are trivial for s integer and nonnegative, extend to real s
by interpolation, and to negative values of s by duality. The last property (7.5.35)
is a consequence of (7.5.34).

Using the estimate (6.6.1) in combination with Lemma 7.5.1, we obtain the
following.

Theorem 7.5.1 Let 8;,6be real numbers. For any non-negative s we have
£gllgze < CUlFllgzo-sill < 2 > gllzeoqrm) +
(7.5.46) +| <z >% fllemm gl Hs—

Similarly from Moser type estimate in the flat space, established in Corollary
6.6.1, we obtain via localization Lemma 7.5.1 the following weighted estimate.

Theorem 7.5.2 Let s,\ positive real numbers such that A > 1 and 8 < A. If
a, B, are real numbers satisfying the relation

then we have
(7.5.47) IF P e < Cllfllansll < 2 >7 fllz=igmn

for all f such that the norms on the right side are finite.

7.6 The spaces H*~° spaces

Of special interest are the spaces H* %, whose norm on power 2 is equivalent to

lealFrems ~ D 27213 (850 132

j20
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Lemma 7.6.1 The spaces H*~* have the following properties.
1. For any s > 0, we have the equivalence on H*~*
(7.6.1) llullzre.—e ~ lI{z) ™ *ullz2 + [[1€]°@]l 2.

If in addition 0 < s < n/2, we have the equivalence
(7.6.2) lull zro.=s ~ [11€1°8] 2.

2. For any A >0, 0 < s < n/2, we have
(7.6.3) O Y|ul|go—e < A™272||S\tl|go—s < C|lul|zre—s
with C = C(s,n) independent of A and u € H**,
8. For any s > 0 we have
(7.6.4) lullz-ee < Cll{a)*ullz2
with C = C(s,n) independent of u € H—**,
4. For any s > —n/2 we have
(7.65) ll€l*@lze < Cllullzza-s
with C = C(s,n) independent of u € H*~°.

Proof. 1. Thanks to the interpolation property (7.5.26), it is sufficient to prove
(7.6.1) only when s > 0 is an even integer. Notice that for integer s

lglralz ~ 3 D%l

|aj=s
We begin by showing
(7.6.6) Zr<jajcm-1l1D%ullL2(vy < C(llullL2@w) + Bjaj=m | D%ullz2(v)),

for any positive integer m and for any open set U C R™ with smooth boundary.
For simplicity, we write

lull sy = Ziat=s 1D ultez @y, lullamw) = Zogjcmllullgs @)-

By Theorem 9.6 in [35] (see also Chapter 3, Section 3.6) we have

1wl 21wy < Cillull 2355 el

< Cjellull gm vy + Cj,ellull2 )
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for any € > 0. Setting S = T1<j<m—1l|ull g5 (v, We get
S < CmeS + Cmelull gm ) + Cmellull 2wy,

because ||ullgmw) < |lullz2@) + S + ||l gm (). If We choose € sufficiently small,
we obtain (7.6.6). .
Now recall that, for j > 1, ¢; = ¢(277z) with ¢ defined in (7.1.5), and let

B(€) = B(€) + B(26) + $(€/2) + $(£/4). By analogy we write for j > 2
éi = 6(277z) = ¢j_1(z) + 6;(z) + $j4+1(z) + Pj42(2),
and we define
é1 = po(z) + ¢1(z) + d2(z) + 83(z),  do = do(z) + 1(z) + b2(2).

Notice that 5(5) =1on U = {1/2 < |§| £ 4} and that supp¢ C {1/2 < |¢| < 2}.
Then we can write (recall s is an even integer)

(7.6.7) IA*(¢w)lI32 < e(s) D ID*(¢w)l3a
la|<s
(7.6.8) <c(s) Y IID*w|22p,
laj<s
(7.6.9) < c(s)(llwlliz(m + ), IID"wH?ﬂ(U))
|a]=s
(7.6.10) < e(s)(Ildwllza + Y 16D%wl3).
|a|=s
Hence for j > 2, using property (7.5.13) and (7.5.14),
(7.6.11) 1A (¢5u) 122 = 2™ ||A*$Sasul12a
(7.6.12) <02 (|3Sprullls + 3 13D Spruls)
|a|=s
(7.613) = C(l1g5ulzs +2 3 18:D%ullZa);
|a|=8

the same estimate holds true for j = 0,1 by an almost identical proof. Since

lelFre—e ~ D272 1A(850) 125,

320
we obtain
(7.6.14)  Julde-. <CY 27 |gul}a +C Y l16;D%|22
i20 bl
(7.6.15) < Cl{z)"*ulla + C > [D*u|3..

|ox|=2
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Conversely, we have (for s > 0)

(7.6.16) ASw]22 = 27 ||A* Sy w2
(7.6.17) ~ 29 ([Spwlids + ||D°szjw||iz)
lal=s
(7.6.18) = wlifz + 229 ) |D%w|3,
|a|=s
hence

lallFreme ~ D27 (Igjulie + D 1D*(d5) 135

j > x|=8

The first term is equivalent to || (x)"u”%g, and to handle the second it is sufficient
to write .

S o), <2 30 Y10 (45)I3

|a|=8s 320 |a|=s 320

since ¢;¢x ~ 0 for |j —k| > 2. This give the second inequality need to prove (7.6.1).
To prove (7.6.2), it is sufficient to show the inequality

(7.6.19) [ullre-e < CllI€]1°E] 2,
in view of (7.6.1). Indeed, for nonnegative s we have
K}~ ullz2 < lll=|™*ullz2 < C|l|€|*@]| L2

where the last inequality is true for s < n/2, thanks to the extended Hardy in-
equality (7.7.1). By (7.6.1), we conclude the proof.
2. By (7.5.16) and (7.5.13), we have

I1€1*FSaullea = A72(||€]*S1/allL2 = A*72||S1/al€1"TllLa = X*~*/2|€["T| L2
Recalling (7.6.2), we obtain
| Saut|| or—s ~ A*"™/2 ||| o,
| l3. Recall that
lullr—es ~ 2022"‘||A;’(¢W)|I§2-
jz

For s > 0 we have ||[A™%v||L2 < ||v||L2, so that

lelF-ee < O 2% lIgsulFe ~ D lIgs() ullta ~ l[(z) ullZs.

320 320
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4. For s > 0 the inequality is a consequence of (7.6.1). Assume now s < 0, and
define the Hilbert spaces

(7.6.20) A= L*(Ry, (x)*dx),
(7.6.21) B, = L*(Rg, |¢|~"d¢).

If 8 > —n/2, we have
Bl g L}oc g S’)

since on any compact set K

L tlde = [ 1olerier=rae < ol (/K |€I2‘d€) N

and the last integral is finite for s > —n/2. Thus we can define the Hilbert space
B =F1(B,).
Formula (7.6.1) with s replaced by —s (since now —s > 0) can be written
fullz—ee ~ llulla + lulz,
i.e., we have the isomorphism of Hilbert spaces
H™** ~ ANB.

Hence
Ha,—a — (H—a,s)l ~ (Aﬂ B)I ~ AI + BI

and by general properties of Hilbert spaces we can write
lullares ~ _inE (luslla+ llualls)

where the infimum is taken over all decompositions u = u; + uz with u; € A’ and
uz € B'. This means, for 0 > s > —n/2,

(7.6.22) lullere—s ~ _inf = (l[{2)" ullL2 + [|1€1°G2]|L2).

u=u;+uz

Now take u € H*~?; for any decomposition u = u; + ua, by the extended Hardy
inequality (7.7.1) proved in the Appendix,

(7.6.23) Mgl allza < €1 llze + €1zl 22
(7.6.24) < Clil=l™ w2 + I1€]°%a| L2
(7.6.25) < Cli(@) " *wl|z2 + [|1€] a2l 2,

and, by (7.6.22), this implies (7.6.5).
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Theorem 1 (Special Hardy inequality) Let s € [0,1/2[, A > 0. Then

u

(7.6.26) BT

< C““”H'v—‘

L2
with C = C(s,n) independent of u € H*~*, A.

Proof. When A = 0, (7.6.26) is a consequence of the extended Hardy inequality
(Theorem 2) and of property (7.6.5). Thus we shall consider A > 0.
2Aslsume first A = 1. Let vo,%1,...,%2n+1 be C® functions on R™ such that
ijg ; = 1, the support of vy is the closed ball B(0,1/2), the support of 13,41
is R™\ B(0,2), and the supports of 4, for 1 < j < 2n are compact and contained
in one of the open half spaces £z; > 0. We can write u = Z?:gl uj, uj = P;u.
We have trivially

Uug

el =17 | T

L2
U2n+1

7.6.27 I
(7.6.27) el — 17

< C(s)Il{z) " ullL2 < C(s)llul gre-e

L2

by property (7.6.1).
Now, consider the u; for j = 1,...,2n. We can assume, e.g., that suppu; = K
is contained in z, > 0. Consider the map z = ®(y) defined by

T1=Y1y.++yTn-1 =Yn-1,

and U2
zn=[(L+ym)? = @ + ...+ 2 )]

Writing K’ = &~ !(K), it is clear that ® is a diffeomorphism of a neighborhood of

K’ onto a neighborhood of K; notice that ® maps K’ N {y, = 0} onto K N S"~1.

We can modify ® outside K’ in such a way that ® = I (the identity map of R")

outside a compact set, ® is C™ and globally invertible on R". Hence, writing

v=uj0<I>,

we have
v

|:‘/'ﬂ|s

Uj
llz| —1]°
Since s < 1/2, we can apply the extended Hardy inequality (Theorem 2 in the

Appendix) with respect to the variable y,, Denoting by F, the partial Fourier
transform with respect to y,, we have

<C(®) ’

L2

L2

v

Tl S Clllénl*FaviiLz = C|||€al*¥||L2
|yn|

L2
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by Plancherel’s identity (with respect to %1,...,yn—1). We thus obtain

Eae
=] — 1] [,

Remark now that the linear operator

< Cllléal*®llz2 < CI(6)*Vllz2 = Cl|v]| r-.

T : H*(R") - H*(R")

defined as
T(g)=go®

is bounded for all real s > 0. Indeed, for integer s this follows by standard differ-
entiation of composite functions, and for real s by interpolation. This implies

[vllze = T (u;)l|ae < C(s, @)l .
Since 1; has compact support (independent of u) we have
l[usllze < C(llujllze + [[1€1°85122) < CUI(=) " wjllz2 + 1€1°; ] 22)
and by property (7.6.1) we obtain
lujllzre < Cllujlizre—e.

Summing up, we have proved that

< Clulzr,

%
=] — 1j*]l,
and using the fact that multiplication by ; is a bounded operator on H*® (Lemma
7.5.2), we obtain

< Cllullge-e

||-'v| 1]¢

Together with (7.6.27), this proves the thesis for A =1.
For general A > 0, we can write

Shu

SI/AS)« SI/AW L2

u
|l = Al* ]l

le

and by property (7.5.13) we obtain

u

[le] = A]*

using the thesis for A = 1 already proved. Recalling property (7.6.3), we conclude
the proof.

— )‘n/2—a qu‘

< CAM2%||Shul| gron—e
L
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7.7 Appendix
In this appendix we shall establish the following.

Theorem 2 (Extended Hardy inequality) For any real a € [0,n/2] and any
f € CP(IR™), we have

HG)

el |,

with C = C(n,a) independent of f.

(7.7.1) < Clll=|* fll ez,

Proof. Inequality (7.7.1) is a special case of a result of Muckenhoupt (see
Theorem 1 in [37]). For sake of completeness, we give here the proof.
We must prove that

/ I / u(z)e dz

Split the first integral as I + II, with

2
€|-2*d¢ < C / lu(z) || de.

2

I = Z/ / u(m)e-iz'fd:c ]El_zadﬁ
52 Jr<iei-e<ain [Jizjesas
and
2
II = Z/ / u(m)e”iz'fda: |§|_2“d§.
7 Jricigi-ecain |Jigpe <2
We can write
2
I< Z/ / u(z)e” = 4dx| 227+2de
fez J2i<lglecait |Jiale>2d
(7.7.2) =D 2P| F(u- xqxie>2)) T2,

JjE€z

where F is the Fourier transform and x4 is the characteristic function of the set
A. Thus, by Plancherel’s theorem,

1< 2542w xqjaenasylZe < llu- Rl
JEZ

where the function h(z) is defined by

h(z) =D X{jzje>25) 21!
jez
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and hence satisfies
h(z) < 2|z|®.

This concludes the estimate for I.
To estimate II, we begin by writing

2
IIS/(/ |u(:c)|d:1:) €| =22 d¢.
lz|<1/1¢

Now, consider the lowest integer J € Z such that 27 > ||u||1; then define r; = 0o
and, for j < J, choose any nondecreasing sequence of positive numbers r; such

that
[ iz =2
|zle<r;

finally, define the sets for —c0o < j < J
Aj = {.’E 1rj-2 < |a:|“ < 'I‘j_1}, Bj = {.’B 11 < |€|-a < 'rj}.

We notice the following property:

/ lulde < 27 = 4/ |lu|dz = 4/ |u|dz;
lz|e<r; |z|*<rj_2 Aj

hence, for £ € B;,

2 2
21 <1/l jalo<rs
2
(7.7.4) 3(4 / |u|dx> <16 / 2|z dz - / 2|~ d
A Aj A

J J

(7.7.5) < cnr,-__zfnlafA uf?|z|?* dz

J

by Cauchy-Schwarz inequality and the explicit computation (valid for a < n/2)

- -2
/ |z|~2%dx < cn'rj_:'n/a.
Aj

Thus, writing

J

1= Z_:oo /BJ- (/lzlsl/lfl lu(z)'dz) 7t

=
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we have easily

J
H<e Y e /A ful? |22 de /B €] 2ode
¥ 3

j=—o0

whence

J
II<ec, Y / |u|?|z|?*dz
Aj

j==o0

by the explicit computation
- -n/a+2
[l < carg{o
J

Since the A; are disjoint sets, the proof is concluded.
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