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6 Complex interpolation and fractional Sobolev
spaces on flat space

6.1 Abstract complex interpolation for couple of Banach
spaces

(see [2], [62] ) B _
For any couple A = (Ao, A1) of Banach spaces Ag, A; we denote by £(A) and
by A(A) their sum and intersection respectively, i.e.

(6.1.1) S(A) = Ao+ A1 , A(A)=Ao[ A
with norms

lallzay = inf{llaolla, + lla1lla; ;@ = ao +a1 ,a0 € Ao,a1 € A1}
(6.1.2) lallacay = max(llall 4o, llal|4,)- -

Then ¥(Ao, A1) and A(Ao, A1) are Banach spaces.
The complex interpolation for the couple A = (Ao, A1) can be associated with
the space F(A) of functions f(z) defined, bounded and continuous in the strip

S={z€C;0<Rez <1}
with values in £(A4) and satisfying the properties
(6.1.3) f(it) € Ap, teR

(6.1.4) fl+it)e A1, teR
f:So={z€C;0<Rez<1} — I(A4)

(6.1.5) is holomorphic.

Then F(A) is a Banach space with norm

|fllr = max (sup 1£(i8)ll.4g, sup [ £(1 + z't)nAl) .
teR teR

To show this we apply three lines lemma (see Lemma 3.2.1) with v = 0 and see
that || f|lr = 0 implies f(2) =0 for z € S.
To show that F(A) is a Banach space, we take a Cauchy sequence

{fx(2)}3%1, fi € F(A).

Then for j = 0,1 and for t € R fixed the sequence fx(j + it) tends to an element
in A; and we denote this element by f(j + it). In a standard way, we see that
fx(j + it) converges uniformly on R to f(j + it).
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Applying once more the classical three lines lemma, we see that
2
sup [le* (fi(2) — fi(2))]| a0+ 4
z€S
is small when k,! are large enough. This fact shows that the sequence
e fi(2)

converges uniformly and tends to e* f(z). Therefore, we can extend the function
f(j + it) defined on the boundary of S to a holomorphic function f(2) defined in
S. Since
| fe = fllreay = 0,
we see that F'(4) is a Banach space.
We shall mention without detailed proof the following density result.

Theorem 6.1.1 The convez hull of the set
{e5‘2+7’a ta € AgN A}
with § > 0,n € R is dense in F(A).

Proof. (case A; C Ao.) '
Approximating f(z) by &b’ f(2), with § = 0, § > 0, we see that without loss
of generality we can assume

(6.1.6) |f(z +iy)| < e’

for 0 < z < 1 and some & > 0. We can approximate further f(2) by e’ fn(2),
where - '
fa(z) = Y f(z+i2mnj),
j=—c0

where n is a sufficiently large number. To do this it is sufficient to apply (6.1.6).

Then we have to approximate f,(2). This is a continuous function in S with
period i2mn. For simplicity we shall approximate functions of type f(z), where f(2)
is holomorphic in S and periodic with period i2x. Using the Cauchy formula, we
see that

(6.1.7) / fz + iy)ekE+ivigy = f(iy)e*¥dy
— : -

for any integer k. We denote by a(k) the right side of this identify. Hence, a(k)
(modulo constant) is the Fourier coefficient of f(iy). Consider the Fourier series

[~ <

Z a(k,z)et*v,

k=0
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where . o
a(kyz) = [ flo+ )My,
The relation (6.1.7) shows that
a(k,z) = e *®a(k).
Thus we get '
a(k,z)e™ = a(k)e™**, z = z + iy,

s0 it remains to use the approximation of a periodic continuous function in the
interval (—m,7) using of the means

1 N
ENW) = N1 > k),
k=0

where .
3k(y) — Z akeik‘.‘l
m=0
is the Fourier partial sum for a given continuous 2w —periodic function f(y), i.e.

us

ax = f(y)e *¥ay.

-7

We know that the assumption f is continuous and periodic implies that

En(y) = f(y)

uniformly as N — oo.

This completes the proof of the Lemma.

The interpolation space (Ag,A1)s for 8 € [0,1] consists of all a € £(A) such
that @ = f(6) for some f € F(A). The corresponding norm is defined as follows

lalle = inf{||fllr;a = £(6), f € F(A)}.

It is clear that (Ag, A;)s is a Banach space.
The above Theorem 6.1.1 implies that

(618) Ao n A1 is dense in (Ao, Al)g.

Moreover, for f € Ag N A1 we have f € (Ao, A1)¢ and the following estimate
(6.1.9) T{ PRI i T
is fulfilled.

The next Theorem gives an estimate of the norm of a bounded operator with
respect to interpolation space.
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Theorem 6.1.2 Let (Ap, A1) and (Bo, B;) be interpolation couples and let T be a
bounded operator from Ao + Ai into Bo + B1, such that T € L(A;, Bj) with norm
|T||z(a;,B;) for 5 =0,1. Then for any 6,0 < 6 <1 we have
Te L((A()v Al)av (BO’ B1)9))
with
ITfll(Bo,B1)e < "T"L(AO,BO)"T"%(Al,Bl)”f”(Ao.Al)o'

Proof. Let f € (Ao, A1)e. Then there exists a function f(2) € F((Ag,A1)) so
that f = f(6). Consider the function

9(2) = | Tz 40,80 | TNz (AL B TF(2)-
Then g(z) € F(Bp, B;). Since
lg@)Be < ITUZ a0, B) 1T NZ (s, 5 IT N 2 o, B0) 1 £ (i8) ] 40

and
lg(t + i)l Bo < ITNE As B I TIZEAL By 1Tl L(AL, B £ (Gt 41

we see that
IT£ll(Bo,BrYe < ITUE Ag B0) I T2 As,8) 1 £l (40,4106

This completes the proof. ‘
A trivial modification in the above proof shows that we have the following.

Theorem 6.1.3 Let (Ao, A1) and (Bo, B1) be interpolation couples and let T'(z) be
a holomorphic in Sp operator-valued function defined in the strip S and continuous
there. Suppose that for z € S we have that T(z) is a linear bounded operator from
Ao + A, into By + By, such that T(j + it) € L(A;, B;) with norm

sup [|T(j + it)llL(a,,B;) < o
teR

for 3 =0,1. Then for any 6,0 < 0 < 1 we have

T(B) € L((AO,AI)O, (301 BI)O))-
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6.2 Interpolation for sequences with values in Banach spaces

(see [2], [62] )

Of special interest for applications is to extend the above abstract interpolation
for the space I°(A). Given any Banach space A, we denote by l4(A) the linear space
of all sequences (ax)52,,ar € A, such that the norm

(6.2.1) lalligay = O llaxl$)*/
k=0

is bounded. For g = oo, the corresponding norm is

(6.2.2) laxllzee cay = sup lla .

For 1 < ¢ < oo the space l;(A) is a Banach space.
The main result of this section is the following interpolation result for the spaces
of sequences.

Theorem 6.2.1 (see section 5.6 in [2]) Let Ay C Ao be dense in Ag. Then for
1 < q,q90,q1 < o0, satisfying

1/g=(1-6)/q+0/qm
with some 6 € (0,1), we have

(6.2.3) (Igo (Ao), 1q, (A1))e = lg((Ao, A1)s),

Proof. The property (6.1.8) shows that we can choose the space of sequénces
| d={dx}%0, dc € Ay dx=0 for k>N

as a dense subset for both sides of (6.2.3).
Let the sequence {dx}zo, belongs to the left side of (6.2.3). Then there exists
a function u(z) defined on S = {0 < Rez < 1} so that

u(2) = {ur(2) }ilo,

with uk(2) continuous in S, bounded and holomorphic in Sp = {0 < Rez < 1}.
Further, we have the properties

a)u(it) € lg,(Ao) and u(l + it) € lg, (A1)

b) uk(z) =0 for k > N,

N
(6.2.4) > llue(it)|%, < € < oo,
k=0
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N
(6.2.5) | D (1 +it)|%, < € < o0,
=0

for any t € R. Here C > 0 is independent of ¢.
Moreover, for given positive number £ > 0 we can assume

lluk (it)l| o, lluk (1 + it) || 4, < |ldkll(a0,41) + &

Further , we construct the function

v(2) = {vk(2)}ilos

where | (a/90—a/a1)(~2+8) g1 (a/q0—/g2)(2—0)
vie(2) = uk(2)lldell Goarye ||d||zf((q,2°f43:)'

A direct computation shows that we have the estimate

N
O o @)I%) % < lldlliy(ca0,41)6) + €'
k=0

where €’ = £'(¢) tends to 0 as ¢ tends to 0. In a similar way we have

N
O o (1 +it)[1%)9 < lldllty((o,a1)6) + &'
k=0

2l (100 (A0) sty (A1))e < llEllig((40,41)6)-

To show an inequality in the opposite direction we need a modification of the
classical three lines lemma. (see Lemma 3.2.1)

More precisely we want to replace L — norms in Lemma 3.2.1 by LP—norms
with 1 < p < 0.

Lemma 6.2.1 If f € F(y) and 1 < pg,p1 < 00, then there is a positive constant
C such that for any 6 € (0,1) we have

: 2 . — . - 2 .
1£(0)] < Clle®E V£ )i zma(my e’ " F(1 44 )1 (m)-
(R) ®)

Proof. Again we consider the function

9(z) = e* f(z)a la7*,

where .
aj = |G+ V f(i +i )|Leimy, §=0,1.
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Again a; are positive numbers and we have the estimate
|9(2)] < Ce™ %t

for Rez € [0,1]. |
Using the fact that :
0 —¢|>e>0

for Re¢ = 0,1, we see that the Cauchy identity implies that g(@ + iy) is bounded
and we have

19(8)] < Cligli)l|zwo + Cllg(1 + )| 2o

Our choice of g gua.rantees that ||g(i)||z»o and ||g(1 + ¢-)||z»: are bounded, so the
same'is true for |g(#)|. This completes the proof.
Turning back to the proof of the Theorem, we take again

d={dk};°=0, dr € AgNA; dp=0 for k> N.

For any k = 1,...,, N, there exists a function ux(2) with ux(2) continuous in S,
holomorphic in So {0 < Rez < 1}. For given positive number £ > 0 we can
assume

[l (i2) ] 4, llur (L + it)]| 4y < lldkll(a0,41)0 +&-
Applying the estimate of the above Lemma 6.2.1, we derive

Iz, (c0,a000) <
O3 e i 5P+ ) e

k=0

This estimate shows that

ll@llz4((40,41)6) < Clldll (10, (Ao)ste; (A1)

and completes the proof.
Further, given any real number s, we denote by 13(A) the linear space of all
sequences (ak)jeg,ar € 4, such that the norm

(6.2.6) lakll,cay = O 25*9||ax|%)*/?
k=0

is bounded. For 1 < g < oo the space [3(A) is a Banach space.
Then we have the following result for the complex interpolation (see section 5.6
in [2] ). ‘

(6.2.7) (Igo (Ao)s L3 (A1))e = I5((Ao, A1)e),
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where
1/g=(1-6)/g0+0/q1 , s=(1—0)so+0s

and moreover 1 < qp,q1 < 00. The proof is standard and we omit it.
For the case of Lebesgue L spaces we have the following result

(6.2.8) (LP°,LP*)g = L?,
where
L oa-o 4o
p Do 41

The proof is similar to the proof of the discrete case /, and we shall omit it.

Let x(z) be a smooth positive function on R™. Then the weighted space L?(x)
for 1 < p < oo by definition is formed by all measurable functions f, such that
xf € LP(R™). The norm in this space is

lIx £l Lo gn)-
For the case of weighted L? spaces we have the following interpolation result

(6.2.9) (L7 (x0), L (x1))e = LP(x),
where 1 1 1
— 4P(1-0)/po_p6/p2 = _ 1—6)— +6—.
X = Xo X1 3 (1-9) 20 T 00

Applying Theorem 6.1.2, we obtain the following interpolatioﬁ result.
Lemma 6.2.2 Let

xo(z), x1(2), x(z) and oo(z),01(z),0(z)
be smooth positive functions. Suppose
T : LP°(xo0) — L?%(00)
and
T:LP(x1) = L% (01)
is bounded with corresponding norms My and M, respectively. Then the operator
T:LP(x) = L(o)
s bounded and its norm is not greater than constant times
My~eM?.
for
o= a.g(l-o)/qo agﬂ/ql,x = xg(l—e)/poleﬂ/m_

1
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6.3 Interpolation for semigroups in Banach spaces

(see [2], [62] )

To have a possibility to introduce some other equivalent norms in the inter-
polation spaces, we shall consider the case when a strongly continuos semigroup
{G(t)} of operators acts in a Banach space A. For more detail of the proofs one
can consider section 6.7 in [2] or section 1.15 in [62].

Recall that a family of bounded linear operators {G(t)} defined for ¢ > 0 is uni-

formly bounded and strongly continuous semigroup if the following three conditions
are fulfilled

(6.3.1) G(s+t)a=G(s)G(t)a , (s,t >0, a € A),
(6.3.2) IG(t)alla < Cllalla (t>0, a€A),
(6.3.3) }1_!}!(1) IG(t)a—alla =0 a€A.

The generator A of this semigroup is defined in dense domain D(A) in A, such
that the limit
. ~1 _
(6.3.4) }E)%t (G(t)a — a)

in A exists for a € D(A). The limit in (6.3.4) defines Aa. One can see that D(A) is
a Banach space with respect to the norm

(6.3.5) lallpay = llalla + [|Aal| 4.

Moreover, for a € D(A) we have the relations

(6.3.6) El(id(:kl = AG(t)a = G(t)Aa

and

(6.3.7) G(t)a—a= /t G(s)Aa ds.
0

Given any 8 € (0,1) one can consider the interpolation space (A, D(A))s.
For simplicity, we consider the special case, when A is a positive operator in a
Hilbert space H. This means the A is a self-adjoint operator in H such that

(u,Au)g >0

for any u € D(A),u # 0. As before, (u,v)n denotes the scalar product in H.
Again we assume that the operator A has a dense domain D(A) in H.
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Lemma 6.3.1 (see [62]) If 6 € (0,1), then
(H,D(A))s = D(A®).

Proof. Let f € D(A). Then
f(z)=A"**'f
belongs to F(H,D(A)). Further, we have the estimate
1£llczpcays < Clle®=O"A=*+ |l e e peayy < CIAf ||
Since D(A) is dense in (H, D(A))g, we conclude that
D(A®) c (H,D(A))s.

To show the opposite inclusion we take f € D(A) such that f € (H,D(A))s.
Then there exists f(2) € F(H,D(A)), so that f = f(8). Consider the function
9(2) = A* f(2). Using the three lines lemma we find

2a\2 . _ 23\ 2 R
14° 1 < (oup e £(it))'~* (oup e+ £ (1 + i) I,

so we have
AL < | fll ¢z, pea)e-

This completes the proof.
Applying the spectral Theorem it is easy to see that the norm in th1s mterpo-
lation space is equivalent to

1 |
(6.3.8)  llallar,paye ~ llalla + ( /0 t~%||G(t)a — alfdt/t)"/2.

A minor modification in the above scheme is needed when A is a skew self-
adjoint operator in a Hilbert space H. Then the operator

A=T-A =T+ AA
is a positive operator in H. Then we have
Lemma 6.3.2 If0 € (0,1) and A is a skew self-adjoint operator, then
(H, D(4))s = D((T - 4)°/%)
and the norm in H, D(A))e is équivalent to

1
(6.3.9) 1l + /0 £ 20|\t — f|,dt/t)/2,
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Proof. Let f € D(A).Then
C j@) = Aoy
belongs to F(H, D(A)) and
I£llca,peans < CIT — A% f ||
This inequality leads to
- D((I - 4%°%)  (H,D(A))s.

To show the opposite inclusion we use the density property (6.1.8).

To show the equivalence of the norm in (H,D(A))¢ and (6.3.9) we use the
spectral theorem (see Theorem 2.2.4) and see that f € D((I — A%)*/?) means that
the integral

[ s xra, e

is convergent. Note also that

le4tf — fllge = f

o0

(2 —2costA\)d(f, Prf)

— 00

and we see that
1 1 oo :
/ t=2%)e?a — a||%dt/t = 4 / 20 / sin?((tX)/2)d(f, Prf)dt/t.
0 0 —00
On the other hand, for 0 < < 1 the integral
1
/ t=20 sin?((t))/2)dt/t
0
is equivalent to CA2% so the square of the norm in (6.3.9) is equivalent to
. - «
170+ [ Xt P
— 00

and this quantity is equivalent to
I — A%)°2£11%

This completes the proof.
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A simple generalization of the above argument works, when A;, ..., Ay are skew
self-adjoint operators in a Hilbert space H with commuting resolvents, i.e.

(-4~ -49)7 =0
for j,k =1,...,N. Then one can see that
N;D((I — A3)°?) = 0;(H, D(4;))e
= (H,n;D(4;))o = (H,D((I — A} — ... - A})"/%)o =
(6.3.10) = D((I — A2 — ... - 4%)%?).

An equivalent norm in the interpolation space N;(H, D(4;))¢ is

N 1
TPESY / £ oAt f — £|13,dt/t) 2,
=1 70

As an application let us consider the case
H=L*R"),A; =08:,,j=1,..,n

Then we have
eitf(z) = f(= + te),
ej = (0,...,0,1,0...,0) with 1 on jth place. For 0 < 6 < 1 the norm in H%(R") is

n 1
I fllz2mny + E(‘/‘0 /Rn t=2|f(z + te;) — f(z)|2dzdt/t) /2.
Jj=1
Any positive s can be represented in the form
s=k+40,

where k > 0 is an integer and 0 < § < 1. Then the norm in H*(R") is equivalent
to

> 182 fllzammy +

la|<k

6311) 3 i( fo 1 /R 162 f(a + te;) — 03 £(x) Pad/t) /2.

la|=k j=1
In fact, Strichartz ([58]) established the following equivalence.

Lemma 6.3.3 Let s = k + 6, where k > 0 is an integer and 0 < 6 < 1. Then for
any multiindez o, |a| = k, and any integer j = 1,...,n, we have

(6.3.12) F | eremny + [1Sk,0 ()Ml Lo ®m) ~ 1£ 1l g ().
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where

o 1/2
Ske(z)= ) (/0 /|'|<1t‘29|3§f(w+ty)—3§f(w)12dydt/t) -

le|<k

6.4 Fourier multipliers

To study Sobolev space H, (R") for fractional values of s we shall study convolution
type operators

(641) AN = [ e=a@fe)ds

where a(£) belongs to Hérmander’s class S°, i.e. a(£) is a smooth function, satis-
fying ;

(6.4.2) |6ga(e)| < C < € >,

for any £ € R™. As we know from the general theory of pseudodifferential operators,
this is a bounded operator from LP into L? for 1 < p < 00.(see (5.2.9) and (5.2.10)
in the section devoted to pseudodifferential operators.)

Thus, we know that its norm is

(6.4.3) lAllzcze, ey < BC,

where C is the constant from (6.4.2) and 3 is an universal constant depending only
on p and n. This fact follows also from the classical Michlin theorem, established
by Hormander (see [60], Theorem 1.1 in Chapter XI for example).

Further, we shall construct a Paley-Littlewood partition of unity ¢;(z) on R",
so that the following properties are fulfilled

1= ¢i(z),
rd
¢i(z) 20, ¢;(z) € C5°, for j 20,
(6.4.4) C~ 1279 < |z| < C2 for z € supp ¢;(z), j > 1.

To construct this partition of unity we choose a smooth function v (z) supported
in {z : 1/2 < |z| < 2} and such that ¢(z) = 1 for z € {z : 1/v2 < |z| < V2}.
Setting

¢(z) = v()( Y v(@77z)7,
. j:‘_oo
we see that

D b(27z) =1,

j=—00
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for z # 0. Finally, setting
0
$i(z) = 6(2772), i 21, do(z) = Y #(277a),
j=-o00

we see that this partition of unity satisfies (6.4.4).
In addition to these properties we have the important relation

(6.4.5) ¢i(z) = $(277z), j > 1,

where ¢(z) is a smooth compactly supported function.
Once the partition of unity satisfying (6.4.4) and (6.4.5) is constructed, we can
consider the operators

(6.4.6) si(N@ = [ e=oi@F @k,
The corresponding kernels for j > 1 are
k@) = [ e=pait)a = k@)
Rﬂ
where
Ko = [ e=plea
R'l

is a smooth rapidly decreasing function. Then we have (see [62] , [2])

(6.47) [ sin@Pra <cisi,.
3=0

It is not difficult to establish an estimate in the opposite direction. Indeed, for
f,g9 € Cg° we have

[1es@a =Y. [ @n@E:E

Ji=0

=Y. [s@ioa©ios

3,1=0

Since the elements of the partition of unity have finite overlap, there exists N so
that ¢;(§)¢i(§) = 0 for |j — | > N. Therefore, applying this property and the
Cauchy inequality we get

) [ 1)@

< /F(m)G(x)d:c,
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where o _
F(z) = ()_lei(f)@)})/?
j=0

and

G(2) = (D_ lesg(=)*)/2.
§=0 o

From (6.4.7) we know that
| |IFllze < Cllfllzs.

Thus applying the Hélder inequality, we get

| [ @)@l < O flzsGllr,
where 1/p + 1/p' = 1. This estimate implies
lgllzer < ClGI| e

so we have

Lemma 6.4.1 Let {¢;(z)},j = 0,1,..., be a Paley-Littlewood partition of unity
satisfying (6.4.4) and (6.4.5). Then for any p with 1 < p < co the norms

([ (S 1siH@ PP 2an) e
Jj=0

and
I fllze

are equivalent.

The following generalization of the above Lemma, is due to H.Triebel.
Let A;,7 =0,1,... be a sequence of convolution type operators

(6.4 4@ = [ a7 @,

Let
b@) = [ etas(ee
be the corresponding kernel of the operator Kj.

Lemma 6.4.2 (see [62]) Let A; be the pseudodifferential operators defined in above
and such that for any integer N > 0 there exists a constant C > 0, so that

D D 16ga;(€)1F <o+ gl

lal<N j=0
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Then for any p with 1 < p < oo we have

[ @ Pras < ol

J=0

6.5 Complex interpolation in Hj.

An application of Lemma 6.4.1 enables us to give the following equivalent norm
in the Sobolev space H;(R"), defined as a completition of smooth compactly sup-
ported functions f(z) with respect to the norm

(6.5.1) | Fllzgm = 1L =AY llzoan).

Theorem 6.5.1 For 1 < p < oo and s > 0 the norm in Hy(R") is equivalent to

(6:5:2) ([ (218, @)/ 2da) e
j=0
where
(6.53) 6;(f)() = / &=t (€) F (€)de
Rn

and {¢;(€)},7 =0,1,..., is a Paley-Littlewood partition of unity.

Proof. Consider the convolution type operator A; = ¢;(Dz)27* defined as
follows

4D = [ =02 f(e)at.
Taking a smooth compactly supported function g(z), we have
S [4)@5@@E =3 [ 44,0 @@
Jj=0 Jj=0
Now a direct computation shows that the convolution type operator
> ¢iA;
Jj=0

has a symbol of order s so the L?— boundedness of pseudodifferential operators of
order s gives ‘

> / A;(f)(z)$5(9)(z)dz| < C| fllmgllgll s -

=0
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~ Applying Lemma 6.4.1, we see that
| [> ]
lall < ([ (¥ los @)@ 2y
j=0
S0 we arrive at
oo
([ (= 216,(9)@)P)/2da)!/? < O fla.
3=0

To show the opposite estimate we follow the line of the proof of Lemma 6.4.1. For
f,g € Cg° we have

@2y 1)@ e = 5 [eta- a1 nEaEE:E

J,i=0

/ 85(E) (1 + €272 (©)8u(€) F(€)de.

J,i=0

Since the elements of the partition of unity have finite overlap, there exists NV so
that ¢;(§)¢i(§) = 0 for [j — 1| > N. Therefore, applying this property and the
Cauchy inequality we get

| Ja- 8y 1@ < [ FaGEs,
where o
2) = (3 29/ (f) @)} "?
=0
and

G(z) = ()_1;27%°(1 — A)**g(z)|*)/2.
=0
From Lemma 6.4.2 we know that

Gl < Clligll Lo
Thus applying the Holder inequality, we get

‘/(1 A)*%f(z)g(z)dz| < CIIFzsllgl ot

where 1/p + 1/p’ = 1. This estimate implies
I fllzg < ClIF||Le
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and completes the proof of the theorem.
Applying the result for complex interpolation in the space of sequences and in
L? spaces we obtain

(6.5.4) (Hpg,

H;:)a =H;)
where 6 € (0,1), 1 < p,po, p1 < 00 and
1

8=(1—9)80+081 , -]-.-=(1—9)—]:-+0—.
p Po 41

In particular, with s; = 0 we have
(6.5.5) (Hpds Ly, )o = Hp,

where 0 € (0,1), 1 < p,po,p1 < o0 and

1

(6.5.6) s=(1—6)so qﬁ““”%”l

p_lc
Applying the estimate (6.1.9), we see that this interpolation result leads to the
following interpolation inequality '

(6.5.7) lullzg < Clllze IulzZ,,

assuming the conditions (6.5.6) are fulfilled. For the limiting case p; = oo the
above estimate is still true in view of the result in [45].

6.6 Multiplicative inequalities in Hj.

First, we shall establish the following inequality due to Coifman and Meyer (see
[7).

Theorem 6.6.1 Ifs > 0 and1 < po,p1,p < 00, then for u,v € Hy N LP* we have
luvllzg < Clllullag lvllze: + llvllzg, llullze )

for

1 1
= — 4 —,
Po M

N

Proof. We shall use a dyadic partition of unity of type

1=Y ¢i(Dz),

Jj=0
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where

$5(Da)u(z) = / &7t (€) () de.

Here {¢;(€)} is a Paley - Litlewood partition of unity constructed in (6.4.4).
From Theorem 6.5.1 we know that the norm in ||uv|| gs(r~) on power p is equiv-
alent to

(6:6.1) [ 2181w @)P)em,
Since S
(662) ssw)@)= [ [ o=t - normdsan,

we can decompose this term into the form
¢j(w)(x) =TI+ 1T+ 111,

where

I= Y 6;upe(v))a),

k<j—N

=Y ¢;ue())c),

|k—j|<N

HI= ) ;i(ude(v))(®)-

k>2j+N

Setting

vj = Z ¢k('v)’

k<j—N

Uj = Z ¢k(v)’v

|k—J|<N

and choosing N > 1 sufficiently large we have
I = ¢;(uv;)(z) = ¢;(u;v;)(2)
and this leads to
) ‘ ) ] o .
[y <0 [(3 )R ma o) iz
§=0 =0 !
Now we combine the Hﬁlder inequality'and the estimate

llmax [o; (ll|zes < Cllvllze:
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valid in view of the estimate (6.4.3). In this way we obtain

/(i 22j'|I|2)p/2dz

=0
‘ p/po
(6.6.3) < Cllols, ( [& 22f'|uj(z)|2>P°/2dz) .
j=0

Now we are in situation to apply Theorem 6.5.1 and so we see that the left side of
(6.6.3) is bounded from above by constant times

o125, el

In the same way we obtain the estimate
- _
/ O 2% 11112 2 dz
=0
(6.6.4) < ClluliZs: vl -
Further, applying the Cauchy inequality, we get

/ (}of 2% 1112)P/2dz

Jj=0

[ viproas,

=0 =0

Ui= Y, ¢u,Vi= > twv.

|k—j|<SN |k-j|<N

where

Applying the Hélder inequality and Theorem 6.5.1, we see that

oo
JORA LD

Jj=0
< C”v"’im "u”p IR

This completes the proof. -
In the limiting case p; = oo we have the estimate (see the Appendix in [27])

(6.6.5) luvllay < Clllullmgllvlize + vl mgllullze)

The Sobolev embedding
(6.6.6) llullze < Cllulla
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is valid for 1 < p < ¢ < oo and
1

>1
P g

S|®

To verify this estimate we represent u in the form
u=K *v,

where

v=(1-A)"%y

K@) =c [ (1 +[¢P)™*/de.
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From Lemma 5.2.3 we know that the oscillatory integral K (z) satisfies the estimate

K ()| < Clz|~"*

so an application of Hardy-Sobolev estimate in Lemma 2.4.1 leads to the Sobolev

embedding.
Our next step is to present a Moser type estimate.

Lemma 6.6.1 (see [46]5.4.3) Let A\, s be real numbers such that 1 < s < A. Then

we have A
Nul*lze < Cllullasllullz=



	Semilinear Hyperbolic ...
	6 Complex interpolation ...
	Theorem 6.1.1 ...
	Theorem 6.1.2 ...
	Theorem 6.1.3 ...
	Theorem 6.2.1 ...
	Theorem 6.5.1 ...
	Theorem 6.6.1 ...



