1 Preliminaries

1.1 Chord diagrams

In this section we introduce definitions and some properties of chord diagrams.

A uni-trivalent graph is a graph, every vertex of which is either univalent or
trivalent, where a vertex of a graph is univalent (resp. trivalent) if there is one
edge (resp. there are three edges) of the graph adjacent to the vertex. For a
compact oriented 1-dimensional manifold X (possibly with boundary), a chord
diagram on X is the manifold X together with a uni-trivalent graph whose
univalent vertices are on X and whose trivalent vertices are vertex-oriented.
Here a trivalent vertex is vertez-oriented if a cyclic order of three edges around
the vertex is fixed. The degree of a chord diagram is half the number of univalent
and trivalent vertices of the chord diagram. In figures, we draw X by solid
lines and the graph by dashed lines, and each vertex-orientation is fixed in

counterclockwise orientation in the plane. For definition of chord diagrams, see

also [3, 27].

Definition 1.1. Let X be a compact oriented 1-manifold. We define the vector
space A(X) by

A(X) = C{chord diagrams on X}/AS,IHX,STU (1.1)
where the AS, IHX and STU relations are shown in Figure 1.1.

Let X be the disjoint union of an interval and a circle. We show an example

of a chord diagram below.
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Figure 1.1: Definition of the AS, IHX and STU relations

Further we show an example of an element in A(X) below.

Proposition 1.2. A(X) satisfies the following properties.

(1) The vertically connecting operation gives an algebra structure in A (}).

Further the algebra is commutative.

(2) We have an isomorphism A (}) — .A(S!) as a linear map, given by closing
the interval, i.e., by attaching the two end points of the interval to obtain

a circle.

(3) Fixing a component C of X, we have an action of A(S') on A(X), given
by taking connected sum of S! to C.

For proof of this proposition, see [3]. Here we illustrate (1) of the proposition

by the following example. As shown in Figure 1.2 a dashed line with a univalent



vertex on a solid interval can go through a chord diagram on the solid interval.
Since a chord diagram near a solid interval consists of a disjoint union of dashed
lines, two chord diagrams on a solid interval commutes together by the relation

in Figure 1.2 as shown in Figure 1.3.
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Figure 1.2: A dashed line goes through a chord diagram on a solid interval.
The first and second equalities are derived from the STU and IHX relations

respectively.
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Figure 1.3: Two chord diagrams on a solid interval commute together. The

equalities are derived from the relation shown in Figure 1.2

Remark 1.3. Generally, the vertically connecting operation also gives an algebra



structure in A(u .- ,L). However it is non-commutative for n > 1, unlike the
R

n
casen = 1.

1.2 Quasi-tangles

We give a combinatorial construction of the modified Kontsevich invariant in
Section 2. The invariant will be defined for a quasi-tangle which is a tangle with

the following extra structure defined as follows.

Definition 1.4. A tangle is a compact 1-manifold properly embedded in R x
R x [0, 1] such that the boundary of the embedded 1-manifold is a discrete subset
of {0} x R x {0,1}. A quasi-tangle is a tangle with an order of connecting its
end points in each of two lines {0} x R x {0, 1} as shown in the top and bottom

series of end points in Figure 1.4.
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Figure 1.4: An example of a quasi-tangle

We show an example of a quasi-tangle in Figure 1.4.

Any quasi-tangle diagram can be decomposed into elementary quasi-tangle
diagrams given as below, after deforming the diagram by isotopy of the plane if
necessary. Here we mean by a diagram the projective image of a tangle in the

plane.
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Definition 1.5. An elementary quasi-tangle diagram is one of the quasi-tangle

diagrams given in the following (1), (2) and (3).

(1) The trivial quasi-tangle diagrams. A trivial quasi-tangle diagram is a triv-
ial tangle diagram as a tangle diagram and has the same orders of con-
nection of upper and lower end points, where a trivial tangle diagram is a
tangle diagram given as {points} x [0,1] € Rx[0,1], i.e., a tangle diagram

consisting only of vertical straight lines without crossings.

o (0 0) (0o o) o (o]

(2) The diagrams or , where denotes a trivial

(0 o) o o (0 o) o
quasi-tangle. They are trivial tangles such that the orders of connections

are changed between both sides.

(-\ °) (e /-) (o @)
(3) / : \ : N\ and
\ /N ()
(o o) (o °) (e o)
We show an example of trivial quasi-tangles below.

(o o) o

(o o) o
Further we show an example of (2) below.

(o o) (((o o)e)(e o))

I

((o ) ((o 0)e))(o @)

The following lemma can be obtained easily.

Lemma 1.6. Any quasi-tangle diagram, in particular link diagram, is isotopic
(as diagrams in the plane) to a union of elementary quasi-tangle diagrams ob-
tained by attaching them vertically along their end points and by taking disjoint

union of them horizontally.
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Figure 1.5: A decomposition of a knot diagram into elementary quasi-tangle

diagrams

We call such expression of a quasi-tangle diagram by a union of elementary
diagrams a decomposition of a quasi-tangle diagrams into elementary diagrams.

We show an example of a decomposition of a knot diagram in Figure 1.5.

Moves for quasi-tangle diagrams with decompositions. There are many
ways to decompose a link diagram into quasi-tangle diagrams in general. We
introduce the following moves for letting the ways be related to each other.
There are the following three types for the moves.

Movwes of type 1 are the following (1.2) to (1.6),

( )
( )
( ) = , (1.2)
( )
( )
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move (1.6) below.

T

o) ©
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commutes with | l | and | I |
© o) © o (o

)
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(

( )
, (1.3)
( )
o (o (00))
(] ((c|> o) O)
/ , (14)
(o (00)) (o)
((00) J)) o
o o) © o
for T = I and I | |,
(o o) o ( )
(1.5)
© o) © o
for T = and
(© o) o o (© o)
(1.6)

where we call the move (1.4) the pentagon relation. We show an example of the

(¢ ) o)

( »)

) @)

Mowves of type 2 are the following (1.7) to (1.11),

(1.5) for the other elementary quasi-tangle diagrams T, (1.7)
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(1.6) for the other elementary quasi-tangle diagrams T, (1.8)

=|= K/\\ (1.9)
e
K

We show an example of the move (1.8) below.

(1.11)

).,

o ((o o@)o) o ((o 0)e)

(e(e o)) o (o (e \o)) o

Remark 1.7. As for the latter three moves (1.9) to (1.11), we fix quasi-tangle
decompositions in both sides in any way. Note that all fixing are equivalent to

each other modulo moves of type 1.

Moves of type 8 are Reidemeister moves RI, RII and RIII; for example see

[5] for the definition of the moves.

Remark 1.8. The moves (1.10) and (1.11) are moves such that a vertical path
moves over a maximal critical point. We realize the moves such that a vertical

path moves over a minimal critical point by moves of types 1 and 2 as follows.

A

Theorem 1.9. A link diagram determines a link. This correspondence induces
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the following bijection,

{link diagrams with decompositions}/moves of types 1, 2 and 3
= {links}/isotopy.
Outline of the proof. We show outline of the proof in the following three steps.

Stepl. We show

{link diagrams with decompositions}/moves of typel (1.12)
= {link diagrams} /restricted isotopy of R?,

where the isotopy in the right hand side is restricted such that the height func-
tion of LI!ST,
u's' - R? - R,
is preserved. Here the first map is an immersion of LI!S! expressing a link
diagram, and the second map is the projection to the height coordinate. The
formula (1.12) is reduced to the following formula,
{the trivial quasi-tangles with decompositions}/moves of typel
= {the trivial quasi-tangles},
which is shown by elementary calculations.

Step2. The following formula holds

{link diagrams with decompositions}/moves of types 1 and 2 (1.13)
= {link diagrams}/isotopy of R?.

This equality is shown by (1.12) in Step 1 and results in [40].
Step 3. We obtain the required formula by (1.13) in Step 2 and Reidemeister’s

theorem, see [5]. O

2 The modified Kontsevich invariant

2.1 Definition of the modified Kontsevich invariant

Let L be an oriented framed link with / components in S3. We fix a link diagram

of L such that the framing of L is expressed by the blackboard framing of the link
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