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Abstract

We present a simple framework for ”non-standard type inference based”
analyses of functional programs and show how to apply it to dead-code and
strictness analyses. A key feature of this framework is that is based directly
on operational semantics.

1 Introduction
In this paper the $\lambda$-calculus (see [3, 22, 4]) is seen as a prototype functional pro-
gramming language (see [23] for a survey) rather than a formalism for representing
proofs as in constructive logic. This makes relevant peculiar aspects (as the evalu-
ation strategies) which are typical of this view.

The aim of this paper is to present the main concepts of the type inference
approach to program analysis and to illustrate it through a couple of relevant
examples (dead-code and strictness). We do this by introducing a simple framework
for defining formal systems for reasoning about properties of functional programs.
A number of program analyses useful in the optimization of functional programs
can be handled by instantiating our framework.

1.1 The type inference approach for reasoning about pro-
gram properties

The Curry-Howard isomorphism shows that the construction of a $\lambda$-term $M$ of a
given type $A$ is equivalent to prove $A$ as a theorem in a suitable (propositional)
logic. From the $\lambda$-calculus” point of view, having type $A$ can be seen as a property
of the $\lambda$-term $\lambda f$ , that can be proved using the usual machinery of propositional
logic. The use of formal inference systems to prove program properties is also a
basic feature of Curry’s approach to typing lambda terms (see [4]), in which the
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inference system to assign types to terms is defined on the top of the type-free $\lambda-$

calculus. In Curry’s approach different types can be assigned to the same $\lambda$-term,
representing its different functional properties.

An essential feature of the inference approach is the existence, in many signif-
icant cases, of simple and (at least in the practical cases) efficient algorithms for
automatic type inference. The inference approach has proved to be very useful in
the definition of polymorphic type systems for programming languages. Starting
from ML ([31]) most of the modern functional programming languages incorporate
a polymorphic type system based on these ideas. In this paper we are interested
in types from a “programming” point of view, in which the $\lambda$-terms are the basic
objects and types are seen as tools for explaining their behaviour.

More recently it has been observed that, also from a “programming” point of
view, the notion of type could be given a richer significance than the usual one,
in which types simply represent collections of object with an uniform behaviour
with respect to the basic ground domains. Indeed the usual inference rules for type
assignment can be seen as the basic inference rules to prove properties of $\lambda$-terms,
and having a certain type is only the most general one. If we take a more refined
notion of “type” we can use the inference rules to prove more detailed properties.
For instance if we distinguish, in the set of integer numbers, the properties of being
an “even” or an (odd’ number, we can try to prove if a given function which maps
integer numbers into integer numbers maps, for instance, even integer numbers
into odd ones. The successor, for instance, has this property. To prove properties
like these we have to add to the basic inference rules also rules which are more
specifically tailored to the properties we are interested in. In the case of even and
odd numbers it could be useful, for example, to have an axiom that says that the
property of being odd (or even) number implies that of being an integer number. So
if we know that the functionF $=\lambda x.x*2mapsintegernumbersintoevennumbers$

we should be able to deduce that $F$ maps also odd (or even) numbers into integer
numbers.

In this way we can get inference systems to prove program properties, most
of which are useful in the optimization of functional programming languages. To
this aim an essential requirement is the decidability and efficiency of the associated
decision procedure. One main concern of this paper is to present applications for
which a decision procedure exists and is feasible, even though we will not explicitly
address here this aspect.

The inference approach could be applied to untyped $\lambda$-terms. However, the
untyped setting does not seem, the most interesting environment in which to de-
velop system for reasoning about programs. Indeed the structure of properties of
untyped languages is very liberal but sometimes excessively general. The inference
approach may, however, be developed for typed languages as well. In this case
properties are defined for terms of a given type. So we will not speak only of
terms of type ${}^{t}e1^{r}$en” but rather of (even’ terms of type int. We have to distin-
guish between ((

$types’$ in the usual sense and (types’ which represent properties
of terms of a given type (in the previous sense). To keep clear this distinction we
call non-standard types the second kind of types. This more stratified structure of
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the inference systems has also the advantage that, if we start from a finite set of
non-standard types at the ground types1 , the set of non-standard types represent-
ing properties of terms of each type are finite, making typechecking decidable (at
least in principle). Inference algorithms for these systems can be defined making
possible practical applications.

A formal system to prove program properties is formed by two sets of rules.
The basic assignment rules which are based on the structure of programs, $\lambda$-terms
in our case, and the specific rules, which are determined by the properties we are
representing. These can be divided, in turn, into two sets: the rules which represent
the structure of the properties in themselves (for instance the property of “being
odd” implies that of “being an integer number”) and the rules that concern the
way in which properties are assigned to $\lambda$-terms (for instance the axiom that the
successor function maps even numbers in odd ones). We formalize the first rules by
means of a formal inclusion relation $(\leq)$ which represent the entailment structure
of properties.

The idea of considering inference systems as a tool to prove program properties
was introduced in the literature in [29] where a set of formal inference rules for
the analysis of strictness properties was given (see also [12] where this idea was
implicit). A first framework based on type inference for the proof of properties of
untyped $\lambda$-calculus setting was given in [13]. For the simply typed $\lambda$-calculus the
approach was pursued by a number of other authors, see for instance [25, 7, 51, 21,
48, 5, 33].

1.2 Type inference and abstract interpretation
A related approach for the investigation of program properties is based on ab-
stract interpretation. Abstract interpretation was first introduced for imperative
languages in [15] and then applied to functional languages by a number of authors,
see [34, 35, 11, 36, 2, 24, 16]. In this approach programs are interpreted in abstract
(usually finite) domains, instead of the standard denotational domains. Such ab-
stract domains highlight the properties that are considered and are related to the
standard denotational domains by suitable embedding-projection functions. The
detection of properties then is obtained by giving an abstract form of the program-
ming language constructors, and evaluating the meaning of a program over the
abstract finite domains.

The abstract interpretation approach is related to the inference one, as it has
been shown, for instance, in [14]. In fact an inference system can be seen as a kind
of abstract interpretation. Similarly also abstract domains can be defined from
inference systems via the notion of filter models ([12], [13]).

An explicit connection between the abstract interpretation approach and the
type inference one is obtained by defining an inference system from the logical
presentation of some abstract domain, along the lines of Abramsky in [2]. This
approach has been followed by Jensen in [25] (see also Benton [7]) and subsequent

1 We call ground the non-compound type of the language, like int (the type of integers) and
bool (the type of booleans).
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papers ([26, 27]) in which the logic of the abstract domains for strictness, introduced
in [11], is presented via a type inference system which is proved to be sound and
complete w.r. $t$ . the abstract semantics. In our work we take a more direct approach:
we connect directly the type inference system to operationally based semantics,
namely the ground and the lazy observational equivalences, without the need of
passing through an abstract interpretation.

1.3 Static analysis of functional programs

Depending on the semantics of function application, functional languages can be
distinguished in two classes. Strict (or eager) languages, in which function applica-
tion has a call-by-value semantics (i.e. the actual parameter is evaluated when the
function is applied and the formal parameter is bound to that value). Non-strict
(or lazy) languages, in which function application has a call-by-name semantics
(i.e. the function’s formal parameter is bound to the unevaluated actual parameter
which is evaluated each time its value is required). For efficiency, application in
non-strict languages is usually implemented using call-by-need, which is the same
as call-by-name, except that after the first evaluation of the actual parameter its
value is retained and used whenever the formal parameter is subsequently required.
The evaluation of an application by call-by-value or call-by-need requires usually
more machinery (and then more time) than the evaluation of the application by
call-by-value.

According to the above definition, Scheme [1], ML [31] and Caml [30] are eager,
whereas Miranda [50], Haskell [40] and Clean $[43, 20]$ are lazy.

One of the main drawbacks of the functional paradigm is that the efficiency
is often rather poor. Modern compilers for functional programming languages use
various kinds of transformations to improve the efficiency of the code produced.
Such transformations are based on static analyses of programs and must be proved
to preserve their semantics. It is of practical interest, then, to find reliable methods
for detecting properties useful to perform such optimizations. Various kinds of
static analysis for functional languages have been proposed in literature.

Dead-code analysis aims to determine the parts of a program that are useless
for the computation of the value of a program. This information allows the simpli-
fication of programs by removing useless parts (which are called dead-code). For
example in the evaluation of an expression $(\lambda x^{\dot{|}nt}.3)P$ the value of $P$ is discarded
in the computation of the value of the expression (which is the integer number 3)
and so its evaluation is useless. The expression $P$ would be evaluated anyway in
an eager language, and this can result is a considerable waste of time. $P$ would
not be evaluated, instead, in a lazy language, however the size of $P$ could be big
and its storage could determine a waste of time and memory. In both cases if we
replace $P$ with any constant $d$ (of type int) which does not require evaluation we
get a simpler expression $((\lambda x^{int}.3)d)$ which is equivalent to the original one (in the
sense that yields the same value2 ). In this case it is also possible to perform a

2 In an eager language this transformation could change the termination behaviour of the
program: if the evaluation of $P$ does not terminate then the original program diverges while the
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more substantial simplification by removing both the abstraction of the variable
$x^{int}$ on the term 3 which does not contain occurrences of it and the subsequent
application of the resulting term to $P$ , since the whole expression is equivalent to
3.

The information about dead-code can be propagated. We will consider a $\lambda-$

calculus with pairs (, } and projections $proj_{1}$ and $proj_{2}$ . Let $M$ be the term

$\lambda x.proj_{1}\langle P, Q\rangle N$

for some term $P,$ $Q$ , and $N$ . Since the projection $proj_{1}$ returns the first component
of the pair the term $Q$ is dead code. Moreover, assume that $P$ does not contain
any occurrence of $x$ , in this case also $N$ is not relevant to the computation of the
final result. So $M$ behaves like the term $P$ , which is of course simpler.

Dead-code analysis has been mainly studied in the context of logical frameworks,
like Coq [6] (see [41] for a short survey on logical frameworks), to remove redundant
code from functional programs extracted from formal proofs (see $[39, 38]$ for an in-
troduction to the subject). In fact, programs extracted from proofs usually contain
large parts that are useless for the computation of the final result, i.e. dead-code,
and some sort of simplification is mandatory. Various simplification techniques
have been developed in the last few years, see for instance [49, 8, 10, 9, 46, 19].
Dead-code can be found also in programs in which general-purpose functions, taken
from standard libraries, are used in specialized contexts.

Strictness analysis aims to determine whether, in a lazy language, a function
is strict in its arguments. A function expecting $n$ arguments is strict in its i-
th argument if diverges whenever its i-th argument (actual parameter) diverges,
independently of the value of all other parameters. For example $\lambda x.\lambda y.x+y$ , seen
as a function of $x$ and $y$ is strict in both its first and second arguments while
$\lambda f.\lambda y.(fy)$ is strict in its first argument but not in the second one. In fact if $f$ is
replaced by a function that does not evaluate its argument (like $\lambda x.3$ ) the value of
the second argument is never used for the computation of the final result which is
3, which can be computed even if the second argument is undefined.

If a function is strict in one of its arguments then, for this argument, we can
replace a call-by-need with a the more efficient call-by-value without affecting the
result of the function. Other optimizations (like, for instance, the parallel evalua-
tion of a function and its argument) are also possible for strict functions.

Other program analyses which can be expressed in our framework but which
are not addressed in this paper are, for instance, totality analysis, which aims
to determine whether the evaluation of an expression terminates (i.e. whether an
expression has a weak head normal form) and $binding\neg time$ analysis, which aims
to determine the parts of a program that can be evaluated at compile-time.

simplified program could converge. However, when considering terminating programs (as welJ-
written pure functional programs should be), the simplification preserves also the termination
behaviour of the program.
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1.4 About this paper

The functional language considered in this paper is a non-strict language, called
PCFP, which is an extension of PCF(see [44]). The non-standard type inference
framework that we propose exploits features common to different static analyses of
functional languages. It provides a (core’ system for type syntax, entailment ad
assignment rules whose semantics is given in a term model of the language based
on some operational equivalence. The particular equivalence considered as well as
the entailment and inference rules can be tuned to focus on some specific analysis.

Section 2 introduces the programming language we are dealing with, its op-
erational semantics, and some term models based on this semantics. Section 3
introduces our non-standard type inference framework, and Section 4 describes
how to instantiate the framework to a particular analysis. In Sections 5 and 6 the
framework is instantiated to dead-code and strictness analyses, respectively.

2 The language PCFP
In this section we introduce a simple functional programming language (basically
the simply typed $\lambda$-calculus with cartesian product, if-then-else, fixpoint, and arith-
metic constants) and its operational (call-by-name) semantics. We use the acronym
PCFP for this language, standing for “Programming Computable Function with
Pairs”, since it is the dialect of the language PCF [44] obtained by adding a type
constructor for pairs.

For a more comprehensive presentation of the material in Sections 2.1 and 2.2
see [42], where the language considered includes also lazy lists.

2.1 PCFP syntax and evaluation rules

The set of PCFP types is defined assuming as ground types int and bool: the set
of natural numbers and the set of booleans. Types are ranged over by $\rho,$ $\sigma,$ $\tau$ .

Definition 2.1 (PCFP types) The language of types (T) is defined by the fol-
lowing grammar: $\rho::=\iota|\rho\rightarrow\rho|\rho\times\rho$ , where $\iota\in$ {int, bool}.
PCFP terms are defined from a set of typed term constants

$\mathcal{K}$ $=$ { $0^{\dot{I}nt},$ $1^{int},$ $2^{\dot{|}nt},$

$\ldots$ SUCC, pred, $+^{int\times int\rightarrow 1nt},$
$-lnt\times int\rightarrow int$

true, $fa|se^{boo1},$ not, and,or,
$=^{int\times 1nt\rightarrow boo1}\}$ ,

(ranged over by c), and a set $\mathcal{V}$ of typed term variables (ranged over by $x^{\rho},$ $y^{\sigma},$
$\ldots$ ).

The type of a constant $c$ is denoted by $T(c)$ . The choice of the term constants
is not critical. Other operators on integer and booleans could be added without
problems. PCFP terms, ranged over by $M,$ $N,$ $\ldots$ , are defined as follows.

Definition 2.2 (PCFP terms) We write $\vdash_{T}M$ : $\rho$ , and say that $M$ is a term
of type $\rho,$ $if\vdash M$ : $\rho$ is derivable by the rules in Fig. 1.
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(Var) $\vdash x^{\rho}$ : $\rho$ (Con) $\vdash c^{\rho}$ : $\rho$

$(\rightarrow I)\frac{\vdash.M:\sigma}{\vdash\lambda x^{\rho}M:\rho\rightarrow\sigma}$ $(\rightarrow E)\frac{\vdash M:\rho\rightarrow\sigma\vdash N:\rho}{\vdash MN:\sigma}$

$(\times I)\frac{\vdash M_{1}:\rho_{1}\vdash M_{2}:\rho_{2}}{\vdash\langle M_{1},M_{2}\rangle:\rho_{1}\times\rho_{2}}$ $(\times E_{i})\frac{\vdash M:\rho_{1}\times\rho_{2}}{\vdash proj_{i}M:\rho_{i}}i\in\{1,2\}$

(Fix) $\frac{\vdash M.:\rho}{\vdash fixx^{\rho}M:\rho}$ (If) $\frac{\vdash N:boo1\vdash M_{1}:\rho\vdash M_{2}:\rho}{\vdash ifNthenM_{1}e1seM_{2}:\rho}$

Figure 1: Rules for PCFP term formation $(system\vdash_{T})$

Notation 2.3 1. According to Definition 2.2, in a PCFP term $M$ the types of
variables and constants are explicitly mentioned. In the following we often
omit to write types which are clear from the context.

2. The finite set of the free variables of a term $M$ , denoted by $FV(M)$ , is defined
in the standard way. In the following we take PCFP terms to be $\alpha$ -equivalence
classes of syntax tree, $i.e$ . we will identify terms modulo renaming of the bound
variables.

3. We will often use, as syntactic sugar, the infix notation for the binary oper-
ators of the language, $e.g$ . we will write “3+5” instead of $‘‘+\langle 3,5\rangle$ “.

4. As usual a substitution is a finite function mapping term variables to terms,
denoted by $[x_{1} :=N_{1}, \ldots, x_{n} :=N_{n}]$ ( $[\vec{x}:=\vec{N}]$ for short), which respects the
types, $i.e$ . each $x_{i}^{\rho}$

’ is substituted by a term $N_{i}$ of the same type. Substitu-
tion acts on free variables, the renaming of the bound variables is implicitly
assumed.

Let $\Lambda_{T}$ be the set of PCFP terms, i.e. $\Lambda_{T}=$ { $M|$ $\vdash_{T}M$ : $\rho$ for some type $\rho$ },
and $\Lambda_{T}^{c}$ be the set of the closed terms, i.e. $\Lambda_{T}^{c}=$ { $M|M\in\Lambda_{T}$ and $FV(M)=\emptyset$ }.
The values of the terms in $\Lambda_{T}^{c}$ are defined via a standard call-by-name operational
semantics (see [45, 28]) described by judgments of the form $M\Downarrow K$ , where $M$ is
a closed term and $K$ is a closed term in weak head normal form $(w.h.n.f.)$ , i.e.
$K\in V_{T}$ , where

$V_{T}=\mathcal{K}\cup\{\lambda x^{\rho}.N|\lambda x^{\rho}.N\in\Lambda_{T}^{c}\}\cup\{\{M_{1}, M_{2}\}|\langle M_{1}, M_{2}\rangle\in\Lambda_{T}^{c}\}$ .

The meaning of a functional constant $c$ is given by a set mean $(C)$ of pairs, i.e.
if $(P_{1}, P_{2})\in mean(C)$ then $CP_{1}$ evaluates to $P_{2}$ . For example (true, false) $\in$

mean(not) and $(\langle 1,3\}, 4)\in mean(+)$ .

Deflnition 2.4 (Value of a term) $LetM\in\Lambda_{T}^{c}$ . We write $M\Downarrow K$ , and say that
$M$ evaluates to $K$ , if this statement is derivable by using the rules in Fig. 2.
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(CAN) $\frac{K\in V_{T}}{K\Downarrow K}$

(APP) $\frac{M\Downarrow\lambda x.PP[x:=N]\Downarrow K}{MN\Downarrow K}$

$(APP_{1})\frac{M\Downarrow cN\Downarrow c_{1}}{MN\Downarrow c_{2}}(c_{1}, c_{2})\in mean(c)$

$(APP_{2})\ovalbox{\tt\small REJECT}_{MN\Downarrow c_{3}}M\Downarrow cN\Downarrow\{N_{1},$
$N_{2}\rangle N_{1}\Downarrow c_{1}N_{2}\Downarrow c_{2}(\{c_{1}, c_{2}\rangle, c_{3})\in mean(c)$

$(PROJ_{i})\frac{P\Downarrow\langle M_{1},M_{2}\rangle M_{i}\Downarrow K}{proj_{i}P\Downarrow K}i\in\{1,2\}$

(FIX) $\frac{M[x:--f.ixx.M]\Downarrow K}{fixxM\Downarrow K}$

$(IF_{1})\frac{N\Downarrow trueM_{1}\Downarrow K}{ifNthenM_{1}e1seM_{2}\Downarrow K}$ $(IF_{2})\frac{N\Downarrow fa1seM_{2}\Downarrow K}{ifNthenM_{1}e1seM_{2}\Downarrow K}$

Figure 2: (Natural semantics” evaluation rules

Let $ M\Downarrow$ , to be read $M$ is convergent”, mean that, for some $K,$ $M\Downarrow K$ , and let
$ M\Uparrow$ , to be read $M$ is divergent”, mean that, for no $K,$ $M\Downarrow K$ . It is easy to
see that, for any types $\rho,$

$\sigma\in T$ , fix $x^{\rho}.x\Uparrow(fixx^{\rho}.x$ is the typical divergent term of
type $\rho$ ) and that (fix $x^{\rho\rightarrow\sigma}.x$ ) $ P\Uparrow$ ( $for$ every closed term $P$ of type $\rho$). Moreover,
also $proj_{i}$ (fix $x^{\rho\times\sigma}.x$ ) $\Uparrow(fori\in\{1,2\})$ .

2.2 Contextual equivalences
Following [42] we introduce two congruences on PCFP terms. The first is the con-
gruence on terms induced by the contextual preorder that compares the behaviour
of terms just at the ground type int (ground contextual equivalence), while the sec-
ond is the one induced by the contextual preorder that compares the behavior of
terms at every type (lazy contextual equivalence).

Let $(C[ ]\rho)^{\sigma}$ denote a typed context of type $\sigma$ with a hole of type $\rho$ in it.

Definition 2.5 (Ground contextual equivalence) Let $M$ and $N$ be terms of
type $\rho$ . Define $M\preceq_{obs}^{gnd}N$ whenever, for all closed contexts $(C[ ]^{\rho})^{\dot{I}nt}$ , if $C[M]$

and $C[N]$ are closed terms, then $ C[M]\Downarrow impliesC[N]\Downarrow$ . The relation $\preceq_{obs}^{gnd}$ is the
ground contextual preorder and the equivalence induced $by\preceq_{obs}^{gnd}$ , denoted $by\simeq_{obs}^{gnd}$ ,
is the ground observational equivalence.

In [42] a co-inductive characterization of ground contextual equivalence in terms
of bisimulation is given.
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(bis la) ( $M\mathcal{B}_{booI}N$ and $M\Downarrow b$ ) implies $N\Downarrow b$

(bis lb) ( $M\mathcal{B}_{booI}N$ and $N\Downarrow b$ ) implies $M\Downarrow b$

(bis $2a$ ) ( $M\mathcal{B}_{int}N$ and $M\Downarrow n$ ) implies $N\Downarrow n$

(bis $2b$ ) ( $M\mathcal{B}_{int}N$ and $N\Downarrow n$ ) implies $M\Downarrow n$

(bis 3) $M\mathcal{B}$ $N$ implies, for all $P$ such $that\vdash {}_{T}P:\rho,$ $MP\mathcal{B}_{\sigma}NP$

(bis 4) $ M\mathcal{B}_{\rho\times\sigma}N\rho\rightarrow\sigma$ implies
( $proj_{1}(M)\mathcal{B}_{\rho}proj_{1}(N)$ and $proj_{2}(M)\mathcal{B}_{\sigma}proj_{2}(N)$ )

Figure 3: Bisimulation conditions for PCFP

We give here the definition of bisimulation for PCFP, and state the main result
presented in [42]: Theorem 2.7. Such theorem, relating ground contextual equiv-
alence and bisimilarity, is used in this paper to prove some equivalences between
terms.

Definition 2.6 $A$ PCFP bisimulation $\mathcal{B}$ is a type indexed family of relations on
closed terms,

$\mathcal{B}_{\rho}\subseteq\{\langle M, N\}|\vdash_{T}M$ : $\rho,$ $\vdash_{T}N$ : $\rho$ and $FV(M)UFV(N)=\emptyset$ }

($\rho\in$ T), satisfying the conditions in Fig. 3. PCFP bisimilarity is the largest
bisimulation and will be denoted $ by\simeq$ .

The relation $\simeq$ can be extended to open terms by defining $M\simeq N$ if for all
substitutions $[x_{1} :=N_{1}, \ldots, x_{n} :=N_{n}]$ such that $\{x_{1}, \cdots, x_{n}\}\supseteq FV(M)\cup FV(N)$

and $\bigcup_{1\leq n}FV(N_{i})=\emptyset$

$M[x_{1} :=N_{1}, \ldots, x_{n} :=N_{n}]\simeq N[x_{1} :=N_{1}, \ldots, x_{n} :=N_{n}]$ .

Theorem 2.7 (Operational extensionality for PCFP) Ground contextual equiv-
alence coincides with bisimilarity. That is, let $M$ and $N$ be terms of the same type:

$M\simeq_{obs}^{gnd}N$ if and only if $\mathbb{J}I\simeq N$ .

In the following we list some properties $of\simeq_{obs}^{gnd}$ which are used in the rest of this
paper, and can be derived from Theorem 2.7. In particular property 1. says that
the ground observational equivalence is extensional.

1. For all $M$ and $N$ such that $\vdash_{T}M$ : $\rho\rightarrow\sigma$ and $\vdash_{T}N$ : $\rho\rightarrow\sigma,$ $M\simeq_{obs}^{gnd}N$ if
and only if for all $P$ such that $\vdash {}_{T}P:\rho,$ $\mathbb{J}TP\simeq_{obs}^{gnd}NP$ , implies $M\simeq_{obs}^{gnd}N$ .

2.
$Fora11MandM\simeq_{obs}^{gnd}N$

$N$ such that $\vdash_{T}M$ : $\rho$ and $\vdash_{T}N$ : $\rho$ , if $ Il\Uparrow andN\Uparrow$ , then

3. $(\lambda x.M)N\simeq_{obs}^{gnd}M[x:=N]$ .
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4. $proj_{i}\{\mathbb{J}I_{1},$ $i\iota I_{2}\rangle$
$\simeq_{obs}^{gnd}\Lambda I_{i}$ (for $i\in\{1,2\}$ ).

From the previous properties we derive that $\lambda y^{int}$ .fix $x^{int}.x\simeq_{obs}^{gnd}$ fix $z^{int\rightarrow int}.z$ . In-
deed for all $P,$ ( $\lambda y^{int}$ .fix $x^{int}.x$ ) $P\Uparrow since$ from 3. ( $\lambda y^{int}$ .fix $x^{int}.x$ ) $P\simeq_{obs}^{gnd}$ fix $x^{int}.x$ .
Moreover since fix $z^{int\rightarrow int}.z\Uparrow then$ for all $P$ , (fix $z^{int\rightarrow int}.z$ ) $ P\Uparrow$ . Therefore, from 2.,
for all $P,$ ( $\lambda y^{int}$ .fix $x^{int}.x$ ) $P\simeq_{obs}^{gnd}$ (fix $z^{int\rightarrow int}.z$ ) $P$ . From 1. so we can derive that
$\lambda y^{int}$ .fix $x^{int}.x\simeq_{obs}^{gnd}$ fix $z^{|nt\rightarrow|nt}.z$ .

We also define a contextual equivalence that observes terms at all types.

Definition 2.8 (Lazy contextual equivalence) Let $M$ and $N$ be terms of type
$\rho$ . Define $M\preceq_{obs}^{1azy}N$ whenever, for all type $\sigma$ and for all closed contexts $(C[]^{\rho})^{\sigma}$ ,

if $C[Jf]$ and $C[N]$ are closed terms, then $ C[\Lambda f]\Downarrow$ implies $ C[N]\Downarrow$ . The $relation\preceq_{obs}^{1azy}$

is the lazy contextual preorder and the equivalence induced $by\preceq_{obs}^{1az\}^{r}}$ , denoted by
$\simeq_{obs}^{1azy}$ , is the lazy observational equivalence.

It is immediate to see that, $M\simeq_{obs}^{Iazy}N$ implies $M\simeq_{obs}^{gnd}N$ . The reverse is
not true. For instance as previously shown $\lambda y^{int}$ .fix $x^{int}.x\simeq_{obs}^{gnd}$ fix $z^{int\rightarrow int}.z$ while
$\lambda y^{1nt}$ .fix $x^{int}.x\not\simeq_{obs}^{1azy}$ fix $z^{int\rightarrow int}.z$ , since $\lambda y^{int}$ .fix $x^{int}.x\Downarrow and$ fix $ z^{int\rightarrow int}.z\Uparrow$ . This ex-
ample shows that property 1. above does not hold $for\simeq_{obs}^{Iazy}$ . Properties 2., 3., and
4., instead, holds also $for\simeq_{obs}^{1azy}$ .

2.3 Closed term models of PCFP

In this section we introduce the term models induced by the ground and lazy
equivalences. We also introduce a richer term model containing a “convergence to
w.h. $n.f$. test, isdef. The entailment relation between non-standard types presented
in Section 6.2 is complete w.r. $t$ . this extended model.

2.3.1 The models $\mathcal{M}$ gnd and $\mathcal{M}^{1azy}$

The closed term model $\mathcal{M}$
gnd of PCFP is defined by interpreting each type $\rho$ as the

set of the equivalence classes of the relation $\simeq_{obs}^{gnd}$ on the closed terms of type $\rho$ in
$\Lambda_{T}^{c}$ . Let $I(\rho)^{\Lambda 4^{g_{11}d}}$ denote the interpretation of type $\rho$ in this model, and let $[\mathbb{J}/I]^{\mathcal{M}^{gd}}11$

denote the equivalence class of the closed term $M$ . The preorder $\preceq_{obs}^{gnd}$ is naturally
extended to a partial order between equivalence classes by defining $[M]^{\mathcal{M}^{gnd}}\preceq_{obs}^{gnd}$

$[N]^{\mathcal{M}^{gnd}}$ if $M\preceq_{obs}^{gnd}N$ . For every type $\rho$ , $[$fix $x^{\rho}.x]^{\mathcal{M}^{gnd}}$ (the equivalence class of the
canonical divergent element, which represents the notion of endless computation),

is the least element, w.r. $t$ . $\preceq_{obs}^{gnd}$ , of $I(\rho)^{\mathcal{M}^{gnd}}$ An environment is a mapping $e$ :
$\mathcal{V}\rightarrow\bigcup_{\rho\in T}I(\rho)^{\mathcal{M}^{gnd}}$ which respects types, i.e. a mapping such that, for all $x^{\rho}$ ,
$e(x^{\rho})\in I(\rho)^{\lambda 4^{gd}}\prime l$ The interpretation of a term $\Lambda l$ in an environment $e$ is defined
in a standard way by:

$[Af]_{e}^{\mathcal{M}^{gnd}}=[M[x_{1} :=N_{1}, \ldots, x_{n} :=N_{n}]]^{\mathcal{M}^{gd}}11$
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where $\{x_{1}, \ldots, x_{n}\}=FV(M)$ and $[N_{l}]^{\Lambda 4^{gnd}}=e(x_{l})(1\leq l\leq n)$ . It is worth
mentioning that for all environment $e,$ $if\vdash_{T}M$ : $\rho$ then $[M]_{e}^{\mathcal{M}^{gnd}}\in I(\rho)^{\Lambda l^{gnd}}$

The closed term model $\mathcal{M}^{1azy}$ of PCFP is defined similarly by interpreting each
type $\rho$ as the set of the equivalence classes of the $relation\simeq_{obs}^{Iazy}$ on the closed terms
of type $\rho$ in $\Lambda_{T}^{c}$ . Note that $\mathcal{M}$ gnd is an extensional model, while $\mathcal{M}^{1azy}$ is not.

2.3.2 The model $\mathcal{M}_{isdef}^{1azy}$ .
To define this model of PCFP, we will refer to a set of terms extended by a new
program constructor for testing whether a term has a w.h. $n.f$. (isdef). The resulting
set of terms is denoted by $\Lambda_{T}^{isdef}$ .

Extended terms. The term formation rule for the new constructor is the follow-
ing:

(Isdef) $\frac{\vdash M:\rho}{\vdash isdef(M):boo1}$

and the evaluation rule is as follows:

(ISDEF) $\frac{N\Downarrow}{isdef(N)\Downarrow true}$

The constructor isdef is just the extension of the isfn constructor of [42] page 280
to consider ground types and pairs. Note that (for non-ground types) isdef is not
internally definable in PCFP, but it could be easily added.

The extended term model. The closed term model $\mathcal{M}_{isdef}^{1azy}$ of PCFP is defined in
the obvious way by interpreting each type $\rho$ as the set of the equivalence classes of
the $relation\simeq_{obs}^{1azy}$ on the closed terms of type $\rho$ in $\Lambda_{T}^{isdef}$ . Note that for the language
of extended terms, $\Lambda_{T}^{isdef},$ $\simeq_{obs}^{1azy}$ coincides with $\simeq_{obs}^{gnd}$ . The constructor isdef is just
a tool to make termination at higher types observable at the ground level.

3 A framework for non-standard type inference
In this section we present a simple framework for “non-standard type inference
based” analyses of typed functional programs. The framework exploits common
features of various static analyses by providing a “core” for non-standard type
syntax, entailment, and assignment rules. A key feature of this framework is that
it is based directly on operational semantics.

3.1 Non-standard types
For every PCFP type $\rho\in T$ we consider a finite non-empty set $L(\rho)$ of non-standard
types (ns-types for short) expressing properties of terms of type $\rho$ . Like “standard”
types, ns-types are build from a set of basic ns-types (expressing (primitive’ prop-
erties of values of type $\rho$). The properties expressed by basic ns-types are lifted at
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(B) $\frac{\phi\in B(\rho)}{\phi\in L(\rho)}$ $(\rightarrow)\frac{\phi\in L(\rho)\psi\in L(\sigma)}{\phi\rightarrow\psi\in L(\rho\rightarrow\sigma)}$ $(\times)\frac{\phi_{1}\in L(\rho_{1})\phi_{2}\in L(\rho_{2})}{\phi_{1}\times\phi_{2}\in L(\rho_{1}\times\rho_{2})}$

Figure 4: “Core” non-standard types formation rules

higher types, following the type structure of the language, by the $\rightarrow$ and $‘‘\times$

constructors. For simplicity we do not do any formal distinction between type and
ns-type constructors.

3.1.1 Syntax

For every type $\rho\in T$ , let $B(\rho)$ be afinite set of basic ns-types (or basic properties)
for type $\rho$ . The sets $B(\rho)$ depend on the particular analysis considered, however,
in any case we require that

$\bullet$ for every PCFP ground type $\iota$ (i.e. for the ground types int and bool) there
is a basic property $T^{\iota}$ in $B(\iota)$ .

The set of ns-types for $\rho L(\rho)$ is defined by adding to the set $B(\rho)$ of basic ns-types
for $\rho$ the structural ns-types defined according to the structure of $\rho$ as shown in
Fig. 4. Note that owing to the above condition $L(\rho)$ is not empty, for every type
$\rho$ . Let $L=\bigcup_{\rho\in T}L(\rho)$ .

Definition 3.1 For every ns-type $\phi\in L(\rho),$ $\rho$ is called the underlying type of $\phi$

and it will be denoted by $\epsilon(\phi)$ .

The underlying type of a given ns-type $\phi$ is often understood. To simplify notations
we will omit explicit mentions of underlying types (for instance the decorations of
T) except when these are not immediately clear from the context.

3.1.2 Semantics

For all the analyses considered in this paper the semantics of ns-types will be given
according to the following principles.

Take a model $\mathcal{M}$ of the basic language (see e.g. [32] Section 4.5, for a general
definition of model) which associates to any type $\rho$ a suitable domain $A^{\rho}$ . Non-
standard types in $L(\rho)$ are intended to represent properties of elements of $A^{\rho}$ . This
naturally suggests the interpretation of ns-types as subsets of $A^{\rho}$ . We take however
a more general approach (we will see soon a justification for that) and interpret
ns-types in $L(\rho)$ as partial equivalence relations $(p.e.r.s)$ over $A^{\rho}$ .

A partial equivalence relation $B$ over a set $A$ is a binary relation which is
symmetric and transitive. The domain of $B$ is { $x|(x,$ $y)\in B$ for some $y$ }. (Note
that $B$ is reflexive on its domain.)

Considering p.e. $r.s$ instead of subsets makes possible to say, in addition to which
elements have a given property (the elements that are in the domain of the p.e. $r.$ ),
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$[\phi]^{\mathcal{M}}$ $=$ $P_{\rho}(\phi)^{\mathcal{M}}$ , if $\phi\in B(\rho)$

$[\phi\rightarrow\psi]^{\mathcal{M}}$ $=$ {{ $[M]^{\mathcal{M}},$ $[N]^{\mathcal{M}}\rangle$ $|$

$\forall\langle[P]^{\mathcal{M}}, [Q]^{\mathcal{M}}\rangle\in[\phi]^{\mathcal{M}}.\langle[\Lambda lP]^{\mathcal{M}},$ $[NQ]^{\mathcal{M}}$ } $\in[\psi I^{\mathcal{M}}$ }

$[\phi_{1}\times\phi_{2}]^{\mathcal{M}}$ $=$ $\{\langle[M]^{\mathcal{M}}, [N]^{\mathcal{M}}\rangle|$

$\forall i\in\{1,2\}$ . $\langle[proj_{i}M]^{\mathcal{M}}, [proj_{i}N]^{\mathcal{M}}\rangle\in[\phi_{i}]^{\mathcal{M}}$ }

Figure 5: P.e. $r$ . semantics of “core” non-standard types

also which elements are indistinguishable w.r. $t$ . the property (the elements in the
same equivalence class). The interpretation of ns-types as subsets of the underlying
domain will be considered as a particular case of the p.e. $r$ . interpretation in which
we are only interested in the elements satisfying a given property.

Since in this paper we are interested in the investigation of program properties
in an operational settings, we will consider only closed term models induced by an
operational equivalence between terms (which varies according to the considered
properties). So in the following definition we assume that $\mathcal{M}$ is a term model,
whose elements are equivalence classes of terms w.r. $t$ . the considered operational
equivalence.

Given a set $A$ let $p.e.r.(A)=$ { $B|B\subseteq A\times A$ and $B$ is a p.e. $r.$ }. The interpre-
tation of the basic ns-types of underlying type $\rho$ is given by a family of functions
(indexed over types):

$P_{\rho}(-)^{\mathcal{M}}$ : $B(\rho)\rightarrow p.e.r$ . (I $(\rho)^{\mathcal{M}}$ )

which associates to each basic type in $B(\rho)$ a non-empty p.e. $r$ . over $I(\rho)^{\mathcal{M}}$ , the
interpretation of type $\rho$ in the model $\mathcal{M}$ . For all ground type $\iota$ we require that

$P_{\iota}(T^{\iota})^{\mathcal{M}}=I(\iota)^{\mathcal{M}}\times I(\iota)^{\mathcal{M}}$ ,

i.e. the ns-type $T^{\iota}$ is always interpreted as the trivial p.e. $r$ . over $I(\iota)^{\mathcal{M}}$ , representing
the property that is true for all values of type $\iota$ .

The interpretation of ns-types is inductively defined from the interpretation of
the basic ns-types in $B(\rho)$ according to the set of clauses given in Fig. 5, which
specify the semantics of the basic ns-types and of the ns-type constructors $\rightarrow$

and $\zeta\times$ The interpretations of the $\rightarrow$ and $‘‘\times$ ns-type constructors are as in
standard type inference systems ([47]). In particular the interpretation of the $\rightarrow$

ns-type constructor exhibits the well known monotonic-antimonotonic behaviour.
It is easy to see by induction on types that the interpretation $[\phi]^{\mathcal{M}}$ of each

ns-type $\phi$ is still a non empty p.e. $r$ . over its underlying domain.

Definition 3.2 Let $L_{T}$ be the subset of the ns-types defined by the following clauses:
$\bullet$ $T^{\iota}\in L_{T}$ , for all ground types $\iota$
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$\bullet$ $\phi\rightarrow\psi\in L_{T}$ , for $\phi\in L$ and $\psi\in L_{T}$

$\bullet\phi_{1}\times\phi_{2}\in L_{T}$ , for $\phi_{1},$ $\phi_{2}\in L_{T}$ .

We can easily prove that the interpretation of all ns-types $\phi$ belonging to $L_{T}$ is
$I(\epsilon(\phi))^{\Lambda t}\times I(\epsilon(\phi))^{\mathcal{M}}$ (i.e. is trivial). Also the reverse implication is true, provided
that to no other basic ns-type is explicitly given the trivial interpretation.

Proposition 3.3 1. If $\phi\in L_{T}$ then $[\phi]^{\mathcal{M}}=I(\epsilon(\phi))^{\mathcal{M}}\times I(\epsilon(\phi))^{\mathcal{M}}$ .

2. Assume that, for all basic ns-types $\phi$ different from $T^{\iota},$ $[\phi]^{\mathcal{M}}\neq I(\epsilon(\phi))^{\mathcal{M}}\times$

$I(\epsilon(\phi))^{\mathcal{M}}$ . Then $[\phi]^{\mathcal{M}}=I(\epsilon(\phi))^{\mathcal{M}}\times I(\epsilon(\phi))^{\mathcal{M}}$ implies $\phi\in L_{T}$ .

Proof. 1. Immediate from the semantics.
2. Let $[\phi]^{\mathcal{M}}=I(\epsilon(\phi))^{\Lambda 4}\times I(\epsilon(\phi))^{\mathcal{M}}$ . The proof is by structural induction on
$\phi\in L$ . The case $\phi\in B(\rho)$ , for some $\rho\in T$ , is immediate.
For $\phi=\phi_{1}\rightarrow\phi_{2}$ , assume that $\phi_{1}\rightarrow\phi_{2}\not\in L_{T}$ . Then $\phi_{2}\not\in L_{T}$ and so, by
induction hypothesis there are \langle $[P]^{\mathcal{M}},$ $[Q]^{\mathcal{M}}$ } $\in I(\epsilon(\phi_{2}))^{\mathcal{M}}\times I(\epsilon(\phi_{2}))^{\mathcal{M}}$ such that
{ $[P]^{\mathcal{M}},$ $[Q]^{\mathcal{M}}\rangle$ $\not\in[\phi_{2}]^{\mathcal{M}}$ . But then, since $[\phi_{1}]^{\Lambda\not\in}\neq\emptyset$ , we have that

$\langle[\lambda z^{\epsilon(\phi_{1})}.P]^{\mathcal{M}},$ $[\lambda z^{\epsilon(\phi_{1})}.Q]^{\mathcal{M}}$ } $\not\in[\phi_{1}\rightarrow\phi_{2}]$

where $z$ does not occur free in either $P$ or $Q$ , contradicting the hypothesis.
For $\phi=\phi_{1}\times\phi_{2}$ , the proof is similar. $\square $

Non-standard types in $L_{T}$ represent then properties true for all terms of their
underlying types. Such types are very useful from a technical point of view.

In some analysis all the basic properties are interpreted as p.e. $r.s$ consisting of
exactly one equivalence class. In this case we have that every non-standard type
is interpreted as a p.e. $r$ . consisting of exactly one equivalence class. We can then
replace each p.e. $r$ . by the subset corresponding to its equivalence class and switch
to the (simpler) set semantics defined according to the clauses in Fig. 6, where the
interpretation of each basic ns-type $\phi\in B(\rho)$ , is given by a family of functions
$S(-)^{\mathcal{M}}\rho$ (indexed over types $\rho$ ) such that:

$S_{\rho}(\phi)^{\mathcal{M}}=\{[i\uparrow I]^{\mathcal{M}}|\langle[ilI]^{\mathcal{M}}, [\lambda I]^{\mathcal{M}}\}\in P(\phi)^{\mathcal{M}}\}\subseteq I(\rho)^{\mathcal{M}}$

Note that, in this case, we have that, for all ground type $\iota,$
$[T^{p}]^{\Lambda t}=S(T^{\iota})^{\lambda\Lambda}=$

$I(\iota)^{\mathcal{M}}$ . It is easy to see that a property similar to that stated in Proposition 3.3
holds for the set semantics of ns-types as well.

3.2 Entailment rules

The entailment relation between non-standard types (which represents a logical
implication between properties) models the set-theoretic inclusion between their
interpretations.

For each type $\rho$ we define a formal relation $\leq_{\rho}$ between ns-types in $L(\rho)$ which
represent inclusion between ns-types of underlying type $\rho$ . The formal judgements,
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$[\phi]^{\mathcal{M}}$ $=$ $S_{\rho}(\phi)^{\mathcal{M}}$ , if $\phi\in B(\rho)$

$[\phi\rightarrow\psi]^{\mathcal{M}}$ $=$ $\{[M]^{\mathcal{M}}|\forall[P]^{\mathcal{M}}\in[\phi]^{\mathcal{M}}.[MP]^{\mathcal{M}}\in[\psi]^{\mathcal{M}}\}$

$[\phi_{1}\times\phi_{2}]^{\mathcal{M}}$ $=$ $\{[M]^{\mathcal{M}}|\forall i\in\{1,2\}. [proj_{i}M]^{\Lambda t}\in[\phi_{i}]^{\mathcal{M}}\}$

Figure 6: Set semantics of “core” non-standard types

(Ref) $\phi\leq\phi$ (Trans) $\frac{\phi_{1}\leq\phi_{2}\phi_{2}\leq\phi_{3}}{\phi_{1}\leq\phi_{3}}$ (T) $\frac{\psi\in L_{T}\epsilon(\phi)=\epsilon(\psi)}{\emptyset\leq\psi}$

$(\rightarrow)\frac{\phi_{1}\leq\phi_{2}\psi_{1}\leq\psi_{2}}{\phi_{2}\rightarrow\psi_{1}\leq\phi_{1}\rightarrow\psi_{2}}$ $(\times)\frac{\phi_{1}\leq\psi_{1}\phi_{2}\leq\psi_{2}}{\phi_{1}\times\phi_{2}\leq\psi_{1}\times\psi_{2}}$

Figure 7: “Core” entailment rules for non-standard types

of the shape $\phi\leq\psi$ , are derivable by a set of entailment rules. We will always
omit the subscript $\rho$ in $\leq_{\rho}$ , since only ns-types of the same underlying type can
be compared and then $\rho$ is always understood. The basic rules for entailment are
given in Fig. 7. These rules include reflectivity, transitivity, the basic rules for the

$\rightarrow$ and $‘‘\times$ PCFP type constructors and a rule to represent the properties of
the “trivial” basic ns-types in $L_{T}$ . The intuition behind the entailment relation $\leq$

is that it corresponds to loss of information, i.e., it represents a logical implication
between properties: $\phi_{1}\leq\phi_{2}$ means that $\phi_{2}$ is implied by $\phi_{1}$ , so it cannot contain
more information than $\phi_{1}$ . Note the monotonic-antimonotonic behaviour of the
arrow, typical of type inference systems. To these rules can be added other axiom
schemes to reflect the meaning of specific basic properties. By $\cong$ we denote the
equivalence relation induced by $\leq$ .

As usual we say that the non-standard type entailment relation $\leq$ is sound
w.r. $t$ . the interpretation $[\cdot]^{\mathcal{M}}$ if, for every $\phi,$ $\psi\in L$ ,

$\phi\leq\psi$ implies $[\phi]^{\mathcal{M}}\subseteq[\psi]^{\mathcal{M}}$ ,

and complete w.r. $t$ . the interpretation $[\cdot]^{\mathcal{M}}$ if, for every $\phi,$ $\psi\in L$ ,

$[\phi]^{\mathcal{M}}\subseteq[\psi]^{\mathcal{M}}$ implies $\phi\leq\psi$ .

It is just routine to prove a general soundness result for the core inclusion rela-
tion, saying that if $\phi\leq\psi$ holds then $[\phi]^{\mathcal{M}}\subseteq[\psi]^{\mathcal{M}}$ for all models and for all
possible interpretations of basic ns-types. We do not do that since we are inter-
ested in soundness and completeness for the specific domains and inclusion axioms
introduced in the next sections.
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$(\leq)\frac{\Sigma\vdash M:\emptyset\emptyset\leq\psi}{\Sigma\vdash M:\psi}$

(Var) $\Sigma,$ $x$ : $\phi\vdash x$ : $\phi$

$(\rightarrow I)\frac{\Sigma,x:\phi\vdash M:\psi}{\Sigma\vdash\lambda x.M:\phi\rightarrow\psi}$

$(\times I)\frac{\Sigma\vdash M_{1}:\phi_{1}\Sigma\vdash M_{2}:\phi_{2}}{\Sigma\vdash\{M_{1},M_{2}\rangle:\phi_{1}\times\phi_{2}}$

(Con) $\frac{\phi\in L(c)}{\Sigma\vdash c:\phi}$

$(\rightarrow E)\frac{\Sigma\vdash M:\phi\rightarrow\psi\Sigma\vdash N:\phi}{\Sigma\vdash MN:\psi}$

$(\times E_{i})\frac{\Sigma\vdash M:\phi_{1}\times\phi_{2}}{\Sigma\vdash proj_{i}M:\phi_{i}}i\in\{1,2\}$

Figure 8: “Core” non-standard type assignment rules

3.3 Assignment rules

Non-standard types are assigned to terms by a set of inference rules.
If $x^{\rho}$ is a term variable of type $\rho$ an assumption for $x^{\rho}$ is an expression of the

shape $x^{\rho}$ : $\phi$ , or $ x:\phi$ for short, where $\epsilon(\phi)=\rho$ . A basis is a set $\Sigma$ of non-standard
type assumptions for term variables. $\Sigma,$ $x$ : $\psi$ denotes the basis $\Sigma\cup\{x:\psi\}$ where
it is assumed that $x$ does not appear in $\Sigma$ .

For each constant $c$ it is specified a finite non empty set $L(c)$ of non-standard
types for $c$ . The set $L(c)$ is such that every property that we want to derive for $c$

is entailed by a property in $L(c)$ . That is, if $\phi$ is a property of $c$ for some $\psi\in L(c)$ ,
$\psi\leq\phi$ . Of course, for each $\phi\in L(c),$ $\epsilon(\phi)=T(c)$ . The set $L(c)$ is called the set of
minimal non-standard types for $c$ .

A non-standard typing statement is an expression $\Sigma\vdash M$ : $\phi$ where $M$ is a
term of type $\epsilon(\phi)$ and $\Sigma$ is a basis containing an assumption for each free variable
of $M$ . We write $\Sigma\vdash M:\phi$ to mean that this judgement can be derived by a set of
assignment rules including the ones in Fig. 8, which represent the “core” ns-type
assignment rules which are common to all analyses. They include

$\bullet$ rules for the basic program constructs variable, constant, $\lambda$-abstraction, ap-
plication, pair and projection,

$\bullet$ a rule allowing the use of the entailment relation.

In a particular analysis other rules are added to those of Fig. 8 to take into
account more specific properties. In any system there are, for instance, rules for
the if and fix program constructors. General rules for if and fix constructors could
be given but they would be too weak to be interesting. More interesting rules for
these constructors can be given under specific interpretations.

Definition 3.4 1. Two environments $e_{1},$ $e_{2}$ are $\Sigma$ -related if and only if, for all
$x:\psi\in\Sigma,$ $\langle e_{1}(x), e_{2}(x)\rangle\in[\psi]^{\mathcal{M}}$ .
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2. The ns-type $assignment\vdash is$ sound $w.r.t$ . the interpretation $[\cdot]^{\mathcal{M}}$ if, for all
$e_{1},$ $e_{2}$ , if $e_{1}$ and $e_{2}$ are $\Sigma$ -related, then

$\Sigma\vdash M$ : $\phi$ implies $\{[M]_{e_{1}}^{\mathcal{M}}, [1\mathfrak{l}I]_{e_{2}}^{\mathcal{M}}\}\in[\phi J^{\mathcal{M}}$ .

It is easy to prove that the assignment relation defined by the rules in Fig. 8 is
sound with respect to any model $\mathcal{M}$ and for any interpretation of the basic ns-
types. We do not state this result formally here since we are more interested in
proving them for particular systems which include specific rules.

4 Instantiating the framework
To instantiate the framework described in Section 3 to a particular analysis we
have to provide the following.

1. A specific term model defined via some operational program equivalence
which include obviously $\beta$-convertibility (like $\mathcal{M}^{gnd},$ $\mathcal{M}^{1azy},$

$\ldots$ in Section 2.3).

2. For every PCFP type $\rho\in T$ , the set of basic ns-types $B(\rho)$ of underlying
type $\rho$ . Since $T^{\iota}\in B(\iota)$ , for $\iota\in$ {int, bool} we will specify only the other
ns-types in $B(\iota)$ .

3. The interpretation of the basic ns-types, given via the function $P_{\rho}(\cdot)^{\mathcal{M}}$ map-
ping the basic ns-types in $B(\rho)$ to p.e.r.s over $I(\rho)^{\mathcal{M}}$ .

4. The entailment rules for the basic properties (to be added to the rules in
Fig. 7). These rules must obviously be sound with respect to the given
semantics.

5. For each PCFP constant $c$ the set of minimal non-standard types for $c,$ $L(c)$ .

6. The additional assignment rules (to be added to the rules in Fig. 8) to take
into account specific properties of the considered interpretation. Also in this
case the new rules must be sound with respect to the considered semantics.

In the rest of this paper we show how the framework can be instantiated to dead-
code and strictness analyses.

5 Dead-code analysis
We now consider a dead-code analysis w.r. $t$ . ground contextual equivalence, i.e.
an analysis such that, if a subterm $N$ of a PCFP term $M$ is proved to be useless
(according to the analysis), then $M$ is ground observational equivalent to the term
obtained from $\lambda I$ by replacing the useless subterm $N$ with any term $N$ ‘ of the same
type.

Considering the lazy contextual equivalence leads to the same entailment rules
for properties and the inference rules for terms.
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5.1 Dead-code types

5.1.1 Syntax

For every ground type $\iota\in$ {int, bool}, the set of the basic properties is $B^{d}(\iota)=\{\delta^{\iota}\}$ ,
while, for every non-ground type $\rho\in T-$ { $int$ , bool}, we have $B^{d}(\rho)=\emptyset$ . The
corresponding set of non-standard types, called dead-code types (d-types for short),
is denoted by $L^{d}$ .

5.1.2 Semantics

Notation 5.1 For every type $\rho\in T$ , let $\Delta_{\rho}$ be the diagonal $p.e.r$. over $I(\rho)^{\mathcal{M}^{gnd}}$ ,
$i.e$ .

$\Delta_{\rho}=\{\{[M]^{\mathcal{M}^{gnd}}, [M]^{\mathcal{M}^{gnd}}\rangle|[M]^{\mathcal{M}^{gnd}}\in I(\rho)^{\lambda\Lambda^{gnd}}\}$ .

For every $\iota\in$ {int, bool}, let $P(\delta^{\ell})^{\mathcal{M}^{gnd}}=\Delta_{\iota}$ .
This semantics says that, for every $\iota\in$ {int, bool}, $\delta^{\iota}$ characterizes terms whose

values have a precise identity (useful’ terms), since their interpretation codifies
the fact that an occurrence of a term having this non-standard type is allowed to
be replaced only with an observational equivalent term. In the context of dead-
code analysis $T^{p}$ characterizes terms whose values do not have a precise identity
(“useless” terms), since their interpretation codifies the fact that an occurrence of
a term having this non-standard type is allowed to be replaced with any term of
the same type. These properties are propagated to higher types. For instance a
function $F$ of type $int\rightarrow int$ which has the ns-types $\delta^{int}\rightarrow T^{int}$ or $T^{int}\rightarrow T^{int}$ (which
are indeed equivalent) yields a useless result whenever applied to any argument,
and is so itself dead-code. To detect the dead code in a given term $\Lambda/I$ we will
assume that $\Lambda I$ is a useful term and try to assign the maximum amount of $T’ s$ to
its subterms (i.e. to detect as many useless subterms as possible).

Definition 5.2 1. For every type $\rho$ , let $\delta(\rho)$ be the d-type obtained by replacing
each occurrence of any ground type $\iota$ by $\delta^{\iota}$ , and similarly let $T(\rho)$ be the d-type
obtained by replacing each occurrence of any ground type $\iota$ by $T^{\iota}$ .

2. Let $L_{\delta}^{d}=\{\delta(\rho)|\rho\in T\}$ be the subset of the d-types containing only $\delta’ s$ .

Proposition 5.3 For all $\rho\in T,$ $[\delta(\rho)]=\Delta_{\rho}$ .

Proof. By induction on $\rho\in T$ . The case $\rho\in$ {int, bool} is trivial.
Let $\rho=\rho_{1}\rightarrow\rho_{2}$ . By induction hypothesis both $[\delta(\rho_{1})]=\Delta_{\rho_{1}}$ and $[\delta(\rho_{2})]=$

$\Delta_{\rho_{2}}$ . By definition of $\delta(\rho_{1}\rightarrow\rho_{2})=\delta(\rho_{1})\rightarrow\delta(\rho_{2})$ we have that

$(*)\langle[P], [Q]\rangle\in[\delta(\rho_{1}\rightarrow\rho_{2})]$ if and only if, for all $M$ and $N$ such that $\{[\Lambda f],$ $[N]\rangle$ $\in$

$[\delta(\rho_{1})],$ $\langle[P\Lambda f], [QN]\rangle\in[\delta(\rho_{2})]$ .

We prove the result by showing that

$P\simeq_{obs}^{gnd}Q\Leftrightarrow\{[P], [Q]\}\in[\delta(\rho_{1}\rightarrow\rho_{2})]$ .
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Let $P\simeq_{obs}^{gnd}Q$ . For all $M$ and $N$ such that { $[M],$ $[N]\rangle$ $\in[\delta(\rho_{1})]$ , by induction
hypothesis $M\simeq_{obs}^{gnd}N$ , and so $PM\simeq_{obs}^{gnd}QN$ . Again by induction hypothesis
$\langle[PM], [QN]\rangle\in[\delta(\rho_{2})]$ , and by $(*)\langle[P],$ $[Q]$ } $\in[\delta(\rho_{1}\rightarrow\rho_{2})]$ .

Let $P\not\simeq ognd$

$M$ such that $PM\not\simeq QM$ and therefore $PM\not\simeq gobnsQMd$ (again by Theorem 2.7).
So (by induction hypothesis) $\langle[PM], [QN]\rangle\not\in[\delta(\rho_{2})]$ and therefore (from $(*)$ )

$\square $$\langle[P], [Q]\rangle\not\in[\delta(\rho_{1}\rightarrow\rho_{2})]$ . The case $\rho=\rho_{1}\times\rho_{2}$ is similar.
Also the reverse implication holds, i.e. we have that $[\phi]=\Delta_{\epsilon(\phi)}$ implies that

$\phi\in L_{\delta}^{d}$ . This can be be proved using Theorem 5.5.

5.2 Entailment rules

In the case of dead-code analysis the ns-type entailment relation is completely
represented by the rules of Fig. 7. In fact we can always take any piece of code
(also a useful one) and mark it as useless (rule $(T)$ ). No other specific axiom is
required, in this case, except the basic rules.

Definition 5.4 (Entailment relation for dead-code types) $Let\phi,$ $\psi\in L^{d}$ . We
write $\phi\leq d\psi$ to mean that $\phi\leq\psi$ is derivable by using the rules in Fig. 7. $By\cong_{d}$

we denote the equivalence relation induced $by\leq d$ .

The $\leq d$ entailment relation between d-types is sound and complete w.r. $t$ . the p.e. $r$ .
interpretation in $\mathcal{M}^{gnd}$ .

Theorem 5.5 (Soundness and completeness of $\leq d$ ) $\phi\leq d\psi$ if and only if
$[\phi]\subseteq[\psi]$ .

Proof. The proof of soundness is by induction on the derivation of the judgement
$\phi\leq d\psi$ . The proof of the completeness result, instead, is not straightforward. It
can be found in [17] Chapter 7. $\square $

5.3 Assignment rules

To give the assignment rules we define for each PCFP constant the set of minimal
d-types as follows: for every $c\in \mathcal{K},$ $L^{d}(c)=\{\delta(T(c))\}$ , i.e. the minimal d-type of
a PCFP constant $c$ of type $\rho$ , is the $\delta- d$-type $\delta(\rho)$ . This says that if the output is
useful then all the inputs are useful. Moreover since every PCFP constant $c$ has a
type that is either $\iota_{1}$ , or $\iota_{1}\rightarrow\iota_{2}$ , or $\iota_{1}\times\iota_{2}\rightarrow\iota_{3}$ , for $\iota_{1},$ $\iota_{2},$ $\iota_{3}\in$ {int, bool}, we have
that, for every d-type $\phi,$ $\delta(T(c))\leq d\emptyset$ implies either $\phi=\delta(T(c))$ or $\phi\in L_{T}^{d}$ , where
$L_{T}^{d}$ is the subset of the d-types $\phi$ identifying useless terms, inductively defined as
in Definition 3.2.

Definition 5.6 (D-type assignment system $\vdash_{d}$ ) We write $\Sigma\vdash_{d}M$ : $\phi$ to mean
that $\Sigma\vdash M$ : $\phi$ can be derived by the rules in Fig. $s8$ and 9, where in the rule $(\leq)$

of Fig. 8 it is used the entailment relation $\leq d$ .
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(Fix) $\frac{\Sigma,x:\phi\vdash M:\phi}{\Sigma\vdash f1xx.x:\phi}$

$(If_{T})\ovalbox{\tt\small REJECT}\Sigma\vdash N:T^{boo1}\Sigma\vdash M_{1}:T(\rho)\Sigma\vdash M_{2}:T(\rho)\Sigma\vdash ifNthenM_{1}e|se\Lambda f_{2}:T(\rho)$

Figure 9: Rules for d-type assignment $(system\vdash_{d})$

To simplify the presentation of the soundness of the d-type assignment system and
of the dead-code elimination procedure (in Section 5.4) w.r. $t$ . the semantics $\mathcal{M}^{gnd}$

we introduce the following notation.

Notation 5.7 Let $\Sigma\vdash_{d}M$ : $\phi$ and $\Sigma\vdash_{d}N$ : $\phi$ . We write $M\sim_{\phi}^{\Sigma}N$ to mean that
for all $e_{1},$ $e_{2}$ , if $e_{1}$ and $e_{2}$ are $\Sigma$ -related, then $\{[M]_{e_{1}},$ $[N]_{e_{2}}\rangle$ $\in[\phi]$ .

Soundness of the d-type assignment $system\vdash_{d}$ is stated by the following theorem.

Theorem 5.8 (Soundness $of\vdash_{d}$ ) Let $\Sigma\vdash_{d}M$ : $\phi$ . Then $M\sim_{\phi}\Sigma M$ .

Proof. By induction on the derivation of $\Sigma\vdash_{d}M$ : $\phi$ . $\square $

In using d-type informations to optimize programs we need to examine not only
the final type of a term but also the types assigned to its subtypes.

Example 5.9 Take the term

$P=\lambda x^{int}.(\lambda y^{\dot{|}nt}.x)x$ ,

of type $\rho=int\rightarrow int$ . By using the assignment rules in Fig. 8 it is possible to
assign to $P$ d-type

$\delta^{int}\rightarrow\delta^{int}$ (useful term of type $int\rightarrow int$),

by a derivation which assigns d-type

$T^{int}$ (useless term of type int)

to the second occurrence of $x$ in the body of the $\lambda$ -abstraction P. In fact, for
$\Sigma=\{x:\delta^{int}, y:T^{int}\}$ and $\Sigma^{\prime}=\{x:\delta^{int}\}$ , we have the following derivation.

$(\rightarrow E)(\rightarrow I)\frac{(Var)\Sigma.\vdash dx:\delta^{int}}{\Sigma^{\prime}\vdash d\lambda y^{1nt}x:T^{1nt}\rightarrow\delta^{Int}}(\leq)\frac{(Var)\Sigma\vdash dx:\delta^{int}\delta^{int}\leq T^{int}}{\ovalbox{\tt\small REJECT}\Sigma\vdash dx:T^{Int}}(\rightarrow I)\frac{\Sigma\vdash d(\lambda y^{in.t}.x)x:\delta^{int}}{\emptyset\vdash d\lambda x^{1nt}.(\lambda y^{1nt}x)x:\delta^{Int}\rightarrow\delta\ln\iota}$

This means that the value of the second occurrence of $x$ is not relevant in any
computation involving the evaluation of $P$ .
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Since we are interested in finding the subterms to which T-d-types are assigned,
in the following we will consider a compact representation of a deduction of the
form

$M^{\phi}$ ,

where $M^{\phi}$ is a decorated term, i.e. a term in which each subterm is decorated by the
d-type assigned to it in the considered deduction. Using this notation (and writing,
for short, $\delta$ instead of $\delta^{int}$ and $T$ instead of $T^{\dot{|}\mathfrak{n}t}$ ) the derivation of Example 5.9 is
represented by the decorated term

$(\lambda x^{\delta}.((\lambda y^{T}.x^{\delta})^{T\rightarrow\delta}x^{T})^{\delta})^{\delta\rightarrow\delta}$ .

When the $(\leq)$ rule is applied, as in

$(\leq)\frac{\Sigma\vdash M:\emptyset\emptyset\leq\psi}{\Sigma\vdash M:\psi}$ ,

$N$ is decorated with the greatest d-type, i.e. $\psi$ . Observe that the use of decorated
terms allows us to see that the second occurrence of $x$ in the body of the $\lambda-$

abstraction $P$ is dead-code just by inspecting the associated d-type. We write
$\Sigma\vdash_{d\star}M^{\phi}$ to mean that $M^{\phi}$ is a representation of a deduction of $\Sigma\vdash_{d}M$ : $\phi$ .
Note that the same terms can have different decorations. Let $\Lambda_{T}^{\vdash}d\star$ be the set of
$\vdash_{d\star}$-decorated PCFP terms, i.e.,

$\Lambda_{T}^{\vdash}d\star=$ { $ M^{\phi}|\phi$ is a d-type and $\Sigma\vdash_{d\star}M^{\phi}$ for some basis $\Sigma$ }.

Notation 5.10 We extend the notations $\epsilon(\cdot),$ $\delta(\cdot)$ , and $T(\cdot)$ to terms. For every
decorated term $M^{\phi},$ $\epsilon(M^{\phi})$ is simply the term obtained from $M^{\phi}$ by erasing all
the d-type decorations. For every term $M,$ $\delta(M)(T(M))$ is the decorated term
obtained from $M$ by decorating each subterm of $\mathbb{J}f$ of type $\sigma$ by $\delta(\sigma)$ (resp. $T(\sigma)$ ).

The proof of the following fact is immediate.

Fact 5.11 1. $\Sigma\vdash_{d\star}Jl^{\phi}implies\vdash_{T}\epsilon(M^{\phi})$ : $\epsilon(\phi)$ and $\{x^{\epsilon(\phi)}|x^{\epsilon(\phi)} : \phi\in\Sigma\}\supseteq$

$FV(M)$ .

2. $\vdash_{T}M$ : $\rho$ implies $\{x^{\rho} : \delta(\rho)|x^{\rho}\in FV(M)\}\vdash_{d\star}\delta(M)$ , and for all basis $\Sigma$

such that $\Sigma=$ { $x^{\epsilon(\psi)}$ : $\psi|x^{\epsilon(\psi)}\in FV(M)$ and $\psi\in L^{d}$ }, $\Sigma\vdash_{d\star}T(M)$ .

5.4 A dead-code elimination
In this section we introduce a dead-code elimination mapping $O$ that, given an
$\vdash_{d\star}$-decorated term $M^{\phi}$ , defines an optimized version of it.

5.4.1 Dummy variables

For each type $\rho$ , define $d^{\rho},$ $d_{1}^{\rho},$ $d_{2}^{\rho},$

$\ldots$ , be dummy variables of type $\rho$ . We remark that
dummy variables are not present in the original programs: they are introduced by
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the dead-code elimination mapping $O$ as placeholders for the dead-code removed3
So in the following we assume that all the occurrences of the dummy variables in
a program are free (i.e. there are no bound dummy variables) and distinct (i.e.
each dummy variable occurs at most once in a program). For every term $\Lambda I$ define
DV(A#) to be the set of dummy variables of $M$ .

5.4.2 The simplification mapping

Given $(\lambda x^{\delta}.((\lambda y^{T}.x^{\delta})^{T\rightarrow\delta}x^{T})^{\delta})^{\delta\rightarrow\delta}$ that is the decorated version of the term $P=$

$\lambda x^{int}.(\lambda y^{int}.x)x$ of Example 5.9, we can produce a simplified version of $P$ by remov-
ing the dead-code showed by the decoration, i.e. the second occurrence of $x$ in the
body of the $\lambda$-abstraction. In particular we can replace this dead-code with some
placeholder $d$ and obtain

$P^{\prime}=\lambda x^{int}.(\lambda y^{int}.x)d^{int}$ ,

which is ground observationally equivalent to $P$ .

Definition 5.12 (Simplification mapping O) 1. The function $O$ : $\Lambda_{T}^{\vdash}d$
‘

$\rightarrow$

$\Lambda_{T}^{\vdash}d$
‘ takes a decorated term $M$ and replaces every largest subterm decorated

by a d-type $\phi\in L_{T}^{d}$ with a (fresh) dummy variable $d^{\phi}$ .

2. If $\Sigma$ is a basis then $O(\Sigma)=$ { $ x:\chi|x:\chi\in\Sigma$ and $\chi\not\in L_{T}^{d}$ }.

We have immediately that if $\Sigma\vdash_{d\star}M^{\phi}$ then $O(\Sigma)\subseteq\Sigma$ and $\Sigma^{\prime}\vdash_{d\star}O(M^{\phi})$ , where
$\Sigma=O(\Sigma)\cup\{d^{\sigma} : T(\sigma)|d^{\sigma}\in DV(\epsilon(O(\mathbb{J}I^{\phi}))\}$ . Moreover we we have that the
simplification mapping is correct w.r. $t$ . the d-type semantics.

Proposition 5.13 (Correctness of $O$ w.r.t. the d-types semantics) $If\Sigma\vdash_{d\star}$

$M^{\phi}$ then $\epsilon(M^{\phi})\sim_{\phi}\Sigma^{\prime}\epsilon(O(\Lambda f^{\phi}))$ , where $\Sigma=\Sigma\cup\{d^{\sigma} : T(\sigma) d^{\sigma}\in DV(\epsilon(O(M^{\phi})))\}$ .

Proof. By induction on the derivation $\Sigma\vdash_{d\star}M^{\phi}$ . $\square $

In order to use the simplification mapping $O$ to simplify terms while preserving
their meaning (w.r. $t$ . $\mathcal{M}^{gnd}$ ) we identify a subset $of\vdash_{d}$ -typings for which the $\sim_{\phi}\Sigma$

relations implies $the\simeq_{obs}^{gnd}$ relation.

Definition 5.14 ( $Faithfu1\vdash_{d}$-typing) $\Sigma\vdash_{d}M$ : $\phi$ is $a$ faithful $\vdash_{d}$ -type assign-
ment statement if $\phi\in L_{\delta}^{d}$ , and for all $x:\psi\in\Sigma,$ $\psi\in L_{T}^{d}\cup L_{\delta}^{d}$ .

The proof that the simplification performed by the mapping $O$ on faithful dec-
orated terms $preserve\simeq_{obs}^{gnd}$ rely on the following lemma.

Lemma 5.15 Let $\Sigma\vdash_{d}M$ : $\phi$ and $\Sigma\vdash_{d}N$ : $\phi$ be faithful $\vdash_{d}$ -typings. Then
$M\sim_{\phi}\Sigma N$ implies $M\simeq_{obs}^{gnd}N$ .

3 Dummy variables are just a tool for proving the soundness of the simplification mapping.
In a real implementation we can can replace dummy variables by some polymorphic “dummy
constant” $d$ .
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Proof. Let $\Sigma$
‘ be the restriction of $\Sigma$ to the variables $\{x_{1}, \ldots, x_{n}\}=FV(M)\cup$

$FV(N)$ (observe that $\Sigma^{\prime}$ contains exactly the free variables of $M$ and $N$). It is
easy to see that, for any environment $e$ , the fact that $\Sigma\vdash_{d}M$ : $\phi$ and $\Sigma\vdash_{d}N$ : $\phi$

are faithful, implies that $e$ is $\Sigma$ related with $e$ . Let now $M\sim_{\phi}^{\Sigma}N$ , then (by
Notation 5.7) $\{[M]_{e},$ $[N]_{e}\rangle$ $\in[\phi]$ .

We conclude the proof by observing that, from Proposition 5.3 and Theorem 2.7,
we have that (since $\phi\in L_{\delta}^{d}$ ): if, for all environments $e,$ $\langle[\lambda l]_{e}, [N]_{e}\rangle\in[\phi]$ then
$M\simeq_{obs}^{gnd}N$ . $\square $

We can now show how to use the system $\vdash_{d\star}$ and the simplification mapping
$O$ to simplify terms in observationally equivalent ones. In particular we show
that all the dummy variables introduced by applying the mapping $O$ on a faithful
$\vdash_{d\star}$-typing are dead-code.

Theorem 5.16 ( $O$ on faithful $\vdash_{d\star}$-typings preserve $s\simeq_{obs}^{gnd}$ ) Let $\Sigma\vdash_{d\star}M^{\phi}$ be
a $faithful\vdash_{d\star}$ -typing. Then $\epsilon(M^{\phi})\simeq_{obs}^{gnd}\epsilon(O(M^{\phi}))$ .

Proof. Let $\Sigma=\Sigma\cup\{d^{\sigma} : T(\sigma)|d^{\sigma}\in DV(\epsilon(M^{\phi}))\}$ . It easy to see that if
$\Sigma\vdash_{d\star}M^{\phi}$ is a faithful $\vdash_{d\star}$-typing then also $\Sigma‘\vdash_{d\star}M^{\phi}$ and $\Sigma\vdash_{d\star}O(M^{\phi})$ are
faithful $\vdash_{d\star}$ -typings. So the result follows immediately from Proposition 5.13 and
Lemma 5.15. $\square $

In [17] Chapter 7 it is proved that for every PCFP term $M$ there is a faithful
$\vdash_{d\star}$-typing showing all the dead-code that can be proved by the d-type assign-
ment system. This result is proved by giving an algorithm which computes such
“optimal” $\vdash_{d\star}$-typing.

Remark 5.17 It is not difficult to define a clean-up opemtion which eliminates
(some of) the place-holders $d$ introduced by the simplification process. In this way
the term $P^{\prime}=\lambda x^{1nt}.(\lambda y^{int}.x)d^{int}$ , considered at the beginning of this section, will
be simplified to the equivalent (but simpler) term $x^{int}$ . This final clean-up oper-
ation is important from a practical point of view, and should be considered when
implementing progmm simplification tools based on the techniques described in this
paper. For more details we refer to [17] Chapter 7, where an incremental dead-code
detection and elimination algorithm based on the dead-code analysis presented in
this section is given.

5.5 An example from program extraction
In this section we show a non-trivial example of dead-code detection and elimina-
tion. This example, due to C. Mohring and further developed by S. Berardi and
L. Boerio (see [8] and [10]), is based on an instance of dead-code that can arise in
programs extracted from proofs (see [39, 38] for an introduction to the subject).

1. The term

$rec_{\tau}=\lambda m^{\tau}.\lambda f^{int\rightarrow\tau\rightarrow\tau}$ .fix $r^{int\rightarrow\tau}.\lambda n^{int}$ . if $n=0thenm$ else fn(r(predn))
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of type $\tau\rightarrow(int\rightarrow\tau\rightarrow\tau)\rightarrow int\rightarrow\tau$ represents the primitive recursor
operator from natural numbers to $\tau$ since, for every $\Lambda I,$ $F$ and $N$ of the
proper types:

$\bullet$ $recMF0\simeq_{obs}^{gnd}M$ , and
$\bullet$ if $N\Downarrow c$ and $c\neq 0$ then $rec\Lambda fFN\simeq_{obs}^{gnd}FN$ (recMF(pred $N$)).

2. The term

$it_{\tau}=\lambda m^{int}.\lambda g^{\tau\rightarrow\tau}$ .fix $r^{int\rightarrow\tau}.\lambda n^{int}$ . if $n=0$ then $m$ else $g$ ( $r(p$redn))

of type $\tau\rightarrow(\tau\rightarrow\tau)\rightarrow int\rightarrow\tau$ instead represent a simplified form of
the operator represented by $rec_{\tau}$ : it represents an “iterator” which allows to
iterate $n$ times a function $g$ on an input $m$ . In fact, for every $\Lambda f,$ $G$ and $N$

of the proper types:

$\bullet$ $itMG0\simeq_{obs}^{gnd}M$ , and
$\bullet$ if $N\Downarrow c$ and $c\neq 0$ then $itMGN\simeq_{obs}^{gnd}$ G(itMG(predN)).

Consider now the types $\rho=int\rightarrow int,$ $\sigma=lnt\rightarrow(int\times lnt)\rightarrow(int\times\dot{|}nt),$ $\tau=lnt\times\dot{|}nt$ .
We will show how to use the $system\vdash_{d\star}$ to detect and remove the dead-code in the
term, of type $\rho$ ,

$P$ $=$ $\lambda x^{int}.proj_{1}(rec_{\tau}\{M_{1}, M_{2}\}Fx)$

where

$\bullet$ $F=\lambda n^{int}.\lambda m^{int\times int}.\{h_{1}(proj_{1}m),$ $ h_{2}(proj_{1}m)(proj_{2}m)\rangle$ is a term of type $\sigma$ , and

$\bullet$ $M_{1},$ $M_{2}$ are closed terms of type int,

(note that $FV(P)=FV(F)=\{h_{1}^{int\rightarrow int},$ $h_{2}^{1nt\rightarrow int\rightarrow int}\}$ ). We have that $\Sigma\vdash_{d\star}P^{\phi}$ is
a faithful $\vdash_{d\star}$-typing, where (writing, for short, $\delta$ and $T$ instead of $\delta^{int}$ and $T^{int}$ ,
and omitting the d-type decoration which are clear from the context):

$\Sigma=\{h_{1} : \delta\rightarrow\delta, h_{2} : T\rightarrow T\rightarrow T\}$ ,
$P^{\prime\phi}=(\lambda x.proj_{1}(rec_{\tau}\langle M_{1}, M_{2}\rangle^{\delta\times T}F^{\psi}x^{\delta}))^{\phi}$ ,
$\phi=\delta\rightarrow\delta$ ,
$rec_{\tau}^{\prime}=\lambda m.\lambda f.fixr^{\delta\rightarrow\delta\times T}.\lambda n.\dot{|}fn=0thenm$ else $fn^{T}(r(predn^{\delta})^{\delta})^{\delta\times T}$ ,
$F^{\prime\psi}=(\lambda n.\lambda m.\{h_{1}(proj_{1}m^{\delta\times T})^{\delta}, h_{2}(proj_{1}m)^{T}(proj_{2}m)^{T}\rangle)^{\psi}$ ,
$\psi=T\rightarrow(\delta\times T)\rightarrow(\delta\times T)$

Let $Q,$ $ri_{\tau}$ , and $G$ be the terms obtained from $P^{l\emptyset},$
$rec_{\tau}$ , and $F^{\psi}$ by applying

the $O$ mapping and erasing all the d-type decorations, i.e. $Q=\epsilon(O(P^{\phi}))$ , $ri_{\tau}=$

$\epsilon(O(rec_{\tau}^{\prime}))$ , and $G=\epsilon(O(F^{l\psi}))$ . It is not difficult to see that

$Q$ $=$ $\lambda x^{\dot{|}nt}.proj_{1}(ri_{\tau}\langle\Lambda f_{1}, d_{1}^{int}\rangle, Gx))$ , where

$\bullet$
$ri_{\tau}=\lambda m^{\tau}.\lambda f^{int\rightarrow\tau\rightarrow\tau}$ .fix $r^{int\rightarrow\tau}.\lambda n^{int}$ . if $n=0$ then $m$ else $fd_{2}^{int}(r(predn))$ , and
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$\bullet G=\lambda n^{int}.\lambda m^{int\times int}.\langle h_{1}(proj_{2}m),$ $d_{3}^{int}$ }.

Then, by eliminating the dummy placeholders (see Remark 5.17 above), we obtain
as final result of the simplification the term:

$R$ $=$ $\lambda x^{int}.it_{int}M_{1}Hx$ ,

where

$\bullet$ $it_{int}$ is as defined at the beginning of this section, and

$\bullet H=\lambda m_{1}^{int}.fm_{1}$ .

6 Strictness analysis
In this section we consider strictness analysis, i.e. the problem of determining
whether a function diverges whenever its input diverges. If a PCFP term $F$ is
proved to be strict (according to the analysis) then, for every possible argument
$M$ , the (value obtained from the) evaluation of $FM$ by making the application of $F$

to $M$ with a call-by-need is observationally equivalent to the (value obtained from
the) evaluation of $FM$ by making the application of $F$ to $M$ with a call-by-value.

We first analyze the rules required to make the two applications equivalent
w.r. $t$ . the lazy observational equivalence, and then the ones required to make them
equivalent w.r. $t$ . the ground observational equivalence (but not necessarily w.r. $t$ .
the lazy one).

6.1 Strictness types
6.1.1 Syntax

For every $\rho\in T$ , the set of the basic properties is $B^{s}(\rho)=\{\perp\rho\}$ . The corresponding
set of non-standard types, called strictness types (s-types for short), is be denoted
by $L^{s}$ .

6.1.2 Semantics

For every $\rho\in T$ , let $P(\perp\rho)^{\Lambda\Lambda^{1azy}}=$ { $\langle[fixx^{\rho}.x]^{\mathcal{M}^{1azy}}$ , [fix $ x^{\rho}.x]^{\mathcal{M}^{1az\}}}\rangle$ }.
Since every basic property is interpreted as a p.e. $r$ . consisting of exactly one

class, we can switch to the set semantics described at the end of Section 3.1.2
and define, for every $\rho\in T,$ $S(\perp\rho)^{\mathcal{M}^{1azy}}=\{[fixx^{\rho}.x]^{\mathcal{M}^{1azy}}\}$ . It is easy to see that
$[$fix $x^{\rho}.x]^{\mathcal{M}^{1azy}}\in[\phi]^{\mathcal{M}^{1azv}}$ for all s-types $\phi$ such that $\epsilon(\phi)=\rho$ . So $[\perp\rho]^{\mathcal{M}^{1azy}}$ is
included in the interpretation of all s-types in $L^{s}(\rho)$ .

This semantics says that, for every $\rho\in T,$ $\perp^{\rho}$ (which is interpreted as the
p.e. $r$ . consisting of one class whose unique element is $the\simeq_{obs}^{1azy}$ -class of the PCFP
terms of type $p$ without w.h. $n.f.$ ) is the property of being a divergent term of type
$\rho$ , characterizing the PCFP terms of type $\rho$ without w.h. $n.f$. (lazy observational
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equivalent to fix $x^{\rho}.x$ ). Using s-types we can express strictness properties of func-
tions. For instance the s-type $1^{int}\rightarrow T^{int}\rightarrow 1^{\dot{1}nt}\in L^{s}(int\rightarrow int\rightarrow int)$ represent
the property of a function of two arguments which is strict in its first argument. In
fact the functions having this s-type give a result belonging to (the interpretation
of) $\perp^{int}$ (i.e. undefined) whenever their first argument is undefined, independently
of the value of the second argument (which can be anything in the proper type).
Similarly a function of s-type $T^{int}\rightarrow\perp^{\dot{|}nt}\rightarrow 1^{int}\in L^{s}(int\rightarrow int\rightarrow int)$ is strict in
its second argument.

6.2 Entailment rules
Let $L_{T}^{s}$ denote the subset of (trivial’ s-types of Definition 3.2.

Definition 6.1 (Entailment relation for strictness types) $Let\phi,$ $\psi\in L^{s}$ . We
write $\phi\leq_{s}\psi$ to mean that $\phi\leq\psi$ is derivable by using the rules in Fig. 7 and the
following axiom capturing the semantics of the basic $s- types\perp^{\rho}$ ;

$(\perp)\perp^{\epsilon(\phi)}\leq\emptyset$ .

$By\cong_{s}$ we denote the equivalence relation induced $by\leq_{s}$ .

Soundness of entailment $\leq_{s}$ (for both $\mathcal{M}^{1azy}$ and $\mathcal{M}_{isdef}^{1azy}$ ) is stated by the following
theorem.

Theorem 6.2 (Soundness of $\leq_{s}$ ) Let $\phi,$ $\psi\in L^{s}$ . $\phi\leq_{s}\psi$ implies $[\phi]\subseteq[\psi]$ .

Proof. By induction on the derivation of the entailment judgment. $\square $

The entailment rules of Definition 6.1 are not complete w.r. $t$ . the semantics
$\mathcal{M}^{1az\}^{r}}$ , as the following example shows.

Example 6.3 (Incompleteness of $\leq_{s}$ w.r.t. $\mathcal{M}^{1azy}$ ) In $\mathcal{M}^{1azy}$ the functional terms
with $w.h.n.f$ cannot be discriminated. For instance even though

$[1^{int\rightarrow 1nt}]^{\mathcal{M}^{Iaz\iota}}\neq[T^{int}\rightarrow 1^{int}]^{\mathcal{M}^{1azy}}$

(in particular $[T^{int}\rightarrow\perp^{int}]^{\mathcal{M}^{1azy}}=[\perp int\rightarrow int]^{\mathcal{M}^{1azy}}\cup\{[\lambda y^{int}$ .fix $x^{int}.x]^{\mathcal{M}^{1az\}}}\}$ ), we
have that

$[\perp int\rightarrow int\rightarrow\perp^{int}]^{\mathcal{M}^{1az\}}}=[(T^{int}\rightarrow\perp^{int})\rightarrow\perp int]^{\mathcal{M}^{1az\backslash }}$

This is because there is no PCFP context of ground type with a “hole” of type
$\rho\rightarrow\sigma$ that converges if and only if filled with a term having a $w.h.n.f.$ , and, $in$

particular, that converges when filled by $\lambda y^{\rho}$ .fix $x^{\sigma}.x$ and diverges when filled by
fix $z^{\rho\rightarrow\sigma}.z$ . However

$1^{int\rightarrow int}\rightarrow\perp^{\dot{|}nt}\not\leq_{s}(T^{\dot{I}nt}\rightarrow\perp^{\dot{|}nt})\rightarrow\perp^{int}$

At the moment we do not know whether a sound (and decidable) extension of the
$\leq_{s}$ relation which is complete w.r. $t$ . the model $\mathcal{M}^{1azy}$ exists. The entailment $\leq_{s}$ is
indeed complete w.r. $t$ . the term model $\mathcal{M}_{isdef}^{1azy}$ of Section 2.3.2.
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$L^{s}$ (succ) $=L^{s}(pred)=\{\perp int\rightarrow\perp^{int}\}$

$L^{s}(n)=\{T^{int}\}$
$L^{s}(not)=\{\perp\rightarrow L^{s}(true)=L^{s}(fa|se)boo|1^{boo1}\}=\{T^{booI}\}$

$L^{s}(+)=L^{s}(-)=\{\perp|nt\times T^{int}\rightarrow 1^{int}, T^{int}\times 1^{\dot{1}\mathfrak{n}t}\rightarrow\perp^{int}\}$

$L^{s}$ (and) $=L^{s}(or)=\{\perp bo\circ|\times T^{boo1}\rightarrow\perp^{boo1}, T^{boo1}\times\perp^{booI}\rightarrow\perp^{booI}\}$

$L^{s}(=)=\{1^{int}\times T^{int}\rightarrow\perp^{bo\circ 1}, T^{int}\times 1^{int}\rightarrow\perp^{boo1}\}$

Figure 10: Strictness types for the PCFP constants

Figure 11: Rules for strictness type assignment $(system\vdash_{s})$

Theorem 6.4 (Completeness of $\leq_{s}$ w.r.t. $\mathcal{M}_{isdef}^{1azy}$ ) Let $\phi,$ $\psi\in L^{s}$ .
$[\phi]^{\mathcal{M}_{isdef}^{1azy}}\subseteq[\psi]^{\mathcal{M}_{15def}^{1azy}}$ implies $\phi\leq_{s}\psi$ .

The proof of this result is quite long, it can be found in [17] Chapter 4.

6.3 Assignment rules
For each constant $c\in \mathcal{K}$ the set of minimal s-types $L^{s}(c)$ is defined as in Fig. 10.
The minimal types given to the unary and binary constants says that such constants
are strict in their arguments. In particular for binary constants this is expressed
by having two types in the set, the first says that the constants is strict in the first
argument and the second that is strict in the second argument.

Definition 6.5 (Strictness type assignment system) We write $\Sigma\vdash_{s}\Lambda_{i}T$ : $\phi$

to mean that $\Sigma\vdash M$ : $\phi$ can be derived by the rules in Fig. $s8$ and 11, where in the
rule $(\leq)$ of Fig. 8 it is used the entailment relation $\leq_{s}$ .

Note that the same terms can have different s-types.

Example 6.6 Take the term app $=\lambda f^{int\rightarrow int}.\lambda x^{int}.fx$ , of type $\rho=(int\rightarrow int)\rightarrow$

$int\rightarrow int$ . By using the $system\vdash_{s}$ it is possible to assign to app both the s-types
$\bullet$ $\phi_{1}=(1^{int}\rightarrow 1^{int})\rightarrow 1^{int}\rightarrow 1^{int}$ (strict function to strict function), and
$\bullet$ $\phi_{2}=(T^{int}\rightarrow 1^{int})\rightarrow T^{\dot{|}nt}\rightarrow 1^{int}$ (function divergent on every argument to

function divergent on every argument),
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as the following derivations show.

1. Let $\Sigma_{1}=\{f : 1^{int}\rightarrow 1^{int}, x:\perp^{int}\}$ , and $\Sigma_{1}^{\prime}=\{f : 1^{int}\rightarrow\perp^{1nt}\}$ .

$(\rightarrow E)(Var)\sum_{\rightarrow}1\vdash f:\perp int\rightarrow\perp int(Var)\Sigma_{1}\vdash x:1^{int}(I)\frac{\ovalbox{\tt\small REJECT}_{int}\Sigma_{1}\vdash fx:\perp}{(\rightarrow I)\frac{\Sigma_{1}\vdash\lambda x^{int}.fx:1^{1nt}\rightarrow 1^{1nt}}{\emptyset\vdash app:\phi_{1}}}$

2. Let $\Sigma_{2}=\{f : T^{1nt}\rightarrow 1^{int}, x:T^{int}\}$ , and $\Sigma_{2}^{\prime}=\{f : T^{int}\rightarrow 1^{Int}\}$ .

$(\rightarrow E)(Var)\sum_{\rightarrow}2\vdash f:T^{int}\rightarrow 1^{int}(V.ar)\Sigma_{2}\vdash x:T^{int}(I)\frac{\ovalbox{\tt\small REJECT}\Sigma_{2}\vdash fx:1^{int}}{(\rightarrow I)\frac{\Sigma_{2}\vdash\lambda x^{int}.fx:T^{1nt}\rightarrow 1^{1nt}}{\emptyset\vdash app:\phi_{2}}}$

The proof of the following fact is immediate.

Fact 6.7 1. $\Sigma\vdash_{s}M$ : $\phi$ implies $\vdash_{T}M$ : $\epsilon(\phi)$ and $\{x^{\epsilon(\phi)}|x^{\epsilon(\phi)} : \phi\in\Sigma\}\supseteq$

$FV(M)$ .

$2$ . $\vdash_{T}M$ : $\rho$ implies, for all basis $\Sigma$ such that $\Sigma=\{x^{\epsilon(\psi)}$ : $\psi|x^{\epsilon(\psi)}\in FV(M)$

and $\psi\in L^{s}$ }, for all $\phi\in L_{T}^{s}(\rho),$ $\Sigma\vdash_{s}M$ : $\phi$ .

The previous fact says that we can always derive a non-informative s-type.
The language $L^{s}$ is a subset of the language of properties of the conjunctive

strictness logic introduced in [25] and (independently) in [7]. This subset is obtained
from the formulas of the conjunctive strictness logic, as presented in [7] page 36, by
forbidding the use of the conjunction operator. This restriction greatly reduces the
power of the logic. However, our rule $(Fix_{\perp})$ introduces an implicit (and limited)
use of conjunction, by allowing (in its antecedent) the derivation of more than one
s-type for $M$ .

The following example shows an application of the $(Fix_{\perp})$ rule.

Example 6.8 The function $F=fixf^{\rho}.M$ , where $\rho=int\rightarrow int\rightarrow int\rightarrow int$ and

$M=\lambda x^{int}.\lambda y^{int}.\lambda z^{int}.ifz=0$ then $x+y$ else $fyx(z-1)$ ,

was used in [$29J$ to show the limitation of a type system without conjunction.
$Using\vdash_{s}$ we are able to prove that $F$ is strict in each of its 3 arguments, $i.e$ .

$\emptyset\vdash_{s}F:\phi_{1},$ $\emptyset\vdash_{s}F$ : $\phi_{2}$ , and $\emptyset\vdash_{s}F:\phi_{3}$ , where

$\bullet\phi_{1}=\perp int\rightarrow T^{int}\rightarrow T^{int}\rightarrow\perp^{1nt}$ ,

$\bullet$
$\phi_{2}=T^{int}\rightarrow 1^{int}\rightarrow T^{int}\rightarrow 1^{int}$ , and

$\bullet\phi_{3}=T^{int}\rightarrow T^{int}\rightarrow 1^{int}\rightarrow\perp^{int}$ .
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Note that to assign $\phi_{3}$ to $F$ one premise is sufficient, in fact $\{f : \phi_{3}\}\vdash_{s}M$ : $\phi_{3}$ ,
and so it is possible to apply the rule $(Fix_{\perp})$ as follows;

$(Fix\perp)\frac{\{f:\phi_{3}\}\vdash SM:\phi_{3}}{\emptyset\vdash sfixf^{\rho}.M:\phi_{3}}$

To assign $\phi_{1}$ or $\phi_{2}$ to $F$ , instead, two premises are required. In fact, $\{f : \phi_{1}\}\vdash_{s}$

$M$ : $\phi_{2}$ and $\{f : \phi_{2}\}\vdash_{s}M$ : $\phi_{1}$ , and so two premises are sufficient, since (for
$i\in\{1,2\})$ :

$(Fix_{\perp})\frac{\{f:\phi_{1}\}\vdash sM:\phi_{2}\{f:\phi_{2}\}\vdash SM:\phi_{1}}{\emptyset\vdash sfixf^{\rho}.M:\phi_{i}}$ ,

but (as it is easy to check) they are also needed. So with the rule for fixpoint of [29]
(that allows just one premise) neither $\phi_{1}$ nor $\phi_{2}$ can be assigned to $F$ .

Soundness of the s-types assignment system (for both $\mathcal{M}^{1azy}$ and $\mathcal{M}_{isdef}^{1azy}$ ) is stated
by the following theorem.

Theorem 6.9 (Soundness $of\vdash_{s}$ ) Let $\Sigma\vdash_{s}M$ : $\phi$ . Then $[M]_{e}\in[\phi J$ for all $e$

such that, for all $x:\psi\in\Sigma,$ $e(x)\in[\psi]$ .

Proof. By induction on the derivation of $\Sigma\vdash_{s}M$ : $\phi$ . $\square $

6.4 Strictness analysis and ground contextual equivalence
The entailment relation presented in Section 6.2 can be modified to fit better the
ground contextual equivalence, $\simeq_{obs}^{gnd}$ , instead of the lazy contextual equivalence,
$\simeq_{obs}^{1azy}$ . In this perspective an s-type $\phi$ is interpreted as a subset of the interpretation
of the type $\epsilon(\phi)$ in the model $\mathcal{M}$ gnd of Section 2.3.1. For every s-type $\phi\in L^{s}$ ,
let $[\phi]^{\mathcal{M}^{g_{l1}d}}$ be the interpretation of $\phi$ in the model $\mathcal{M}^{gnd}$ (defined according to
the clauses in Fig. 5). The ground observational equivalence, $\simeq_{obs}^{gnd}$ , is such that
fix $x^{\rho\rightarrow\sigma}.x\simeq_{obs}^{gnd}\lambda y^{\rho}$ .fix $z^{\sigma}.z$ , so the associated entailment relation between s-types
will identify all the s-types corresponding to functions that diverge for all inputs.

The choice of the ground semantics would be justified, as explained in [7]
page 19, by taking a view in which

$(*)$ progmms are closed terms of basic type (int or bool) and the only behaviours
that a program can exhibit are to diverge or to converge to an integer or
boolean value.

So the only way in which we can observe terms of higher types is to plug them into
a complete program. The semantics $\mathcal{M}^{1azy}$ , instead, does not identify fix $x^{int\rightarrow int}.x$

and $\lambda y^{\dot{|}nt}$ . fix $z^{int}.z$ .
Since $\Lambda/f\simeq_{obs}^{1azy}N$ implies $Jf\simeq_{obs}^{gnd}N$ , all optimizations $preserving\simeq_{obs}^{1azy}$ preserve

also $\simeq_{obs}^{gnd}$ . The vice versa is not true. For instance, consider the term $M=$
$\lambda g^{int\rightarrow int}.\lambda y^{int}.gy$ . We can assign to J# the s-type $(T^{int}\rightarrow\perp^{int})\rightarrow T^{int}\rightarrow 1^{int}$ (the
assignment does not require the use of $\leq$ so it can be done both for the ground
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and the lazy system). Now if we consider the entailment for the ground semantics
$T^{int}\rightarrow\perp^{int}$ is equivalent to $1^{int\rightarrow int}$ . So A $I$ , seen as a function of one argument, is
strict in its argument and the application of $\lrcorner \mathfrak{h}I$ to $P$ can be done “by value” (first
evaluating $P$ and then doing the replacement) preserving the ground observational
equivalence. W.r.t. $\mathcal{M}^{1azy}$ this is not the case, since observing $\Lambda/IP$ at the type
$int\rightarrow int$ , when $P=$ fix $x^{int\rightarrow int}.x$ , we have that $ MP\Downarrow$ whereas the evaluation
of the application $MP$ “by value” leads to a divergent computation, i.e. the lazy
observational equivalence is not preserved. However $MP$ is still a function and
it will result in a non terminating term whenever applied to any term. If $P$ is
undefined the whole program will produce a non-terminating computation. So if
our ultimate goal is to obtain a result of ground type there is no harm in considering
$M$ as strict and to apply it by value.

The above considerations suggest that, under the assumption $(*),$ $\mathcal{M}^{gnd}$ is
indeed a more convenient model (rather than $\mathcal{M}^{1azy}$ ) for proving the soundness of
strictness analysis.

Remark 6.10 Soundness of (a small variant of) $system\vdash_{s}w.r.t$ . the model $\mathcal{M}^{gnd}$

is proved in [18] (see also [17] Chapter 6), where a sound and complete inference
algorithm for this strictness type assignment system is given.

7 Final remarks
The research on program analysis is very active. In this paper we have focused on
a specific approach to the problem (non-standard type inference) and on a specific
class of languages (functional programming languages). A number of approaches to
program analysis have been proposed and extensively studied in the literature. In
Section 1 we have partially quoted the literature on non-standard type inference and
abstract interpretation. An overview of some of the main approaches to program
analysis can be found, for instance, in the forthcoming book [37].
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