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On keen Heegaard splittings

Ayako Ido, Yeonhee Jang and Tsuyoshi Kobayashi

Abstract.

In this paper, we introduce a new concept of strongly keen for
Heegaard splittings, and show that, for any integers n ≥ 2 and g ≥ 3,
there exists a strongly keen Heegaard splitting of genus g whose Hempel
distance is n.

§1. Introduction

The curve complex C(S) of a compact surface S introduced by
Harvey[4] has been used to prove many deep results in 3-dimentional
topology. In particular, Hempel [5] defined the Hempel distance for a
Heegaard splitting V1∪SV2 by d(S) = dS(D(V1),D(V2)) = min{dS(x, y) |
x ∈ D(V1), y ∈ D(V2)}, where dS is the simplicial distance of C(S) (for
the definition, see Section 2), and D(Vi) is the disk complex of the han-
dlebody Vi (i = 1, 2). There have been many works on Hempel distance.
For example, some authors showed that the existence of high distance
Heegaard splittings (see [1, 3, 5], for example). Moreover, it is also
shown that there exist Heegaard splittings of Hempel distance exactly
n for various integers n (see [2, 6, 7, 11, 12], for example). Here we note
that the pair (x, y) in the above definition that realizes d(S) may not
be unique. Hence it may be natural to settle: we say that a Heegaard
splitting V1 ∪S V2 is keen if its Hempel distance is realized by a unique
pair of elements of D(V1) and D(V2). Namely, V1 ∪S V2 is keen if it
satisfies the following.

• If dS(a, b) = dS(a
′, b′) = dS(D(V1),D(V2)) for a, a′ ∈ D(V1)

and b, b′ ∈ D(V2), then a = a′ and b = b′.
In Proposition 3.1, we give necessary conditions for a Heegaard splitting
to be keen. We note that these show that Heegaard splittings given in
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[6, 7, 11] are not keen (Remark 3.2). We also note that Proposition
3.1 shows that every genus-2 Heegaard splitting with Hempel distance
n (≥ 1) is not keen.

By the way, for a keen Heegaard splitting V1 ∪S V2, the geodesics
joining the unique pair of elements of D(V1) and D(V2) may not be
unique (see Remark 4.15). We say that a Heegaard splitting V1 ∪S V2 is
strongly keen if the geodesics joining the pair of elements of D(V1) and
D(V2) are unique. The main result of this paper gives the existence of
strongly keen Heegaard splitting with Hempel distance n for each g ≥ 3
and n ≥ 2 as follows.

Theorem 1.1. For any integers n ≥ 2 and g ≥ 3, there exists a
3-manifold with a strongly keen genus-g Heegaard splitting of Hempel
distance n.

§2. Preliminaries

Let S be a compact connected orientable surface. A simple closed
curve in S is essential if it does not bound a disk in S and is not parallel
to a component of ∂S. An arc properly embedded in S is essential if it
does not co-bound a disk in S together with an arc on ∂S.

Heegaard splittings
A connected 3-manifold C is a compression-body if there exists a

closed (possibly empty) surface F and a 0-handle B such that C is
obtained from (F × [0, 1]) ∪ B by adding 1-handles to F × {1} ∪ ∂B.
The subsurface of ∂C corresponding to F ×{0} is denoted by ∂−C, and
∂+C denotes the subsurface ∂C \ ∂−C of ∂C. A compression-body C is
called a handlebody if ∂−C = ∅.

Let M be a closed orientable 3-manifold. We say that V1 ∪S V2 is a
Heegaard splitting of M if V1 and V2 are handlebodies in M such that
V1∪V2 = M and V1∩V2 = ∂V1 = ∂V2 = S. The genus of S is called the
genus of the Heegaard splitting V1∪SV2. Alternatively, given a Heegaard
splitting V1 ∪S V2 of M , we may regard that there is a homeomorphism
f : ∂V2 → ∂V1 such that M is obtained from V1 and V2 by identifying
∂V1 and ∂V2 via f . When we take this viewpoint, we will denote the
Heegaard splitting by the expression V1 ∪f V2.

Curve complexes
Let S be a compact connected orientable surface with genus g and

p boundary components, where 3g + b > 4. We call such surfaces non-
sporadic. The curve complex C(S) is defined as follows: each vertex
of C(S) is the isotopy class of an essential simple closed curve on S,
and a collection of k + 1 vertices forms a k-simplex of C(S) if they
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can be realized by mutually disjoint curves in S. The arc-and-curve
complex AC(S) is defined similarly, as follows: each vertex of AC(S) is
the isotopy class of an essential properly embedded arc or an essential
simple closed curve on S, and a collection of k + 1 vertices forms a
k-simplex of AC(S) if they can be realized by mutually disjoint arcs or
simple closed curves in S. The symbol C0(S) (resp. AC0(S)) denotes the
0-skeleton of C(S) (resp. AC(S)). Throughout this paper, for a vertex
x ∈ C0(S) we often abuse notation and use x to represent (the isotopy
class of) a geometric representative of x, and we assume that any pair
of geometric representatives has minimal intersections.

For two vertices a, b of C(S), we define the distance dC(S)(a, b) be-
tween a and b, which will be denoted by dS(a, b) in brief, as the minimal
number of 1-simplexes of a simplicial path in C(S) joining a and b. For
a subset A of C0(S), we define diamS(A) := the diameter of A in C(S).
Similarly, we can define dAC(S)(a, b) for a, b ∈ AC0(S) and diamAC(S)(A)

for A ⊂ AC0(S).
For a sequence a0, a1, . . . , an of vertices in C(S) with ai∩ai+1 = ∅ in

S (i = 0, 1, . . . , n−1), we denote by [a0, a1, . . . , an] the path in C(S) with
vertices a0, a1, . . . , an in this order. We say that a path [a0, a1, . . . , an]
is a geodesic if n = dS(a0, an).

Let C be a compression-body. A disk D properly embedded in C is
essential if ∂D is an essential simple closed curve in ∂+C. Then the disk
complex D(C) is the subset of C0(∂+C) consisting of the vertices with
representatives bounding essential disks of C.

For a genus-g(≥ 2) Heegaard splitting V1 ∪S V2, the Hempel dis-
tance of V1 ∪S V2 is defined by dS(D(V1),D(V2)) = min{dS(x, y) | x ∈
D(V1), y ∈ D(V2)}.
Subsurface projection maps

For a set Y , let P(Y ) denote the set consisting of the finite subsets
of Y . Let S be a compact connected orientable surface, and let X be a
subsurface of S. We suppose that both S and X are non-sporadic, and
each component of ∂X is either contained in ∂S or essential in S. Let
πA : C0(S) → P(AC0(X)) and π0 : P(AC0(X)) → P(C0(X)) be maps
defined as follows: for α ∈ C0(S), take a representative of α so that
|α ∩X| is minimal, where | · | is the number of connected components.
Then

• πA(α) is the set of all isotopy classes of the components of
α ∩X,

• π0({α1, . . . , αn}) is the union, for all i = 1, . . . , n, of the set of
all isotopy classes of the components of ∂N(αi∪∂X) which are
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essential in X, where N(αi ∪ ∂X) is a regular neighborhood of
αi ∪ ∂X in X.

We call the composition π0 ◦ πA the subsurface projection and denote it
by πX . We say that α misses X (resp. α cuts X) if α ∩ X = ∅ (resp.
α ∩X 
= ∅). The following lemma can be proved by using [10, Lemma
2.2].

Lemma 2.1. Let A ∈ P(AC0(X)) and n ∈ N. If diamAC(X)(A) ≤
n, then diamX(π0(A)) ≤ 2n.

The following lemma is proved by using the above lemma.

Lemma 2.2. ([6, Lemma 2.1]) Let [α0, α1, . . . , αn] be a path in
C(S) such that every αi cuts X. Then diamX(πX(α0) ∪ πX(αn)) ≤ 2n.

Maps induced on curve complexes
Let Y , Z be non-sporadic surfaces. Suppose that there exists an

embedding ϕ : Y → Z such that for each component l of ∂Y either
ϕ(l) ⊂ ∂Z or ϕ(l) is essential in Z. Note that ϕ naturally induces maps
C0(Y ) → C0(Z) and P(C0(Y )) → P(C0(Z)). Throughout this paper,
under this setting, we abuse notation and use ϕ to denote these maps.

Let S be a non-sporadic closed surface.

Lemma 2.3. Let X be a non-sporadic subsurface of S such that
each component of ∂X is essential in S. Let α, β ∈ C0(S) such that α, β
cut X. For any k ∈ N, there exists a homeomorphism h : S → S such
that h|S\X = idS\X and that diamX(πX(α) ∪ πX(h(β))) > k.

Proof. Let γ be an element of πX(β). Take and fix a pseudo-
Anosov homeomorphism f : X → X such that f |∂X = id∂X . Then, by
[9, Proposition 4.6], there is a positive integer n such that

dX(γ, fn(γ)) > k + diamX(πX(α) ∪ πX(β)).

Let h : S → S be the extension of fn. Then

k + diamX(πX(α) ∪ πX(β))
< dX(γ, h(γ))
≤ diamX(πX(β) ∪ πX(α)) + diamX(πX(α) ∪ h(πX(β)))
= diamX(πX(β) ∪ πX(α)) + diamX(πX(α) ∪ πX(h(β)))

and hence we have diamX(πX(α) ∪ πX(h(β))) > k. Q.E.D.

The following two lemmas can be proved by using arguments in the
proof of [6, Propositions 4.1, 4.4].
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Lemma 2.4. Let [α0, α1, . . . , αn] and [β0, β1, . . . , βm] be geodesics
in C(S). Suppose that αn and β0 are non-separating on S, and let
X = Cl(S \N(αn)). Let h : S → S be a homeomorphism such that

• h(β0) = αn, and
• diamX(πX(α0) ∪ πX(h(βm))) > 2(n+m).

Then [α0, α1, . . . , αn(= h(β0)), h(β1), . . . , h(βm)] is a geodesic in C(S).
Moreover, every geodesic connecting α0 and h(βm) passes through

αn. In fact, for any geodesic [γ0, γ1, . . . , γn+m] in C(S) such that
γ0 = α0 and γn+m = h(βm), we have γn = αn.

Lemma 2.5. Suppose that the genus of S is greater than 2. Let
[α0, α1, . . . , αn] and [β0, β1, . . . , βm] be geodesics in C(S). Suppose that
αn−1 ∪ αn and β0 ∪ β1 are non-separating on S, and let X = Cl(S \
N(αn−1 ∪ αn)). Let h : S → S be a homeomorphism such that

• h(β0) = αn−1, h(β1) = αn, and
• diamX(πX(α0) ∪ πX(h(βm))) > 2(n+m− 1).

Then [α0, α1, . . . , αn−1(= h(β0)), αn(= h(β1)), h(β2), . . . , h(βm)] is a ge-
odesic in C(S).

Moreover, every geodesic connecting α0 and h(βm) passes through
αn−1 or αn. In fact, for any geodesic [γ0, γ1, . . . , γn+m−1] in C(S) such
that γ0 = α0 and γn+m−1 = h(βm), we have γn−1 = αn−1 or γn = αn.

Remark 2.6. Note that, in Lemmas 2.4 and 2.5, since S is closed
and non-sporadic (that is, the genus of S is greater than 1) in Lemma 2.4
and the genus of S is greater than 2 in Lemma 2.5, the subsurfaces
denoted by X are non-sporadic.

§3. Keen Heegaard splittings

Recall that a Heegaard splitting V1∪S V2 is called keen if its Hempel
distance is realized by a unique pair of elements of D(V1) and D(V2).

Proposition 3.1. Let V1∪SV2 be a genus-g(≥ 2) Heegaard splitting
with Hempel distance n(≥ 1). Let [l0, l1, . . . , ln] be a geodesic in C(S)
such that l0 ∈ D(V1) and ln ∈ D(V2). If V1 ∪S V2 is keen, then the
following holds.

(1) l0 and ln are non-separating on S.
(2) l1 and ln−1 are non-separating on S.
(3) l0 ∪ l1 and ln−1 ∪ ln are separating on S.

Proof. (1) Assume on the contrary that either l0 or ln is separating
on S. Without loss of generality, we may assume that l0 is separating
on S. Let D0 be a disk properly embedded in V1 such that ∂D0 = l0.
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Let V
(1)
1 be the component of V1 \D0 that contains l1, and let V

(2)
1 be

the other component. It is easy to see that there is an essential disk D′
0

properly embedded in V
(2)
1 such that D′

0 ∩ D0 = ∅. Then l′0 := ∂D′
0

is also disjoint from l1, and hence, [l′0, l1, . . . , ln] is a geodesic in C(S).
Hence, we have dS(l

′
0, ln) = dS(D(V1),D(V2)), where l′0 is an element of

D(V1) different from l0, a contradiction.
(2) Assume on the contrary that either l1 or ln−1, say l1, is separat-

ing on S. Let S(1) be the component of S \ l1 that contains l0. Since l0
is non-separating on S by (1) and l1 is separating on S, we can see that
l0 is non-separating on S(1). Then there exists an essential simple closed
curve l∗ on S(1) such that l∗ intersects l0 transversely in one point. Let
D0 be a disk properly embedded in V1 such that ∂D0 = l0, and let D+

0

and D−
0 be the components of Cl(∂N(D0)\∂V1), where N(D0) is a reg-

ular neighborhood of D0 in V1. Take the subarc of l∗ lying outside of
the product region N(D0) between D+

0 and D−
0 , and let D′′

0 be the disk
in V1 obtained from D+

0 ∪D−
0 by adding a band along the subarc of l∗.

Then l′′0 := ∂D′′
0 is also disjoint from l1, and hence, [l′′0 , l1, . . . , ln] is a

geodesic in C(S). Hence, we have dS(l
′′
0 , ln) = dS(D(V1),D(V2)), where

l′′0 is an element of D(V1) different from l0, a contradiction.
(3) Assume on the contrary that either l0∪l1 or ln−1∪ln, say l0∪l1, is

non-separating on S. Then there exists an essential simple closed curve
l∗ on S such that l∗ intersects l0 transversely in one point and l∗∩l1 = ∅.
We can lead to a contradiction by the arguments in (2). Q.E.D.

Remark 3.2. (1) By Proposition 3.1, we see that every genus-2
Heegaard splitting with Hempel distance n (≥ 1) is not keen. In fact, if
a genus-2 Heegaard splitting V1∪S V2 is keen, and [l0, l1, . . . , ln] is a path
that realizes the Hempel distance, then by (1) and (2) of Proposition 3.1,
we see that l0 ∪ l1 cuts S into four punctured sphere, contradicting (3)
of Proposition 3.1. Hence, if a genus-g Heegaard splitting with Hempel
distance n (≥ 1) is keen, then g ≥ 3.

(2) Heegaard splittings given in [6, 7, 11] are not keen, since their
Hempel distances are realized by pairs of separating elements.

§4. Proof of Theorem 1.1 when n ≥ 4

Let n and g be integers with n ≥ 4 and g ≥ 3. Let S be a closed con-
nected orientable surface of genus g. Let l0 and l1 be non-separating sim-
ple closed curves on S such that l0∩ l1 = ∅, l0∪ l1 is separating and l0, l1
are not parallel on S. Let F1 = Cl(S \N(l1)). Choose and fix an integer
k ∈ {2, 3, . . . , n− 2}. Let [l′1, l′2, . . . , l′k] and [l′′1 , l

′′
2 , . . . , l

′′
n−k] be geodesics

in C(S) such that l′1, l
′
k, l

′′
1 and l′′n−k are non-separating on S. (For the
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existence of such geodesics, see [6] or the proof of Proposition 4.14 below
for example.) By Lemma 2.3, there exist homeomorphisms h1 : S → S
and h2 : S → S such that

• h1(l
′
1) = l1,

• h2(l
′′
1 ) = l1,

• diamF1(πF1(l0) ∪ πF1(h1(l
′
k))) ≥ 4n+ 16, and

• diamF1(πF1(l0) ∪ πF1(h2(l
′′
n−k))) ≥ 4n+ 16.

Note that πF1(l0) = {l0} since l0 ∩ l1 = ∅. By Lemma 2.4, [l0, l1
(= h1(l

′
1)), h1(l

′
2), . . . , h1(l

′
k)] and [l0, l1(= h2(l

′′
1 )), h2(l

′′
2 ), . . . , h2(l

′′
n−k)]

are geodesics in C(S). Let Fk = Cl(S \N(h1(l
′
k))). By Lemma 2.3, there

exists a homeomorphism h3 : S → S such that

• h3(h2(l
′′
n−k)) = h1(l

′
k), and

• diamFk
(πFk

(l0) ∪ πFk
(h3(l0))) > 2n.

Let li = h1(l
′
i) for i ∈ {2, . . . , k}, li = h3(h2(l

′′
n−i)) for i ∈ {k+1, . . . , n−

1}, and ln = h3(l0). By Lemma 2.4, [l0, l1, . . . , ln] is a geodesic in C(S).
Moreover, by the construction of the geodesic, the following are satisfied.

(G1) l0, l1, ln−1 and ln are non-separating on S,
(G2) l0 ∪ l1 and ln−1 ∪ ln are separating on S,
(G3) diamF1(πF1(l0) ∪ πF1(lk)) ≥ 4n+ 16,
(G4) diamFn−1(πFn−1(lk) ∪ πFn−1(ln)) ≥ 4n+ 16, and
(G5) diamFk

(πFk
(l0) ∪ πFk

(ln)) > 2n,

where Fn−1 = Cl(S \N(ln−1)).
Let C1 and C2 be copies of the compression-body obtained by adding

a 1-handle to F × [0, 1], where F is a closed connected orientable surface
of genus g − 1. Let D1 (resp. D2) be the non-separating essential disk
properly embedded in C1 (resp. C2) corresponding to the co-core of the
1-handle. We may assume that ∂+C1 = S and ∂D1 = l0. Choose a
homeomorphism f : ∂+C2 → ∂+C1 such that f(∂D2) = ln.

Let H1 and H2 be copies of the handlebody of genus g − 1. In the
remainder of this section, we identify ∂Hi and ∂−Ci (i = 1, 2) so that
we obtain a keen Heegaard splitting of genus g whose Hempel distance
is n.

For each i = 1, 2, let C ′
i = Cl(Ci \ N(Di)) and Xi = ∂C ′

i ∩ ∂+Ci.
Note that C ′

i is homeomorphic to ∂−Ci × [0, 1]. Let ϕi : C
′
i → ∂−Ci ×

[0, 1] be a homeomorphism such that ϕi(∂C
′
i \ ∂−Ci) = ∂−Ci × {1} and

ϕi(∂−Ci) = ∂−Ci × {0}, and let ψi : ∂−Ci × {1} → ∂−Ci × {0} be the
natural homeomorphism. Let Pi : Xi → ∂−Ci be the composition of

the inclusion map Xi → ∂C ′
i \ ∂−Ci and the map

(
ϕi|∂−Ci

)−1 ◦ ψi ◦(
ϕi|∂C′

i\∂−Ci

)
: ∂C ′

i \ ∂−Ci → ∂−Ci.
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It is clear that l1 represents an essential simple closed curve on X1.
Since l1 is non-separating on S, P1(l1) is an essential simple closed curve
on ∂−C1. By [5, Theorem 2.7] and its proof (see also [1, Theorem 2.4]),
there exists a homeomorphism f1 : ∂H1 → ∂−C1 such that

(1) d∂−C1(f1(D(H1)), P1(l1)) ≥ 2.

Let V1 = C1 ∪f1 H1, that is, V1 is the manifold obtained from C1 and
H1 by identifying ∂−C1 and ∂H1 via f1. Note that V1 is a handlebody.

Claim 4.1. l1 intersects every element of D(V1) \ {l0}.
Proof. Assume on the contrary that there exists an element a of

D(V1) \ {l0} such that a ∩ l1 = ∅. Let Da be a disk in V1 bounded by
a, and recall that l0 bounds the disk D1 in C1, and hence, in V1 (see
Fig. 1). We may assume that |Da∩D1| = |Da∩N(D1)| and is minimal.
By using innermost disk arguments, we see that Da ∩ D1 has no loop
components. Let Δ be a disk properly embedded in C ′

1 ∪f1 H1 defined
as follows.

• If Da ∩D1 = ∅, let Δ = Da.
• If Da ∩ D1 
= ∅, let Δ be the closure of a component of Da \
N(D1) that is outermost in Da.

Since a ∩ l1 = ∅, the disk Δ is disjoint from l1. Since l0, l1 are non-
separating and l0 ∪ l1 is separating on S by the condition (G2), and
a 
= l0, we see that Δ is essential in C ′

1 ∪f1 H1.

Fig. 1

Since C ′
1 is homeomorphic to ∂−C1× [0, 1], we may assume that Δ is

obtained by gluing a vertical annulus in C ′
1 and an essential disk Δ′ inH1

via f1, after boundary compressions and isotopies toward ∂−C1 if neces-
sary. This together with Δ∩l1 = ∅ implies that d∂−C1(f1(∂Δ

′), P1(l1)) ≤
1. Since f1(∂Δ

′) ∈ f1(D(H1)), we have d∂−C1(f1(D(H1)), P1(l1)) ≤ 1, a
contradiction to the inequality (1). Q.E.D.
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Let πF1 = π0 ◦ πA : C0(S) → P(AC0(F1)) → P(C0(F1)) be the
subsurface projection introduced in Section 2. Recall that πF1(l0) = {l0}
since l0 ∩ l1 = ∅.

Claim 4.2. For any element a ∈ D(V1), we have πF1(a) 
= ∅, and
diamF1(l0 ∪ πF1(a)) ≤ 4.

Proof. Note that, by Claim 4.1, we immediately have πF1(a) 
= ∅.
If a = l0 or a ∩ l0 = ∅, that is, dS(l0, a) ≤ 1, then we have diamF1(l0 ∪
πF1(a)) ≤ 2 by Lemma 2.2. Hence, we suppose that a 
= l0 and a∩l0 
= ∅
in the following.

Let Da be a disk in V1 bounded by a, and recall that l0 bounds the
disk D1 in V1. Here, we may assume that |a ∩ l1| = |a ∩ N(l1)| and is
minimal. We may also assume that |Da ∩ D1| = |Da ∩ N(D1)| and is
minimal. Let Δ be the closure of a component of Da \ N(D1) that is
outermost in Da. If Δ ∩ l1 = ∅, then we can lead to a contradiction by
arguments in the proof of Claim 4.1. Hence, Δ ∩ l1 
= ∅. Since l0 ∪ l1
is separating on S by the condition (G2), there exists a component γ
of Cl(∂Δ \ (N(D1) ∪ N(l1))) such that ∂γ ⊂ ∂N(l1). It is clear that
γ is an essential arc on F1. Note that γ is disjoint from l0, that is,
dAC(F1)(l0, γ) = 1, since l0 ∩ Δ = ∅ and γ is a subarc of ∂Δ. Since
γ ∈ πA(a), we have dAC(F1)(l0, πA(a)) ≤ dAC(F1)(l0, γ) = 1. Hence,

diamAC(F1)(l0 ∪ πA(a)) ≤ dAC(F1)(l0, πA(a)) + diamAC(F1)(πA(a))
≤ 1 + 1 = 2.

By Lemma 2.1, we have diamF1(l0 ∪ πF1(a)) ≤ 4. Q.E.D.

Lemma 4.3. dS(D(V1), ln) = n.

Proof. Since l0 ∈ D(V1), we have dS(D(V1), ln) ≤ n. To prove
dS(D(V1), ln) = n, assume on the contrary that dS(D(V1), ln) < n.
Then there exists a geodesic [m0,m1, . . . ,mp] in C(S) such that p < n,
m0 ∈ D(V1) and mp = ln.

Claim 4.4. mi = l1 for some i ∈ {0, 1, . . . , p}.
Proof. Assume on the contrary that mi 
= l1 for every i ∈ {0, 1, . . . ,

p}. Namely, every mi cuts F1. By Lemma 2.2, we have

(2) diamF1(πF1(m0) ∪ πF1(mp)) ≤ 2p.

Similarly, we have

(3) diamF1(πF1(ln) ∪ πF1(lk)) ≤ 2(n− k).
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By the triangle inequality, we have

diamF1(πF1(l0) ∪ πF1(lk)) ≤ diamF1(πF1(l0) ∪ πF1(m0))
+ diamF1(πF1(m0) ∪ πF1(mp))
+ diamF1(πF1(ln) ∪ πF1(lk)).

(4)

By the inequalities (2), (3), (4) and Claim 4.2, we obtain

diamF1(πF1(l0) ∪ πF1(lk)) ≤ 4 + 2p+ 2(n− k)
< 4 + 2n+ 2n,

(5)

which contradicts the condition (G3). Q.E.D.

By Claim 4.4, we have dS(mi,mp) = dS(l1, ln). Since [m0,m1, . . . ,
mp] and [l0, l1, . . . , ln] are geodesics, dS(mi,mp) = p− i and dS(l1, ln) =
n−1 > p−1. Hence, p− i > p−1, which implies i = 0, that is, m0 = l1.
This contradicts Claim 4.1. Hence, we have dS(D(V1), ln) = n. Q.E.D.

Note that f−1(ln−1) represents an essential simple closed curve on
X2. Since f−1(ln−1) is non-separating on ∂+C2 by the condition (G1),
P2(f

−1(ln−1)) is an essential simple closed curve on ∂−C2. By [5, The-
orem 2.7] and its proof (see also [1, Theorem 2.4]), there exists a home-
omorphism f2 : ∂H2 → ∂−C2 such that

(6) d∂−C2(f2(D(H2)), P2(f
−1(ln−1))) ≥ 2.

Let V2 = C2 ∪f2 H2. Then V1 ∪f V2 is a genus-g Heegaard splitting.
Claims 4.5, 4.6 and Lemma 4.7 below can be proved by the argu-

ments similar to those for Claims 4.1, 4.2 and Lemma 4.3, respectively.

Claim 4.5. ln−1 intersects every element of f(D(V2)) \ {ln}.
Claim 4.6. For any element a ∈ f(D(V2)), we have πFn−1(a) 
= ∅,

and diamFn−1(ln ∪ πFn−1(a)) ≤ 4.

Lemma 4.7. dS(f(D(V2)), l0) = n.

Claim 4.8. (1) diamF1(πF1(f(D(V2)))) ≤ 12.
(2) diamFn−1(πFn−1(D(V1))) ≤ 12.

Proof. By Lemma 4.3, we have dS(D(V1), ln−1) = n−1 ≥ 3. Hence,
by [8, Theorem 1], diamFn−1(πFn−1(D(V1))) ≤ 12. Similarly, we have
diamF1(πF1(f(D(V2)))) ≤ 12 by Lemma 4.7 and [8]. Q.E.D.

Lemma 4.9. dS(D(V1), f(D(V2))) = n. Namely, the Hempel dis-
tance of the Heegaard splitting V1 ∪f V2 is n.
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Proof. Since l0 ∈ D(V1) and ln ∈ f(D(V2)), we have

dS(D(V1), f(D(V2))) ≤ n.

Let [m0,m1, . . . ,mp] be a geodesic in C(S) such that m0 ∈ D(V1), mp ∈
f(D(V2)) and p ≤ n.

Claim 4.10. mi = l1 for some i ∈ {0, 1, . . . , p}.
Proof. Assume on the contrary that mi 
= l1 for every i ∈ {0, 1, . . . ,

p}. Namely, every mi cuts F1. By Lemma 2.2, we have

(7) diamF1(πF1(m0) ∪ πF1(mp)) ≤ 2p.

Recall that k ∈ {2, 3, . . . , n− 2}. Similarly, we have

(8) diamF1(πF1(ln) ∪ πF1(lk)) ≤ 2(n− k).

By the triangle inequality, we have

diamF1(πF1(l0) ∪ πF1(lk)) ≤ diamF1(πF1(l0) ∪ πF1(m0))
+ diamF1(πF1(m0) ∪ πF1(mp))
+ diamF1(πF1(mp) ∪ πF1(ln))
+ diamF1(πF1(ln) ∪ πF1(lk)).

(9)

By the inequalities (7), (8), (9) together with Claims 4.2 and 4.8, we
obtain

diamF1(πF1(l0) ∪ πF1(lk)) ≤ 4 + 2p+ 12 + 2(n− k)
< 4 + 2n+ 12 + 2n,

(10)

which contradicts the condition (G3). Q.E.D.

The following claim can be proved similarly.

Claim 4.11. mj = ln−1 for some j ∈ {0, 1, . . . , p}.
Note that l1 
∈ D(V1) by Claim 4.1. Note also that l1 
∈ f(D(V2))

since, otherwise, we have dS(f(D(V2)), l0) ≤ dS(l1, l0) = 1, which con-
tradicts Lemma 4.7. Since m0 ∈ D(V1) and mp ∈ f(D(V2)) by the
assumption, we have mi(= l1) 
= m0 and mi(= l1) 
= mp, which implies
1 ≤ i ≤ p− 1. Similarly, we have 1 ≤ j ≤ p− 1. Hence, we have

(11) |i− j| ≤ (p− 1)− 1 = p− 2.

On the other hand, by Claims 4.10 and 4.11, we have

|i− j| = dS(mi,mj) = dS(l1, ln−1) = n− 2,
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which together with the inequality (11) implies p = n. Hence,

dS(D(V1), f(D(V2))) = n.

Q.E.D.

Lemma 4.12. The Heegaard splitting V1 ∪f V2 is keen.

Proof. Let [m0,m1, . . . ,mn] be a geodesic in C(S) such that
m0 ∈ D(V1) and mn ∈ f(D(V2)). By the proof of Lemma 4.9, we have
m1 = l1 and mn−1 = ln−1. By Claims 4.1 and 4.5, we have m0 = l0 and
mn = ln. Q.E.D.

In Claim 4.13 and Proposition 4.14, we show that the existence of
strongly keen Heegaard splitting.

Claim 4.13. In the above construction, if the following conditions
are satisfied, then the Heegaard splitting constructed from the geodesic
[l0, l1, . . . , ln] is strongly keen.

• The geodesic [l′1, l
′
2, . . . , l

′
k] (resp. [l

′′
1 , l

′′
2 , . . . , l

′′
n−k]) is the unique

geodesic from l′1 to l′k (resp. l′′1 to l′′n−k).

Proof. By the proof of Lemma 4.12, mi = li holds for i = 0, 1,
n− 1 and n. Moreover, by the condition (G5) and Lemma 2.4, we have
mk = lk. Hence, if the geodesics [l′1, l

′
2, . . . , l

′
k] (resp. [l′′1 , l

′′
2 , . . . , l

′′
n−k])

is the unique geodesic connecting l′1 and l′k (resp. l′′1 and l′′n−k), then we
obtain the desired result. Q.E.D.

Hence the next proposition completes the proof of Theorem 1.1.

Proposition 4.14. Let S be a closed, non-sporadic surface. For
each p, there exists a geodesic [α0, α1, . . . , αp] in C(S) such that each αi

(i = 0, 1, . . . , p) is non-separating on S and [α0, α1, . . . , αp] is the unique
geodesic connecting α0 and αp.

Proof. Let α0 and α1 be non-separating simple closed curve on S
such that α0 ∩ α1 = ∅, and let X1 = Cl(S \ N(α1)). Let α′

2 be a non-
separating simple closed curve on S disjoint from α1. By Lemma 2.3,
there exists a homeomorphism g1 : S → S such that g1(α1) = α1 and
diamX1(πX1(α0) ∪ πX1(g1(α

′
2))) > 4. Let α2 = g1(α

′
2). By Lemma 2.4,

[α0, α1, α2] is a geodesic in C(S). Moreover, by Lemma 2.4, [α0, α1, α2]
is the unique geodesic connecting α0 and α2.

For any positive integer p, we repeat this process to construct a
geodesic [α0, α1, . . . , αp] inductively as follows. Suppose we have con-
structed a geodesic [α0, α1, . . . , αi] for i < p such that

• αi is non-separating on S, and
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• [α0, α1, . . . , αi] is the unique geodesic connecting α0 and αi.

LetXi = Cl(S\N(αi)). Let α
′
i+1 be a non-separating simple closed curve

on S disjoint from αi. By Lemma 2.3, there exists a homeomorphism
gi : S → S such that gi(αi) = αi and diamXi(πXi(α0)∪πXi(gi(α

′
i+1))) >

2(i+ 1). Let αi+1 = gi(α
′
i+1). By Lemma 2.4, [α0, α1, . . . , αi+1] is a ge-

odesic in C(S). Moreover, every geodesic connecting α0 and αi+1 passes
through αi. Since [α0, α1, . . . , αi] is the unique geodesic connecting α0

and αi, we have that [α0, α1, . . . , αi+1] is the unique geodesic connect-
ing α0 and αi+1. Hence, we obtain a geodesic [α0, α1, . . . , αp] such that
every αi (i = 0, 1, . . . , p) is non-separating on S and [α0, α1, . . . , αp] is
the unique geodesic connecting α0 and αp. Q.E.D.

Remark 4.15. There exists a keen Heegaard splitting which is not
strongly keen. For example, in the construction at the beginning of
this section, let k = 3 and take l′1 and l′3 such that l′1 and l′3 intersect
transversely in one point. Let l′2 be an essential simple closed curve
disjoint from l′1 ∪ l′3. Then [l′1, l

′
2, l

′
3] is a geodesic in C(S). We can apply

the arguments up to Lemma 4.12 to obtain a geodesic [l0, l1, . . . , ln] and
obtain a keen Heegaard splitting V1 ∪f V2. Since l1 and l3 intersect
transversely in one point, there exists an essential simple closed curve l∗2
that is disjoint from l1∪l3 and different from l2. Then [l0, l1, l

∗
2 , l3, . . . , ln]

is a geodesic realizing the Hempel distance of V1 ∪f V2 which is different
from [l0, l1, l2, l3, . . . , ln]. Hence, V1 ∪f V2 is not strongly keen.

§5. Proof of Theorem 1.1 when n = 2

Let n = 2 and g be an integer with g ≥ 3. Let S be a closed
connected orientable surface of genus g. Let l0 and l1 be non-separating
simple closed curves on S such that l0 ∪ l1 is separating on S and l0,
l1 are not parallel on S. By Lemma 2.3, there exists a homeomorphism
h : S → S such that h(l1) = l1 and

dF1(l0, h(l0)) > 12,

where F1 = Cl(S \N(l1)). Let l2 = h(l0). By Lemma 2.4, [l0, l1, l2] is a
geodesic in C(S).

Let C1 and C2 be copies of the compression-body obtained by adding
a 1-handle to F × [0, 1], where F is a closed connected orientable surface
of genus g − 1. Let D1 and D2 be the non-separating essential disk
properly embedded in C1 and C2 corresponding to the co-cores of the
1-handles, respectively. We may assume that ∂+C1 = S and ∂D1 = l0.
Choose a homeomorphism f : ∂+C2 → ∂+C1 such that f(∂D2) = l2.
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Let Hi, C
′
i,Xi, Pi (i = 1, 2) be as in Section 4. Note that l1 is

non-separating on S, and hence, P1(l1) and P2(f
−1(l1)) are essential

simple closed curves on ∂−C1 and ∂−C2, respectively. By [5, Theo-
rem 2.7] and its proof (see also [1, Theorem 2.4]), there exist home-
omorphisms f1 : ∂H1 → ∂−C1 and f2 : ∂H2 → ∂−C2 such that
d∂−C1(f1(D(H1)), P1(l1)) ≥ 2 and d∂−C2(f2(D(H2)), P2(f

−1(l1))) ≥ 2,
respectively. Let Vi = Ci ∪fi Hi (i = 1, 2). Then, V1 ∪f V2 is a genus-g
Heegaard splitting. By the arguments similar to those for Claims 4.1,
4.2, 4.5 and 4.6, we obtain the following.

Claim 5.1. (1) l1 intersects every element of D(V1)\{l0} and every
element of f(D(V2)) \ {l2}.

(2) For any element a ∈ D(V1), we have πF1(a) 
= ∅, and diamF1(l0∪
πF1(a)) ≤ 4.

(3) For any element a ∈ f(D(V2)), we have πF1(a) 
= ∅, and diamF1

(l2 ∪ πF1(a)) ≤ 4.

Lemma 5.2. V1 ∪f V2 is a strongly keen Heegaard splitting whose
Hempel distance is 2.

Proof. Since l0 ∈ D(V1) and l2 ∈ f(D(V2)), we have

dS(D(V1), f(D(V2))) ≤ 2.

Let [m0,m1,m2] be a geodesic in C(S) such that m0 ∈ D(V1) and
m2 ∈ f(D(V2)). (Possibly, m1 ∈ D(V1) or m1 ∈ f(D(V2)).) By
Claim 5.1 (1), both m0 and m2 cut F1. If m1 also cuts F1, then we
have diamF1(πF1(m0) ∪ πF1(m2)) ≤ 4 by Lemma 2.2, which together
with Claim 5.1 (2) and (3) implies that

dF1(l0, l2) ≤ diamF1(l0 ∪ πF1(m0)) + diamF1(πF1(m0) ∪ πF1(m2))
+ diamF1(πF1(m2) ∪ l2)

≤ 4 + 4 + 4 = 12.

This contradicts the fact that dF1(l0, l2) > 12. Hence, m1 misses F1,
that is, m1 = l1. By Claim 5.1 (1), we have m0 = l0 and m2 = l2, and
we obtain the desired result. Q.E.D.

§6. Proof of Theorem 1.1 when n = 3

Let n = 3 and g be an integer with g ≥ 3. Let S be a closed
connected orientable surface of genus g. Let l0 and l1 be non-separating
simple closed curves on S such that l0 ∪ l1 is separating on S and l0, l1
are not parallel on S. Let l′2 be a simple closed curve on S such that
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l′2∩ l1 = ∅ and l1∪ l′2 is non-separating on S. By Lemma 2.3, there exists
a homeomorphism h1 : S → S such that h1(l1) = l1 and

dF1(l0, h1(l
′
2)) > 8,

where F1 = Cl(S \N(l1)). Let l2 = h1(l
′
2). By Lemma 2.4, [l0, l1, l2] is a

geodesic in C(S). Note that there exists a homeomorphism h2 : S → S
such that h2(l1) = l2 and h2(l2) = l1, since l1 and l2 are non-separating
on S. Let l′3 = h2(l0). Note that [l1, l2, l

′
3] is a geodesic in C(S).

Let S′ = Cl(S\N(l1∪l2)). Let πS′ = π0◦πA : C0(S) → P(AC0(S′)) →
P(C0(S′)) be the subsurface projection introduced in Section 2.

Claim 6.1. There exists a homeomorphism h : S → S such that
h(l1) = l1, h(l2) = l2 and diamS′(πS′(l0) ∪ πS′(h(l′3))) > 14.

Proof. Let γ be the closure of a component of l′3 \ l1. Since l′3∩ l2 =
∅, we have γ ∈ πA(l

′
3), and hence, π0(γ) ∈ π0(πA(l

′
3)) = πS′(l′3). Note

that π0(γ) consists of a single simple closed curve or two disjoint simple
closed curves on S′. By Lemma 2.3, there exists a homeomorphism
h : S → S such that h(l1) = l1, h(l2) = l2 and dS′(πS′(l0), h(π0(γ))) >
14. This inequality, together with the fact that h(π0(γ)) ∈ h(πS′(l′3)),
implies

diamS′(πS′(l0) ∪ πS′(h(l′3))) = diamS′(πS′(l0) ∪ h(πS′(l′3)))
≥ dS′(πS′(l0), h(π0(γ)))
> 14.

Q.E.D.

Let l3 = h(l′3). By Lemma 2.5, [l0, l1, l2, l3] is a geodesic in C(S).
Note that the following hold.

• dF1(l0, l2) > 8.
• dF2(l1, l3) > 8, where F2 = Cl(S \N(l2)), since dF1(l0, l2) > 8
and the homeomorphism h ◦ h2 sends l0, l1, l2 to l3, l2, l1,
respectively.

• diamS′(πS′(l0) ∪ πS′(l3)) > 14.

Let C1 and C2 be copies of the compression-body obtained by adding
a 1-handle to F × [0, 1], where F is a closed connected orientable surface
of genus g − 1. Let D1 and D2 be the non-separating essential disk
properly embedded in C1 and C2 corresponding to the co-cores of the
1-handles, respectively. We may assume that ∂+C1 = S and ∂D1 = l0.
Choose a homeomorphism f : ∂+C2 → ∂+C1 such that f(∂D2) = l3.

Let Hi, C
′
i,Xi, Pi (i = 1, 2) be as in Section 4. Note that l1 and l2

are non-separating on S and not isotopic to l0 or l3. Hence, P1(l1) and
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P2(f
−1(l2)) are essential simple closed curves on ∂−C1 and ∂−C2, respec-

tively. By [5, Theorem 2.7] and its proof (see also [1, Theorem 2.4]), there
exist homeomorphisms f1 : ∂H1 → ∂−C1 and f2 : ∂H2 → ∂−C2 such
that d∂−C1(f1(D(H1)), P1(l1)) ≥ 2 and d∂−C2(f2(D(H2)), P2(f

−1(l2))) ≥
2, respectively. Let Vi = Ci∪fi Hi (i = 1, 2). Then, V1∪f V2 is a genus-g
Heegaard splitting. By the arguments similar to those for Claims 4.1,
4.2, 4.5 and 4.6, we obtain the following.

Claim 6.2. (1) l1 intersects every element of D(V1) \ {l0}, and l2
intersects every element of f(D(V2)) \ {l3}.

(2) For any element a ∈ D(V1), we have πF1(a) 
= ∅, and diamF1(l0∪
πF1(a)) ≤ 4.

(3) For any element a ∈ f(D(V2)), we have πF2(a) 
= ∅, and diamF2

(l3 ∪ πF2(a)) ≤ 4.

Lemma 6.3. (1) For any element a ∈ D(V1), we have πS′(l0) 
= ∅,
πS′(a) 
= ∅, and diamS′(πS′(l0) ∪ πS′(a)) ≤ 4.

(2) For any element a ∈ f(D(V2)), we have πS′(l3) 
= ∅, πS′(a) 
= ∅,
and diamS′(πS′(l3) ∪ πS′(a)) ≤ 4.

Proof. We give a proof for (1) only, since (2) can be proved sim-
ilarly. Suppose that πS′(l0) = ∅ (resp. πS′(a) = ∅). This means that
for each component γ of l0 ∩ S′ (resp. a∩ S′), each component of S′ \ γ
is an annulus. This shows that S′ is a sphere with three boundary
components, a contradiction. If a = l0 or a ∩ l0 = ∅, then we have
diamS′(πS′(l0) ∪ πS′(a)) ≤ 2 by Lemma 2.2. Hence, we suppose that
a 
= l0 and a ∩ l0 
= ∅ in the following.

Let Da be a disk in V1 bounded by a, and recall l0 bounds the disk
D1 in V1. We may assume that |Da ∩ D1| is minimal. Let Δ be the

closure of a component of Da \ D1 that is outermost in Da. Let D
(1)
1

and D
(2)
1 be the components of D1 \Δ. By the minimality of |Da ∩D1|,

the disks D
(1)
1 ∪Δ and D

(2)
1 ∪Δ are essential in V1.

Claim 6.4. D
(1)
1 ∪Δ or D

(2)
1 ∪Δ, say D

(1)
1 ∪Δ, is not isotopic to

D1 in V1.

Proof. Let m1 and m2 be the two simple closed curves obtained

from l0(= ∂D1) by a band move along Δ∩ ∂V1. Suppose both D
(1)
1 ∪Δ

and D
(2)
1 ∪ Δ are isotopic to D1 in V1. This implies that m1 and m2

are parallel in ∂V1, and hence, they co-bound an annulus, say A, in S.
Further, by slight isotopy, we may suppose that l0 ∩ (m1 ∪ m2) = ∅.
Note that l0 is retrieved from m1 ∪m2 by a band move along an arc α
such that |α∩ (Δ∩ ∂V1)| = 1. Since l0 is essential, (intα)∩A = ∅. This
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shows that l0 cuts off a punctured torus from ∂V1, which contradicts the
assumption that l0 is non-separating on ∂V1. Q.E.D.

Hence, by Claim 6.2 (1), l1 intersects D
(1)
1 ∪Δ. Since l1 ∩D1 = ∅,

l1 intersects ∂Δ \D1. Since l0 ∪ l1 is separating on S, there is a subarc
γ of ∂Δ \D1 such that ∂γ ⊂ l1. Let γ

′ be the closure of a component of
γ \N(l1 ∪ l2). Then γ′ is an element of πA(a) (⊂ AC0(S′)). Hence, we
have

diamAC(S′)(γ
′ ∪ πA(a)) ≤ 1.

On the other hand, since γ′ is disjoint from l0, we have

diamAC(S′)(πA(l0) ∪ γ′) ≤ 1.

By the triangle inequality, we have

diamAC(S′)(πA(l0) ∪ πA(a)) ≤ diamAC(S′)(πA(l0) ∪ γ′)
+ diamAC(S′)(γ

′ ∪ πA(a))
≤ 1 + 1 = 2.

By Lemma 2.1, we have diamS′(πS′(l0) ∪ πS′(a)) ≤ 4. This completes
the proof of Lemma 6.3 (1). Q.E.D.

Lemma 6.5. V1 ∪f V2 is a strongly keen Heegaard splitting whose
Hempel distance is 3.

Proof. Since l0 ∈ D(V1) and l3 ∈ f(D(V2)), we have

dS(D(V1), f(D(V2))) ≤ 3.

Let [m0, . . . ,mp] be a geodesic in C(S) such that m0 ∈ D(V1),
mp ∈ f(D(V2)) and p ≤ 3.

Claim 6.6. mi = l1 or mi = l2 for some i ∈ {0, . . . , p}.
Proof. Assume on the contrary that mi 
= l1 and mi 
= l2 for every

i ∈ {0, . . . , p}. Namely, every mi cuts S
′. By Lemma 2.2, we have

(12) diamS′(πS′(m0) ∪ πS′(mp)) ≤ 2p ≤ 6.

By the triangle inequality, we have

diamS′(πS′(l0) ∪ πS′(l3)) ≤ diamS′(πS′(l0) ∪ πS′(m0))
+ diamS′(πS′(m0) ∪ πS′(mp))
+ diamS′(πS′(mp) ∪ πS′(l3)).

(13)

By the inequalities (12), (13) together with Lemma 6.3, we obtain

diamS′(πS′(l0) ∪ πS′(l3)) ≤ 4 + 6 + 4 = 14,
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which contradicts the inequality diamS′(πS′(l0) ∪ πS′(l3)) > 14 (see
Claim 6.1). Q.E.D.

Assume that mi = l1 for some i ∈ {0, . . . , p}. (The case where
mi = l2 for some i ∈ {0, . . . , p} can be treated similarly.) By Claim 6.2
(1), we have l1 
∈ D(V1) and l1 
∈ f(D(V2)), which imply i 
= 0 and i 
= p,
respectively. Hence, we have 1 ≤ i ≤ p − 1 and 2 ≤ p (≤ 3). If p = 2,
then m1 = l1 and m2 ∈ f(D(V2)), and hence

dF2(l1, l3) = dF2(m1, l3)
≤ diamF2(m1 ∪ πF2(m2)) + diamF2(πF2(m2) ∪ l3)
≤ 2 + 4 = 6,

(14)

which contradicts the inequality dF2(l1, l3) > 8. Hence, p = 3, and this
implies that the Hempel distance of V1 ∪f V2 is 3. Moreover, we have
i = 1 (that is, m1 = l1) since, if i = 2, then [l0, l1(= m2),m3] is a path
of length 2 from D(V1) to f(D(V2)), a contradiction.

To prove m2 = l2, assume on the contrary that m2 
= l2. Then m2,
as well as m1(= l1) and m3, cuts F2. By Lemma 2.2 and Claim 6.2 (3),

dF2(l1, l3) = dF2(m1, l3)
≤ diamF2(m1 ∪ πF2(m3)) + diamF2(πF2(m3) ∪ l3)
≤ 4 + 4 = 8,

(15)

which contradicts the inequality dF2(l1, l3) > 8. Hence, m2 = l2.
By Claim 6.2 (1), we have m0 = l0 and m3 = l3. Hence, [l0, l1, l2, l3]

is the unique geodesic realizing the Hempel distance. Q.E.D.
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