Rectifying developable surfaces of framed base curves and framed helices

Shun'ichi Honda

Abstract.

We study the rectifying developable surface of a framed base curve and a framed helix in the Euclidean space. A framed base curve is a smooth curve with a moving frame which may have singular points. By using the curvature of a framed base curve, we investigate the rectifying developable surface and a framed helix. Moreover, we introduce two new invariants of a framed base curve, which characterize singularities of the rectifying developable surface and a framed helix.

§1. Introduction

There are several articles concerning singularities of the tangent developable surface and the focal developable surface of a space curve with singular points ([5, 6, 7, 8]). In [6, 7, 8] Ishikawa investigated relationships between singularities of the tangent developable surface and the type (a_1, a_2, a_3) of a space curve. In [5] the author and Takahashi introduced relationships between singularities of the focal developable surface of a framed base curve and invariants, that is, the curvature of a framed curve. On the other hand, Izumiya, Katsumi and Yamasaki introduced the rectifying developable surface of a regular space curve in [9]. They showed relationships between singularities of the rectifying developable surface of a regular space curve and geometric invariants of the curve which are deeply related to the order of contact with a helix. A regular space curve γ is always a geodesic of its rectifying developable surface. In this sense, the rectifying developable surface is an interesting subject.

Received June 30, 2016.

Revised March 22, 2017.

²⁰¹⁰ Mathematics Subject Classification. Primary 53A05; Secondary 53A04, 58K05.

Key words and phrases. Framed base curve, rectifying developable surface, framed helix, singularities.

In this paper we consider the rectifying developable surface of a space curve with singular points, and a helix which may have singular points. In order to define these notions, we apply the theory of framed base curves under a certain condition. A framed base curve is a smooth space curve with a moving frame which may have singular points, see [4] and Appendix A. In Section 3, we define the rectifying developable surface of a framed base curve under a certain condition. That is a natural generalization of the rectifying developable surface of a regular space curve in [9]. By using two new invariants, we give basic properties of the rectifying developable surface (cf. Proposition 3.2 and Theorem 3.3). Moreover, we define a framed helix and consider relationships between the rectifying developable surface of a framed base curve and a framed helix in Section 4. In Section 5, we introduce the notion of support functions of a framed base curve. By using this function, we give relationships between singularities of the rectifying developable surface and invariants of a framed base curve. The proof of Theorem 3.3 is given in Section 5. We give some examples of the rectifying developable surface of a framed base curve and a framed helix in Section 6.

All maps and manifolds considered here are differential of class C^{∞} .

Acknowledgements. The author would like to express sincere gratitude to Professor Izumiya and the referee for helpful comments.

§2. Basic notions

Let \mathbb{R}^3 be the 3-dimensional Euclidean space equipped with the canonical inner product $\langle \boldsymbol{a}, \boldsymbol{b} \rangle = a_1b_1 + a_2b_2 + a_3b_3$, where $\boldsymbol{a} = (a_1, a_2, a_3)$, $\boldsymbol{b} = (b_1, b_2, b_3) \in \mathbb{R}^3$. The norm of \boldsymbol{a} is given by $\|\boldsymbol{a}\| = \sqrt{\langle \boldsymbol{a}, \boldsymbol{a} \rangle}$. We define the vector product of \boldsymbol{a} and \boldsymbol{b} by

$$egin{aligned} m{a} imes m{b} = \left| egin{array}{cccc} a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 \ e_1 & e_2 & e_3 \end{array}
ight| = \left| egin{array}{cccc} m{e}_1 & m{e}_2 & m{e}_3 \ a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 \end{array}
ight|, \end{aligned}$$

where e_1, e_2, e_3 are the canonical basis on \mathbb{R}^3 .

We quickly review some basic concepts on classical differential geometry of regular space curves in \mathbb{R}^3 . Let I be an interval. Suppose that $\gamma:I\to\mathbb{R}^3$ is a regular space curve with linearly independent condition, that is, $\dot{\gamma}(t)$ and $\ddot{\gamma}(t)$ are linearly independent for all $t\in I$, where $\dot{\gamma}(t)=(d\gamma/dt)(t)$ and $\ddot{\gamma}(t)=(d^2\gamma/dt^2)(t)$. Then we have an orthonormal frame

$$\left\{T(t),N(t),B(t)\right\} = \left\{\frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|},\frac{(\dot{\gamma}(t)\times\ddot{\gamma}(t))\times\dot{\gamma}(t)}{\|(\dot{\gamma}(t)\times\ddot{\gamma}(t))\times\dot{\gamma}(t)\|},\frac{\dot{\gamma}(t)\times\ddot{\gamma}(t)}{\|\dot{\gamma}(t)\times\ddot{\gamma}(t)\|}\right\}$$

along $\gamma(t)$, which is called the *Frenet frame* along $\gamma(t)$. Then we have the following Frenet-Serret formula:

$$\begin{pmatrix} \dot{T}(t) \\ \dot{N}(t) \\ \dot{B}(t) \end{pmatrix} = \begin{pmatrix} 0 & \|\dot{\gamma}(t)\|\kappa(t) & 0 \\ -\|\dot{\gamma}(t)\|\kappa(t) & 0 & \|\dot{\gamma}(t)\|\tau(t) \\ 0 & -\|\dot{\gamma}(t)\|\tau(t) & 0 \end{pmatrix} \begin{pmatrix} T(t) \\ N(t) \\ B(t) \end{pmatrix},$$

where

$$\kappa(t) = \frac{\|\dot{\gamma}(t) \times \ddot{\gamma}(t)\|}{\|\dot{\gamma}(t)\|^3}, \ \tau(t) = \frac{\det(\dot{\gamma}(t), \ddot{\gamma}(t), \ddot{\gamma}(t))}{\|\dot{\gamma}(t) \times \ddot{\gamma}(t)\|^2},$$

where $\ddot{\gamma}(t) = (d^3\gamma/dt^3)(t)$. We call $\kappa(t)$ a curvature and $\tau(t)$ a torsion of $\gamma(t)$. Note that the curvature $\kappa(t)$ and the torsion $\tau(t)$ are independent of a choice of parametrization. For any regular space curve $\gamma: I \to \mathbb{R}^3$, we define a vector $D(t) = \tau(t)T(t) + \kappa(t)B(t)$ and we call it a Darboux vector along $\gamma(t)$ (cf. [9, 11]). Since $\kappa(t) > 0$, we also define a spherical Darboux vector $\overline{D}: I \to S^2$ by

$$\overline{D}(t) = \frac{\tau(t)T(t) + \kappa(t)B(t)}{\sqrt{\kappa^2(t) + \tau^2(t)}}.$$

and the rectifying developable surface $RD_{\gamma}: I \times \mathbb{R} \to \mathbb{R}^3$ of $\gamma(t)$ by

$$RD_{\gamma}(t,u) = \gamma(t) + u\overline{D}(t) = \gamma(t) + u\frac{\tau(t)T(t) + \kappa(t)B(t)}{\sqrt{\kappa^2(t) + \tau^2(t)}}.$$

By a direct calculation, we have

$$\begin{split} \frac{\partial RD_{\pmb{\gamma}}}{\partial t}(t,u) \times \frac{\partial RD_{\pmb{\gamma}}}{\partial u}(t,u) \\ &= -\left(\frac{\kappa(t)\|\dot{\pmb{\gamma}}(t)\|}{\sqrt{\kappa^2(t) + \tau^2(t)}} + u\frac{\kappa(t)\dot{\tau}(t) - \dot{\kappa}(t)\tau(t)}{\kappa^2(t) + \tau^2(t)}\right) N(t). \end{split}$$

Therefore, $(t_0, u_0) \in I \times \mathbb{R}$ is a singular point of RD_{γ} if and only if

$$\frac{\kappa(t_0)\|\dot{\gamma}(t_0)\|}{\sqrt{\kappa^2(t_0) + \tau^2(t_0)}} + u_0 \frac{\kappa(t_0)\dot{\tau}(t_0) - \dot{\kappa}(t_0)\tau(t_0)}{\kappa^2(t_0) + \tau^2(t_0)} = 0.$$

If (t_0, u_0) is a singular point of RD_{γ} , then we have $u_0 \neq 0$, that is, RD_{γ} has no singular value on the base curve $\gamma(t)$. Izumiya, Katsumi and Yamasaki investigated the rectifying developable surfaces of a regular space curve in [9].

In this paper we do not assume that $\gamma: I \to \mathbb{R}^3$ is a regular curve with linearly independent condition, so that γ may have singular points.

If γ has a singular point, we can not construct the Frenet frame along $\gamma(t)$. However, we can define the Frenet type frame along $\gamma(t)$ under a certain condition.

Definition 2.1. We say that $\gamma: I \to \mathbb{R}^3$ is a Frenet type framed base curve if there exist a regular spherical curve $\mathcal{T}: I \to S^2$ and a smooth function $\alpha: I \to \mathbb{R}$ such that $\dot{\gamma}(t) = \alpha(t)\mathcal{T}(t)$ for all $t \in I$. Then we call $\mathcal{T}(t)$ a unit tangent vector and $\alpha(t)$ a speed function of $\gamma(t)$.

Clearly, t_0 is a singular point of γ if and only if $\alpha(t_0) = 0$. We define a unit principal normal vector $\mathcal{N}(t) = \dot{\mathcal{T}}(t)/\|\dot{\mathcal{T}}(t)\|$ and a unit binormal vector $\mathcal{B}(t) = \mathcal{T}(t) \times \mathcal{N}(t)$ of $\gamma(t)$. Then we have an orthonormal frame $\{\mathcal{T}(t), \mathcal{N}(t), \mathcal{B}(t)\}$ along $\gamma(t)$, which is called the Frenet type frame along $\gamma(t)$. Then we have the following Frenet-Serret type formula:

$$\begin{pmatrix} \dot{\mathcal{T}}(t) \\ \dot{\mathcal{N}}(t) \\ \dot{\mathcal{B}}(t) \end{pmatrix} = \begin{pmatrix} 0 & \kappa(t) & 0 \\ -\kappa(t) & 0 & \tau(t) \\ 0 & -\tau(t) & 0 \end{pmatrix} \begin{pmatrix} \mathcal{T}(t) \\ \mathcal{N}(t) \\ \mathcal{B}(t) \end{pmatrix},$$

where

$$\kappa(t) = \|\dot{\mathcal{T}}(t)\|, \ \tau(t) = \frac{\det(\mathcal{T}(t), \dot{\mathcal{T}}(t), \ddot{\mathcal{T}}(t))}{\|\dot{\mathcal{T}}(t)\|^2}.$$

We call $\kappa(t)$ a *curvature* and $\tau(t)$ a *torsion* of γ . Note that the curvature $\kappa(t)$ and the torsion $\tau(t)$ are depend on a choice of parametrization.

We define a vector $\mathcal{D}(t)$ along $\gamma(t)$ by

$$\mathcal{D}(t) = \tau(t)\mathcal{T}(t) + \kappa(t)\mathcal{B}(t),$$

which is called a *Darboux type vector* along $\gamma(t)$. By using the Darboux type vector, the Frenet-Serret type formula is rewritten as follows:

$$\begin{cases} \dot{\mathcal{T}}(t) = \mathcal{D}(t) \times \mathcal{T}(t), \\ \dot{\mathcal{N}}(t) = \mathcal{D}(t) \times \mathcal{N}(t), \\ \dot{\mathcal{B}}(t) = \mathcal{D}(t) \times \mathcal{B}(t). \end{cases}$$

Thus the Darboux type vector plays an important role for the study of framed base curves. Since $\kappa(t) > 0$, we can define a spherical Darboux-type vector by

$$\overline{\mathcal{D}}(t) = \frac{\tau(t)\mathcal{T}(t) + \kappa(t)\mathcal{B}(t)}{\sqrt{\kappa^2(t) + \tau^2(t)}}.$$

Remark 2.2. Since $\mathcal{T}(t)$ is a regular curve, we uniquely obtain the unit principal normal vector $\mathcal{N}(t)$ and the unit binormal vector $\mathcal{N}(t)$.

Therefore, $\kappa(t)$, $\tau(t)$ and $\overline{\mathcal{D}}(t)$ is uniquely determined with respect to $\mathcal{T}(t)$. On the other hand, we can easily check that $\overline{\mathcal{D}}(t)$ is a spherical dual of $\mathcal{N}(t)$ (cf. [12]).

Example 2.3. Above objects are natural generalizations of corresponding notions for regular space curves. In fact, let $\gamma: I \to \mathbb{R}^3$ be a regular space curve with linearly independent condition. If we take $\mathcal{T}(t) = T(t)$ and $\alpha(t) = ||\dot{\gamma}(t)||$, then $\mathcal{N}(t) = N(t)$, $\mathcal{B}(t) = B(t)$ and the curvature $\kappa(t)$ (respectively, $\tau(t)$) as a framed base curve coincides with the curvature $\kappa(t)$ (respectively, the torsion $\tau(t)$) in the sense of classical differential geometry. Therefore, we have $\mathcal{D}(t) = D(t)$ and $\overline{\mathcal{D}}(t) = \overline{D}(t)$.

We can easily check that $\gamma: I \to \mathbb{R}^3$ is a framed base curve (cf. [4] and Appendix A). More precisely, $(\gamma, \mathcal{N}, \mathcal{B}): I \to \mathbb{R}^3 \times \Delta \subset \mathbb{R}^3 \times S^2 \times S^2$ is a framed curve with the curvature of the framed curve $(\tau(t), -\kappa(t), 0, \alpha(t))$. This is the reason why we call γ the Frenet type framed base curve. In [4], the author and Takahashi have shown the existence and the uniqueness for framed curves. Since Remark 2.2, the speed function $\alpha(t)$, the curvature $\kappa(t)$ and the torsion $\tau(t)$ are invariants of the pair (γ, \mathcal{T}) .

§3. Rectifying developable surfaces

In this section, we consider the rectifying developable surface of a Frenet type framed base curve. Let $\gamma: I \to \mathbb{R}^3$ be a Frenet type framed base curve with unit tangent vector $\mathcal{T}(t)$.

Definition 3.1. We define a map $\mathcal{RD}_{\gamma}: I \times \mathbb{R} \to \mathbb{R}^3$ by

$$\mathcal{R}\mathcal{D}_{\boldsymbol{\gamma}}(t,u) = \boldsymbol{\gamma}(t) + u\overline{\mathcal{D}}(t) = \boldsymbol{\gamma}(t) + u\frac{\boldsymbol{\tau}(t)\mathcal{T}(t) + \kappa(t)\mathcal{B}(t)}{\sqrt{\kappa^2(t) + \tau^2(t)}}.$$

We call \mathcal{RD}_{γ} the rectifying developable surface of Frenet type framed curve γ .

Since Example 2.3, Definition 3.1 is a natural generalization of the rectifying developable surface of a regular space curve in [9]. The rectifying developable surface $\mathcal{RD}_{\gamma}(t,u)$ is a ruled surface and we have

$$\dot{\overline{D}}(t) = \left(\frac{\kappa(t)\dot{\tau}(t) - \dot{\kappa}(t)\tau(t)}{\kappa^2(t) + \tau^2(t)}\right) \frac{\kappa(t)\mathcal{T}(t) - \tau(t)\mathcal{B}(t)}{\sqrt{\kappa^2(t) + \tau^2(t)}},$$

so that we have

$$\det\left(\dot{\gamma}, \overline{\mathcal{D}}, \dot{\overline{\mathcal{D}}}\right) = \det\left(\alpha \mathcal{T}, \frac{\tau \mathcal{T} + \kappa \mathcal{B}}{\sqrt{\kappa^2 + \tau^2}}, \left(\frac{\kappa \dot{\tau} - \dot{\kappa} \tau}{\kappa^2 + \tau^2}\right) \frac{\kappa \mathcal{T} - \tau \mathcal{B}}{\sqrt{\kappa^2 + \tau^2}}\right)$$
$$= 0$$

for all $t \in I$. This means that \mathcal{RD}_{γ} is a developable surface (cf. [10]). Moreover, we introduce two invariants $\delta(t)$, $\sigma(t)$ as follows:

$$\delta(t) = \frac{\kappa(t)\dot{\tau}(t) - \dot{\kappa}(t)\tau(t)}{\kappa^2(t) + \tau^2(t)},$$

$$\sigma(t) = \frac{\alpha(t)\tau(t)}{\sqrt{\kappa^2(t) + \tau^2(t)}} - \frac{d}{dt} \left(\frac{\alpha(t)\kappa(t)}{\delta(t)\sqrt{\kappa^2(t) + \tau^2(t)}} \right), \text{ (when } \delta(t) \neq 0).$$

We remark that $\delta(t)$ corresponds to $(d/dt)(\tau/\kappa)(t)$ which is investigated in [9]. By a direct calculation, $\delta(t) = 0$ if and only if $\dot{\overline{D}}(t) = \mathbf{0}$. We can also calculate that

$$\frac{\partial \mathcal{R} \mathcal{D}_{\gamma}}{\partial t}(t, u) \times \frac{\partial \mathcal{R} \mathcal{D}_{\gamma}}{\partial u}(t, u) = -\left(\frac{\alpha(t)\kappa(t)}{\sqrt{\kappa^2(t) + \tau^2(t)}} + u\delta(t)\right) \mathcal{N}(t).$$

Therefore, $(t_0, u_0) \in I \times \mathbb{R}$ is a singular point of \mathcal{RD}_{γ} if and only if

$$\frac{\alpha(t_0)\kappa(t_0)}{\sqrt{\kappa^2(t_0) + \tau^2(t_0)}} + u_0 \frac{\kappa(t_0)\dot{\tau}(t_0) - \dot{\kappa}(t_0)\tau(t_0)}{\kappa^2(t_0) + \tau^2(t_0)} = 0.$$

Since $\dot{\mathcal{N}}(t) \neq \mathbf{0}$ for all $t \in I$, \mathcal{RD}_{γ} is a wave front (cf. [1, 2]).

Proposition 3.2. Let $\gamma: I \to \mathbb{R}^3$ be a Frenet type framed base curve with $\mathcal{T}(t)$. Then we have the following:

- (A) The following are equivalent:
 - (1) $\mathcal{R}\mathcal{D}_{\gamma}$ is a cylinder,
 - (2) $\delta(t) = 0$ for all $t \in I$.
- (B) If $\delta(t) \neq 0$ for all $t \in I$, then the following are equivalent:
 - (3) $\mathcal{R}\mathcal{D}_{\gamma}$ is a conical surface,
 - (4) $\sigma(t) = 0$ for all $t \in I$.

Proof. (A) By definition, \mathcal{RD}_{γ} is a cylinder if and only if $\overline{\mathcal{D}}(t)$ is a constant. Since

$$\dot{\overline{\mathcal{D}}}(t) = \delta(t) \frac{\kappa(t) \mathcal{T}(t) - \tau(t) \mathcal{B}(t)}{\sqrt{\kappa^2(t) + \tau^2(t)}},$$

 $\overline{\mathcal{D}}(t)$ is a constant if and only if $\delta(t) = 0$ for all $t \in I$.

(B) We consider the striction curve $\sigma(t)$ defined by

$$\boldsymbol{\sigma}(t) = \boldsymbol{\gamma}(t) - \frac{\langle \dot{\boldsymbol{\gamma}}(t), \dot{\overline{\mathcal{D}}}(t) \rangle}{\langle \dot{\overline{\mathcal{D}}}(t), \dot{\overline{\mathcal{D}}}(t) \rangle} \overline{\mathcal{D}}(t) = \boldsymbol{\gamma}(t) - \frac{\alpha(t)\kappa(t)}{\delta(t)\sqrt{\kappa^2(t) + \tau^2(t)}} \overline{\mathcal{D}}(t).$$

Then (B)-(3) is equivalent to the condition $\dot{\sigma}(t) = 0$ for all $t \in I$. We can calculate that

$$\begin{split} \dot{\sigma} &= \dot{\gamma} - \frac{d}{dt} \left(\frac{\alpha \kappa}{\delta \sqrt{\kappa^2 + \tau^2}} \right) \overline{\mathcal{D}} - \frac{\alpha \kappa}{\delta \sqrt{\kappa^2 + \tau^2}} \dot{\overline{\mathcal{D}}} \\ &= \alpha \mathcal{T} - \frac{d}{dt} \left(\frac{\alpha \kappa}{\delta \sqrt{\kappa^2 + \tau^2}} \right) \overline{\mathcal{D}} - \frac{\alpha \kappa}{\sqrt{\kappa^2 + \tau^2}} \frac{\kappa \mathcal{T} - \tau \mathcal{B}}{\sqrt{\kappa^2 + \tau^2}} \\ &= \left(\frac{\alpha \tau}{\sqrt{\kappa^2 + \tau^2}} - \frac{d}{dt} \left(\frac{\alpha \kappa}{\delta \sqrt{\kappa^2 + \tau^2}} \right) \right) \frac{\tau \mathcal{T} + \kappa \mathcal{B}}{\sqrt{\kappa^2 + \tau^2}} \\ &= \sigma \overline{\mathcal{D}}. \end{split}$$

It follows that (B)-(3) and (B)-(4) are equivalent.

We give relationships between singularities of the rectifying developable surface of a framed base curve and such invariants.

Theorem 3.3. Let $\gamma: I \to \mathbb{R}^3$ be a Frenet type framed base curve with $\mathcal{T}(t)$. Then we have the following:

(1) (t_0, u_0) is a regular point of \mathcal{RD}_{γ} if and only if

$$\frac{\alpha(t_0)\kappa(t_0)}{\sqrt{\kappa^2(t_0) + \tau^2(t_0)}} + u_0\delta(t_0) \neq 0.$$

(2) Suppose that (t_0, u_0) is a singular point of \mathcal{RD}_{γ} , then the rectifying developable surface \mathcal{RD}_{γ} is locally diffeomorphic to the cuspidal edge \mathbf{ce} at (t_0, u_0) if

(i)
$$\delta(t_0) \neq 0, \ \sigma(t_0) \neq 0 \ and$$

$$u_0 = -\frac{\alpha(t_0)\kappa(t_0)}{\delta(t_0)\sqrt{\kappa^2(t_0) + \tau^2(t_0)}},$$

or

(ii)
$$\delta(t_0) = \alpha(t_0) = 0$$
, $\dot{\delta}(t_0) \neq 0$ and

$$u_0 \neq -\dot{\alpha}(t_0)\kappa(t_0)\frac{\sqrt{\kappa^2(t_0) + \tau^2(t_0)}}{\kappa(t_0)\ddot{\tau}(t_0) - \ddot{\kappa}(t_0)\tau(t_0)},$$

or

i)
$$\delta(t_0) = \alpha(t_0) = 0 \text{ and } \dot{\alpha}(t_0) \neq 0.$$

(3) Suppose that (t_0, u_0) is a singular point of \mathcal{RD}_{γ} , then the rectifying developable surface \mathcal{RD}_{γ} is locally diffeomorphic to the swallowtail $s\boldsymbol{w}$ at (t_0, u_0) if $\delta(t_0) \neq 0$, $\sigma(t_0) = 0$, $\dot{\sigma}(t_0) \neq 0$ and

$$u_0 = -\frac{\alpha(t_0)\kappa(t_0)}{\delta(t_0)\sqrt{\kappa^2(t_0) + \tau^2(t_0)}}.$$

Here, $\mathbf{ce}: (\mathbb{R}^2,0) \to (\mathbb{R}^3,0); (u,v) \mapsto (u,v^2,v^3)$ is the cuspidal edge, $\mathbf{sw}: (\mathbb{R}^2,0) \to (\mathbb{R}^3,0); (u,v) \mapsto (3u^4+u^2v,4u^3+2uv,v)$ is the swallowtail.

Remark 3.4. Suppose that t_0 is a singular point of γ . Then $(t_0, 0)$ is a singular point of \mathcal{RD}_{γ} .

Remark 3.5. γ is always a geodesic of the rectifying developable surface $\mathcal{RD}_{\gamma}(t)$, away from singular points of γ (cf. [9]). Therefore, γ is the geodesic which formed to stride over singular points of \mathcal{RD}_{γ} .

§4. Framed helices

In this section, we define a helix which may have singular points. Let $\gamma: I \to \mathbb{R}^3$ be a Frenet type framed base curve with $\mathcal{T}(t)$.

Definition 4.1. We say that $\gamma: I \to \mathbb{R}^3$ is a framed helix if there exist constants $\mathbf{v} \in S^2$ and $C \in \mathbb{R}$ such that $\mathcal{T}(t) \cdot \mathbf{v} = C$ for all $t \in I$.

Definition 4.1 means that the tangent line of γ makes a constant angle with a fixed direction. In this sense, a framed helix is a natural generalization of a regular helix. The invariant $\delta(t)$ characterize a framed helix. In fact, we can prove the following Proposition.

Proposition 4.2. Let $\gamma: I \to \mathbb{R}^3$ be a Frenet type framed base curve with $\mathcal{T}(t)$. Then the following are equivalent:

- (1) γ is a framed helix.
- (2) $\delta(t) = 0$ for all $t \in I$.

Proof. Suppose that $\gamma(t)$ is a framed helix. Here we put $\mathbf{v} = a(t)\mathcal{T}(t) + b(t)\mathcal{N}(t) + c(t)\mathcal{B}(t)$, where a(t), b(t) and c(t) are smooth functions. By the assumption,

(1)
$$\langle \boldsymbol{v}, \mathcal{T}(t) \rangle = a(t) = C.$$

Moreover, taking the derivative of the both sides of the formula (1), we have

$$-b(t)\kappa(t)\mathcal{T}(t) + (C\kappa(t) + \dot{b}(t) - c(t)\tau(t))\mathcal{N}(t) + (\dot{c}(t) + b(t)\tau(t))\mathcal{B}(t) = \mathbf{0}.$$

Then we have b(t) = 0, $c(t) = C_1$ and $C = C_1(\tau(t)/\kappa(t))$, where C_1 is a constant. On the other hand, since

$$1 = ||v||^2 = C_1^2 \left(\frac{\tau^2(t)}{\kappa^2(t)} + 1 \right),$$

 $C_1 \neq 0$. Thus, $C/C_1 = \tau(t)/\kappa(t)$. We remark that $\delta(t) = 0$ if and only if $(d/dt)(\tau/\kappa)(t) = 0$. Hence, we have $\delta(t) = 0$ for all $t \in I$.

Conversely, suppose that $\delta(t) = 0$ for all $t \in I$. We put a constant vector $\mathbf{v} = (\tau(t)/\kappa(t))\mathcal{T}(t) + \mathcal{B}(t)$ and $\overline{\mathbf{v}} = \mathbf{v}/\|\mathbf{v}\|$. Then

$$\langle \overline{\boldsymbol{v}}, \mathcal{T}(t) \rangle = \frac{\frac{\mathcal{T}(t)}{\kappa(t)}}{\sqrt{\frac{\mathcal{T}^2(t)}{\kappa^2(t)} + 1}},$$

that is, $\langle \overline{v}, \mathcal{T}(t) \rangle$ is a constant. This means that $\gamma(t)$ is a framed helix.

Corollary 4.3. Let $\gamma: I \to \mathbb{R}^3$ be a Frenet type framed base curve with $\mathcal{T}(t)$. Then the following are equivalent:

- RD_γ is a cylinder,
- (2) $\delta(t) = 0$ for all $t \in I$,
- (3) γ is a framed helix.

We recall the notion of the contact between framed curves, see [4]. Let $(\gamma, \nu_1, \nu_2) : I \to \mathbb{R}^3 \times \Delta; t \mapsto (\gamma(t), \nu_1(t), \nu_2(t))$ and $(\widetilde{\gamma}, \widetilde{\nu}_1, \widetilde{\nu}_2) : \widetilde{I} \to \mathbb{R}^3 \times \Delta; u \mapsto (\widetilde{\gamma}(u), \widetilde{\nu}_1(u), \widetilde{\nu}_2(u))$ be framed curves, respectively. Let k be a natural number. We denote the curvatures $\mathcal{F}(t) = (\ell(t), m(t), n(t), \alpha(t))$ and $\widetilde{\mathcal{F}}(u) = (\widetilde{\ell}(u), \widetilde{m}(u), \widetilde{n}(u), \widetilde{\alpha}(u))$ for convenience. We say that (γ, ν_1, ν_2) and $(\widetilde{\gamma}, \widetilde{\nu}_1, \widetilde{\nu}_2)$ have k-th order contact at $t = t_0$, $u = u_0$ if

$$\frac{d^{i}}{dt^{i}}(\boldsymbol{\gamma}, \boldsymbol{\nu}_{1}, \boldsymbol{\nu}_{2})(t_{0}) = \frac{d^{i}}{du^{i}}(\widetilde{\boldsymbol{\gamma}}, \widetilde{\boldsymbol{\nu}}_{1}, \widetilde{\boldsymbol{\nu}}_{2})(u_{0}),$$

$$\frac{d^k}{dt^k}(\boldsymbol{\gamma}, \boldsymbol{\nu}_1, \boldsymbol{\nu}_2)(t_0) \neq \frac{d^k}{du^k}(\widetilde{\boldsymbol{\gamma}}, \widetilde{\boldsymbol{\nu}_1}, \widetilde{\boldsymbol{\nu}_2})(u_0)$$

for i=0,1,...,k-1. Moreover, we say that (γ, ν_1, ν_2) and $(\widetilde{\gamma}, \widetilde{\nu_1}, \widetilde{\nu_2})$ have at least k-th order contact at $t=t_0$, $u=u_0$ if

$$\frac{d^{i}}{dt^{i}}(\boldsymbol{\gamma}, \boldsymbol{\nu}_{1}, \boldsymbol{\nu}_{2})(t_{0}) = \frac{d^{i}}{du^{i}}(\widetilde{\boldsymbol{\gamma}}, \widetilde{\boldsymbol{\nu}_{1}}, \widetilde{\boldsymbol{\nu}_{2}})(u_{0}),$$

for i = 0, 1, ..., k - 1.

In general, we may assume that (γ, ν_1, ν_2) and $(\widetilde{\gamma}, \widetilde{\nu}_1, \widetilde{\nu}_2)$ have at least first order contact at any point $t = t_0$, $u = u_0$, up to congruence as framed curves.

Theorem 4.4. ([4]) If (γ, ν_1, ν_2) and $(\widetilde{\gamma}, \widetilde{\nu}_1, \widetilde{\nu}_2)$ have at least (k+1)-th order contact at $t=t_0$, $u=u_0$ then

(2)
$$\frac{d^{i}}{dt^{i}}\mathcal{F}(t_{0}) = \frac{d^{i}}{du^{i}}\widetilde{\mathcal{F}}(u_{0}),$$

Г

for i = 0, 1, ..., k-1. Conversely, if the condition (2) hold, then (γ, ν_1, ν_2) and $(\widetilde{\gamma}, \widetilde{\nu}_1, \widetilde{\nu}_2)$ have at least (k+1)-th order contact at $t = t_0$, $u = u_0$, up to congruence as framed curves.

By Theorem 4.4, we can show the following propositions:

Proposition 4.5. If $(\gamma, \mathcal{N}, \mathcal{B})(t_0)$ and $(\widetilde{\gamma}, \widetilde{\mathcal{N}}, \widetilde{\mathcal{B}})(u_0)$ have at least (k+2)-th order contact as framed curves, then $\delta^{(p)}(t_0) = \widetilde{\delta}^{(p)}(u_0)$ (for $0 \le p \le k-1$), where

$$\delta^{(p)}(t_0) = (d^p \delta/dt^p)(t_0)$$
 and $\widetilde{\delta}^{(p)}(u_0) = (d^p \widetilde{\delta}/du^p)(u_0)$.

Proposition 4.6. Let $\gamma: I \to \mathbb{R}^3$ be a Frenet type framed base curve with $\mathcal{T}(t)$. Then there exists a framed curve $(\widetilde{\gamma}, \widetilde{\mathcal{N}}, \widetilde{\mathcal{B}}): I \to \mathbb{R}^3 \times \Delta$ such that $\widetilde{\gamma}(t)$ is a framed helix, and $(\gamma, \mathcal{N}, \mathcal{B})$ and $(\widetilde{\gamma}, \widetilde{\mathcal{N}}, \widetilde{\mathcal{B}})$ have at least second order contact as framed curves at a point $t_0 \in I$.

Proof. Choose any fixed value $t = t_0$ of the parameter. We consider a new curvature as a framed curve

$$(\widetilde{\tau}(t), -\widetilde{\kappa}(t), 0, \widetilde{\alpha}(t)) = ((\tau(t_0)/\kappa(t_0))\kappa(t), -\kappa(t), 0, \alpha(t)).$$

Since the existence and the uniqueness of framed curves, there exists a framed curve $(\widetilde{\gamma}, \widetilde{\mathcal{N}}, \widetilde{\mathcal{B}})$ with $(\widetilde{\tau}(t), -\widetilde{\kappa}(t), 0, \widetilde{\alpha}(t))$. Moreover, by Theorem 4.4 and an appropriate Euclid transformation, $(\gamma, \mathcal{N}, \mathcal{B})$ and $(\widetilde{\gamma}, \widetilde{\mathcal{N}}, \widetilde{\mathcal{B}})$ have at least second order contact as framed curves at $t_0 \in I$. On the other hand, by a direct calculation, we have $\widetilde{\delta}(t) = 0$ for all $t \in I$. Thus, $\widetilde{\gamma}(t)$ is a framed helix.

§5. Support functions

For a Frenet type framed base curve $\gamma: I \to \mathbb{R}^3$, we define a function $G: I \times \mathbb{R}^3 \to \mathbb{R}$ by $G(t, \boldsymbol{x}) = \langle \boldsymbol{x} - \boldsymbol{\gamma}(t), \mathcal{N}(t) \rangle$. We call G a support function of γ with respect to the unit principal normal vector $\mathcal{N}(t)$. We denote that $g_{\boldsymbol{x}_0}(t) = G(t, \boldsymbol{x}_0)$ for any $\boldsymbol{x}_0 \in \mathbb{R}^3$. Then we have the following proposition.

Proposition 5.1. For a support function $g_{x_0}(t) = \langle x_0 - \gamma(t), \mathcal{N}(t) \rangle$, we have the following:

- (1) $g_{\mathbf{x}_0}(t_0) = 0$ if and only if there exist $u, v \in \mathbb{R}$ such that $\mathbf{x}_0 \mathbf{\gamma}(t_0) = u\mathcal{T}(t_0) + v\mathcal{B}(t_0)$.
- (2) $g_{\mathbf{x}_0}(t_0) = g_{\mathbf{x}_0}(t_0) = 0$ if and only if there exists $u \in \mathbb{R}$ such that

$$\boldsymbol{x}_0 - \boldsymbol{\gamma}(t_0) = u \frac{\boldsymbol{\tau}(t_0) \boldsymbol{\mathcal{T}}(t_0) + \kappa(t_0) \boldsymbol{\mathcal{B}}(t_0)}{\sqrt{\kappa^2(t_0) + \tau^2(t_0)}}.$$

- (A) Suppose that $\delta(t_0) \neq 0$. Then we have the following:
 - (3) $g_{x_0}(t_0) = \dot{g}_{x_0}(t_0) = \ddot{g}_{x_0}(t_0) = 0$ if and only if

$$(*) \ \mathbf{x}_0 - \mathbf{\gamma}(t_0) = -\frac{\alpha(t_0)\kappa(t_0)}{\delta(t_0)\sqrt{\kappa^2(t_0) + \tau^2(t_0)}} \frac{\tau(t_0)\mathcal{T}(t_0) + \kappa(t_0)\mathcal{B}(t_0)}{\sqrt{\kappa^2(t_0) + \tau^2(t_0)}}.$$

- (4) $g_{\boldsymbol{x}_0}(t_0) = \dot{g_{\boldsymbol{x}_0}}(t_0) = \ddot{g_{\boldsymbol{x}_0}}(t_0) = g_{\boldsymbol{x}_0}^{(3)}(t_0) = 0$ if and only if $\sigma(t_0) = 0$ and (*).
- (5) $g_{\boldsymbol{x}_0}(t_0) = g_{\boldsymbol{x}_0}(t_0) = g_{\boldsymbol{x}_0}(t_0) = g_{\boldsymbol{x}_0}(t_0) = g_{\boldsymbol{x}_0}(t_0) = g_{\boldsymbol{x}_0}(t_0) = 0$ if and only if $\sigma(t_0) = 0$, $\dot{\sigma}(t_0) = 0$ and (*).
- (B) Suppose that $\delta(t_0) = 0$. Then we have the following:
 - (6) $g_{\mathbf{x}_0}(t_0) = \dot{g}_{\mathbf{x}_0}(t_0) = \ddot{g}_{\mathbf{x}_0}(t_0) = 0$ if and only if $\alpha(t_0) = 0$ and there exists $u \in \mathbb{R}$ such that

$$x_0 - \gamma(t_0) = u \frac{\tau(t_0)T(t_0) + \kappa(t_0)B(t_0)}{\sqrt{\kappa^2(t_0) + \tau^2(t_0)}}.$$

- (7) $g_{\boldsymbol{x}_0}(t_0) = g_{\boldsymbol{x}_0}(t_0) = g_{\boldsymbol{x}_0}(t_0) = g_{\boldsymbol{x}_0}^{(3)}(t_0) = 0$ if and only if one of the following conditions holds:
 - (a) $\dot{\delta}(t_0) \neq 0, \ \alpha(t_0) = 0 \ and$

$$\boldsymbol{x}_0 - \boldsymbol{\gamma}(t_0) = -\dot{\alpha}(t_0)\kappa(t_0)\frac{\tau(t_0)\mathcal{T}(t_0) + \kappa(t_0)\mathcal{B}(t_0)}{\kappa(t_0)\ddot{\tau}(t_0) - \ddot{\kappa}(t_0)\tau(t_0)}.$$

(b) $\dot{\delta}(t_0) = 0$, $\alpha(t_0) = \dot{\alpha}(t_0) = 0$ and there exists $u \in \mathbb{R}$ such that

$$\boldsymbol{x}_0 - \boldsymbol{\gamma}(t_0) = u \frac{\tau(t_0) \mathcal{T}(t_0) + \kappa(t_0) \mathcal{B}(t_0)}{\sqrt{\kappa^2(t_0) + \tau^2(t_0)}}.$$

Proof. Since $g_{x_0}(t) = \langle x_0 - \gamma(t), \mathcal{N}(t) \rangle$, we have the following calculations:

$$(\alpha) g_{\boldsymbol{x}_0} = \langle \boldsymbol{x}_0 - \boldsymbol{\gamma}, \mathcal{N} \rangle,$$

$$(\beta) \ g_{\mathbf{x}_0} = \langle \mathbf{x}_0 - \boldsymbol{\gamma}, -\kappa \boldsymbol{\mathcal{T}} + \tau \boldsymbol{\mathcal{B}} \rangle,$$

$$(\gamma) \ \ddot{\mathbf{x}_{x_0}} = \alpha \kappa + \langle \mathbf{x}_0 - \boldsymbol{\gamma}, -\dot{\kappa} \mathcal{T} - (\kappa^2 + \tau^2) \mathcal{N} + \dot{\tau} \mathcal{B} \rangle,$$

(\delta)
$$g_{\mathbf{x}_0}^{(3)} = 2\alpha \dot{\kappa} + \dot{\alpha}\kappa + \langle \mathbf{x}_0 - \boldsymbol{\gamma}, (\kappa(\kappa^2 + \tau^2) - \ddot{\kappa})\mathcal{T} - 3(\kappa \dot{\kappa} + \tau \dot{\tau})\mathcal{N} + (-\tau(\kappa^2 + \tau^2) + \ddot{\tau})\mathcal{B}\rangle,$$

$$\begin{split} (\epsilon) \ g_{\boldsymbol{x}_0}^{(4)} &= \ddot{\alpha}\kappa + 3\dot{\alpha}\dot{\kappa} + 3\alpha\ddot{\kappa} - \alpha\kappa(\kappa^2 + \tau^2) \\ &+ \langle \boldsymbol{x}_0 - \boldsymbol{\gamma}, (\dot{\kappa}(6\kappa^2 + \tau^2) + 5\kappa\tau\dot{\tau} - \dddot{\kappa})\mathcal{T} \\ &+ ((\kappa^2 + \tau^2)^2 - 4(\kappa\ddot{\kappa} + \tau\ddot{\tau}) - 3(\dot{\kappa}^2 + \dot{\tau}^2))\mathcal{N} \\ &+ (-\dot{\tau}(\kappa^2 + 6\tau^2) - 5\kappa\dot{\kappa}\tau + \dddot{\tau})\mathcal{B}\rangle. \end{split}$$

By definition and (α) , (1) follows.

By (β) , $g_{\boldsymbol{x}_0}(t_0) = g_{\boldsymbol{x}_0}(t_0) = 0$ if and only if there exist $u, v \in \mathbb{R}$ such that $\boldsymbol{x}_0 - \boldsymbol{\gamma}(t_0) = u\mathcal{T}(t_0) + v\mathcal{B}(t_0)$ and $-\kappa(t_0)u + \tau(t_0)v = 0$. Since $\kappa(t_0) > 0$, we have

$$u = v \frac{\tau(t_0)}{\kappa(t_0)},$$

so that there exists $w \in \mathbb{R}$ such that

$$x_0 - \gamma(t_0) = w \frac{\tau(t_0)\mathcal{T}(t_0) + \kappa(t_0)\mathcal{B}(t_0)}{\sqrt{\kappa^2(t_0) + \tau^2(t_0)}}.$$

Therefore (2) holds.

By (γ) , $g_{x_0}(t_0) = \dot{g}_{x_0}(t_0) = \ddot{g}_{x_0}(t_0) = 0$ if and only if there exists $u \in \mathbb{R}$ such that

$$\boldsymbol{x}_0 - \boldsymbol{\gamma}(t_0) = u \frac{\boldsymbol{\tau}(t_0) \boldsymbol{\mathcal{T}}(t_0) + \kappa(t_0) \boldsymbol{\mathcal{B}}(t_0)}{\sqrt{\kappa^2(t_0) + \tau^2(t_0)}}$$

and

$$\alpha(t_0)\kappa(t_0) + u \frac{\kappa(t_0)\dot{\tau}(t_0) - \dot{\kappa}(t_0)\tau(t_0)}{\sqrt{\kappa^2(t_0) + \tau^2(t_0)}} = 0.$$

It follows that

$$\frac{\alpha(t_0)\kappa(t_0)}{\sqrt{\kappa^2(t_0) + \tau^2(t_0)}} + u \frac{\kappa(t_0)\dot{\tau}(t_0) - \dot{\kappa}(t_0)\tau(t_0)}{\kappa^2(t_0) + \tau^2(t_0)} = 0.$$

Thus,

$$\delta(t_0) = \frac{\kappa(t_0)\dot{\tau}(t_0) - \dot{\kappa}(t_0)\tau(t_0)}{\kappa^2(t_0) + \tau^2(t_0)} \neq 0 \text{ and } u = -\frac{\alpha(t_0)\kappa(t_0)}{\delta(t_0)\sqrt{\kappa^2(t_0) + \tau^2(t_0)}},$$

or $\delta(t_0) = 0$ and $\alpha(t_0) = 0$. This completes the proof of (A)-(3), and (B)-(6).

Suppose that $\delta(t_0) \neq 0$. By (δ) ,

$$g_{\boldsymbol{x}_0}(t_0) = \dot{g_{\boldsymbol{x}_0}}(t_0) = \ddot{g_{\boldsymbol{x}_0}}(t_0) = g_{\boldsymbol{x}_0}^{(3)}(t_0) = 0$$

if and only if

$$x_0 - \gamma(t_0) = -\frac{\alpha(t_0)\kappa(t_0)}{\delta(t_0)\sqrt{\kappa^2(t_0) + \tau^2(t_0)}} \frac{\tau(t_0)\mathcal{T}(t_0) + \kappa(t_0)\mathcal{B}(t_0)}{\sqrt{\kappa^2(t_0) + \tau^2(t_0)}}$$

and

$$2\alpha(t_0)\dot{\kappa}(t_0) + \dot{\alpha}(t_0)\kappa(t_0) - \frac{\alpha(t_0)\kappa(t_0)}{\delta(t_0)} \left(\frac{\kappa(t_0)\ddot{\tau}(t_0) - \ddot{\kappa}(t_0)\tau(t_0)}{\kappa^2(t_0) + \tau^2(t_0)} \right) = 0.$$

We can rewrite $\sigma(t)$:

$$\sigma = -\sqrt{\kappa^2 + \tau^2} \left(2\alpha \dot{\kappa} + \dot{\alpha} \kappa - \frac{\alpha \kappa}{\delta} \left(\frac{\kappa \ddot{\tau} - \ddot{\kappa} \tau}{\kappa^2 + \tau^2} \right) \right).$$

Therefore, (A)-(3) holds. By the similar arguments to the above, we have (A)-(5).

Suppose that $\delta(t_0) = 0$. Then by (δ) , $g_{\boldsymbol{x}_0}(t_0) = g_{\boldsymbol{x}_0}(t_0) = g_{\boldsymbol{x}_0}(t_0) = g_{\boldsymbol{x}_0}(t_0) = g_{\boldsymbol{x}_0}(t_0) = 0$ if and only if $\alpha(t_0) = 0$, there exists $u \in \mathbb{R}$ such that

$$\boldsymbol{x}_0 - \boldsymbol{\gamma}(t_0) = u \frac{\boldsymbol{\tau}(t_0) \boldsymbol{\mathcal{T}}(t_0) + \kappa(t_0) \boldsymbol{\mathcal{B}}(t_0)}{\sqrt{\kappa^2(t_0) + \tau^2(t_0)}}$$

and

$$\dot{\alpha}(t_0)\kappa(t_0)\sqrt{\kappa^2(t_0) + \tau^2(t_0)} + u\left(\kappa(t_0)\ddot{\tau}(t_0) - \ddot{\kappa}(t_0)\tau(t_0)\right) = 0.$$

It follows that

$$\kappa(t_0)\ddot{\tau}(t_0) - \ddot{\kappa}(t_0)\tau(t_0) \neq 0 \text{ and } u = -\dot{\alpha}(t_0)\kappa(t_0)\frac{\sqrt{\kappa^2(t_0) + \tau^2(t_0)}}{\kappa(t_0)\ddot{\tau}(t_0) - \ddot{\kappa}(t_0)\tau(t_0)},$$

or

$$\kappa(t_0)\ddot{\tau}(t_0) - \ddot{\kappa}(t_0)\tau(t_0) = 0$$
 and $\dot{\alpha}(t_0) = 0$.

Therefore, we have (B)-(7)-(a) and (B)-(7)-(b). This completes the proof. \Box

In order to prove Theorem 3.3, we use some general results on the singularity theory for families of function germs. Detailed descriptions are found in the book [3]. Let \mathbb{R}^r be the r-dimensional Euclidean space with coordinates $(x_1, x_2, ..., x_r)$ and $F: (\mathbb{R} \times \mathbb{R}^r, (t_0, \mathbf{x}_0)) \to \mathbb{R}$ be a function germ. We call F an r-parameter unfolding of f, where $f(t) = F(t, \mathbf{x}_0)$. We say that f has the A_k -singularity at t_0 if $f^{(p)}(t_0) = 0$ for all $1 \le p \le k$, and $f^{(k+1)}(t_0) \ne 0$. Let F be an unfolding of f and f has the A_k -singularity $(k \ge 1)$ at t_0 . We write the (k-1)-jet of the partial derivative $\frac{\partial F}{\partial x_i}$ at t_0 by $f^{(k-1)}(\frac{\partial F}{\partial x_i}(t,\mathbf{x}_0))(t_0) = \sum_{j=0}^{k-1} \alpha_{ji}(t-t_0)^j$ for i=1,...,r. Then F is called an \mathcal{R} -versal unfolding if the $k \times r$ matrix of coefficients $(\alpha_{ji})_{j=0,...,k-1;i=1,...,r}$ has rank k $(k \le r)$. We introduce an important set concerning the unfoldings relative to the above notions. The discriminant set of F is defined to be

$$D_F = \left\{ \boldsymbol{x} \in \mathbb{R}^r \mid \text{there exists } s \text{ such that } F = \frac{\partial F}{\partial t} = 0 \text{ at } (s, \boldsymbol{x}) \right\}.$$

Then we have the following classification (cf. [3]).

Theorem 5.2. Let $F: (\mathbb{R} \times \mathbb{R}^r, (t, x_0)) \to \mathbb{R}$ be an r-parameter unfolding of f which has the A_k -singularity at t_0 . Suppose that F is an \mathbb{R} -versal unfolding.

- (1) If k = 2, then D_F is locally diffeomorphic to the cuspidal edge ce.
- (2) If k = 3, then D_F is locally diffeomorphic to the swallowtail sw.

For the proof of Theorem 3.3, we have the following proposition.

Proposition 5.3. Let $\gamma: I \to \mathbb{R}^3$ be a Frenet type framed base curve with $\mathcal{T}(t)$. If $g_{\mathbf{x}_0}$ has the A_k -singularity (k=2,3) at t_0 , then G is an \mathcal{R} -versal unfolding of $g_{\mathbf{x}_0}$. Here, we assume that $\delta(t_0) \neq 0$ for k=3.

Proof. We write that $\mathbf{x} = (x_1, x_2, x_3)$, $\mathbf{\gamma}(t) = (\gamma_1(t), \gamma_2(t), \gamma_3(t))$ and $\mathcal{N}(t) = (n_1(t), n_2(t), n_3(t))$. Then we have

$$G(t, \mathbf{x}) = n_1(t)(x_1 - \gamma_1(t)) + n_2(t)(x_2 - \gamma_2(t)) + n_3(t)(x_3 - \gamma_3(t)),$$

so that

$$\frac{\partial G}{\partial x_i}(t, \boldsymbol{x}) = n_i(t), \ (i = 1, 2, 3).$$

Therefore the 2-jet is

$$j^{2} \frac{\partial G}{\partial x_{i}}(t_{0}, \boldsymbol{x}_{0}) = n_{i}(t_{0}) + \dot{n}_{i}(t_{0})(t - t_{0}) + \frac{1}{2} \ddot{n}_{i}(t_{0})(t - t_{0})^{2}.$$

We consider the following matrix:

$$A = \begin{pmatrix} n_1(t_0) & n_2(t_0) & n_3(t_0) \\ \dot{n}_1(t_0) & \dot{n}_2(t_0) & \dot{n}_3(t_0) \\ \ddot{n}_1(t_0) & \ddot{n}_2(t_0) & \ddot{n}_3(t_0) \end{pmatrix} = \begin{pmatrix} \dot{\mathcal{N}}(t_0) \\ \dot{\dot{\mathcal{N}}}(t_0) \\ \ddot{\mathcal{N}}(t_0) \end{pmatrix}.$$

By the Frenet-Serret type formula, we have

$$\dot{\mathcal{N}}(t_0) = -\kappa(t_0)\mathcal{T}(t_0) + \tau(t_0)\mathcal{B}(t_0),
\dot{\mathcal{N}}(t_0) = -\dot{\kappa}(t_0)\mathcal{T}(t_0) - (\kappa^2(t_0) + \tau^2(t_0))\mathcal{N}(t_0) + \dot{\tau}(t_0)\mathcal{B}(t_0).$$

Since $\{\mathcal{T}(t_0), \mathcal{N}(t_0), \mathcal{B}(t_0)\}$ is an orthonormal basis of \mathbb{R}^3 , the rank of

$$A = \begin{pmatrix} \mathcal{N}(t_0) \\ -\kappa(t_0)\mathcal{T}(t_0) + \tau(t_0)\mathcal{B}(t_0) \\ -\dot{\kappa}(t_0)\mathcal{T}(t_0) - (\kappa^2(t_0) + \tau^2(t_0))\mathcal{N}(t_0) + \dot{\tau}(t_0)\mathcal{B}(t_0) \end{pmatrix}$$

is equal to the rank of

$$\begin{pmatrix} 0 & 1 & 0 \\ -\kappa(t_0) & 0 & \tau(t_0) \\ -\dot{\kappa}(t_0) & -(\kappa^2(t_0) + \tau^2(t_0)) & \dot{\tau}(t_0) \end{pmatrix}.$$

Therefore, rank A = 3 if and only if

$$0 \neq \kappa(t_0)\dot{\tau}(t_0) - \dot{\kappa}(t_0)\tau(t_0).$$

The last condition is equivalent to the condition $\delta(t_0) \neq 0$. Moreover, the rank of

$$\begin{pmatrix} \mathcal{N}(t_0) \\ \dot{\mathcal{N}}(t_0) \end{pmatrix} = \begin{pmatrix} \mathcal{N}(t_0) \\ -\kappa(t_0)\mathcal{T}(t_0) + \tau(t_0)\mathcal{B}(t_0) \end{pmatrix}$$

is always two.

If g_{x_0} has the A_k -singularity (k = 2, 3) at t_0 , then G is the \mathcal{R} -versal unfolding of g_{x_0} . This completes the proof.

Proof of Theorem 3.3. By a straightforward calculation, we have

$$\frac{\partial \mathcal{R} \mathcal{D}_{\gamma}}{\partial t}(t, u) \times \frac{\partial \mathcal{R} \mathcal{D}_{\gamma}}{\partial u}(t, u) = -\left(\frac{\alpha(t)\kappa(t)}{\sqrt{\kappa^2(t) + \tau^2(t)}} + u\delta(t)\right) \mathcal{N}(t).$$

Therefore, (t_0, u_0) is a regular point of \mathcal{RD}_{γ} if and only if

$$\frac{\alpha(t_0)\kappa(t_0)}{\sqrt{\kappa^2(t_0) + \tau^2(t_0)}} + u_0\delta(t_0) \neq 0.$$

This completes the proof of (1).

By Proposition 5.1-(2), the discriminant set \mathcal{D}_G of the support function G of γ with respect to $\mathcal{N}(t)$ is the image of the rectifying developable surface of γ .

Suppose that $\delta(t_0) \neq 0$. It follows from Proposition 5.1-(A)-(3), (4) and (5) that g_{x_0} has the A_2 -type singularity (respectively, the A_3 -type singularity) at $t = t_0$ if and only if

(**)
$$u_0 = -\frac{\alpha(t_0)\kappa(t_0)}{\delta(t_0)\sqrt{\kappa^2(t_0) + \tau^2(t_0)}}$$

and $\sigma(t_0) \neq 0$ (respectively, (**), $\sigma(t_0) = 0$ and $\dot{\sigma}(t_0) \neq 0$). By Theorem 5.2 and Proposition 5.3, we have (2)-(i) and (3).

Suppose that $\delta(t_0) = 0$. It follows from Proposition 5.1 (B)-(6) and (7) that g_{x_0} has the A_3 -type singularity if and only if $\alpha(t_0) = 0$, $\dot{\alpha}(t_0) \neq 0$ and $\dot{\delta}(t_0) = 0$, or $\alpha(t_0) = 0$, $\dot{\delta}(t_0) \neq 0$ and

$$\dot{\alpha}(t_0)\kappa(t_0)\sqrt{\kappa^2(t_0) + \tau^2(t_0)} + u_0(\kappa(t_0)\ddot{\tau}(t_0) - \ddot{\kappa}(t_0)\tau(t_0)) \neq 0.$$

By Theorem 5.2 and Proposition 5.3, we have the assertion (2)-(β). This completes the proof.

§6. Examples

We give examples to understand the phenomena for rectifying developable surfaces of framed base curves and framed helices.

Example 6.1 (The astroid). The astroid $\gamma : [0, 2\pi) \to \mathbb{R}^3$ is defined by $\gamma(t) = (\cos^3 t, \sin^3 t, \cos 2t)$. See Fig.1. Then

$$\mathcal{T}(t) = \frac{1}{5} \left(-3\cos t, 3\sin t, -4 \right)$$

gives the unit tangent vector and $\alpha(t) = 5 \cos t \sin t$ is a speed function. By a direct calculation, we have

$$\mathcal{N}(t) = (\sin t, \cos t, 0), \ \mathcal{B}(t) = \frac{1}{5} (4\cos t, -4\sin t, -3),$$

 $\kappa(t)=3/5$ and $\tau(t)=4/5$. Since $\delta(t)\equiv 0$ and Corollary 4.3, γ is a framed helix. For the astroid γ , the rectifying developable surface is given by $\mathcal{RD}_{\gamma}(t,u)=\left(\cos^3t,\sin^3t,-u+\cos2t\right)$. By Theorem 3.3 (2)-(iii), we have the cuspidal edge singularities at $t=0,\pi/2,\pi,3\pi/2$ (Fig.2).

Fig. 1. γ of Example 6.1

Fig. 2. γ and \mathcal{RD}_{γ} of Example 6.1

Example 6.2 (The spherical nephroid (cf. [13])). The spherical nephroid $\gamma:[0,2\pi)\to S^2\subset\mathbb{R}^3$ is defined by

$$\gamma(t) = \left(\frac{3}{4}\cos t - \frac{1}{4}\cos 3t, \frac{3}{4}\sin t - \frac{1}{4}\sin 3t, \frac{\sqrt{3}}{2}\cos t\right).$$

See Fig.3. Then

$$\mathcal{T}(t) = \frac{1}{2} \left(\sqrt{3} \cos 2t, \sqrt{3} \sin 2t, -1 \right)$$

gives the unit tangent vector and $\alpha(t) = \sqrt{3}\sin(t)$ is a speed function. By a direct calculation, we have

$$\mathcal{N}(t) = (-\sin 2t, \cos 2t, 0), \ \mathcal{B}(t) = \frac{1}{2} (\cos 2t, \sin 2t, \sqrt{3}),$$

 $\kappa(t) = \sqrt{3}$ and $\tau(t) = -1$. Since $\delta(t) \equiv 0$ and Corollary 4.3, γ is a framed helix. For the spherical nephroid, the rectifying developable surface is given by

$$\mathcal{RD}_{\gamma}(t,u) = \left(\frac{3}{4}\cos t - \frac{1}{4}\cos 3t, \frac{3}{4}\sin t - \frac{1}{4}\sin 3t, u + \frac{\sqrt{3}}{2}\cos t\right).$$

By Theorem 3.3 (2)-(iii), we have the cuspidal edge singularities at $t = 0, \pi$ (Fig.4).

Fig. 4. γ and \mathcal{RD}_{γ} of Example 6.2

Example 6.3 ((2,3,5)-type). Let $\gamma : \mathbb{R} \to \mathbb{R}^3$ be

$$\gamma(t) = \left(\frac{1}{2}t^2, \frac{1}{3}t^3, \frac{1}{5}t^5\right).$$

See Fig.5. We say that γ is of type (2,3,5). Then

$$\mathcal{T}(t) = \frac{1}{\sqrt{1+t^2+t^6}} (1, t, t^3)$$

gives the unit tangent vector and $\alpha(t) = t\sqrt{1 + t^2 + t^6}$ is a speed function. By a direct calculation, we have

$$\kappa(t) = \frac{\sqrt{1 + 9t^4 + 4t^6}}{1 + t^2 + t^6}, \ \tau(t) = \frac{6t\sqrt{1 + t^2 + t^6}}{1 + 9t^4 + 4t^6}.$$

Since $\delta(0) = 6$, $\sigma(0) = 1/6$ and $\alpha(0) = 0$ and Theorem 3.3 (2)-(i), the rectifying developable surface $\mathcal{RD}(t, u)$ is locally diffeomorphic to the cuspidal edge ce at (0,0) (Fig.6).

Fig. 6. γ and \mathcal{RD}_{γ} of Example 6.3

§Appendix A. Framed base curves in the Euclidean space

We define a set

$$\Delta = \{ (\boldsymbol{\nu}_1, \boldsymbol{\nu}_2) \in \mathbb{R}^3 \times \mathbb{R}^3 \mid \langle \boldsymbol{\nu}_1, \boldsymbol{\nu}_1 \rangle = \langle \boldsymbol{\nu}_2, \boldsymbol{\nu}_2 \rangle = 1, \langle \boldsymbol{\nu}_1, \boldsymbol{\nu}_2 \rangle = 0 \}$$
$$= \{ (\boldsymbol{\nu}_1, \boldsymbol{\nu}_2) \in S^2 \times S^2 \mid \langle \boldsymbol{\nu}_1, \boldsymbol{\nu}_2 \rangle = 0 \}.$$

Definition A.1. We say that $(\gamma, \nu_1, \nu_2): I \to \mathbb{R}^3 \times \Delta \subset \mathbb{R}^3 \times S^2 \times S^2$ is a framed curve if $\langle \dot{\gamma}(t), \nu_1(t) \rangle = 0$ and $\langle \dot{\gamma}(t), \nu_2(t) \rangle = 0$ for all $t \in I$. We also say that $\gamma: I \to \mathbb{R}^3$ is a framed base curve if there exists $(\nu_1, \nu_2): I \to \Delta$ such that (γ, ν_1, ν_2) is a framed curve.

Then we have the Frenet-Serret type formula of the framed curve γ . We define $\mu(t) = \nu_1(t) \times \nu_2(t)$ and call $\{\nu_1(t), \nu_2(t), \mu(t)\}$ a moving frame along the framed base curve $\gamma(t)$. By standard arguments, we have the Frenet-Serret type formulae as follows:

Proposition A.2. ([4]) Let $(\gamma, \nu_1, \nu_2) : I \to \mathbb{R}^3 \times \Delta$ be a framed curve. Then we have

$$\begin{pmatrix} \dot{\boldsymbol{\nu}}_1(t) \\ \dot{\boldsymbol{\nu}}_2(t) \\ \dot{\boldsymbol{\mu}}(t) \end{pmatrix} = \begin{pmatrix} 0 & \ell(t) & m(t) \\ -\ell(t) & 0 & n(t) \\ -m(t) & -n(t) & 0 \end{pmatrix} \begin{pmatrix} \boldsymbol{\nu}_1(t) \\ \boldsymbol{\nu}_2(t) \\ \boldsymbol{\mu}(t) \end{pmatrix},$$

where $\ell(t) = \langle \dot{\boldsymbol{\nu}}_1(t), \boldsymbol{\nu}_2(t) \rangle$, $m(t) = \langle \dot{\boldsymbol{\nu}}_1(t), \boldsymbol{\mu}(t) \rangle$ and $n(t) = \langle \dot{\boldsymbol{\nu}}_2(t), \boldsymbol{\mu}(t) \rangle$. Moreover, there exists a smooth function $\alpha(t)$ such that $\dot{\boldsymbol{\gamma}}(t) = \alpha(t)\boldsymbol{\mu}(t)$.

The quadruplet (ℓ, m, n, α) is an important invariant of a framed curve. We call (ℓ, m, n, α) the *curvature* of the framed curve. Note that t_0 is a singular point of γ if and only if $\alpha(t_0) = 0$.

Definition A.3. Let (γ, ν_1, ν_2) and $(\widetilde{\gamma}, \widetilde{\nu_1}, \widetilde{\nu_2}) : I \to \mathbb{R}^3 \times \Delta$ be framed curves. We say that (γ, ν_1, ν_2) and $(\widetilde{\gamma}, \widetilde{\nu_1}, \widetilde{\nu_2})$ are congruent as framed curves if there exists a rotation $A \in SO(3)$ and a translation $a \in \mathbb{R}^3$ such that $\widetilde{\gamma}(t) = A(\gamma(t)) + a$, $\widetilde{\nu_1}(t) = A(\nu_1(t))$ and $\widetilde{\nu_2}(t) = A(\nu_2(t))$ for all $t \in I$.

We have shown the existence and the uniqueness for framed curves similarly to the case of regular space curves in [4].

Theorem A.4 (The Existence Theorem, [4]). Let $(\ell, m, n, \alpha) : I \to \mathbb{R}^4$ be a smooth mapping. There exists a framed curve $(\gamma, \nu_1, \nu_2) : I \to \mathbb{R}^3 \times \Delta$ whose curvature is (ℓ, m, n, α) .

Theorem A.5 (The Uniqueness Theorem, [4]). Let (γ, ν_1, ν_2) and $(\widetilde{\gamma}, \widetilde{\nu_1}, \widetilde{\nu_2}) : I \to \mathbb{R}^3 \times \Delta$ be framed curves with curvatures (ℓ, m, n, α) and $(\widetilde{\ell}, \widetilde{m}, \widetilde{n}, \widetilde{\alpha})$. If $(\ell, m, n, \alpha) = (\widetilde{\ell}, \widetilde{m}, \widetilde{n}, \widetilde{\alpha})$, then (γ, ν_1, ν_2) and $(\widetilde{\gamma}, \widetilde{\nu_1}, \widetilde{\nu_2})$ are congruent as framed curves.

References

- V. I. Arnol'd, Singularities of Caustics and Wave fronts, Mathematics and its Applications 62, Kluwer Academic Publishers, 1990.
- [2] V. I. Arnol'd, S. M. Gusein-Zade and A. N. Varchenko, Singularities of Differentiable Maps Vol. I, Birkhäuser, 1986.
- [3] J. W. Bruce and P. J. Giblin, Curves and singularities. A geometrical introduction to singularity theory. Second edition, Cambridge University Press, Cambridge, 1992.
- [4] S. Honda and M. Takahashi, Framed curves in the Euclidean space, Adv. Geom. 16 (2016), 265–276.
- [5] S. Honda and M. Takahashi, Evolutes and focal surfaces of framed immersions in the Euclidean space, to appear in *Proc. Roy. Soc.* Edinburgh Sect. A.
- [6] G. Ishikawa, Determinacy of envelope of the osculating hyperplanes to a curve, Bull. London Math. Soc. 25 (1993), 603–610.
- [7] G. Ishikawa, Developable of a curve and its determinacy relative to the osculation-type, Quart. J. Math. Oxford Ser. (2) 46 (1995), 437–451.
- [8] G. Ishikawa, Topological classification of the tangent developable of space curves, J. London Math. Soc. 62 (2000), 583–598.
- [9] S. Izumiya, H. Katsumi and T. Yamasaki, The rectifying developable and the spherical Darboux image of a space curve, *Banach Center Publica*tions 50 (1999), 137–149.
- [10] S. Izumiya and N. Takeuchi, Geometry of ruled surfaces, Applicable Math. in the Golden Age (2003), 305–338.
- [11] J. Koenderink, Solid Shape, MIT Press, 1990.

- [12] I. R. Porteous, Some remarks on duality in S^3 , Banach Center Publications **50** (1999), 217–226.
- [13] M. Takahashi, Legendre curves in the unit spherical bundle over the unit sphere and evolutes, *Contemp. Math.* **675** (2016), 337–355.

Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan. E-mail address: s-honda@math.sci.hokudai.ac.jp