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Algebraic problems in structural equation modeling

Mathias Drton

Abstract.

The paper gives an overview of recent advances in structural equa-
tion modeling. A structural equation model is a multivariate statistical
model that is determined by a mixed graph, also known as a path dia-
gram. Our focus is on the covariance matrices of linear structural equa-
tion models. In the linear case, each covariance is a rational function
of parameters that are associated to the edges and nodes of the graph.
We statistically motivate algebraic problems concerning the rational
map that parametrizes the covariance matrix. We review combinato-
rial tools such as the trek rule, projection to ancestral sets, and a graph
decomposition due to Jin Tian. Building on these tools, we discuss ad-
vances in parameter identification, i.e., the study of (generic) injectivity
of the parametrization, and explain recent results on determinantal re-
lations among the covariances. The paper is based on lectures given at
the 8th Mathematical Society of Japan Seasonal Institute.
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Part I. Structural Equation Models

§1. Motivation

The following example serves well to introduce the statistical models
we will consider. It features the simplest instance of what is known as an
instrumental variable model. An empirical study that shows this type
of model ‘in action’ can be found in [29].

Example 1.1. Does a mother’s smoking during pregnancy harm
the baby? To answer this question researchers conduct a study in which
they record, for a sample of pregnancies, the baby’s birth weight and
the average number of cigarettes the mom smoked per day during the
first trimester. The researchers observe a significant negative correlation
between the birth weight and smoking and are tempted to conclude that
smoking has a negative effect on the baby’s health, with an increase in
the number of cigarettes smoked leading to lower birth weight.

The cigarette companies are not surprised by this finding. They
argue, however, that smoking does not harm baby. Instead, heavier
smoking merely reflects underlying factors that are the true causes of low
birth weight. Such confounding variables could, for instance, be of socio-
economic nature. In the context of the smoking-lung cancer debate,
prominent Statistician Ronald Fisher liked to argue that correlations
can be attributed to unobserved variables of genetic nature [59].

Familiar with this type of counter-argument, the researchers cleverly
recorded a third variable: The tax rate on tobacco products in the local
jurisdictions of the mothers in the sample. It is not unreasonable to
assume that the tax rate does not have a direct effect on the baby’s
health. If there is then variation in the tax rate and higher taxes have
an effect on the amount of smoking, then the effect that smoking has on
birth weight can be estimated in a model that allows for the presence of
unobserved confounders, as we will see shortly.

The above narrative suggests a number of cause-effect relations, as
well as the absence thereof. Qualitatively these are summarized in the
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X1 : Tax Rate X2 : Mom’s Smoking X3 : Baby’s Weight

U : Confounder

Fig. 1.1. Directed graph for an instrumental variable model.

graph in Figure 1.1. The variables in play are the nodes of the graph
and cause-effect relations are indicated as directed edges. Variable U
represents an unobserved confounder; we draw its edges in gray.

Structural equation models turn the qualitative descriptions of causes
and effects into quantified functional relationships. In this article, the
functional relationships will always be linear. The linear structural equa-
tion model for the present example is based on the following system of
structural equations :

X1 = λ01 + ε1,(1.1)

X2 = λ02 + λ12X1 + λu2U + ε2,(1.2)

X3 = λ03 + λ23X2 + λu3U + ε3,(1.3)

U = λ0u + εu.(1.4)

Here, the error terms ε1, ε2, ε3, εu are independent random variables
with zero mean. The eight coefficients λ01, λ02, λ03, λ0u, λ12, λ23, λu2,
and λu3 are unknown parameters. Equation (1.1) indicates that variable
X1, the tax rate, has expectation λ01, from which it deviates according
to the distribution assumed for ε1. The analogous statement for the
unobserved confounder U is made in (1.4). In (1.2), the amount of
smoking, denoted X2, is modeled to be a linear function of the tax rate
and independent noise. Similarly, (1.3) introduces birth weight, denoted
X3, as a noisy linear function of smoking.

The quantity of primary interest is the coefficient λ23 that quantifies
the relationship between smoking and birth weight. Using data, we can
estimate the joint distribution and, in particular, the covariance matrix
of the three observed variables X1, X2 and X3. Because the error terms
are independent, the covariance between X3 and X1 is

(1.5) Cov[X1,X3] = λ23 Cov[X1,X2].

Hence, as long as Cov[X1,X2] �= 0, statistical inference about λ23 may
be based on the ratio of the two covariances in (1.5).
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In some applications of structural equation models latent (that is,
unobserved) variables are of direct interest. For instance, concepts such
as intelligence or depression in psychology are of this nature and mea-
sured only indirectly through other variables such as exam results or
answers in questionnaires. While problems with explicit latent vari-
ables are ubiquitous [5], we will focus on models in which the effects
of latent variables are summarized and represented merely in terms of
correlations among the error terms in structural equations. This repre-
sentation of dependence induced by latent variables is discussed in detail
in [33, 44, 49, 50, 72].

Example 1.2. We take up the instrumental variable model from
Example 1.1. The effects of the confounding variable U can be summa-
rized by absorbing U into the error terms in (1.2) and (1.3). Define

ε̃2 = λu2U + ε2, ε̃3 = λu3U + ε3.(1.6)

Retaining only the equations for the observed variables X1, X2, and X3,
we are left with the equation system:

X1 = λ01 + ε1,(1.7)

X2 = λ02 + λ12X1 + ε̃2,(1.8)

X3 = λ03 + λ23X2 + ε̃3.(1.9)

However, and this is the significance of the unobserved variable U , the
new error terms may be correlated because

(1.10) ω23 := Cov[ε̃2, ε̃3]

= Cov[λu2U + ε2, λu3U + ε3] = λu2λu3 Var[U ] �= 0.

In the sequel, we will focus on models that are given by equations such
as (1.7)-(1.9), with one equation for each observed variable but error
terms that may be correlated. Graphically, such models may be repre-
sented by a mixed graph that features directed edges to encode which
variables appear in each structural equation and bidirected edges that
indicate possibly nonzero correlations between error terms. The mixed
graph for the model given by (1.7)-(1.9) is depicted in Figure 1.2, which
shows unknown parameters as edge weights. At the nodes, we show
the variances of the error terms, namely, ω11 = Var[ε1], ω22 = Var[ε̃2],
and ω33 = Var[ε̃3]. In the statistical literature, the mixed graph for a
structural equation model is also known as a path diagram.
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X1 : Tax rate

ω11

X2 : Mom’s smoking

ω22

X3 : Baby’s weight

ω33
λ12 λ23

ω23

Fig. 1.2. Mixed graph for an instrumental variable model.

The ratio Cov[X2,X3]/Var[X2] is the regression coefficient when
predicting X3 from X2. We have

(1.11)
Cov[X2,X3]

Var[X2]
= λ23 +

ω23

Var[X2]
.

Hence, linear regression predicting X3 from X2 only estimates the co-
efficient of interest if ω23 = 0, as is the case when X2 and X3 do not
depend on the latent variable U . When ω23 �= 0, the relation from (1.5),
which involves all three variables, is needed to recover λ23.

The remainder of this paper is organized as follows. Section 2 in-
troduces linear structural equation models in full generality. We then
formulate questions of statistical interest and the algebraic problems
they correspond to (Section 3). Next, we examine the interplay be-
tween covariance matrices and mixed graphs. We treat the so-called
trek rule (Section 4) and review useful results on subgraphs and graph
decomposition (Sections 5 and 6). In Sections 7 and 8, we dive deeper
into parameter identifiability, which in this paper means the question
of whether a coefficient of interest can be recovered from the covariance
matrix of the observed variables. Finally, we discuss relations among
the entries of the covariance matrix (Sections 9-12).

§2. Linear Structural Equation Models

Let ε = (εi : i ∈ V ) be a random vector indexed by a finite set V .
Define a new random vector X = (Xi : i ∈ V ) as the solution to the
system of so-called structural equations

(2.1) X = ΛTX + ε.

Here, Λ = (λij) ∈ R
V×V is a matrix of unknown parameters. Suppose

ε has covariance matrix Ω = (ωij) = Var[ε] with Ω being a positive
definite matrix whose entries are again unknown parameters. Write I
for the identity matrix. If I − Λ is invertible, then the linear system
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in (2.1) is solved uniquely by X = (I − Λ)−T ε, which has covariance
matrix

(2.2) Var[X] = (I − Λ)−TΩ(I − Λ)−1 =: φ(Λ,Ω).

Interesting settings are obtained by restricting the support of Λ and Ω,
as is the case in our motivating example.

Example 2.1. Consider the setup from Example 1.2. If the equa-
tion system from (1.7)-(1.9) is written in vector form as in (2.1), then
the coefficient matrix is

Λ =

⎛
⎝0 λ12 0
0 0 λ23

0 0 0

⎞
⎠ .(2.3)

The error covariance matrix is

Ω = Var[ε] =

⎛
⎝ω11 0 0

0 ω22 ω23

0 ω23 ω33

⎞
⎠ .(2.4)

From (2.2), the covariance matrix of X = (X1,X2,X3) is found to be
(2.5)

Var[X] =

⎛
⎝ ω11 ω11λ12 ω11λ12λ23

ω11λ12 ω22 + ω11λ
2
12 ω23 + λ23σ22

ω11λ12λ23 ω23 + λ23σ22 ω33 + 2ω23λ23 + λ2
23σ22

⎞
⎠ ,

where σ22 denotes the (2, 2) entry of Var[X]. The relation from (1.5)
can be confirmed from the (1, 2) and (2, 3) entry of Var[X].

Restrictions on the support of a matrix naturally correspond to a
graph. Specifically, we adopt mixed graphs because we are dealing with
two matrices, Λ and Ω, whose rows and columns are indexed by the same
set V . In structural equation modeling, this point of view originated in
the work of Sewall Wright [73, 74].

A mixed graph with vertex set V is a triple G = (V,D,B) where
D and B are two sets of edges. The set D ⊂ V × V contains ordered
pairs (i, j), which we also denote by i → j to visualize that such a pair
encodes a directed edge pointing from i to j. Then i is the tail and j
is the head of the edge. The elements of B are unordered pairs {i, j}
and encode bidirected edges that we also denote by i ↔ j. These edges
have no orientation, so i ↔ j ∈ B if and only if j ↔ i ∈ B. It will be
convenient to call both endpoints i and j heads of i ↔ j. In our context,
neither the bidirected part (V,B) nor the directed part (V,D) contain
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loops, so i → i �∈ D and i ↔ i �∈ B for all i ∈ V . The mixed graph G is
acyclic if (V,D) does not have any directed cycles i → . . . → i.

Let RD be the set of real V × V -matrices Λ = (λij) with support in
D, that is,

(2.6) R
D =

{
Λ ∈ R

V×V : λij = 0 if i → j /∈ D
}
.

Define R
D
reg to be the subset of matrices Λ ∈ R

D for which I − Λ is
invertible. If G is acyclic, then there is a permutation of V that makes
I−Λ unit upper triangular such that det(I−Λ) = 1 for all Λ ∈ R

D and,
thus, RD = R

D
reg. Similarly, let PDV be the cone of positive definite

symmetric V × V -matrices Ω = (ωij), and define PD(B) to be the
subcone of matrices supported over B, that is,

(2.7) PD(B) =
{
Ω ∈ PDV : ωij = 0 if i �= j and i ↔ j /∈ B

}
.

Taking the error vector ε to be Gaussian (or in other words, to follow
a multivariate normal distribution), we arrive at the following definition
of a statistical model for the random vector X that solves (2.1). Read-
ers looking for background such as the fact that linear transformations
of a Gaussian random vector are Gaussian may consult a textbook on
multivariate statistics, e.g., [2].

Definition 2.2. The linear structural equation model given by a
mixed graph G = (V,D,B) is the family of all multivariate normal dis-
tributions on R

V with covariance matrix in the set

MG =
{
(I − Λ)−TΩ(I − Λ)−1 : Λ ∈ R

D
reg, Ω ∈ PD(B)

}
.

The covariance parametrization of the model is the map

φG : RD × PD(B) → PDV , (Λ,Ω) �→ (I − Λ)−TΩ(I − Λ)−1.

The fiber of a pair (Λ,Ω) ∈ R
D
reg × PD(B) is the preimage

FG(Λ,Ω) =
{
(Λ′,Ω′) ∈ R

D
reg × PD(B) : φG(Λ

′,Ω′) = φG(Λ,Ω)
}
.

As defined, a linear structural equation model does not impose any
restrictions on the mean vector of the normal distributions. Conse-
quently, the mean vector plays no role in our discussion. For instance,
in maximum likelihood estimation we may assume without loss of gen-
erality that the mean vector is zero. Other questions we consider will
directly concern covariances. Therefore, we may safely identify a linear
structural equation model with its set of covariance matrices MG. On
occasion, we will simply refer to MG as the model.
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Fig. 2.1. An acyclic mixed graph known as the Verma graph.

Leaving statistics out of the picture, our interest is in the maps φG,
their fibers FG and their imagesMG. Algebra comes into play naturally.

Proposition 2.3. For any mixed graph G, the map φG is a rational
map whose image MG and fibers FG(Λ,Ω) are semi-algebraic sets. The
map φG is a polynomial map if and only if G is acyclic.

Proof. That φG is rational follows from Cramer’s rule for matrix
inversion. The domain of φG is a semi-algebraic set and, thus, the fibers
FG(Λ,Ω) are semi-algebraic as well. The Tarski-Seidenberg theorem
implies that MG is semi-algebraic. If G = (V,D,B) is acyclic, then
det(I − Λ) = 1 for all Λ ∈ R

D. Consequently, the entries of (I − Λ)−1

are polynomial in Λ. If G is not acyclic, then det(I − Λ) is a non-
constant polynomial. By the Leibniz formula, its terms correspond to
collections of disjoint directed cycles in the graph; compare Theorem 1
in [41]. Q.E.D.

Example 2.4. The mixed graph G = (V,D,B) in Figure 2.1 en-
codes the structural equations

X1 = λ01 + ε1,
X2 = λ02 + λ12X1 + ε2
X3 = λ03 + λ13X1 + λ23X2 + ε3
X4 = λ04 + λ34X3 + ε4.

Only the errors ε2 and ε4 may be dependent and the error covariance
matrix is

Ω =

⎛
⎜⎜⎝
ω11 0 0 0
0 ω22 0 ω24

0 0 ω33 0
0 ω24 0 ω44

⎞
⎟⎟⎠ .

Subtracting the coefficient matrix from the identity gives

I − Λ =

⎛
⎜⎜⎝
1 −λ12 −λ13 0
0 1 −λ23 0
0 0 1 −λ34

0 0 0 1

⎞
⎟⎟⎠



Structural equation models 43

with det(I − Λ) = 1 and inverse

(I − Λ)−1 =

⎛
⎜⎜⎝
1 λ12 λ13 + λ12λ23 λ13λ34 + λ12λ23λ34

0 1 λ23 λ23λ34

0 0 1 λ34

0 0 0 1

⎞
⎟⎟⎠ .

To illustrate the form of the map φG, we display the coordinate function

(2.8) φG(Λ,Ω)24 = λ12λ13λ34ω11 + λ2
12λ23λ34ω11 + λ23λ34ω22 + ω24.

§3. Questions of Interest

Structural equation models are used to empirically estimate, test
and possibly discover cause-effect relationships among a set of variables.
In estimation and testing, the underlying graph is given. In discovery,
we seek to infer the underlying graph, or in other words, perform model
selection. This section gives a broad overview of algebraic problems that
arise in the context of these statistical tasks. Only some of the problems
are treated in the remainder of the paper, which focuses on parameter
identifiability and polynomial relations between covariances.

3.1. Parameter identification

When specifying a model via a mixed graph G = (V,D,B), a first
question is whether the effects of interest are identifiable, that is, whether
they are determined by the joint distribution of the observed variables.
The importance of the question is clear: The joint distribution is what
can be estimated from data. For linear and Gaussian models, the prob-
lem is equivalent to deciding whether the coefficients λij in the structural
equations can be recovered from the covariance matrix of the variables.

Different notions of parameter identifiability translate into related
but different algebraic problems. The most stringent identifiability prop-
erty is for a model to have all of its coefficients λij , i → j ∈ D, identifi-
able. In this case, we seek to answer the following:

Question 3.1. Is the map φG is injective?

Injectivity of φG can be decided efficiently, as we will discuss in
Section 7. However, injectivity can be too strong of a requirement be-
cause all fibers are required to be singletons with FG(Λ,Ω) = {(Λ,Ω)}.
Indeed, some interesting examples have fibers that are not singletons.

Example 3.2. The map φG fails to be injective when G is the graph
for the instrumental variable model from Example 1.2. The relation
from (1.5) shows that FG(Λ,Ω) = {(Λ,Ω)} if λ12 �= 0. If λ12 = 0,



44 M. Drton

however, then the fiber is infinite. Hence, all model parameters are
identifiable as long as λ12 �= 0. In the context of Example 1.2, this
requires making an argument that higher tax rates impact the amount
of smoking.

In the example just given, FG(Λ,Ω) = {(Λ,Ω)} for generic choices
of (Λ,Ω) ∈ R

D
reg × PD(B). In this case, we call φG generically injective.

We are led to:

Question 3.3. Is the map φG is generically injective?

Generic injectivity turns out to be more difficult to decide. The
problem’s computational complexity has not yet been determined. In
Section 8, we review methods to decide whether φG is generically injec-
tive as well as methods to decide when the fibers are generically infinite.

When φG is not generically injective, its generic fibers may be dis-
crete sets. This property is known as local identifiability in the statistical
literature. We will instead speak of φG being generically finite-to-one to
highlight that in our case a discrete fiber is in fact finite because φG is
rational. By the inverse function theorem, the question of whether φG

is generically finite-to-one is the same as:

Question 3.4. Does the Jacobian of φG have full column rank?

The fiber FG(Λ,Ω) is defined by the equation system φG(Λ
′,Ω′) =

φG(Λ,Ω). These equation systems have a generic number of complex
solutions (i.e., the free entries of Λ and Ω are allowed to be complex
numbers).

Definition 3.5. The map φG is algebraically k-to-one if the equa-
tion systems defining its fibers generically have k complex solutions. We
call the number k the algebraic degree of identifiability of G.

The degree of identifiability may be determined by Gröbner basis
methods (see Section 8). It is finite if and only if φG is generically finite-
to-one. The main theorem in Section 7.6 shows that if φG is injective
then its inverse is rational, which is the same as G having degree of
identifiability one. Currently, there are no combinatorial results for when
the degree is finite but larger than one. Example 8(b) in [34] has degree
3 but fibers whose cardinality over the reals is either one or three. To
the author’s knowledge, no example has been discovered in which φG is
generically injective over the reals but algebraically k-to-one for k ≥ 2.

An important question that we will not address in detail is the iden-
tifiability of only a single parameter λij for a designated edge of interest
i → j ∈ D. This amounts to checking whether in every fiber the co-
efficient for the edge has only a single value. In other words, it must



Structural equation models 45

hold that λ′
ij = λ′′

ij whenever (Λ
′,Ω′) and (Λ′′,Ω′′) are in the same fiber.

In Example 1.2, the fiber of a pair (Λ,Ω) with λ12 = 0 is infinite but
all pairs (Λ′,Ω′) such a fiber have λ′

12 = 0. Two well-known graphical
methods for identifying a single edge coefficient are the back-door and
the front-door criterion [49]; see also [11, 36].

3.2. Model dimension

Statistical tests may be used to assess whether a model is compatible
with empirical data. At an intuitive level, such tests are based on com-
puting a distance between data and model and comparing this distance
to typical distances that are obtained when data are generated from a
distribution in the model. For linear Gaussian models, a test can be
thought off as assessing the distance between the empirical (or sample)
covariance matrix and the model MG. Recall that we have defined MG

as the set of covariance matrices.
The challenging part of designing a statistical test is to quantify, in

a probabilistic manner, what typical distances between data and model
are. Many procedures rely on asymptotic approximations that are ob-
tained by letting the number of data points grow to infinity. Under
regularity conditions, limiting distribution theory leads to consideration
of so-called chi-square distributions, which are indexed by an integer
parameter. In our context, when testing the model given by the mixed
graph G = (V,D,B), the chi-square parameter is set equal to the codi-
mension of MG, where we think of MG as embedded in the space of
symmetric matrices. This gives concrete statistical motivation for:

Question 3.6. What is the dimension of MG?

The model MG is parametrized by the coefficients and covariances
associated with the edges in D and B as well as the variances associated
with the nodes in V . Being a subset of the space of V × V symmetric
matrices, MG has expected dimension

min

{
|V |+ |D|+ |B|, |V |(|V |+ 1)

2

}
.

The term |D|+ |V |+ |B| counts the nodes and edges of G. Since MG is
the image of φG, its actual dimension is equal to the rank of the Jacobian
of φG. A review of the connection between dimension and Jacobian in
a statistical context is given in [38]. Question 3.6 is tied to parameter
identifiability, most directly to Question 3.4. If φG is generically finite-
to-one, then MG has the expected dimension |V |+ |D|+ |B|.
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3.3. Covariance equivalence

Different graphs may induce the same statistical model. For ex-
ample, take V = {1, 2}, and let G1 be the graph with the single edge
1 → 2. Let G2 and G3 be the graphs with single edge 1 ← 2 and 1 ↔ 2,
respectively. Then MG1 = MG2 = MG3 as each model is easily seen to
be equal to the entire cone of positive definite 2× 2 matrices.

From an applied perspective, two different graphs G and G′ encode
different scientific/causal hypotheses. If MG = MG′ , then the two
hypotheses cannot be distinguished based on data from a linear and
Gaussian structural equation model. It is thus useful to be able to
decide whether two graphs G and G′ are covariance equivalent, that is,
we would like to be able to answer:

Question 3.7. When do two maps φG and φG′ have the same
image?

Existing results addressing this questions make comparisons between
certain types of relations among the entries of the covariance matrices
in each model. This ties into the basic problem of implicitization:

Question 3.8. What are the algebraic relations among the coordi-
nates of φG?

Such relations are also of interest for statistical tests that assess
whether the model given by G is compatible with available data [6,
11, 17]. We review results on relations among the covariances in Sec-
tions 9-12. An important role is played by determinants that represent
probabilistic conditional independence in a Gaussian random vector. We
note that models can, in principle, also be distinguished using inequality
constraints. However, as less is know about inequalities, we do not treat
them here. Examples of models with latent variables for which a full
semi-algebraic description is available can be found in [25, 53].

Remark 3.9. As defined above, covariance equivalence is based on
data that is observational, i.e., it is collected by merely observing the
considered physical system. The situation is different when experimen-
tal data is available, i.e., (some) data is collected in settings in which
the system is subject to various experimental interventions. We will
not treat such interventional data in this paper. Interested readers may
find discussions of the problem in [43, 49, 57]. Similarly, even for ob-
servational data, questions of equivalence differ from Question 3.7 in
non-linear models or linear models with non-Gaussian errors [26, 54].
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3.4. Maximum likelihood

The parameters of linear structural equation models are most com-
monly estimated using the technique of maximum likelihood. Suppose
we observe a sample X(1), . . . ,X(n) drawn independently from the mul-
tivariate normal distribution N (μ,Σ), where μ is the mean vector and
Σ is the covariance matrix. The joint distribution of the random vectors
X(1), . . . ,X(n) is the n-fold product of N (μ,Σ). The likelihood of the
sample is the value of the joint density of the product distribution at
(X(1), . . . ,X(n)). The likelihood function maps the pair (μ,Σ) to the
likelihood of the sample. The maximum likelihood estimator (MLE) of
(μ,Σ) under the model given by a mixed graph G is the maximizer of
the likelihood function when restricting Σ to be in MG.

Define the sample mean vector and the sample covariance matrix as

(3.1) X̄n =
1

n

n∑
i=1

X(i) and Sn =
1

n
(X(i) − X̄n)(X

(i) − X̄n)
T ,

respectively. It is convenient to treat the likelihood function on the
log-scale. With an additive constant omitted and n/2 divided out, the
log-likelihood function is

(μ,Σ) �→ − log det(Σ)− trace
(
Σ−1Sn

)
− (X̄n − μ)TΣ−1(X̄n − μ).

Because the considered models place no constraint on the mean vector,
its MLE is always X̄n. The MLE of Σ maximizes the function

(3.2) �(Σ) = − log det(Σ)− trace
(
Σ−1Sn

)
subject to Σ ∈ MG. Using the covariance parametrization, the MLE is
found by maximizing � ◦ φG. A key problem is then understanding the
existence and uniqueness of the MLE. We record:

Question 3.10. For which sample covariance matrices Sn does the
likelihood function � ◦ φG achieve its maximum?

Graphical models theory solves Question 3.10 when G = (V,D,B)
is an acyclic digraph, i.e., has B = ∅ and D without directed cycles
[46]. More generally, it is well known that � ◦ φG is bounded when Sn is
positive definite but this is not necessary [32]. An issue that is not well
explored is the fact that even if � ◦ φG is bounded it may fail to achieve
its maximum as the model MG need not be closed. For instance, the
model in Example 3.14 is not closed. We remark that Question 3.10
is closely related to a positive definite matrix completion problem that
arises in ML estimation for other types of graphical models [9, 63, 67].
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Fig. 3.1. Mixed graph for a bivariate seemingly unrelated re-
gressions model.

In some models, the MLE is known to admit a closed-form expression
as a rational function of the data. Such models have maximum likelihood
(ML) degree equal to one, in the sense of the following:

Question 3.11. The MLE of Σ in model MG is an algebraic func-
tion of the data. What is the degree of this function?

An introduction to the notion of ML degree is given in [21, Chapter
2]. Here, we merely not that the ML degree is one when G is an acyclic
digraph. More general models may have higher ML degree and a log-
likelihood function with more than one local maximum. We exemplify
this for a model discussed in detail in [19].

Example 3.12. Suppose the sample covariance matrix is

Sn =

⎡
⎢⎢⎣

X1 X2 X3 X4

X1 8 −5 10 3
X2 −5 27 4 49
X3 10 4 21 24
X4 3 49 24 114

⎤
⎥⎥⎦.

The matrix is positive definite such that the log-likelihood function �
from (3.2) is bounded above on the entire cone of positive definite ma-
trices. Moreover, � has compact level sets, i.e., for any constant c ∈ R

the set of positive definite matrices Σ with �(Σ) ≥ c is compact [2].
Let G be the graph from Figure 3.1. It is not difficult to show that

the parametrization φG admits a rational inverse. Let Σ = (σij) satisfy
Σ = φG(Λ,Ω) with Λ = (λij) ∈ R

D and Ω = (ωij) ∈ PD(B). Then

λ12 =
σ12

σ11
, λ43 =

σ34

σ44
,(3.3)

and the entries of Ω = (I − Λ)TΣ(I − Λ) are rational functions of Σ as
well. All the rational functions are defined on the entire cone of positive
definite matrices because σ11, σ44 > 0. It is also clear that the considered
map φG is proper, that is, compact subsets of the positive definite cone
have compact preimages under φG. It follows that � ◦ φG has compact
level sets and, thus, achieves its maximum on the open set RD×PD(B).
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The critical points of � ◦ φG satisfy a rational equation system, in
which the determinant of φG(Λ,Ω) appears in the denominator. Since
G is acyclic the determinant is equal to the determinant of Ω. Clear-
ing the denominator yields a polynomial equation system. Saturating
the system with respect to the determinant removes infeasible solutions
with det(Ω) = 0. Computing a lexicographic Gröbner basis after the
saturation shows that the critical points (Λ,Ω) solve the equation

10583160λ5
12 + 43115307λ4

12 + 72738452λ3
12

+ 55482894λ2
12 + 8437660λ12 − 4703765 = 0.

All other entries of Λ and also Ω solve linear equations whose coefficients
depend on λ12 and the data. We conclude that the MLE of Σ is an
algebraic function of degree 5. The displayed equation for λ12 has three
real roots and, thus, is not solvable by radicals.

3.5. Model singularities

As noted in Section 3.2, the distributions of test statistics are fre-
quently approximated using asymptotic theory. For so-called likelihood
ratio tests, this asymptotic theory can be thought of as assessing infin-
itesimal distances between a positive semidefinite data matrix and the
given model MG. The data matrix is generated from a distribution that
corresponds to a particular point in MG. At a smooth point of MG, the
squared infinitesimal distance follows a chi-square distribution, which is
the distribution of the squared Euclidean distance between a Gaussian
random vector and a linear space. At singular points, the distribution
is determined by the tangent cone at the considered point [15]. Singu-
larities also impact other approaches such as Wald tests [24], and it is
important to clarify:

Question 3.13. Is the image of φG a smooth manifold? If not,
what are the tangent cones of the image?

We do not address the question explicitly in this paper. However,
whenever φG is injective (see Section 7) its image is smooth. Indeed,
when φG is injective it has a rational inverse whose domain of definition
includes the cone of all positive definite matrices [16]. The next example
illustrates that not all models are smooth.

Example 3.14. Consider the mixed graph G = (V,D,B) from
Figure 3.2. Let Σ ∈ R

4×4 be a positive definite matrix. Define the
matrix

Σ{3,4}.{1,2} = Σ{3,4},{1,2}
(
Σ{1,2},{1,2}

)−1
,
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Fig. 3.2. Mixed graph of a model with two instruments.

and the Schur complement

Σ{3,4},{3,4}.{1,2} = Σ{3,4},{3,4} − Σ{3,4},{1,2}
(
Σ{1,2},{1,2}

)−1
Σ{1,2},{3,4}.

Change coordinates to the triple of 2× 2 matrices(
Σ{1,2},{1,2}, Σ{3,4}.{1,2}, Σ{3,4},{3,4}.{1,2}

)
.

If Σ = φG(Λ,Ω) for Λ = (λij) ∈ R
D and Ω = (ωij) ∈ PD(B), then

Σ{1,2},{1,2} =

(
ω11 λ12ω11

λ12ω11 ω22

)
,

Σ{3,4}.{1,2} =

(
λ13 λ23

λ13λ34 λ23λ34

)
,

Σ{3,4},{3,4}.{1,2} =

(
ω33 ω34 + λ34ω33

ω34 + λ34ω33 ω44 + 2λ34ω34 + λ4
34ω33

)
.

We observe that Σ is in the (topological) closure of MG if and only if
Σ{3,4}.{1,2} is a matrix of rank at most one. For Σ to be in MG, the
second row of Σ{3,4}.{1,2} may be zero only if the first row is zero.

Geometrically, the closure of MG is equivalent to the product of
two cones of positive definite 2×2 matrices and the set of 2×2 matrices
of rank at most one. The latter set is singular at the zero matrix. For
more details see the related example in [21, Exercise 6.4].

3.6. Singularities of fibers

Finally, without going into any detail, we note that it is also of
statistical interest to study the geometry of the fibers FG(Λ,Ω). In
particular, the resolution of singularities of FG(Λ,Ω) is connected to
asymptotic approximations in Bayesian approaches to model selection.

Bayesian methods assess the goodness-of-fit of a model by integrat-
ing the likelihood function with respect to a prior distribution. In models
with many parameters, the integration is over a domain of larger dimen-
sion and may constitute a difficult numerical problem. While carefully
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tuned Monte Carlo methods can be effective, it can also be useful to
invoke asymptotics. For large sample size n, the integrated likelihood
function behaves like a Laplace integral. Under regularity conditions,
a Laplace approximation can yield accurate approximations that have
been used in many applications [42]. However, the models considered
here may also lead to singular Laplace integrals for which asymptotic
approximations are more involved.

Asymptotic expansions for singular Laplace integrals are well-studied
[3]. The work of Sumio Watanabe brings the ideas to bear in the statis-
tical context [70]. For several practically relevant settings, it has become
tractable to determine or bound the real log-canonical threshold and its
multiplicity, which determine how the integrated likelihood scales with
the sample size n. This information can be used in model selection [18].
Computing real log-canonical thresholds for data generated under the
distribution with covariance matrix φG(Λ,Ω) requires careful study of
the singularities of the fiber FG(Λ,Ω). Bounds on the thresholds can be
obtained from cruder information such as the dimension of the fiber.

Part II. Treks, Subgraphs and Decomposition

§4. Trek Rule

In solving the problems from Section 3, it is desirable to exploit the
connection between the covariance parametrization φG of a structural
equation model and the underlying mixed graph G = (V,D,B). The
trek rule that we present in this section makes the connection precise
and is behind results that allow one to answer some of the questions we
posed with efficient algorithms.

It is natural to expect the covariance between random variables Xi

and Xj to be determined by the semi-walks between the nodes i and j in
the graphG. A semi-walk is an alternating sequence of nodes from V and
edges from either D or B such that the endpoints of each edge are the
nodes immediately preceding and succeeding the edge in the sequence.
In other words, a semi-walk is a walk that uses bidirected or directed
edges but is allowed to traverse directed edges in the ‘wrong direction’.
As we will see, only special semi-walks contribute to the covariance.

Definition 4.1. A trek τ from initial node i to target node j is a
semi-walk from i to j whose consecutive edges do not have any colliding
arrowheads. In other words, τ is a sequence of the form

(a) i ← il ← · · · ← i1 ← i0 ←→ j0 → j1 → · · · → jr → j, or

(b) i ← il ← · · · ← i1 ←−−−− i0 −−−−→ j1 → · · · → jr → j.



52 M. Drton

A trek has a left- and a right-hand side, denoted left (τ) and right (τ), re-
spectively. We have left (τ) = {i0, . . . , il, i} and right (τ) = {j0, . . . , jr, j}
in case (a), and left (τ) = {i0, . . . , il, i} and right (τ) = {i0, j1, . . . , jr, j}
in case (b). In case (b) the top node i0 belongs to both sides.

In an acyclic graph, if we think of directed edges pointing ‘down-
ward’, then a trek takes us up and/or down a ‘mountain’. A trek
τ from i to i may have no edges, in which case i is the top node,
left (τ) = right (τ) = {i}. We call such a trek trivial. Any directed
path is a trek, in which case |left (τ) | = 1 or |right (τ) | = 1 depending
on the direction in which the path is traversed. A trek may contain the
same node on both its left- and right-hand sides. If the graph contains
a cycle, then the left- or right-hand side of τ may contain this cycle,
possibly repeated.

For a trek τ that contains no bidirected edge and has top node i0,
define a trek monomial as

τ(Λ,Ω) = ωi0i0

∏
k→l∈τ

λkl.

For a trek τ that contains a bidirected edge i0 ↔ j0, define the trek
monomial as

τ(Λ,Ω) = ωi0j0

∏
k→l∈τ

λkl.

The following rule expresses the covariance matrix as a summation over
treks [57, 73, 74]. We write T (i, j) for the set of all treks from i to j.

Theorem 4.2 (Trek rule). Let G = (V,D,B) be any mixed graph,
and let Λ ∈ R

D and Ω ∈ PD(B). Then the covariances are

(4.1) φG(Λ,Ω)ij =
∑

τ∈T (i,j)

τ(Λ,Ω), i, j ∈ V.

Some clarification is in order. If G is acyclic, then the summation
in (4.1) is finite and yields a polynomial. If G contains a directed cycle,
then the right-hand side of (4.1) may yield a power series as shown in
Example 4.4 below. Under suitable assumptions on the spectrum of Λ,
the power series converges and yields the value of φG(Λ,Ω)ij . Such spec-
tral conditions are also needed to give cyclic models an interpretation of
representing observation of an equilibrium [31, 45]. This said, it is also
useful to treat the right-hand side of (4.1) as a formal power series. If
so desired, a combinatorial description can also be given for a rational
expression for φG(Λ,Ω)ij ; see [14].
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λ12 λ13 λ34
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ω11
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λ12 λ12 λ23 λ34
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ω22

3 4
λ12 λ13

2 4
ω24

Fig. 4.1. Four treks in the graph from Figure 2.1.

Proof of the trek rule. Writing (I − Λ)−1 = I + Λ + Λ2 + . . . , we
observe that

((I − Λ)−1)ij =
∑

τ∈P(i,j)

∏
k→l∈τ

λkl,(4.2)

where P(i, j) is the set of directed paths from i to j in G. If G is acyclic,
then Λm = 0 for all m ≥ |V |, and the geometric series of matrices has
only finitely many nonzero terms. If G is cyclic the geometric series is
infinite and converges if and only if all eigenvalues of Λ have magnitude
less than 1. Now, observe that a product of three entries of (I−Λ)−T , Ω,
and (I −Λ)−1, respectively, corresponds to the concatenation of two di-
rected paths at a common top node or by joining them with a bidirected
edge. A top node represents a diagonal entry of Ω, and a bidirected edge
an off-diagonal entry of Ω. Q.E.D.

Example 4.3. In Example 2.4, the coordinate function (φG)24 is a
polynomial with four terms; see (2.8). The terms correspond to the four
treks shown in Figure 4.1.

Example 4.4. Let G be the graph from Figure 4.2, which contains
the directed cycle 2 → 3 → 4 → 2. Due to this cycle, det(I − Λ) =
1− λ23λ34λ42. As an example of a coordinate of φG we select

φG(Λ,Ω)24 =

1

(1− λ23λ34λ42)2
[
λ2
12λ23λ34ω11 + λ12λ13λ34ω11(λ23λ34λ42 + 1)

+λ2
13λ

2
34λ42ω11 + λ23λ34ω22 + λ2

34λ42ω33 + 2λ34λ42ω34 + λ42ω44

]
.

To understand how this rational formula relates to the trek rule, let us
focus on the treks from 2 to 4 that use the bidirected edge 2 ↔ 4. There
are then two treks for which both left and right side are self-avoiding
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Fig. 4.2. A cyclic mixed graph.

paths, namely,

τ1 : 2 ← 4 ↔ 3 → 4, τ2 : 2 ← 4 ← 3 ↔ 4.

Both of these treks yield the same monomial and together contribute
the term 2λ34λ42ω34 to (φG)24. All other treks from 2 to 4 that use
edge 2 ↔ 4 are obtained by inserting directed cycles into τ1 or τ2. For
instance, inserting one cycle on the left- and one on the right-hand side
of τ1 gives

2 ← 4 ← 3 ← 2 ← 4 ↔ 3 → 4 → 2 → 3 → 4.

The monomials associated with these treks are

λ34λ42ω34 (λ23λ34λ42)
k
, k = 1, 2, . . . .

The monomial for exponent k arises from k + 1 different treks;
l = 0, 1, . . . , k cycles are inserted on the left, the remaining k − l cy-
cles are inserted on the right. Hence, the contribution to (φG)24 made
by all treks from 2 to 4 that use edge 2 ↔ 4 is

2

∞∑
k=0

(k + 1)λ34λ42ω34 (λ23λ34λ42)
k

=
2λ34λ42ω34

(1− λ23λ34λ42)2
,

assuming that |λ23λ34λ42| < 1. This explains one of the terms in the
rational expression for (φG)24. The reasoning for the other terms is
analogous.

§5. Induced Subgraphs and Principal Submatrices

Suppose X = (Xi : i ∈ V ) follows the linear structural equation
model given by mixed graph G = (V,D,B), so Var[X] = φG(Λ,Ω) for
some Λ ∈ R

D
reg and Ω ∈ PD(B). Let A ⊆ V be a subset of nodes. Then
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the covariance matrix of the subvector XA = (Xi : i ∈ A) is obtained
by projecting to the relevant principal submatrix, that is,

(5.1) Var[XA] = φG(Λ,Ω)A,A.

The resulting map (Λ,Ω) �→ φG(Λ,Ω)A,A may be complicated, even
when φG is not.

Example 5.1. Suppose G = (V,D, ∅) is a directed graph with i →
j ∈ D if and only if i /∈ A and j ∈ A; the graph is thus bipartite.
Then the image of φG(Λ,Ω)A,A is the set of covariance matrices of a
factor analysis model with |V \ A| factors. Factor analysis models have
complicated geometric structure, particularly when V \A has more than
two elements [8, 20, 23, 62]. Open problems remain even for |V \A| = 1
when allowing additional directed edges among the nodes in A [47].

For a general mixed graph G = (V,D,B), let DA = D ∩ (A × A)
be the set of directed edges with both endpoints in A. Similarly, let
BA ⊂ B be the set of bidirected edges that have both endpoints in
A. The subgraph induced by A is the mixed graph GA = (A,DA, BA).
Example 5.1 and also already Example 1.1 show that the covariance
matrices obtained from φGA generally differ from those obtained by pro-
jecting φG onto the A × A submatrix. However, as we now emphasize,
induced subgraphs are relevant in a special case.

Define the set of parents of a node i ∈ V as

pa(i) = {j ∈ V : j → i}.

A set A ⊆ V is ancestral if i ∈ A implies pa(i) ⊆ A. The terminology
indicates that such a set contains all its ancestors, where an ancestor is
a node from which there is a directed path to some node in A. Ancestral
sets are obtained by recursively removing sink nodes from V . A sink is
a node that is a head on all edges it is incident to. By our convention,
both endpoints of bidirected edges are heads. Hence, node i is a sink of
G = (V,D,B) if and only if i is a sink of the directed part (V,D).

Theorem 5.2. Let G = (V,D,B) be a mixed graph, and let GA be
the subgraph induced by an ancestral set A ⊂ V . Then for all Λ ∈ R

D
reg

and Ω ∈ PD(B), we have

φGA(ΛA,A,ΩA,A) = [φG(Λ,Ω)]A,A .

Proof. Let i, j ∈ A. By the trek-rule, the (i, j) entry of φG(Λ,Ω)
is given by summing the monomials associated to treks from i to j in G.
Because A is ancestral, a trek from i to j in G cannot leave A. Hence, G
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and GA have the same sets of treks from i to j. Applying the trek-rule
to GA yields the claim. Q.E.D.

Example 5.3. Take up Example 2.1. Node 3 is a sink in the graph
from Figure 1.2 and the set {1, 2} is ancestral. Inspecting the matrix
displayed in (2.5), we see that removing the third row and column yields
the matrix for the induced subgraph 1 → 2.

§6. Graph Decomposition

We now present an important decomposition, which allows one to
address several questions of interest by treating smaller subgraphs. The
decomposition for acyclic mixed graphs was introduced by Jin Tian [65,
66]. Here we give the natural extension to graphs with directed cycles.

We consider two partitions of the vertex set of a mixed graph
G = (V,D,B). The first is given by the connected components of the
bidirected part (V,B). The second is given by the strongly connected
components of the digraph (V,D). Two distinct nodes belong to the
same strongly connected component if there are directed paths in either
direction between them. Let C(G) be the finest common coarsening of
the two partitions. Two nodes are in the same block of C(G) if and only
if they are connected by a path that uses only edges that are bidirected
or part of some directed cycle. Note that G is acyclic if and only if all
strongly connected components are singleton sets. The blocks of C(G)
are then simply the connected components of the bidirected part (V,B).

For a block C ∈ C(G), define

V [C] := C ∪
⋃
i∈C

pa(i)

to be the union of the block and all parents of nodes in the block. Let
D[C] = D∩ (V [C]×C) be the set of directed edges with head in C. Let
B[C] be the set of bidirected with both endpoints in C.

Definition 6.1. The graphs G[C] = (V [C], D[C], B[C]), C ∈ C(G),
form a decomposition of G, and we refer to them as the mixed compo-
nents of G.

Graph decompositions partition edge sets. As we are working with
mixed graphs both edge sets are partitioned in the decomposition. We
note that the set V [C] \ C contains the sources of G[C]. A source node
is a tail on all edges it is incident to, with the convention that both
endpoints of a bidirected edge are heads.
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Example 6.2. The graph in Figure 6.1 has bidirected components
{1, 4}, {3}, and {2, 5}. The strongly connected directed components are
{1}, {2, 3}, {4}, and {5}. The finest common coarsening of the two par-
titions is {{1, 4}, {2, 3, 5}}. The graph thus has two mixed components
with vertex sets V [{2, 3, 5}] = {1, 2, 3, 4, 5} and V [{1, 4}] = {1, 2, 3, 4}.
The mixed component with vertex set V [{2, 3, 5}] contains all edges with
a head in {2, 3, 5}, and the second mixed component contains all edges
with a head in {1, 4}. The components are depicted in Figure 6.1.

For C ∈ C(G), define the projection π→
C : RV×V → R

V [C]×V [C] by

π→
C (Λ)ij =

{
λij if j ∈ C,

0 if j ∈ V [C] \ C.

Define a second map π↔
C : RV×V → R

V [C]×V [C] by

π↔
C (Ω)ij =

⎧⎪⎨
⎪⎩
ωij if i, j ∈ C,

1 if i = j ∈ V [C] \ C,
0 otherwise.

So π↔
C projects to the C × C submatrix and then adds the identity as

diagonal block over V [C] \C. Let PD(B[C]) ⊂ R
V [C]×V [C] be the set of

positive definite matrices supported over B[C] and define the subset

PDI(B[C]) = {Ω = (ωij) ∈ PD(B[C]) : ωii = 1 if i ∈ V [C] \ C} .

Then we have

π→
C : RD → R

D[C] and π↔
C : PD(B) → PDI(B[C])

because G[C] is a subgraph of G. With πC = (π→
C , π↔

C ), we obtain the
isomorphism

π = (πC)C∈C(G) : R
D × PD(B) →

∏
C∈C(G)

R
D[C] × PDI(B[C]).

Example 6.3. Let G be the graph from Figure 6.1, which has
C(G) = {{1, 4}, {2, 3, 5}}. A matrix in R

D is of the form

Λ =

⎡
⎢⎢⎢⎢⎣
0 λ12 λ13 0 0
0 0 λ23 λ24 λ25

0 λ32 0 λ34 0
0 0 0 0 λ45

0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ .
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Fig. 6.1. A mixed graph is decomposed into its two mixed
components.

Its projections are

π→
{2,3,5}(Λ) =

⎡
⎢⎢⎢⎢⎣
0 λ12 λ13 0 0
0 0 λ23 0 λ25

0 λ32 0 0 0
0 0 0 0 λ45

0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ , π→

{1,4}(Λ) =

⎡
⎢⎢⎣
0 0 0 0
0 0 0 λ24

0 0 0 λ34

0 0 0 0

⎤
⎥⎥⎦ .

A (symmetric) error covariance matrix in PD(B) has the form

Ω =

⎡
⎢⎢⎢⎢⎣
ω11 0 0 ω14 0
0 ω22 0 0 ω25

0 0 ω33 0 0
ω14 0 0 ω44 0
0 ω25 0 0 ω55

⎤
⎥⎥⎥⎥⎦ ,

and we have

π↔
{2,3,5}(Ω) =

⎡
⎢⎢⎢⎢⎣
1 0 0 0 0
0 ω22 0 0 ω25

0 0 ω33 0 0
0 0 0 1 0
0 ω25 0 0 ω55

⎤
⎥⎥⎥⎥⎦ ,

π↔
{1,4}(Ω) =

⎡
⎢⎢⎣
ω11 0 0 ω14

0 1 0 0
0 0 1 0
ω14 0 0 ω44

⎤
⎥⎥⎦ .

With this preparation, Tian’s theorem may be stated as follows.
Recall that PDV denotes the cone of positive definite V × V matrices.
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Theorem 6.4. Let G = (V,D,B) be a mixed graph with mixed
components G[C] = (V [C], D[C], B[C]) for C ∈ C(G). Then there is an
invertible map τ such that the following diagram commutes:

R
D
reg × PD(B)

φG−−−−−−−−−−→ PDV ⏐⏐⏐⏐"π

 ⏐⏐⏐⏐"τ

∏
C∈C(G) R

D[C]
reg × PDI(B[C])

(φG[C])C∈C(G)−−−−−−−−−→ ∏
C∈C(G) PDV [C]

In other words, τ ◦φG = (φG[C] ◦ πC)C∈C(G). Both τ and its inverse are

rational maps, defined on all of PDV and all of
∏m

k=1 PDVk
, respectively.

Below we give a linear algebraic proof that makes τ and its rational
nature explicit. Alternatively, a proof in probabilistic notation could be
given by generalizing the proof of [66, Lemma 1]. The strongly connected
components of (V,D) would play the role of nodes in the setup of [66].

Theorem 6.4 is a very useful result as questions about φG can be
answered by studying, one by one, the maps φG[C] for the mixed compo-

nents. The fact that τ and τ−1 are rational is important. For instance,
it allows one to obtain precise algebraic information about parameter
identifiability in the sense of Definition 3.5.

Corollary 6.5. The degree of identifiability of a mixed graph G is
the product of the degrees of identifiability of its mixed components G[C],
C ∈ C(G). In particular, φG is (generically) injective if and only if each
φG[C] is so, for C ∈ C(G).

Our proof of Theorem 6.4 is presented in terms of Cholesky decom-
positions. When applied to a Gaussian covariance matrix, the Cholesky
decomposition corresponds to factoring the multivariate normal density
into a product of conditional densities, which is the connection to the
probabilistic setting of [66]. We begin by stating a lemma on uniqueness
and sparsity in block-Cholesky decomposition.

If C is a partition of a finite set V , then we write Diag(C) for
the space of matrices that are block-diagonal with respect to C. So,
A = (aij) ∈ R

V×V is in Diag(C) if and only if aij = 0 whenever i and
j are in distinct blocks of C. If we order the blocks of the partition as
C = {C1, . . . , Ck}, then we may define a space of strictly block upper-
triangular matrices Upper(C), which contains A = (aij) ∈ R

V×V if and
only if aij = 0 whenever i ∈ Cu and j ∈ Cv with u ≥ v.



60 M. Drton

Lemma 6.6. Let Σ ∈ PDV , and let C be a partition of V , with
ordered blocks.

(i) There exist unique matrices A ∈ Upper(C) and Δ ∈ Diag(C)
such that

Σ = (I −A)−TΔ(I −A)−1.

The matrix Δ has positive definite diagonal blocks.
(ii) Let C′ be a second partition of V that is coarser than C. If Σ ∈

Diag(C′), then the matrix A from (i) satisfies A ∈ Diag(C′).

Proof. (i) A block-LDL decomposition yields Σ = (I + L)Δ(I +
L)T for unique LT ∈ Upper(C) and Δ ∈ Diag(C). Unit block upper-
triangular matrices form a group and, thus, (I + L)−T = I − A for
A ∈ Upper(C). (ii) The claim is a consequence of the way fill-in occurs in
the Cholesky decomposition of a sparse matrix [68, Section 4.1]. Q.E.D.

Proof of Theorem 6.4. We first show that, for every block C ∈
C(G), there exists a map τC such that τC ◦ φG = φG[C] ◦ πC . Let

Λ ∈ R
D
reg, Ω ∈ PD(B), and Σ = φG(Λ,Ω). Then the claim is that

τC(Σ) =

[
I −

(
0 ΛC,C

0 ΛC,C

)]−T (
I 0
0 ΩC,C

)[
I −

(
0 ΛC,C

0 ΛC,C

)]−1

.

(6.1)

Let C(D) be the partition of V given by the strongly connected com-
ponents of (V,D). Order the blocks of C(D) topologically as W1, . . . ,Wk

such that the existence of a directed path from a node in Wu to a node
in Wv implies that v ≥ u. By Lemma 6.6(i), there are A ∈ Upper(C(D))
and Δ ∈ Diag(C(D)) such that

(6.2) Σ = (I −A)−TΔ(I −A)−1.

Letting C = V [C] \ C, define
(6.3)

τC(Σ) =

[
I −

(
0 AC,C

0 AC,C

)]−T (
I 0
0 ΔC,C

)[
I −

(
0 AC,C

0 AC,C

)]−1

.

If G is acyclic then Λ is strictly upper-triangular under a topological
ordering and, thus, Λ ∈ Upper(C(D)). When G has directed cycles, then
Λ is block upper-triangular but not strictly so. Hence, we consider the
block-diagonal matrix

ΔΛ = diag(I − ΛW,W : W ∈ C(D)),



Structural equation models 61

which is invertible because det(I − Λ) = det(ΔΛ) and Λ ∈ R
D
reg. Hence,

(6.4) Σ =
[
(I − Λ)Δ−1

Λ

]−T [
Δ−1

Λ ΩΔ−1
Λ

][
(I − Λ)Δ−1

Λ

]−1
.

Because ΔΛ,Ω ∈ Diag(C(G)), we have

Ω̃ = Δ−T
Λ ΩΔ−1

Λ ∈ Diag(C(G)).

Moreover, due to the block upper-triangular shape of Λ,

Λ̃ = I − (I − Λ)Δ−1
Λ ∈ Upper(C(D)).

By Lemma 6.6(i) and (ii), there are matrices ΔΩ ∈ Diag(C(D)) and
U ∈ Upper(C(D)) ∩Diag(C(G)) such that

(6.5) Ω̃ = (I − U)−TΔΩ(I − U)−1.

Combining (6.4) and (6.5) gives

(6.6) Σ =
[
(I − Λ̃)(I − U)

]−T
ΔΩ

[
(I − Λ̃)(I − U)

]−1
,

where (I−Λ̃)(I−U) = I−(Λ̃+U−Λ̃U) with Λ̃+U−Λ̃U ∈ Upper(C(D)).
By the uniqueness in Lemma 6.6(i), equations (6.2) and (6.6) imply

Δ = ΔΩ,(6.7)

A = Λ̃ + U − Λ̃U.(6.8)

Since U ∈ Diag(C(G)), we have that

(6.9) UV×C =

(
U(V \C)×C

UC×C

)
=

(
0

UC×C

)
.

Therefore, by (6.8), AC,C = Λ̃C,C + UC,C − Λ̃C,CUC,C . We deduce that

(6.10) I−AC,C = (I− Λ̃C,C)(I−UC,C) and AC,C = Λ̃C,C(I−UC,C).

Moreover,

(6.11) Ω̃C,C = (I − UC,C)
−TΔC,C(I − UC,C)

−1,

which follows from (6.7) and the fact that

[
(I − U)−1

]
V,C

=

(
0[

(I − U)−1
]
C,C

)
=

(
0

(I − UC,C)
−1

)
,

which in turn follows from U being in Diag(C(G)).
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Substituting the formulas from (6.10) into (6.3) yields that

(6.12) τC(Σ) =

[(
I −Λ̃C,C

0 I − Λ̃C,C

)(
I 0
0 I − UC,C

)]−T

×
(
I 0
0 ΔC,C

)[(
I −Λ̃C,C

0 I − Λ̃C,C

)(
I 0
0 I − UC,C

)]−1

.

Using (6.11), we get that
(6.13)(

I 0
0 I − UC,C

)−T (
I 0
0 ΔC,C

)(
I 0
0 I − UC,C

)−1

=

(
I 0

0 Ω̃C,C

)
.

Recalling the definition of ΔΛ and Λ̃, we have

(6.14)

(
I −Λ̃C,C

0 I − Λ̃C,C

)
=

(
I −ΛC,C

0 I − ΛC,C

)(
I 0
0 (Δ−1

Λ )C,C

)

Plugging (6.13) and (6.14) into (6.12), we obtain the claim from (6.1).
The entries of the matrices A and Δ in (6.2) are rational functions

of Σ that are defined on all of PDV . Hence, the same is true for the
map τC defined in (6.3).

The value of τC(Σ) uniquely determines the matrices AC,C , AC,C ,

and ΔC,C in (6.3). They are determined through a block LDL decompo-
sition and, thus, rational functions of τC(Σ). Knowing the three matrices
for all C ∈ C(G), we can form A and Δ and recover Σ using (6.2). We
conclude that τ is invertible and the inverse is rational. Q.E.D.

Part III. Parameter Identification

§7. Global Identifiability

This section treats Question 3.1, which asks for a characterization
of the mixed graphs G = (V,D,B) for which the map φG is injective. In
the statistical literature a model with injective parametrization is also
called globally identifiable.

Example 7.1. If G is the graph from Figure 3.1, then φG is in-
jective. Indeed, the coefficients for the two directed edges of G satisfy
σ11λ12 = σ12 and σ44λ43 = σ34; recall (3.3). Since every positive definite
matrix Σ = (σij) ∈ R

4×4 has σ11, σ44 > 0, these two equations always
have a unique solution. Hence, all fibers FG(Λ,Ω) are singleton sets. In
contrast, if G is the graph from Figure 1.2, then only generic fibers are
singleton sets and φG is not injective; recall Example 3.2.
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Our first observation ties in with classical linear algebra.

Theorem 7.2. If G = (V,D, ∅) is an acyclic digraph, then φG is
injective and has a rational inverse.

We give two proofs. The first one emphasizes the connection to
Cholesky decomposition.

Proof A. Suppose V = {1, . . . ,m} is enumerated in reversed topo-
logical order such that i → j ∈ D implies that j < i. Then Λ is a strictly
lower-triangular matrix, and φG(Λ,Ω) has matrix inverse
(I − Λ)Ω−1(I − Λ)T . This is the product of a unit lower-triangular
matrix, a positive diagonal matrix and a unit upper-triangular matrix.
We may compute I − Λ and Ω−1 by an LDL decomposition. Q.E.D.

The second proof emphasizes the graphical nature of the problem
and possible sparsity of Λ. It shows more explicitly that the inverse of
φG is rational.

Proof B. Letting Σ = (σij) = φG(Λ,Ω), we have that

(7.1) Σpa(i),i = Σpa(i),pa(i)Λpa(i),i

because if j ∈ pa(i), then every trek from j to i ends with an edge k → i
for k ∈ pa(i). Indeed, a trek from j to i for which this fails has to be
a directed path from i to j. Adding the edge j → i to this path would
yield a directed cycle. Similarly, every nontrivial trek from i to i begins
and ends with a directed edge whose tail is a parent of i. Hence,

(7.2) σii = ωii + ΛT
pa(i),iΣpa(i),pa(i)Λpa(i),i.

The matrix Σpa(i),pa(i) is a principal submatrix of the positive definite
matrix Σ and, thus, invertible. Therefore,

Λpa(i),i =
(
Σpa(i),pa(i)

)−1
Σpa(i),i,(7.3)

ωii = σii − Σi,pa(i)

(
Σpa(i),pa(i)

)−1
Σpa(i),i.(7.4)

Q.E.D.

Proof B shows that the formula from (7.3) holds more generally. It
merely needs to hold that every trek from a node j ∈ pa(i) to i ends with
a directed edge that has i as its head, so an edge of the form k → i. This
holds for every node in the graph if and only if the graph is ancestral
[50]. A mixed graph is ancestral if the presence of a directed path from
node i to node j implies that i �= j and i ↔ j /∈ B. An ancestral graph
is in particular acyclic.



64 M. Drton

The next easy lemma is crucial for the understanding of injectivity
of φG.

Lemma 7.3. If φG is injective and H ⊆ G is a subgraph, then φH

is injective.

Proof. Any subgraph can be obtained by removing edges one at a
time, and then removing isolated nodes. If H is obtained from
G = (V,D,B) by removing the edge i → j, then φH is the restric-
tion of φG to the subset of matrices Λ ∈ R

D
reg that have λij = 0. If

we instead remove the edge i ↔ j, then the restriction is to matrices
Ω ∈ PD(B) with ωij = 0. If H is obtained by removing the isolated
node i, then

φG(Λ,Ω) =

(
φH(Λ,Ω) 0

0 ωii

)
.

In either case non-injectivity of φH implies non-injectivity of φG. Q.E.D.

Corollary 7.4. If φG is injective, then G is simple, that is, for any
two distinct vertices i and j at most one of the three edges i ↔ j, i → j
and i ← j may appear in G.

Proof. If G is not simple then it contains a subgraph H with two
nodes and two edges. The map φH is infinite-to-one as it maps a four-
dimensional domain into the three-dimensional set of symmetric 2 × 2
matrices. Now apply Lemma 7.3. Q.E.D.

Theorem 7.5. If φG is injective, then G is acyclic.

Proof sketch. By Lemma 7.3, we may restrict to studying directed
cycles 1 → 2 → . . . → m → 1. The case of m = 2 is covered by
Corollary 7.4. If m ≥ 3, then it is possible to show that φG is generically
2-to-1, that is, the fiber FG(Λ,Ω) is generically of size two [16]. Q.E.D.

It remains to characterize injectivity for acyclic graphsG = (V,D,B).
The next theorem shows that injectivity can be decided in polynomial
time by alternatingly decomposing the bidirected part (V,B) into con-
nected components and removing sink nodes of the directed part (V,D).

Theorem 7.6. Suppose G is an acyclic mixed graph. Then:

(a) φG is injective if and only if G does not contain a subgraph
whose bidirected part is connected and whose directed part has
a unique sink.

(b) If φG is injective, then its inverse is rational and MG smooth.
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Fig. 7.1. (a) A mixed graph for which the parametrization
φG is injective. (b) A graph for which φG is not
injective.

Figure 7.1 illustrates the characterization in part (a) of the theo-
rem. A full proof of the theorem can be found in [16]. The fact that
φG is not injective if the combinatorial condition in (a) fails can be
shown by a counterexample for the particular subgraph and then invok-
ing Lemma 7.3. The sufficiency of the condition for injectivity can be
proven by repeatedly applying the graph decomposition result in Theo-
rem 6.4 and the result on ancestral subgraphs from Theorem 5.2. These
results as well as Theorem 7.6 have generalizations to nonlinear struc-
tural equation models [56, 66].

§8. Generic Identifiability

The difference between injectivity and generic injectivity of φG may
appear minute. However, the two properties are quite different, and
failure of generic injectivity cannot be argued by studying subgraphs (as
in Lemma 7.3). According to Corollary 7.4, a mixed graph G can have
the map φG injective only if it is acyclic and simple. The deeper issue
is then to find out which simple acyclic mixed graphs have φG injective.
In contrast, the next result shows that all simple acyclic mixed graphs
are generically injective. The deeper issue for generic injectivity is thus
the treatment of graphs that contain directed cycles or are not simple.

Theorem 8.1. If G = (V,D,B) is acyclic and simple, then φG is
generically injective and algebraically one-to-one.

The theorem is due to [7]. It shows that the graph from Figure 7.1(b)
has φG generically injective, but not injective. A short proof of Theo-
rem 8.1 is obtained from the following observation.

Lemma 8.2. Let G = (V,D,B) be a mixed graph, and let
Σ = φG(Λ0,Ω0) for Λ0 ∈ R

D
reg and Ω0 ∈ PD(B). The fiber FG(Λ0,Ω0) is

isomorphic to the set of matrices Λ ∈ R
D
reg that solve the equation system

(8.1)
[
(I − Λ)TΣ(I − Λ)

]
ij

= 0, i �= j, i ↔ j /∈ B.
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Proof. The projection (Λ,Ω) �→ Λ maps FG(Λ0,Ω0) to the set of
matrices Λ ∈ R

D
reg that solve the equations in (8.1). Indeed, as I − Λ is

invertible for Λ ∈ R
D
reg,

Σ = φG(Λ,Ω) = (I − Λ)−TΩ(I − Λ) =⇒ Ω = (I − Λ)TΣ(I − Λ).

If i �= j and i ↔ j /∈ B, then the (i, j) entry of Ω is zero. Conversely, if
Λ solves (8.1), then (Λ, (I − Λ)TΣ(I − Λ)) ∈ FG(Λ,Ω). Q.E.D.

We emphasize that the equations in (8.1) are bilinear as

[
(I − Λ)TΣ(I − Λ)

]
ij

= σij −
∑

k∈pa(i)

λkiσki −
∑

l∈pa(j)

σilλlj +
∑

k∈pa(i)

∑
l∈pa(j)

λkiσklλlj .

Proof of Theorem 8.1. Because G is acyclic, we may enumerate the
vertex set in a topological order as V = {1, . . . ,m}. Then pa(i) ⊆
{1, . . . , i− 1} for i = 1, . . . ,m. Moreover, because G is simple, j ∈ pa(i)
implies that j ↔ i /∈ B. By Lemma 8.2,[

(I − Λ)TΣ(I − Λ)
]
pa(i),i

= 0, i = 1, . . . ,m.

These equations can be rewritten as
(8.2)[

(I − Λ)TΣ
]
pa(i),pa(i)

Λpa(i),i =
[
(I − Λ)TΣ

]
pa(i),i

, i = 1, . . . ,m.

By the topological order, if j ∈ pa(i), then the j-th row of (I − Λ)TΣ
depends only on the first i−1 columns of Λ. The system in (8.2) can thus
be solved recursively, each step requiring solution of a linear system.

To show that φG is generically injective, it remains to argue that
the equations in (8.2) generically have a unique solution. It suffices to
exhibit a single pair (Λ,Ω) for which this is true. We may choose Λ = 0
and Ω = I, so Σ = I. Then the matrix for the i-th group of equations
in (8.2) is Σpa(i),pa(i), which is invertible. Q.E.D.

Although a combinatorial characterization of the graphs with gener-
ically injective parametrization φG is not known, Gröbner basis tech-
niques can be used to determine the degree of identifiability from Def-
inition 3.5 and, thus, decide whether φG is algebraically one-to-one.
Gröbner bases are computationally tractable for non-trivial examples
and have been used for a classification of all graphs with up to 5 nodes
[34]. For larger graphs, algebraic methods can be applied after decom-
position according to Theorem 6.4.
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We describe two options for the computation. In either case, we
advocate working with the equation system from (8.1) as opposed to the
fiber equation Σ = φG(Λ,Ω). System (8.1) has Ω eliminated and may
be far more compact as it avoids inversion of I −Λ. This said, although
system (8.1) is polynomial also for graphs that contain directed cycles,
care must be taken to avoid spurious solutions with I−Λ non-invertible.

The first possibility is to perform a parametric Gröbner basis compu-
tation. We introduce a matrix Λ whose nonzero entries λij , i → j ∈ D,
are indeterminates and a pair of matrices (Λ0,Ω0) that are parameters.
We form the matrix (I − Λ)TφG(Λ0,Ω0)(I − Λ) and set to zero the off-
diagonal entries indexed by non-edges of the bidirected part (V,B). We
then compute a Gröbner basis for the resulting system in the polyno-
mial ring with coefficients in the field of rational fractions R(Λ0,Ω0).
The Gröbner basis readily yields the dimension of the generic fibers.
If the dimension is finite we may also find the algebraic degree of the
generic fibers, which is what we referred to as degree of identifiability.
When the graph G contains directed cycles, we first saturate our equa-
tion system with respect to det(I −Λ) in order to remove solutions that
have I − Λ non-invertible.

Example 8.3. The following code for the system Singular [13]
implements the approach just described for a directed 3-cycle:

LIB "linalg.lib"; option(redSB);

ring R = (0,l012,l023,l031,w011,w022,w033),(l12,l23,l31),dp;

matrix L[3][3] = 1,-l12,0,

0,1,-l23,

-l31,0,1;

matrix L0[3][3] = 1,-l012,0,

0,1,-l023,

-l031,0,1;

matrix W0[3][3] = w011,0,0,

0,w022,0,

0,0,w033;

matrix W[3][3] =

transpose(L)*inverse(transpose(L0))*W0*inverse(L0)*L;

ideal GB = sat(ideal(W[1,2],W[1,3],W[2,3]), det(L))[1];

dim(GB); mult(GB);

The output first certifies that the fibers are generically zero-dimensional,
that is, contain finitely many points. The multiplicity computed with
the last command shows the degree of identifiability to be two.

The second possibility is to consider only polynomials with real-
valued coefficients but to introduce as polynomial variables the nonzero
entries of Λ as well as a symmetric matrix Σ. These variables are ordered
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with respect to a block monomial order in which the variables in Λ are
larger than the variables in Σ. Let I be the ideal generated by the
off-diagonal entries of (I − Λ)TΣ(I − Λ) that are indexed by the non-
edges of (V,B). Saturate I with respect to det(I − Λ). Let J be the
reduced Gröbner basis of the resulting ideal. Elimination theory yields
the following fact [34, Section 8 of the supplemental material].

Proposition 8.4. A mixed graph G = (V,D,B) has φG algebraically
one-to-one if and only if for each i → j ∈ D, the reduced Gröbner basis
J contains an element with leading monomial a(Σ)λij.

In comparison to the first approach, the second method yields re-
lations that show how to identify coefficients λij from Σ. By analyzing
the monomials under the staircase of the initial ideal of J [12, Chapter
9], we may also determine the generic dimension and degree of the fiber
FG(Λ,Ω). This way we may find the degree of identifiability of G.

Example 8.5. Treating again a directed 3-cycle, we give an example
of the second type of computation in Singular:

LIB "linalg.lib"; option(redSB);

ring R = 0,(l12,l23,l31,s11,s12,s13,s22,s23,s33),(dp(3));

matrix L[3][3] = 1,-l12,0,

0,1,-l23,

-l31,0,1;

matrix S[3][3] = s11,s12,s13,

s12,s22,s23,

s13,s23,s33;

matrix W[3][3] = transpose(L)*S*L;

ideal GB = sat(ideal(W[1,2],W[1,3],W[2,3]), det(L))[1]; GB;

The output is a list of 9 polynomials whose leading terms are, in our
usual notation,

λ23λ31σ23, λ12λ31σ13, λ12λ23σ12,

λ12λ31σ12σ33, λ12σ11σ13σ23, λ12λ23σ11σ23,

λ23σ12σ13σ22, λ23λ31σ13σ22, λ2
31σ13σ22σ33.

By Proposition 8.4, φG is not algebraically one-to-one because there is
no leading term of the form λ31a(Σ). The last leading term belongs to
a polynomial that shows that λ31 is algebraic function of degree 2 of the
covariance matrix Σ because it solves the equation

λ2
31σ33(σ13σ22 − σ12σ23)− λ31(σ

2
13σ22 − σ11σ

2
23 − σ2

12σ33 + σ11σ22σ33)

+ σ11(σ13σ22 − σ12σ23) = 0.
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The equations with leading terms λ23σ12σ13σ22 and λ12σ11σ13σ23 show
that λ23 and λ12 are rational functions of Σ and λ31. Altogether, we
have verified that φG is algebraically 2-to-one. Checking this by counting
monomials under the staircase means considering the leading monomials
while focusing only the variables λ12, λ23, λ31 we seek to solve for. The
monomials are

λ23λ31, λ12λ31, λ12λ23, λ12, λ23, λ2
31.(8.3)

They generate the ideal I = 〈λ12, λ23, λ
2
31〉. The monomials under the

staircase are the monomials in R[λ12, λ23, λ31] \ I. The fact that there
are two, namely, 1 and λ31, implies that φG is algebraically 2-to-one.

Although Gröbner basis methods can be effective, it is desirable
to obtain combinatorial methods that are efficient also for large-scale
problems. The half-trek criteria of [34] are state-of-the-art methods
whose conditions can be checked in time that is polynomial in the size
of the vertex set of the considered graph. They provide a sufficient as
well as a necessary condition for generic injectivity of φG. More precisely,
there is a condition that is sufficient for φG to be algebraically one-to-one
and a related condition that is necessary for φG to be generically finite-
to-one. The conditions are implemented in a package for the R project
for statistical computing [4]. We begin our discussion of the half-trek
criteria by introducing some needed terminology.

A half-trek from initial node i to target node j is a trek τ from i
to j whose left-hand side is a singleton set, so left (τ) = {i}. In other
words, a half-trek is of the form

i → j1 → . . . → jr → j or i ↔ j1 → . . . → jr → j.

Let X,Y ⊆ V be two sets of nodes of equal cardinality |X| = |Y | = k.
Let Π be a set of k treks. Then Π is a system of treks from X to Y ,
denoted Π : X ⇒ Y , if X is the set of initial nodes of the treks in Π
and Y is the set of target nodes. Note that we allow X ∩ Y �= ∅. The
system Π is a system of half-treks if every trek πi is a half-trek. Finally,
the system Π has no sided intersection if

left (π) ∩ left (π′) = ∅ = right (π) ∩ right (π′)

for all pairs of treks π, π′ ∈ Π.

Definition 8.6. A set Y ⊆ V satisfies the half-trek criterion with
respect to node i if (i) |Y | = |pa(i)|, (ii) j = i or j ↔ i implies that
j �∈ Y , and (iii) there exists a system of half-treks Π : Y ⇒ pa(i) that
has no sided intersection.
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Theorem 8.7. Let G = (V,D,B) be a mixed graph.

(i) Suppose for every i ∈ V there exists a set Yi ⊆ V that satis-
fies the half-trek criterion with respect to i. If there exists a
total ordering ≺ such that j ≺ i whenever j ∈ Yi and there
is a half-trek from i to j, then φG is generically injective and
algebraically one-to-one.

(ii) For φG to be generically finite-to-one it is necessary that there
exists a family of sets Yi ⊆ V , i ∈ V , such that Yi satisfies the
half-trek criterion with respect to i and j ∈ Yi implies i �∈ Yj.

We merely outline the proof of the theorem; for details see [34].
Some of the arguments are further illustrated in Example 8.8. Note also
that Theorem 8.1 is obtained from Theorem 8.7(i) by taking Yi = pa(i)
and ≺ as a topological order.

Outline of proof of Theorem 8.7. (i) Let Σ = φG(Λ0,Ω0) for Λ0 ∈
R

D
reg and Ω0 ∈ PD(B). Suppose (Λ,Ω) ∈ FG(Λ0,Ω0). To show that

(Λ,Ω) = (Λ0,Ω0), we visit the nodes i ∈ V from smallest to largest in
the order ≺ and iteratively find a linear equation system that is uniquely
solved by the i-th column of Λ. The starting point is Lemma 8.2, by
which we have

(8.4)
[
(I − Λ)TΣ(I − Λ)

]
Yi,i

= 0, i ∈ V.

This is true because Definition 8.6 yields that j �= i and j ↔ i /∈ B when
j ∈ Yi. Similar to the proof of Theorem 8.1, we may rearrange (8.4) to

Ai(Λ,Σ)Λpa(i),i = bi(Λ,Σ),

with Ai(Λ,Σ) =
[
(I − Λ)TΣ

]
Yi,pa(i)

and bi(Λ,Σ) =
[
(I − Λ)TΣ

]
Yi,i

.

Both Ai(Λ,Σ) and bi(Λ,Σ) can be shown to depend only on those
columns of Λ that are indexed by nodes j with a half-trek from i to
j. Thus, the proof is complete if we can show that Ai(Λ0,Σ) is invert-
ible for generic choices of Λ0 and Ω0. To verify this, we may use the
existence of a half-trek system without sided intersection from Yi to pa(i)
to argue that the determinant of Ai(Λ0,Σ) is not the zero polynomial.
This last step is in the spirit of the Lindström-Gessel-Viennot lemma.

(ii) The Jacobian of the equations from Lemma 8.2 has its rows
indexed by the non-edges of the bidirected part (V,B) and its columns
indexed by the directed edges in D. For φG to be generically finite-to-
one, it is necessary that the Jacobian has full column rank D. It can be
shown that the Jacobian contains an invertible |D|× |D| submatrix only
if the given condition holds. Let Ji be the submatrix of the Jacobian
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1 3 5

2 4

Fig. 8.1. Illustration of Theorem 8.7.

obtained by selecting the columns corresponding to directed edges with
head at i. Then, more specifically, Ji has full column rank only if there
exists a subset Yi ⊆ V that satisfies the half-trek criterion with respect
to i. Moreover, if j ∈ Yi and i ∈ Yj , then the same row, namely, that
corresponding to i ↔ j /∈ B, would be used to get an invertible square
submatrix of Ji and Jj . Q.E.D.

The conditions from Theorem 8.7 can be checked in polynomial time.
For condition (i), we may use recursively that the existence of a suitable
set satisfying the half-trek criterion is equivalent to a condition on the
maximum flow in a certain network-flow problem. Condition (ii) can be
checked via a single larger network-flow problem [34, Section 6].

Example 8.8. Let G be the graph in Figure 8.1. The sets

Y1 = {2, 5}, Y2 = {5}, Y3 = ∅, Y4 = ∅, Y5 = {3}

each satisfy the half-trek criterion with respect to the node they are
indexed by. This is least evident for Y1, and we highlight the half-treks
2 ↔ 3 and 5 ↔ 4 → 2, which have no sided intersection. Choosing
the ordering as 3 ≺ 4 ≺ 5 ≺ 1 ≺ 2, Theorem 8.7(i) shows that φG

is algebraically one-to-one. Other possible orderings are obtained by
permuting {3, 4, 5} or {1, 2}.

To illustrate ideas from the proof of Theorem 8.7(i), we focus on
node 1, with pa(1) = {2, 3}. Since Y1 = {2, 5}, we work with the
equations[

(I − Λ)TΣ(I − Λ)
]
51

= 0,
[
(I − Λ)TΣ(I − Λ)

]
21

= 0.

Expanding out the matrix product, the equations become

σ51 − σ52λ21 − σ53λ31 − λ35σ31 + λ35σ32λ21 + λ35σ33λ31 = 0,(8.5)

σ21 − σ22λ21 − σ23λ31 − λ42σ41 + λ42σ42λ21 + λ42σ43λ31 = 0,(8.6)
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and we wish to solve for λ21 and λ31. With 5 ≺ 1, we have already solved
for λ35; since Y5 = pa(5) we have λ35 = σ35/σ55 as is also clear from the
discussion after Proof B for Theorem 7.2. Substituting the ratio for λ35

turns (8.5) into a linear equation in λ21 and λ31. The equation in (8.6)
could be linearized similarly, except that now the relevant coefficient λ42

has not yet been determined in an ordering with 1 ≺ 2. However, if Λ
is part of a pair (Λ,Ω) in the fiber given by Σ, then

−λ42σ41 + λ42σ42λ21 + λ42σ43λ31 = 0

because there is no half-trek from 1 to 2. To see this note that the term
λ42σ41 corresponds to treks from 2 to 1 that start with the edge 2 ← 4,
whereas the sum λ42σ42λ21+λ42σ43λ31 corresponds to treks from 2 to 1
that start with the edge 2 ← 4 and end in either 2 → 1 or 3 → 1. These
two sets of treks coincide when there is no half-trek from 1 to 2.

Condition (i) in Theorem 8.7 can be improved by applying the graph
decomposition from Section 6 and checking the condition in each sub-
graph. No such strengthening is possible for the necessary condition
from part (ii) of the theorem [34]. Further strengthening of the suffi-
cient condition is possible by first removing sink nodes from the graph
using the observation from Theorem 5.2. When a sink node is removed
a more refined graph decomposition may become possible; we refer the
reader to [10, 22]. While a specific polynomial-time algorithm using this
idea is given in [22], it is still unclear how to best design algorithms
based on recursive graph decomposition and removal of sink nodes.

We conclude our discussion of parameter identification with two
examples from the exhaustive computational study of graphs with up to
5 nodes in [34]. Both graphs in Figure 8.1 satisfy the necessary condition
in Theorem 8.7(ii) and, thus, have φG generically finite-to-one. Neither
graph satisfies the sufficient condition from Theorem 8.7(i). The graph
in panel (a) indeed does not have φG generically injective. Instead, φG is
algebraically 3-to-one. The graph in panel (b), however, is algebraically
one-to-one but Theorem 8.7(i) fails to recognize it. Decomposition and
removal of sink nodes do not help and other ideas are needed; see [71].

Part IV. Relations Among Covariances

§9. Implicitization

Let MG be the set of covariance matrices of the structural equation
model given by a mixed graph G = (V,D,B). Motivated, in particular,
by the covariance equivalence problem from Question 3.7, we now discuss
polynomial relations among the entries of the matrices in MG. Let
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(a)

1 2

3

4

5

(b)

1

2 3

4

5

Fig. 8.2. Graphs that satisfy the necessary but not the suf-
ficient condition from Theorem 8.7: (a) φG is al-
gebraically 3-to-one, (b) φG is algebraically one-to-
one and, thus, generically injective.

Σ = (σij) be a symmetric V × V matrix of variables, and let R[Σ] be
the ring of polynomials in the indeterminates σij with real coefficients.
The relations we seek to understand make up the vanishing ideal

I(G) = {f ∈ R[Σ] : f(Σ) = 0 for all Σ ∈ MG} .

Since MG is the image of the rational map φG, we may compute a gen-
erating set for I(G) by implicitization. Assume for simplicity that G is
acyclic and, thus, φG polynomial. Define R[Σ,Λ,Ω] to be the polynomial
ring with the additional indeterminates from a V × V matrix Λ = (λij)
and a symmetric V ×V matrix Ω = (ωij) whose supports are determined
by D and B, respectively. Then 〈σij − φG(Λ,Ω)ij : i ≤ j〉 ⊂ R[Σ,Λ,Ω]
is the ideal for the graph of φG, and

I(G) = 〈 σij − φG(Λ,Ω)ij : i ≤ j 〉 ∩ R[Σ].

A better approach, however, is to start with the equations from Lemma 8.2,
which have Ω already eliminated. We compute

I(G) =
〈[

(I − Λ)TΣ(I − Λ)
]
ij

: i �= j, i ↔ j /∈ B
〉

∩ R[Σ].

If G is not acyclic, we saturate with respect to det(I − Λ) before inter-
secting with R[Σ]; compare Examples 8.3 and 8.5.

Example 9.1. To illustrate the use of a different software, we
change to Macaulay2 [40]. The following code computes a generating
set for the vanishing ideal I(G) when G is the graph from Figure 9.1:

R = QQ[l12,l13,l24,l34, s11,s12,s13,s14,s22,s23,s24,s33,s34,s44,

MonomialOrder => Eliminate 4];
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1

2

3

4

Fig. 9.1. An acyclic digraph.

Lambda = matrix{{1, -l12, -l13, 0},

{0, 1, 0, -l24},

{0, 0, 1, -l34},

{0, 0, 0, 1}};

S = matrix{{s11, s12, s13, s14},

{s12, s22, s23, s24},

{s13, s23, s33, s34},

{s14, s24, s34, s44}};

W = transpose(Lambda)*S*Lambda;

I = ideal{W_(0,1),W_(0,2),W_(0,3),W_(1,2),W_(1,3),W_(2,3)};

eliminate({l12,l13,l24,l34},I)

The ‘GraphicalModels’ package [37] automates the computation:

needsPackage "GraphicalModels";

G = digraph {{1,{2,3}},{2,{4}},{3,{4}}};

R = gaussianRing G;

gaussianVanishingIdeal R

Reproduced in our notation, the output shows that the ideal I(G) is
generated by the two polynomials

f1 = σ12σ13 − σ11σ23,(9.1)

f2 = σ14σ
2
23 − σ13σ23σ24 − σ14σ22σ33(9.2)

+ σ12σ24σ33 + σ13σ22σ34 − σ12σ23σ34.

Computing I(G) using Gröbner bases is a method that applies to
any mixed graph but can be computationally prohibitive for graphs with
more than 5 or 6 nodes. In order to solve model equivalence problems
combinatorial insight on particular types of relations is needed.

Example 9.2. Continuing with Example 9.1, observe that f1 and
f2 from (9.1) and (9.2) are determinants of submatrices of the covariance
matrix Σ. The following two displays locate the submatrices:

σ11 σ12 σ13 σ14

σ12 σ22 σ23 σ24

σ13 σ23 σ33 σ34

σ14 σ24 σ34 σ44

⎡
⎢⎢⎣

⎤
⎥⎥⎦

σ11 σ12 σ13 σ14

σ12 σ22 σ23 σ24

σ13 σ23 σ33 σ34

σ14 σ24 σ34 σ44

⎡
⎢⎢⎣

⎤
⎥⎥⎦
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The boxes emphasize that each submatrix contains a principal submatrix
along with one additional row and column. The determinants f1 and f2
are thus almost principal minors of Σ. As we discuss in Section 10, the
vanishing of almost principal minors of a Gaussian covariance matrix
has the probabilistic meaning of conditional independence [60].

§10. Conditional Independence

Let X = (Xi : i ∈ V ) be a Gaussian random vector with covariance
matrix Σ ∈ PDV . Let i, j ∈ V be two distinct indices, and let S ⊆ V \
{i, j}. The random variables Xi and Xj are conditionally independent
given XS if and only if det(ΣiS×jS) = 0; see [21, Chapter 3] and [48].

It is fully understood which conditional independence relations hold
in the covariance matrices of a linear structural equation model. The
following concepts are needed to state the result. Let π be a semi-walk
from node i to node j in the considered mixed graph G = (V,D,B), and
let node k be a non-endpoint of π. A collider on π is a node k that is
an internal node on π, and a head on the two edges that precede and
succeed k on π. We recall our convention that the two nodes incident
to a bidirected edge are both heads. Pictorially, π includes the segment
→ k ←, → k ↔, ↔ k ← or ↔ k ↔. A non-collider on π is an internal
node of π that is not a collider on π.

Definition 10.1. Fix a set S ⊆ V . Two nodes i, j ∈ V are d-
connected by S if G contains a semi-walk from i to j that has all colliders
in S and all non-colliders outside S. If no such semi-walk exists, then i
and j are d-separated by S.

The following theorem was first proven for acyclic digraphs [39] and
later extended to cover arbitrary mixed graphs [58].

Theorem 10.2. Let i and j be two distinct nodes of a mixed graph
G = (V,D,B), and let S ⊆ V \ {i, j}. Then det (φG(Λ,Ω)iS×jS) = 0 for
all Λ ∈ R

D
reg, Ω ∈ PD(B) if and only if i and j are d-separated by S.

For acyclic digraphs, the theorem can be derived in a probabilis-
tic setup that extends to non-Gaussian conditional independence [46].
Examples with three binary variables, such as the one in Figure 10.1,
serve well to illustrate the intuition behind d-separation. In our linear
Gaussian setting, Theorem 10.2 is a special case of Theorem 11.3 that
we treat in more detail.

Define the conditional independence ideal

ICI(G) = 〈 det (ΣiS×jS) : i, j d-separated by S 〉.
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Audience asleep?

Boring talk? Early morning talk?

Fig. 10.1. A graph for three binary variables.

By Theorem 10.2, ICI(G) ⊆ I(G) for any mixed graph G. In Exam-
ple 9.1, ICI(G) = I(G) but this may be false even for acyclic digraphs
[61]. Nevertheless, if G is an acyclic digraph, then the set of covariance
matrices MG is cut out by conditional independence relations, that is,

(10.1) MG = V (ICI(G)) ∩ PDV .

Here, V (ICI(G)) is the variety of the conditional independence ideal, i.e.,
the set of symmetric matrices that have all the determinants generating
ICI(G) zero. The equality in (10.1) also holds when G is an ancestral
graph, as defined in Section 7. However, it is false in general as can be
seen in Example 3.14. We remark that for acyclic digraphs it has been
proven that saturating the conditional independence with respect to all
principal minors yields the vanishing ideal [52]:

I(G) = ICI(G) :

( ∏
A⊂V

det(ΣA×A)

)∞
.

For acyclic digraphs and more generally ancestral graphs, the equal-
ity from (10.1) allows us to answer Question 3.7 on covariance equiva-
lence by checking whether two graphs have the same d-separation rela-
tions. The latter comparison can be accomplished in polynomial time.
We state the result for acyclic digraphs [35, 69]. A generalization for
ancestral graphs was given more recently [1]; see also [75].

Theorem 10.3. Let G and G′ be two acyclic digraphs. Then
MG = MG′ if and only if G and G′ have the same adjacencies and
the same unshielded colliders. An unshielded collider is an induced sub-
graph of the form i → j ← k.

We remark that it can also be decided in polynomial time whether
two digraphs that are not necessarily acyclic have the same d-separation
relations [51]. When the graphs have directed cycles then d-separation
equivalence is necessary but not sufficient for covariance equivalence;
see, e.g., the example in [15].
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§11. Trek-Separation

We now turn to the characterization of the vanishing of general
minors of the covariance matrices in a linear structural equation model.
Our first example clarifies the importance of minors that are not almost
principal.

Example 11.1. If G is the graph from Figure 3.2 and Example 3.14,
then I(G) is generated by det(Σ12,34). Such off-diagonal 2 × 2 minors
are known as tetrads in the statistical literature; see e.g. [20].

The tetrad representation theorem gives a combinatorial character-
ization of the vanishing of any 2× 2 determinant [57]. The theorem has
been greatly generalized, and we now have a full combinatorial under-
standing of when a minor of the covariance matrix vanishes based on
the notion of trek-separation [64]. Moreover, the non-vanishing deter-
minants can be described precisely [14].

Definition 11.2. Let A,C, SA, SC ⊆ V be subsets of the vertex set
of the mixed graph G = (V,D,B). The pair (SA, SC) trek-separates A
and C if every trek from i ∈ A to j ∈ C intersects SA on its left side or
SC on its right side.

Theorem 11.3. Let G be a mixed graph. Then the A×C submatrix
of φG(Λ,Ω) has generic rank ≤ r if and only if there exist sets SA and
SC with |SA|+ |SC | ≤ r such that (SA, SC) trek-separates A and C.

The theorem for acyclic mixed graphs is proven in [64]. The cases
with directed cycles are covered by the results in [14]. We describe the
ideas behind the proof.

Proof outline. The problem can be reduced to the case where G is
a digraph by subdividing bidirected edges. For each edge i ↔ j ∈ B we
introduce a new node {i, j} and two edges {i, j} → i and {i, j} → j.
The new digraph G′ thus has |V |+ |B| nodes and |D|+2|B| edges. For
instance, if G is the graph from Figure 1.2, then G′ is the digraph in
Figure 1.1. Every trek in G corresponds to a trek in G′ where an edge
i ↔ j in G corresponds to i ← {i, j} → j in G′. The entries of (φG)A,C

and those of (φG′)A,C can be shown to admit the same set of relations.
In the sequel, assume that G itself is a digraph. Then PD(B) con-

tains diagonal matrices with positive entries. The rank of a submatrix
of φG(Λ,Ω) for Λ ∈ R

D
reg and Ω ∈ PD(B) is then the same as the rank

of the corresponding submatrix of Σ = φG(Λ, I).
To establish the claim, we may study the vanishing of the determi-

nants of square submatrices. So assume that |A| = |C| = r + 1. The
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Cauchy-Binet formula gives that
(11.1)

det (ΣA×C) =
∑
E

det
([

(I − Λ)−1
]
E×A

)
det

([
(I − Λ)−1

]
E×C

)
,

where the sum is over subsets E ⊆ V of cardinality r + 1. By the
Lindström-Gessel-Viennot lemma for general digraphs, it holds that

(11.2) det
([

(I − Λ)−1
]
E×A

)
= 0 for all Λ ∈ R

D
reg,

if and only if no system of r + 1 directed paths from E to A is vertex-
disjoint. Applying this to all terms in (11.1) shows that det (ΣA×C)
vanishes if and only if every system of treks from A to C has a sided
intersection. Here, an intersection on the left side of a trek corresponds
to the vanishing of determinants of the matrices

[
(I − Λ)−1

]
E×A

and,

similarly, intersections on the right side are related to the determinants
of the matrices

[
(I − Λ)−1

]
E×C

. The characterization by sided intersec-

tions in trek systems can be turned into the claimed statement about
trek-separation via Menger’s theorem. To account for the distinct role
played by the left and the right sides of the treks, Menger’s theorem
is applied in a digraph G̃ that results from duplicating the nodes and
edges of G. Each node and each edge of G has a left and a right side
version in G̃. Menger’s theorem yields a cut set S of cardinality |S| ≤ r

in G̃. Partitioning S according to the left and right side yields the pair
(SA, SC) for the claimed trek-separation. Q.E.D.

Example 11.4. When G is the graph from Figure 3.2, then the
submatrix [φG(Λ,Ω)]12,34 has generic rank 1; recall Example 11.1. The-
orem 11.3 shows that the rank is at least 1 because (∅, ∅) does not
trek-separate {1, 2} and {3, 4}. For instance, there is the trek 1 → 3.
That the rank is no larger than 1 follows from (∅, {3}) trek-separating
{1, 2} and {3, 4}. For instance, the node 3 is on the right side of the two
treks 1 → 3 and 2 → 3 → 4.

Example 11.5. What is the generic rank of the A×C submatrix of
φG(Λ,Ω) when G is the ‘spider graph’ from Figure 11.1, A = {1, 2, 3, 4}
and C = {5, 6, 7}? Clearly, node c is on every trek between A and C.
Hence, ({c}, {c}) trek-separates A and C and the rank is at most two.
In fact, the rank is two. Consider the two treks

π1 : 1 ↔ ◦ → c → 5,

π2 : 3 ← c ← ◦ ↔ 6.
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1 2 3 4 5 6 7

c

Fig. 11.1. A ‘spider graph’ with {1, 2, 3, 4}×{5, 6, 7} subma-
trix of rank two.

They have only node c in common but c ∈ right (π1) and c ∈ left (π2).
Hence, a pair of trek-separating sets must use at least two nodes.

Trek-separation solves the problem of characterizing the vanishing
of determinants. However, there is currently no efficient method for
deciding when two mixed graphs are trek-separation equivalent.

§12. Verma Constraints

Much interesting ground lies beyond determinants of the covariance
matrix. We content ourselves with two examples concerning a relation
first presented in [69].

Example 12.1. Let G be the graph from Figure 2.1. The graph
has no trek-separation relations as can be checked with the package
‘GraphicalModels’ for Macaulay2 [37]. The commands

needsPackage "GraphicalModels";

G = mixedGraph(digraph {{1,{2,3}},{2,{3}},{3,{4}}}, bigraph {{2,4}});

R = gaussianRing G;

trekIdeal(R,G)

return the zero ideal. Issuing the command

gaussianVanishingIdeal R

shows that I(G) is generated by

(12.1)

fVerma = σ11σ13σ22σ34 − σ11σ13σ23σ24 − σ11σ14σ22σ33 + σ11σ14σ
2
23

− σ2
12σ13σ34 + σ2

12σ14σ33 + σ12σ
2
13σ24 − σ12σ13σ14σ23.



80 M. Drton

1
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4

Fig. 12.1. The largest mixed component of the Verma graph.

Clearly, fVerma is not a determinant. Its vanishing can be explained as
follows. Decompose G into its mixed components. The largest compo-
nent G[{2, 4}] is depicted in Figure 12.1. By Theorem 6.4, there is a
rational function τ{2,4} : MG → MG′ , so τ{2,4} is the covariance ma-
trix for G[{2, 4}]. In G[{2, 4}], there is no trek from node 1 to node 4.
Hence, the (1, 4) entry of τ{2,4}(Σ) is zero. Clearing the denominator
yields fVerma(Σ) = 0 for Σ ∈ MG.

The example suggests that new relations can be discovered by de-
composing the graph and studying d-separation or trek-separation rela-
tions in the mixed components. However, the matter is not as simple as
applying a single decomposition.

Example 12.2. In order to prevent decomposition of the Verma
graph, add a fifth node and bidirected edges such that (V,B) becomes
connected. Specifically, consider the graph G from Figure 12.2. The new
graph G is simple and acyclic and, thus, MG has expected dimension 13.
Because the nodes 2 and 5 are d-separated by node 1, we have σ12σ15 −
σ11σ25 ∈ I(G). Other relations must exist, and indeed a Gröbner basis
computation shows that

I(G) = 〈σ12σ15 − σ11σ25, fVerma〉 : σ∞
11

with fVerma being the polynomial from (12.1). The fact that fVerma ∈
I(G) is explained by Theorem 5.2. Since no directed edge of G has a tail
at node 5, the theorem allows us to consider the subgraph induced by the
set of nodes {1, 2, 3, 4}. We are back in Example 12.1 and decomposition
yields fVerma as a relation.

It is clear that more contrived examples can be constructed in which
d-/trek-separation applies only after several rounds of alternating be-
tween graph decomposition and forming a subgraph induced by an an-
cestral set. An overview of what is known about such a recursive ap-
proach can be found in [55], where the focus is on non-linear models and
manipulation of probability density functions.
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Fig. 12.2. A graph that can be decomposed only after re-
moving the sink node 5.

§13. Conclusion

Linear structural equation models have covariance matrices with
rich algebraic structure. As we showed in Section 3, statistical consid-
erations motivate a host of different algebraic problems. In this review,
we focused on methods for parameter identification as well as relations
among covariances. While much progress has been made, and continues
to be made [30], we have encountered a plethora of open problems of
algebraic and combinatorial nature.

In our review, we focused exclusively on linear and Gaussian models.
As noted repeatedly, many of the questions have interesting generaliza-
tions to non-linear or non-Gaussian models. In particular, in settings
with discrete random variables, as considered in [27, 28], algebra and
Gröbner basis techniques continue to be useful [21]. Similarly, many ad-
ditional challenges arise in models with explicit latent variables, which
motivate studying maps that result from projecting onto a principal
submatrix of φG (recall Section 5).
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