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Gröbner bases computation
by triangularizing Macaulay matrices

Bruno Buchberger

Abstract.

In my PhD thesis 1965 and the subsequent publication 1970 in
aequationes mathematicae, I introduced the notion of Gröbner bases
and proved a characterization theorem for Gröbner bases on which an
algorithm for constructing Gröbner bases can be based. The main idea
for the theorem and the algorithm was the notion of “S-polynomials”.
Most of the subsequent work on the algorithmic theory of Gröbner
bases, including the implementation of the Gröbner bases technology
in mathematical software systems like Mathematica, Maple, etc. was
based on this approach.

In the early eighties, I proposed a completely different strategy for
computing Gröbner bases proceeding by the following three steps:
1. Produce the set of all multiples u.f of the polynomials f in the initial
basis F by all power products u (which we call “generalized Sylvester
matrix” or “Macaulay matrix” of F ).

2. Triangularize this matrix.

3. Take the “contour” in the diagonal of the matrix, i.e. the set of all
those polynomials in the diagonal whose leading power product is not
a multiple of the leading power product of any other polynomial in the
diagonal.

It is easy to prove that the above procedure yields a Gröbner basis
if one starts with the infinite matrix of all shifts u.f. However, of
course, this is not an algorithm. So I posed the question whether one
can give an a-priori bound on D so that, if one puts all shifts u.f with
degree of u smaller than D to the initial matrix, the matrix resulting
by triangularization and contour formation will be a Gröbner basis for
F. Over the years, several people tried to find such a bound but only
recently (2014) my PhD student Manuela Wiesinger-Widi was able to
establish such a bound combining known bounds by G. Hermann and
T. W. Dubé for the ideal membership and the Gröbner bases degree
problem, respectively.
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§1. Computing Gröbner Bases by S-Polynomials and the Prob-
lem of Constructing a Corresponding Macaulay Matrix

My PhD thesis[1, 2] contains the following results (for sets of mul-
tivariate polynomials F ):

• Introduction of the notion of Gröbner bases: F is Gröbner
basis iff reduction w.r.t. F is unique.

• Characterization Theorem: F is Gröbner basis iff all S-poly-
nomials of F reduce to 0 w.r.t. F.
(S-polynomial of f and g := u. f − v. g, with certain power
products u, v.)
(Note: The Characterization Theorem is an algorithm for de-
ciding whether a given F is a Gröbner basis!)

• Algorithm for constructing Gröbner bases: Iterate the forma-
tion of S-polys and add non-zero remainders.

• Correctness of the algorithm: by the Characterization Theo-
rem.

• Termination of the algorithm: by (a re-invention and new
proof) of Dixon’s Lemma.

• Application: Algorithm for constructing a linearly independent
basis for the residue class ring modulo the ideal generated by
F.

• Application: Algorithm for constructing the multiplication ta-
ble for the associative algebra formed by this linearly indepen-
dent basis.

• Application: Algorithm for deciding the solvability and zero-
dimensionality of systems F of algebraic equation and comput-
ing all roots with multiplicities (in the zero-dimensional case).

• Application: Computation of the Hilbert function for Ideal(F ).
• Complete implementation of the algorithm on the ZUSE Z23
computer and example computations.

• A first complexity analysis of the algorithm for the bivariate
case.

Later, in [3], I introduced the technique of “criteria” (in partic-
ular, the chain criterion) for eliminating the consideration of (many)
unnecessary S-polynomials in the course of computing Gröbner bases.
In many cases, this makes the algorithm much faster. In [5], I proposed
the technique “first auto-reduce, only then consider S-polynomials”. (In
the terminology of the current paper, “auto-reduction” basically is tri-
angularization of the coefficient matrix of polynomials that have been
computed up to a certain stage of the algorithm.) Many times, after
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auto-reduction, no or only a few S-polynomials have to be considered.
However, only heuristics are available on when this happens.

There is a huge literature on the theory of Gröbner bases and their
computation using the S-polynomials approach, see [6]. The use of S-
polynomials was the prevailing approach to algorithmic Gröbner bases
theory. However, there were exceptions:

• Gröbner’s original 1954 idea [11] for obtaining a multiplication
table for the associative algebra modulo Ideal(F ). (Termination
was a question and this lead to [1].)

• Mayr’s approach [14] for obtaining an exponential space upper
bound for Gröbner bases computation.

• Faugére’s et al. approach (F4, F5) [8, 9]: Termination of F4
was still based on S-polynomials.

• Grigoriev’s approach [10] for bounds for the number of vectors
in Macaulay-like matrices.

§2. Gröbner Bases and Resultants

I have often been asked about the relation of Gröbner bases with
resultants and related notions (Sylvester matrices, Macaulay matrices)
and some people thought that the effect of repeated resultants on bi-
variate polynomials (eliminating variables one by one) is the same as a
Gröbner basis computation. However, definitely, this is not the case.

A more appropriate view is the following:

• In the univariate case, an alternative for computing the GCD
of a set F of two polynomials by Euclid’s algorithm is the tri-
angulariziation of the Sylvester matrix of F and solvability can
also be decided by calculating the determinant of the Sylvester
matrix (the resultant). By Habicht’s theory [12, 15] one can
in fact understand Euclid’s algorithm as a particular way of
triangularizing the Sylvester matrix.

• In the linear multivariate case, an alternative for variable elim-
ination by Gauss’ algorithm is the triangularization of the ex-
tended coefficient matrix. Solvability can again be decided by
calculating the determinant of the coefficient matrix. In this
case, Gauss’ algorithm on the linear polynomials and triangu-
larization of the coefficient matrix is in fact basically identical.

• In the non-linear multivariate case, we can compute a Gröbner
basis of the initial polynomials by my S-polynomial algorithm
(which specializes to Euclid and Gauss in the univariate and
linear multivariate cases, respectively). Now the question is,
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whether there is a corresponding matrix whose triangulariza-
tion yields a Gröbner basis and whether my S-polynomial algo-
rithm can be considered as just a special way of triangularizing
this matrix.

In her PhD thesis, my student M. Wiesinger-Widi [17], solved the
first part of the question thoroughly, i.e. we now can construct a ma-
trix from the coefficients of a given set F of polynomials (a “generalized
Sylvester matrix” or “Macaulay matrix”) whose triangularization con-
tains a Gröbner basis for F. It is not yet clear, though, whether the
computation of Gröbner bases by S-polynomials can be considered as
just one special way of triangularizing this matrix, i.e. whether a kind
of “generalized Habicht’s theory” could be established.

§3. An Inconstructive Method for Computing Gröbner Bases
by Triangularizing a Macaulay Matrix

In [4], I proved that the following steps yield a Gröbner basis for
any polynomial set F. (Note: we use “Sylvester” interchangeably with
“Generalized Sylvester” and “Macaulay”):

S := Sylvester(F ) := set of all multiples u.f of the polynomials
f in F with all power products u.

Consider the elements in Sylvester(F ) as rows of an (infinite)
matrix with the columns numbered by the power products and
ordered according to the admissible ordering of power products
w.r.t. to which one wants to find the Gröbner basis for F.

T := Triangularized(S ). (In fact this is nothing else but a spe-
cial kind of auto-reduction in the terminology of [5].)

C := Contour(T ) := the set of those polynomials in T whose
leading power products are not multiple of the leading power
product of any other polynomial in T.

Then C is a finite Gröbner basis of the original set F. (Finite-
ness can be proved, again, by applying Dixon’s lemma.)

Proof Sketch:

VectorSpace(Sylvester(F )) = Ideal(F ).

VectorSpace(Sylvester(F )) = VectorSpace(Triangularized
(Sylvester(F )).

The leading power product of any f in Ideal(F ) must occur in
Triangularized(Sylvester(F )) and, hence can be reduced by a
polynomial in Contour(Triangularized(Sylvester(F ))).
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In fact, I had this result much earlier but I did not think it was
worth publishing because it is only a “method”, not an algorithm.

If we knew a finite a priori bound on the degrees of the multiplies
u.f that have to go into Sylvester(F ) in order to guarantee that Con-
tour(Triangularized (Sylvester(F ))) is a Gröbner basis for F, then the
above method would be an algorithm. The upper bound should be ex-
pressed in terms of

n (number of polys in F ),
r (number of polynomials in F ),
and d (maximum degree of polynomials in F ).

Over the years, I proposed this problem of finding such an upper
bound a couple of times to my PhD students. However, only recently
(2014), Manuela Wiesinger-Widi, solved it by combining Hermann’s and
Dube’s bounds in a clever way, see the theorems in the next section.

§4. Turning the Inconstructive Method into an Algorithm

Theorem 4.1. (Manuela Wiesinger-Widi 2014 ): In the above
procedure, it suffices to take the power products u with degree less or
equal to

2

(
d2

2
+ d

)2n−1

+
n−1∑
j=0

(r d)2
j

.

In fact, the resulting Gröbner basis will be head-reduced.
Also, by the same approach, the following theorem can be proved.

Theorem 4.2. (Manuela Wiesinger-Widi 2014 ): If, in the
above procedure, one considers the matrix of multiples u.f with power
products u whose degree is less or equal

n−1∑
j=0

(r d)2
j

then 1 is in Ideal(F ) if and only if the above procedure yields a matrix
containing a polynomial with leading power product 1.

Note: The above (generalized) Sylvester matrix is the appro-
priate analogue to the univariate Sylvester matrix in the general, multi-
variate, case in the sense I explained in the introduction. The theorems
were proved in 2014, the thesis appeared in 2015.

Proof of the Wiesinger-Widi theorems: The proof uses
Hermann’s and Dube’s bound:
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Hermann’s Bound [13]: If g is in Ideal(F ) then there exist q1, . . . , qr
such that

g =

r∑
i=1

(qi . Fi)

and, for all i,

degree (qi) ≤ degree(g) +
n−1∑
j=0

(r d)2
j

.

Dubé’s Bound [7]: If G is the reduced Gröbner basis of F then,
for all g in G,

degree(g) ≤ 2

(
d2

2
+ d

)2n−1

.

The proof of Wiesinger-Widi’s theorems now proceed as follows:
Lemma: If G is a finite Gröbner basis for F and the finite (truncated

Sylvester) matrix S that contains all the multiples u.f with f in F and
the power product u occuring in one of the qi of the presentations

g =
r∑

i=1

(qi . Fi)

of the polynomials g in G, and T = Triangularized(S ), then Contour(T )
is also a (head-reduced) Gröbner basis of F.

Proof of Lemma: G ⊆ VectorSpace(S ) = Vectorspace(Triangular-
ized(S )). Every leading power product of a polynomial g in G must
occur among the leading power products of T since T is triangularized.
By a well-known property of Gröbner bases, all polynomials in G that
are not on Contour(T ) can be canceled.

Proof of Theorem 4.1 :
By Dubé, we know that there exists a Gröbner basis G for F with

degree(g) ≤ 2

(
d2

2
+ d

)2n−1

,

for all g in G.
By Hermann, each of these g has a presentation

g =

r∑
i=1

(qi . Fi)
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such that, for all i,

degree (qi) ≤ degree (g) +
n−1∑
j=0

(r d)2
j

.

Hence, if we take all the multiples u.f described in the Theorem
into the initial (truncated) Sylvester matrix, by the above Lemma, the
contour of the triangularized matrix is a (head-reduced) Gröbner basis.

Proof of Theorem 4.2 : Similar. Note that {1} is a Gröbner basis.
Hence degree(g) in the previous proof becomes zero.

§5. Remarks on Applications and Future Research

The method is not “practical” for computing a Gröbner basis of F :

• The polys in the S-poly algorithm for Gröbner bases, typically,
stay way below the above upper degree bounds!

• The S-poly algorithm for Gröbner bases, typically, only pro-
duces very few of the rows in Sylvester(F ).

(Example: The Gröbner basis computation of

{−x+ xy2, x2y − x
}

w.r.t. a total degree ordering, by S-polynomials, does not exceed degree
four whereas the above bound, for this case, would request us to first
set up a matrix with polynomials of up to degree 155. In [17], in fact,
the author gives much lower bounds for the special case of binomials.
However, still, concrete computations using S-polynomials typically stay
significantly below these bounds.)

In other words, my 1965 Gröbner bases algorithm based on S-poly-
nomials can be considered as an efficient way of avoiding to work with
big Macaulay matrices. Analogy in case n=2: Euclid’s algorithm can
be considered as an efficient way of avoiding to work with big Sylvester
matrices.

Anyway, the above results can be seen as a theoretical frame for
the Gröbner 1954 approach and more recent algorithms for constructing
Gröbner bases ([8, 9, 10]).

Also, the above theorem and algorithm suggests to extend Habicht’s
1948 theory of subresultants (introduced for the univariate case) to the
general case of Gröbner bases. Habicht gives a priori estimates on the
coefficients that may appear in GCD computations, see also [15]. A gen-
eral Habicht theory could also have applications for the numeric com-
putation of Gröbner bases: If we knew exactly, which subdeterminants
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of the generalized Sylvester matrices may occur in the computation of
Gröbner bases, we could derive lower bounds for the size of possible co-
efficients in the computation and distinguish between “very small” and
“zero” in numerical computation. In addition, Habicht’s theory gives
very subtle predictive information on common factors in the coefficients
of polynomials occuring in GCD computation. Similar results can be
expected from a detailed study of the generalized Sylvester matrices.
This study is not yet undertaken but I think it would be worthwhile.
These investigations are quite demanding in terms of proof technology
and, for me, were an important motivation for initiating the Theorema
project on automated theorem proving in 1995. A recent PhD thesis
of another student of mine [16] in the frame of the Theorema project
gives some impression about how formalization and automated theorem
proving could help in such investigations.
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