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Abstract.

In a previous article [11] a novel class of elliptic Lax pairs for inte-
grable lattice equations was introduced. The present article proposes a
de-autonomisation of those Lax pairs leading to a class of elliptic dis-
crete isomonodromic deformation problems. We analyse the systems
of compatibility conditions using some (possibly novel) higher order
elliptic identities.

§1. Introduction

Ever since Richard Fuchs in 1905, [18], investigated the problem
posed by his father, Lazarus Fuchs, namely to describe the iso-mono-
dromic deformation of a linear second order ordinary differential equa-
tion (ODE) with 3 fixed and one moving regular singularity, and thus
discovered for the first time the nonlinear differential equation for an
apparent singularity that has to be included in the coefficients, which
is now known by the name Painlevé VI equation (PVI), the study of
linear systems of equations giving rise to nonlinear equations as com-
patibility conditions has formed a main theme in the subject called in-
tegrable systems. Such systems of linear equations are nowadays usually
loosely called Lax pairs, referring to the work by Peter Lax, [31], on the
general structure of the linear system found earlier by Gardner, Greene,
Kruskal and Miura giving rise to the Korteweg-de Vries (KdV) equation.
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Richard Fuchs’ problem constitutes probably the first ever example of a
non-trivial Lax pair, although as an isomonodromic deformation prob-
lem it is of a different type than the ‘autonomous’ Lax pairs that have
become prominent in the theory of soliton systems and integrable PDEs
and their discrete counterparts, cf. e.g. [1].

The history of isomonodromic deformation theory, in connection
with Painlevé type equations, has undergone some spectacular devel-
opments especially in recent years. R.Fuchs’ 1905 paper1 was followed
up by his more often cited paper of 1907, [19], as well as by the work
Ludwig Schlesinger, [48], on the isomonodromic deformations of more
general matrix systems. Furthermore, René Garnier in [20] extended
Fuchs’ scheme to higher order, allowing multiple moving singularities,
leading to coupled systems of ODEs (one for each moving singularity),
which are compatible through some additional partial differential re-
lations. It is worth mentioning that the Garnier system amounts to
what in modern terminology would be called a Painlevé VI hierarchy.
Fast forward almost seventy years, when the isomonodromic deforma-
tion theory in the sense of Painlevé equations, was rediscovered on the
one hand in the seminal work of the Kyoto school, [23, 24, 25] and by
Flaschka and Newell [12], and where the context of reductions (from inte-
grable partial differential equations) allowed systematic constructions of
isomonodromic deformation problems using the techniques of integrable
systems. An overview of how isomonodromic deformation problems in
combination with the Riemann-Hilbert techniques was used to access
the transcendental solutions of Painelvé equations can be found in the
monographs [22, 15].

In the early 1990s, when discrete Painlevé equations made their ap-
pearance, discrete isomonodromic deformation problems were provided
and studied in [33, 14, 43, 27]. The first isomonodromic deformation
problem of q-difference type was provided in [43] for a q-version of the
PIII equation. The latter, in fact, in its most general alternate form is
equivalent to the q-version of PVI of Jimbo and Sakai, [26], who provided
a q-isomonodromic deformation problem closer in spirit to the Fuchs’
system for the continuous PVI equation, (cf. also [21] for the connection
between these two different isomonodromic deformation problems of q-
difference type). The first proposals for the higher-order analogues, i.e.,
discrete Garnier type systems, were given in [36, 47], while [46] deliv-
ered a full q-analogue of the original Garnier system. The general theory
of discrete isomonodromic deformation theory was developed in various

1The discovery of PVI in this paper was commemorated in the special issue
[10] where also some of the early history was summarised.
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recent papers, [6, 9, 29], where the Riemann-Hilbert aspects go back to
work by Birkhoff and collaborators in the early 20th century, [7, 8].

In this paper we present a general class of isomonodromic deforma-
tion problems which form (in some sense) the non-autonomous coun-
terparts of the elliptic Lax systems studied in the article [11]. In the
spirit of the early paper [43], cf. also [21], where we introduced the
de-autonomization procedure for differential and q-difference Lax pairs
which were obtained from periodic reductions of integrable lattice equa-
tions, leading to Lax pairs for associated discrete Painlevé equations,
we will introduce isomonodromic deformation problems of elliptic type.
A general theory of elliptic type isomonodromic deformation problems,
and the associated Riemann-Hilbert problem, was presented in [29], but
the compatibility conditions were not worked out in that paper. On the
other hand, the problem of finding a Lax pair for the famous elliptic dis-
crete Painlevé equation of Sakai, [45], was addressed by several authors
in recent years, [50, 44], cf. also [37], based on the birational geome-
try behind the Painlevé equations (see [28] for a recent review). We
mention, in passing, that in the continuous case, various elliptic isomon-
odromic deformation problems were studied in the literature [30, 49],
essentially going back to the pioneering work by Okamoto in the 1970s,
[38, 39, 40]. We point out that in contrast to the above works on elliptic
isomonodromic systems, our approach is very natural from the perspec-
tive of the lattice systems studied in [11] and is essentially based on
the exploration of elliptic addition formulae. Along the way we present
some seemingly novel elliptic identities of arbitrary order (i.e, in terms of
arbitrary number of free arguments) which facilitate the analysis of the
compatibility conditions. We will present the general scheme of equa-
tions, for arbitrary rank and order, and highlight some explicit cases for
the sake of illustration.

§2. Autonomous elliptic Lax pairs for Integrable lattice sys-
tems

In a previous article [11] a general elliptic Lax scheme of rank N ,
generalizing a novel Lax representation of Adler’s lattice equation (Q4),
[3], was presented. In this section, mostly for the sake of introducing
the notations, we outline the main construction of the corresponding
autonomous lattice systems. For the basic definitions and standard for-
mulae regarding the Weierstrass family of elliptic functions σ(x), ζ(x)
and ℘(x) we refer to Appendix A.
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We consider a compatible linear system for a N -component vector
function χκ = χκ(n,m), depending on a complex-valued spectral pa-
rameter κ (we prefer to indicate the dependence on the spectral param-
eter by means of an index rather than as a function argument to make
the formulae more transparent), as well as on discrete variables n,m. In
fact, the dependent variables of the systems under consideration, such as
the functions ξi(n,m) below, are functions of discrete independent vari-
ables n and m, and for convenience we denote the unit shifts in these
variables (i.e. elementary shifts along the lattice) by the notation:

ξ̃i(n,m) := ξi(n+ 1,m) , ξ̂i(n,m) := ξi(n,m+ 1) ,

while multiple shifts are denoted, e.g. by
̂̃
ξi(n,m) := ξ(n + 1,m + 1),

etc. The linear system (Lax pair) is given by the simultaneous pair of
shift relations:

(2.1) χ̃κ = Lκ χκ , χ̂κ = Mκ χκ ,

defining horizontal and vertical shits of the vector function χκ, according
to the diagram:

� �

� �

χ χ̃

χ̂ ̂̃χ

L

M̃M

L̂

Fig. 1. Lattice compatibility configuration.

The compatibility condition (discrete zero-curvature condition) leads
to the matrix relation

(2.2) L̂κMκ = M̃κLκ .
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The Lax matrices2 Lκ and Mκ attached to the edges are assumed to be
of the form:

(Lκ)i,j = Φκ(ξ̃i − ξj − α)hj ,(2.3a)

(Mκ)i,j = Φκ(ξ̂i − ξj − β)kj , (j = 1, . . . , N)(2.3b)

where the coefficients hj and kj are assumed to be independent of the
spectral parameter κ, as are the functions ξi = ξi(n,m) appearing in the
argument of the function Φκ which is defined as

(2.4) Φκ(x) :=
σ(κ+ x)

σ(κ)σ(x)
.

The parameters α and β in (2.3) are constants, but as they are associated
with the lattice directions we refer to them as lattice parameters.

Working out the compatibility condition (2.2) by means of the basic
addition formulae given in Appendix A, in particular (B.1), the consis-
tency requirement gives rise to

N∑
l=1

ĥlkj

[
ζ(

̂̃
ξi − ξ̂l − α) + ζ(ξ̂l − ξj − β) + ζ(κ)

− ζ(κ+
̂̃
ξi − ξj − α− β)

]
=

N∑
l=1

k̃lhj

[
ζ(

̂̃
ξi − ξ̃l − β) + ζ(ξ̃l − ξj − α) + ζ(κ)

− ζ(κ+
̂̃
ξi − ξj − α− β)

]
(i, j = 1, . . . , N) .

2We prefer to indicate the dependence of these matrices on the spectral
parameter κ by an index notation, even though κ is generally a complex valued
quantity (being a uniformising variable for the Weierstrass elliptic curve), in
order to make the κ dependence clearly visible.
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Due to the (arbitrary) dependence on the spectral parameter κ these
equations separate into two parts:(

N∑
l=1

ĥl

)
kj =

(
N∑
l=1

k̃l

)
hj , (j = 1, . . . , N) ,(2.5a)

N∑
l=1

ĥl

[
ζ(

̂̃
ξi − ξ̂l − α) + ζ(ξ̂l − ξj − β)

]
kj(2.5b)

=
N∑
l=1

k̃l

[
ζ(

̂̃
ξi − ξ̃l − β) + ζ(ξ̃l − ξj − α)

]
hj

(i, j = 1, . . . , N) .

From this system of equations we want to extract a closed form system of
lattice equations for the main dependent variables ξi(n,m), eliminating
the coefficient variables hi, ki. In order to do so we have to distinguish
now between two cases which we referred to in [11] as Landau-Lifschitz
type (spin non-zero) and Krichever-Novikov type (spin zero) respectively,
depending on whether

∑
l hl is non-vanishing or zero. The latter case

(for N = 2) corresponds to the case of Q4, in which case we obtain
readily the 3-leg form of that equation. The main part of the paper
[11] was dedicated to analysing the higher-rank situation of that case,
deriving a coupled set of implicit lattice equations, analogous to the 3-
leg form, for N = 3, we will not summarize those results here as they
require a lot of additional notation.

In the case where
∑

l hl �= 0 we have that the variables hj , kj are
proportional to each other, kj = ρhj , and after summation we obtain
the (multiplicative) conservation law:

(2.6)

∑N
l=1 ĥl∑N
l=1 hl

=

∑N
l=1 k̃l∑N
l=1 kl

,

so that the Lax equations reduce to

N∑
l=1

[
ζ(

̂̃
ξi − ξ̂l − α)ρĥl − ζ(

̂̃
ξl − ξ̃j − β)k̃l

]

=
N∑
l=1

[
ζ(ξj − ξ̂l + β)ρĥl − ζ(ξj − ξ̃l + α)k̃l

]
,

(i, j = 1, . . . , N) .
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Under the further assumption that the Centre of Mass (CoM) mo-
tion obeys the equation

(2.7) Ξ̃ + Ξ̂ =
̂̃
Ξ + Ξ , where Ξ :=

N∑
j=1

ξj

we can analyse the Lax equations most conveniently by considering the
following elliptic function and its expansion in terms of Weierstrass ζ-
functions, using the elliptic Lagrange interpolation formula (B.7) in Ap-
pendix B:

F (ξ) :=
N∏
l=1

σ(ξ − ̂̃
ξl)σ(ξ − ξl − α− β)

σ(ξ − ξ̂l − α)σ(ξ − ξ̃l − β)

=

N∑
l=1

[
ζ(ξ − ξ̂l − α)− ζ(η − ξ̂l − α)

]
Hl

+
N∑
l=1

[
ζ(ξ − ξ̃l − β)− ζ(η − ξ̃l − β)

]
Kl .

The latter holds as an identity for any four sets of variables ξl, ξ̂l, ξ̃l,
̂̃
ξl

such that the relation (2.7) for their sums holds. Here η denotes any one

of the zeroes (i.e.,
̂̃
ξi or ξi+α+β), and we have the explicit expressions

for the coefficients:

Hl =

∏N
k=1 σ(ξ̂l − ̂̃

ξk + α)σ(ξ̂l − ξk − β)[∏N
k=1 σ(ξ̂l − ξ̃k + α− β)

]∏
k �=l σ(ξ̂l − ξ̂k)

,(2.8a)

Kl =

∏N
k=1 σ(ξ̃l − ̂̃

ξk + β)σ(ξ̃l − ξk − α)[∏N
k=1 σ(ξ̃l − ξ̂k + β − α)

] ∏
k �=l σ(ξ̃l − ξ̃k)

.(2.8b)

We note that by construction the coefficients obey the identity∑N
l=1(Hl +Kl) = 0.

Using the identities above, taking ξ =
̂̃
ξi, η = ξj + α + β in F (ξ),

and comparing the result with the Lax equations, we can identify:

tHl = ρĥl , −tKl = k̃l = ρ̃h̃l , l = 1, . . . , N ,

with t an arbitrary proportionality factor. Thus, inserting the explicit
expressions for Hl and Kl we obtain a system of N +2 equations for the
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N + 2 unknowns: ξ1, . . . , ξN , ρ, t. This comprises the set of equations

t̃

ρ̃
H̃l +

t̂̂̃ρK̂l = 0 , (l = 1, . . . , N) , Ξ̃ + Ξ̂ =
̂̃
Ξ + Ξ ,

which yields the system of N 7-point equations:

(2.9)
N∏

k=1

σ(ξl − ξ̃k + α)σ(ξl − ξ̂k − β)σ(ξl − ξ̂˜k + γ)

σ(ξl − ξ̂k + β)σ(ξl − ξ˜k − α)σ(ξl − ξ̃̂k − γ)
= p

for N+1 variables ξi (i = 1, . . . , N) and p = − t˜ ρ̂ /(t̂ ρ), supplemented

with the relation (2.7), which fixes the CoM dynamics. The under-
accents ·˜ and ·̂ in (2.9) denote reverse lattice shifts: ξ˜i(n,m) = ξi(n−
1,m), ξ̂i(n,m) = ξi(n,m − 1). We note that the implicit system of

PΔEs arises from the following Lagrangian:

L =
∑
i,j

[
f(ξi − ξ̃j + α)− f(ξi − ξ̂j + β)− f(ξ̂i − ξ̃j + α− β)

]
−ln |p|Ξ

in which the function f is the elliptic dilogarithm f(x) =
∫ x

ln σ(ξ) dξ.
For reasons that we will not go into here we expect the system of equa-
tions for N = 2 to constitute an implicit form of a lattice version of
the Landau-Lifschitz (LL) equations, in a similar way as the 3-leg equa-
tions are an implicit form of Q4. Lattice versions of the LL equations
were proposed in [32, 2, 4], but so far no relation between these different
proposals has been established, nor is anything known yet about the
solution structure of those models.

Remark: The one-step periodic reduction, χ̃κ = λχκ, reduces the
Lax system (2.1) to the Lax pair of the discrete-time Ruijsenaars system

that was constructed in [34]. In that case the Lax equation L̂κMκ =
MκLκ yields an implicit system of second order OΔEs which constitutes
the discrete-time equations of motion for the discrete-time Ruijsenaars
system. In the simplest case, these will re-emerge as the autonomous
limit of the systems we will consider next in the simplest case. In a sense
the results described in the remainder of the paper could be thought of
as constituting a similarity reduction of the system of 7-point equations
(2.9). We will come back to this in the Conclusions.
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§3. Elliptic isomonodromic deformation scheme

In this section, we introduce a general class of isomonodromic defor-
mation problems on the torus, inspired by the form of the lattice systems
of the previous section.

Using a similar notation as before we now consider the compatibility
of the system of linear equations

χκ+τ = T κ χκ ,(3.1a)

χ̃κ = Lκ χκ ,(3.1b)

where the first relation (3.1a) is a linear first order difference equation on
the torus, i.e. defining a shift over a fixed increment τ in the uniformizing
spectral variable κ, while the second relation (3.1b) defines a shift ˜ of
the vector function χκ in some additional discrete variable n as according
to (2.1). Eventually we will equip the system (3.1) with additional lattice
directions, in additional variables such asm as in section 2, each of which
corresponding to a linear equation such as (3.1b).

3.1. General scheme

We take the matrices Lκ and T κ of the form

(Lκ)i,j = Hi,j σ(κ)Φκ(ξ̃i − ξj − α) ,(3.2a)

(T κ)i,j(3.2b)

=
∑

l1,...,lm−1

S
(l1,...,lm−1)
i,j

m∏
ν=1

σ(κ− κν)Φκ−κν (ξ
(ν−1)
lν−1

− ξ
(ν)
lν

− γν) ,

(i, j = 1, . . . , N)

where the matrices H = (Hi,j) and the quantities S
l,l1,...,lm−1

i,j remain to
be specified, and in which we identify:

ξ
(0)
l0

= ξi , ξ
(m)
lm

= ξj .

The parameters κν , (ν = 1, . . . ,m), are fixed, while the quantities γν ,
(ν = 1, . . . ,m), are assumed to be functions of the discrete variable
n, the precise dependence of which follows from the analysis below. All
quantities are assumed to be independent of κ unless explicitly indicated.

The compatibility condition

(3.3) T̃ κ Lκ = Lκ+τ T κ ,
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gives rise to∑
l1,...,lm

S̃
(l1,...,lm−1)
i,lm

Hlm,j σ(κ)Φκ(ξ̃lm − ξj − α)

×
[

m∏
ν=1

σ(κ− κν)Φκ−κν (ξ̃
(ν−1)
lν−1

− ξ̃
(ν)
lν

− γ̃ν)

]
=

∑
l,l′1,...,l′m−1

Hi,l S
(l′1,...,l

′
m−1)

l,j σ(κ+ τ)Φκ+τ (ξ̃i − ξl − α)

×
m∏

ν=1

σ(κ− κν)Φκ−κν (ξ
(ν−1)
l′ν−1

− ξ
(ν)
l′ν

− γν)

in which we set in addition to the above identifications:

ξ
(0)
l′0

= ξl , ξ
(m)
l′m

= ξj .

Using the relation Φκ(τ)Φκ+τ (x) = Φκ(τ + x)Φτ (x) on the right hand
side, as well as the identity (C.1) we can rewrite both sides of the latter
equality to yield:∑

l1,...,lm

S̃
(l1,...,lm−1)
i,lm

Hlm,j

×
m+1∑
ν′=1

Φκ−κν′ (ξ̃i − ξj − α− γ̃)
m+1∏
ν=1
ν �=ν′

Φκν′−κν (ξ̃
(ν−1)
lν−1

− ξ̃
(ν)
lν

− γ̃ν)

=
∑

l,l′1,...,l′m−1

Hi,l S
(l′1,...,l

′
m−1)

l,j σ(τ)Φτ (ξ̃i − ξl − α)

×
m∑

ν′=0

Φκ−κν′ (ξ̃i − ξj − α+ τ − γ)
m∏

ν=0
ν �=ν′

Φκν′−κν (ξ
(ν−1)
l′ν−1

− ξ
(ν)
l′ν

− γν) ,

where (in order to avoid having to separate the sums and products) we
have introduced the notations:

κ0 := 0 , κm+1 := 0 , γm+1 := 0 ,

ξ
(−1)
l′−1

= ξ̃i , ξ̃
(m+1)
lm+1

= ξj + α , γ :=
m∑

ν=1

γν .

Setting now γ̃ = γ − τ (implying that at this point we take the γν to
depend on n such that their sum is a linear function of the discrete
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variable) the terms depending on κ can be identified leading to the
system of relations:

∑
l1,...,lm

S̃
(l1,...,lm−1)
i,lm

Hlm,j

m+1∏
ν=1
ν �=ν′

Φκν′−κν (ξ̃
(ν−1)
lν−1

− ξ̃
(ν)
lν

− γ̃ν)(3.4a)

=
∑

l,l′1,...,l′m−1

Hi,l S
(l′1,...,l

′
m−1)

l,j σ(τ)Φτ (ξ̃i − ξl − α)

×
m∏

ν=0
ν �=ν′

Φκν′−κν (ξ
(ν−1)
l′ν−1

− ξ
(ν)
l′ν

− γν) ,

ν′ = 1, . . . ,m , i, j = 1, . . . , N,

together with

∑
l,l1,...,lm−1

S̃
(l1,...,lm−1)
i,l Hl,j

m∏
ν=1

Φ−κν (ξ̃
(ν−1)
lν−1

− ξ̃
(ν)
lν

− γ̃ν)(3.4b)

=
∑

l,l′1,...,l′m−1

Hi,l S
(l′1,...,l

′
m−1)

l,j σ(τ)Φτ (ξ̃i − ξl − α)

×
m∏

ν=1

Φ−κν (ξ
(ν−1)
l′ν−1

− ξ
(ν)
l′ν

− γν) ,

i, j = 1, . . . , N.

The fundamental system of relations (3.4) is the basis of further analysis.
Like in the autonomous system described in the section 2, the coefficient

matrices Hi,j and, in this case, S
(l′1,...,l

′
m−1)

i,j have to be eliminated. To
remain in the spirit of the previous case we will make some simplifying
assumptions, for instance that the matrix of coefficient (Hij) is of rank
1. Eliminating the those coefficients would yield a system of of equations

for the main quantities ξi including the quantities ξ
(ν)
i . For consistency

also some ‘global’ conditions may be needed on the latter quantities,

such as certain restrictions on the sums Ξ(ν) =
∑

l ξ
(ν)
l .

3.2. Example: First order scheme

In order to make the structure of the Lax system (3.4) more trans-
parant, we will first illustrate them by means of some simpler examples,
namely the cases where m = 1 and m = 2 in (3.2b).
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First order scheme (m = 1) In this case we have the elliptic discrete
isomonodromic system (3.1) with Lax matrices of the form:

(Lκ)i,j = Hi,j σ(κ)Φκ(ξ̃i − ξj − α) ,(3.5a)

(T κ)i,j = Si,j σ(κ− κ1)Φκ−κ1(ξi − ξj − γ) ,(3.5b)

(i, j = 1, . . . , N) .

The coefficientsHi,j , Si,j do not depend on the spectral parameter κ and
remain to be determined, while the ξi = ξi(n) are the main independent
variables. We observe in this case that the forms of the matrices (3.5)
are reminiscent of those of the discrete zero-curvature Lax pair (2.3),
except that we include here extra factors σ(κ) which turn out to be
necessary in order to separate out the κ-dependence in the consistency
conditions3. Furthermore, the coefficients hj , kj in (2.3) correspond to a
rank 1 restriction on the coefficient matrices H = (Hij) and S = (Sij),
which here we don’t want to impose from the start in order to allow for
more freedom in the analysis. We observe, furthermore, that in this case
we have a single variable γ, which depends linearly on n via the relation

γ̃ = γ − τ ⇒ γ = γ(n) = γ(0)− nτ ,

on the discrete variables n. In this first order case the system (3.4)
adopts the form:

N∑
l=1

S̃ilHlj Φκ1(ξ̃l − ξj − α)(3.6a)

=
N∑
l=1

HilSlj σ(τ)Φτ (ξ̃i − ξl − α)Φκ1(τ + ξ̃i − ξl − α) ,

N∑
l=1

S̃ilHlj Φ−κ1(ξ̃i − ξ̃l − γ̃)(3.6b)

=
N∑
l=1

HilSlj σ(τ)Φτ (ξ̃i − ξl − α)Φ−κ1(ξl − ξj − γ) ,

i, j = 1, . . . , N .

3In the autonomous case those extra factors can be readily removed by
means of a simple gauge transformation.
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Let us first note that for N = 1 (scalar case) this system of equations
becomes quite simple and reduces to the equality

S̃

S
=

σ(τ)Φτ (ξ̃ − ξ − α)Φκ1(τ + ξ̃ − ξ − α)

Φκ1(ξ̃ − ξ − α)

=
σ(τ)Φτ (ξ̃ − ξ − α)Φ−κ1(−γ)

Φ−κ1(−γ̃)
,

where S = S11 and ξ = ξ1. Multiplying out the denominators from the
second equality, the latter reduces further by using the addition formula
(B.1) and yields the simple relation

ζ(τ + ξ̃ − ξ − α) + ζ(γ̃)− ζ(ξ̃ − ξ − α)− ζ(γ) = 0 ,

from which the parameter κ1 has disappeared. This last equation can
be resolved by using (A.4) and yields the following two branches of
solutions:

ξ̃ − ξ − α+ γ
.
= 0 and ξ̃ − ξ − α− γ̃

.
= 0 ,

(in which “
.
= 0” indicates that the equality holds modulo the period

lattice of the Weierstrass elliptic functions). Thus, in this simple case we
find that the dependent variable ξ depends quadratically on the discrete
variable n:

(3.7) ξ(n) = ξ(0) + (α∓ γ(0) + Ω)n± 1
2n(n∓ 1)τ ,

(in which Ω denotes any integer combination of the periods of the
Weierstrass functions4). This “scalar Lax” case is not quite trivial, even
though it can be integrated explicitly, recalling that the representation
involves functions ξ(n) which appear in the arguments of elliptic func-
tions, and that the quadratic dependence on the independent variable
is reminiscent of certain cases of Painlevé type equations which can be
linearized.

To analyse the cases N ≥ 2 it is convenient to introduce a somewhat
unconventional matrix notation. For any two N×N matrices A = (Aij)

4In principle the choice of period Ω does not need to be fixed, but could
alter under application of the map. We will not consider that possibility in
this paper, but only note that the presence of the freedom of choosing periods
in (3.7) will not alter the dependence on n in quantities as u := ℘(ξ(n) which
would obey rational counterparts of the equations considered.



500 F. Nijhoff and N. Delice

and B = (Bij), let us introduce the operation of “gluing” two matri-
ces,i.e., the entry-by-entry multiplication creating the “glued” matrix
denoted by [AB] having entries:

([AB])ij := AijBij .

This allows us to rewrite (3.6) in the following short-hand way:

S̃ · [Aκ1H] = [Aκ1+τH ] · S ,(3.8a)

[G̃−κ1S̃] ·H = [AτH ] · [G−κ1S] ,(3.8b)

where we have introduced the matrices

(Aκ)ij := σ(κ)Φκ(ξ̃i − ξj − α) ,

(Gκ)ij := σ(κ)Φκ(ξi − ξj − γ) .

As in the autonomous case of section 2, we are interested primarily in
the case that the matrix H is of rank 1, in which case from (3.8b)
we have that either the glued matrix [AτH ] must be singular, or the
matrix [G−κ1S] is singular. In the former case, as a consequence of the
Frobenius determinant formula (B.4) of Appendix B, we must have that

det(Aτ ) = 0 ⇒ τ + Ξ̃− Ξ−Nα = 0 , with Ξ =
N∑
j=1

ξj .

For N = 2 this condition on the sums of the ξ-variables is a sufficient
condition for [AτH] to be of rank 1, as the glued matrix is, up to multi-
plication by diagonal matrices, a Frobenius (i.e., elliptic Cauchy) matrix.
Since, as a consequence, in that case in general position the matrices
Aκ1 and Aκ1+τ are invertible (provided we avoid values κ1

.
= 0), and

consequently also the glued matrices [Aκ1H ] and [Aκ1+τH ] are gener-

ically invertible, we can solve S̃ from (3.8a) and get the equation

(3.9) [G̃−κ1([Aκ1+τH ] · S · [Aκ1H ]−1)] ·H = [AτH] · [G−κ1S] .

Taking the rank 1 matrix H = h+(h−)T = (h+
i h

−
j ) in the form of a

bi-vector, and using the formula for the inverse of a Frobenius matrix,
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(B.9), this equation can be written explicitly in the following way∑
l,l′,l′′

Φκ1+τ (ξ̃i − ξl − α)Φκ1(τ)Φκ1−τ (ξl′ − ξ̃l′′ + α)Φ−κ1(ξ̃i − ξ̃l′′ − γ̃)

×
[∏

k σ(ξl′ − ξ̃k + α)∏
k �=l′ σ(ξl′ − ξk)

] [∏
k σ(ξ̃l′′ − ξk − α)∏
k �=l′′ σ(ξ̃l′′ − ξ̃k)

]
h−
l Sl,l′(h

−
l′ )

−1 ,

=
∑
l

Φτ (ξ̃i − ξl − α)Φ−κ1(ξl − ξj − γ)h−
l Sl,j(h

−
j )

−1

(3.10)

which constitutes a system of N2 homogeneous linear equations for the
N2 quantities h−

i Sij(h
−
j )

−1 involving the entries of the matrix S. In
order for the equation to lead to nontrivial solutions for the latter quan-
tities the coefficient determinant must vanish, and this leads to a first-
order difference equation in terms of the main dependent variables ξj(n),
which is subject to the additional determinant condition det(Aτ ) = 0.
In the case N = 2 we are thus led to a first order coupled equation for
ξ1(n) and ξ2(n), but also subject to the condition τ + ξ1 + ξ2 − 2α = 0.
Thus, we get effectively a first order equation in terms of a single de-
pendent variable, which we expect would again be linearizable. However
due to the complexity of the determinant condition following from (3.10)
it is hard to do the integration explicitly. Thus, unlike the autonomous
case, in order to get nontrivial equations for the ξj we must proceed to
a higher order scheme, which we will do in the next section.

3.3. Revised scheme

We noted from the analysis of the previous subsection that not only
the κ1 parameter becomes irrelevant in the final equations, but also that
from the rank 1 matrix H = h+(h−)T the dependence on the first factor
h+ effectively disappears, while from (3.10) it is apparent that the glued
matrix [G−κ1S] can be taken to be of rank 1. Calling the latter matrix
S = (Sij) we see that we can rewrite the Lax matrix (3.5b) as follows

(T κ)ij = Sijσ(κ)Φκ(ξi − ξj − γ − κ1)σ(−κ1)Φ−κ1(ξi − ξj − γ)

=: Sijσ(κ)Φκ(ξi − ξj − γ) ,

where we have written γ := γ + κ1. Thus, the scheme given by (3.5) is
equivalent to one in which for the matrix T κ we take the form

(3.11) (T κ)i,j = Si,j σ(κ)Φκ(ξi − ξj − γ) ,

instead of the original form (3.5b). Working out the compatibility of the
system (3.3) we have now the following alternative computation to the
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original one. The left-hand side corresponds to

N∑
l=1

S̃il Hlj Φκ(ξ̃i − ξ̃l − γ̃)Φκ(ξ̃l − ξj − α) ,

=
N∑
l=1

S̃il Hlj Φκ(ξ̃i − ξj − α− γ̃)

×
[
ζ(κ)− ζ(κ+ ξ̃i − ξj − α− γ̃) + ζ(ξ̃i − ξ̃l − γ̃) + ζ(ξ̃l − ξj − α)

]
while the right-hand side yields:

N∑
l=1

Hil Slj σ(τ)Φκ(τ)Φκ+τ (ξ̃i − ξl − α)Φκ(ξl − ξj − γ)

=
N∑
l=1

Hil Slj σ(τ)Φτ (ξ̃i − ξl − α)Φκ(τ + ξ̃i − ξl − α)Φκ(ξl − ξj − γ)

=
N∑
l=1

Hil Slj σ(τ)Φτ (ξ̃i − ξl − α)Φκ(τ + ξ̃i − ξj − α− γ)

×
[
ζ(κ)−ζ(κ+ τ + ξ̃i − ξj − α− γ)+ζ(τ+ξ̃i−ξl−α)+ζ(ξl−ξj−γ)

]
Setting as before γ̃ = γ−τ , and identifying on both sides the terms that
contain κ and those that don’t, we arrive at the system of equations:

N∑
l=1

S̃ilHlj =
N∑
l=1

HilSlj σ(τ)Φτ (ξ̃i − ξl − α) ,(3.12a)

N∑
l=1

S̃ilHlj σ(−τ)Φ−τ (ξ̃i − ξ̃l − γ̃)Φ−τ (ξ̃l − ξj − α)(3.12b)

=
N∑
l=1

HilSlj Φ−τ (ξl − ξj − γ),

i, j = 1, . . . , N ,

which is essentially equivalent to (3.6), except that the system is written
in terms of variables Sij rather than Sij . Since the latter quantities were
to be determined from the Lax compatibility in the first place, where
now the parameter κ1 is absorbed in the yet to be determined variables,
it is clear that the final equations for ξ will not involve the latter pa-
rameter. We note also that the way in which the second relation (3.12b)
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was obtained, was achieved by extracting the the terms containing the
ζ functions in the compatibility, and then recombining them with the
appropriate terms from the first relation (3.12a) in such a way that we
essentially get the full Lax compatibility relation back from which we
started but for any fixed value of the spectral parameter, κ = κ0 say.
Since we only need one such relation together with (3.12a) to have the
full set of compatibility relations, it suffices to set κ0 = −τ in order to
obtain (3.12b). In matrix form, using the gluing convention introduced
earlier, the resulting system can be written conveniently as follows:

S̃ ·H = [AτH] · S,(3.13a)

[G̃−τ S̃] · [A−τH ] = H · [G−τS] ,(3.13b)

where Gκ denotes the matrix Gκ in which γ is replaced by γ.
We will now analyse the system (3.13), which for generic κ1 is equiv-

alent5 to (3.8). First, it is easily derived from the explicit form (3.12),
and by using the relation (B.3) of Appendix B, that for N = 1 we obtain
once again a linearizable system system for ξ(n) := ξ1(n), namely

℘(ξ̃ − ξ − α) = ℘(γ) ⇒ ξ̃ − ξ − α
.
= ±γ ,

leading to the solution

ξ(n) = ξ(0) + (α± γ(0) + Ω)n± 1
2n(n− 1)τ .

When N = 2, taking as before the matrix H to be of rank 1, there
are two possibilities: from (3.13a) either, i) S is of rank 1, or, ii) [AτH ]
is of rank 1, implying that det(Aτ ) = 0. In case i) we would conclude
that det(A−τ ) = 0 (since otherwise det(G−τ ) = 0 and this would lead to
special conditions on γ), while in case ii) we would conclude that [G−τS]
is of rank 1. Both options lead to similar results, so for convenience let
is pursue the case i). In that case we have the condition:

det(A−τ ) = 0 ⇒ −τ + Ξ̃− Ξ− 2α
.
= 0 ,

for Ξ = ξ1 + ξ2 , as follows from the Frobenius determinant formula
(B.4).

To resolve this case i), let us write once again H = h+(h−)T and
S = s+(s−)T , with entries Sij = s+i s

−
j , then the the first relation

5In fact, from the Lax equation (3.3) for (3.5), we have that [G̃κ−κ1 S̃] ·
[AκH] = [Aκ+τH] · [Gκ−κ1S] for arbitrary fixed κ, and this will lead to either
system (3.8) or (3.13) with suitable choices for κ.



504 F. Nijhoff and N. Delice

(3.13a) allows us to identify s−j = ρh−
j (for some scalar function ρ), and

consequently:

(s̃− · h+)
s̃+i
h+
i

=
2∑

l=1

(Aτ )ils
−
l s

+
l .

The second relation (3.13b) leads to the condition

s̃+i
h+
i

2∑
l=1

(G̃−τ )ils̃
−
l h

+
l (A−τ )lj =

2∑
l=1

s−l s
+
l (G−τ )lj ,

Expressing all the entries of the first and second relation in terms of
s−l s

+
l =: Sl, s̃−l h

+
l =: Hl we get a system of equations comprising on

the one hand (
1 +

H2

H1

)
S̃1 = A+

11S1 +A+
12S2 ,(3.14a) (H1

H2
+ 1

)
S̃2 = A+

21S1 +A+
22S2 ,(3.14b)

where we abbreviated A±
ij := (A±τ )ij , and on the other hand, with

G±
ij := (G±τ )ij ,

G−
11S1 +G−

21S2 =

(
G̃−

11A
−
11 + G̃−

12A
−
21

H2

H1

)
S̃1(3.15a)

=

(
G̃−

21A
−
11

H1

H2
+ G̃−

22A
−
21

)
S̃2 ,

G−
12S1 +G−

22S2 =

(
G̃−

11A
−
12 + G̃−

12A
−
22

H2

H1

)
S̃1(3.15b)

=

(
G̃−

21A
−
12

H1

H2
+ G̃−

22A
−
22

)
S̃2 .

Rewriting these relations in terms of X = H2/H1 and Y = S2/S1, we
are led to:

Ỹ

X
=

A+
21 + A+

22Y

A+
11 + A+

12Y
=

G̃−
11A

−
11 + G̃−

12A
−
21X

G̃−
21A

−
11 + G̃−

22A
−
21X

,(3.16a)

(1 +X)(G−
11 +G−

21Y ) = (A+
11 +A+

12Y )(G̃−
11A

−
11 + G̃−

12A
−
21X) ,(3.16b)

A−
12/A

−
11 = A−

22/A
−
21 =

G−
12 +G−

22Y

G−
11 +G−

21Y
.(3.16c)

These constitute, in fact, a system of four independent relations for X,

Y and Ỹ with coefficients in terms of ξ1 and ξ2, and can be solved by
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direct computation. Eliminating X, Y and Ỹ we get a rather compli-
cated first order difference equation in terms of ξ1 and ξ2, which we
refrain from writing down here, and which is subject to the relation
−τ + ξ1 + ξ2 − 2α+

.
= 0. Because of the latter condition we expect

the resulting equation for one of the variables, say ξ1, and containing
three free parameters, α, Ξ(0) and γ0 (apart from the step size τ), to be
linearisable, but we have not yet done so.

Although the first order scheme described in this section and the first
order elliptic difference equations resulting from them may be interesting
in their own right, the scheme seems not yet rich enough to obtain higher
order OΔEs, e.g. elliptic difference equations of Painlevé type. This is
as expected, as the parallel with the monodromy problem for PVI and its
connection with lattice KdV systems, cf. [35], indicates that we need at
least two lattice directions to get interesting transcendental equations.
Thus, we will next investigate the structure of the higher order elliptic
scheme.

§4. Higher order revised scheme

We noted in the previous section that the monodromy part of the
Lax pair, i.e., (3.5b), can be simplified by redefining the coefficient ma-
trix Sij and the moving parameter γ, absorbing the parameter κ1. This
applies also to the general discrete monodromy problem (3.2b), which
accordingly can be simplified to the following form:

(4.1) (T κ)i,j =
∑

l1,...,lm−1

S
(l1,...,lm−1)

i,j

m∏
ν=1

σ(κ)Φκ(ξ
(ν−1)
lν−1

− ξ
(ν)
lν

− γν) ,

by redefining

S
(l1,...,lm−1)

i,j := S
(l1,...,lm−1)
i,j

m∏
ν=1

σ(−κν)Φ−κν (ξ
(ν−1)
lν−1

− ξ
(ν)
lν

− γν) ,

γν := γν + κν .

The latter redefinition is possible since ab initio we don’t specify the co-
efficient matrices, requiring them only to be independent of the spectral
parameter κ. All further properties of the coefficients should follow from
the consistency conditions and additional natural choices (e.g., imposing
a rank 1 condition on the coefficient matrix in (3.2a) in accordance with
the choices of section 2). We now reexamine the consistency condition
(3.3) of (3.2a) and (4.1) for the higher order case.
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4.1. Second order scheme

As is clear from the first order case, treated in subsection 3.3, this
requires functional identities for products of the form

∏
ν Φκ(xν), i.e. of

functions Φκ for the same value of the label. Such identities generalizing
(B.1), which is equivalent to one of the standard addition formulae for
Weierstrass functions, were discussed in Appendix C, cf. (C.8) and (C.9),
and the generalized form is described in the Lemma of the Appendix.
The key feature of these higher order elliptic addition formulae is that
they allow us to separate the spectral parameter dependence of the Lax
compatibility conditions, and thus to derive a set of basic relations from
which the coefficient matrices can be eliminated. A general closed-form
formula is hard to give (Lemma 1 gives us a general prescription) for
arbitrary orders, in contrast to the original scheme presented in section
3. However, the latter contains redundant parameters which are hard
to get rid of in higher orders, when trying to capture what goes on in
concrete formulae. Thus, we will restrict ourselves in this section to the
case of a second order scheme (i.e. m = 2), which conveys adequately
the ideas. The corresponding monodromy problem in revised form, in
that case is given by:

χκ+τ = T ′
κ χκ ,(4.2)

(T ′
κ)i,j := σ2(κ)

N∑
l′=1

S
(l′)
i,j Φκ(ξi − ηl′)Φκ(ηl′ − ξj − γ) ,

(i, j = 1, . . . , N) ,

where, for notational convenience, we have omitted the notation and

renamed the ξ
(1)
l1

+ γ1 =: ηl′ , denoting l1 = l′. The coefficient variables

S
(l′)
i,j remain to be determined when we consider this difference equation

on the torus in conjunction with the lattice Lax system given by

χ̃κ = Lκ χκ , (Lκ)i,j = Hi,j σ(κ)Φκ(ξ̃i − ξj − α) ,(4.3a)

χ̂κ = Mκ χκ , (Mκ)i,j = Ki,j σ(κ)Φκ(ξ̂i − ξj − β) ,(4.3b)

which constitutes a system of the type considered in section 2, but
without prejudice for now about the form of the coefficient matrices
H = (Hij) and K = (Kij), but which we will assume in due course to
be of rank 1 in accordance with the derivation in section 2. The only
further assumption on the latter is that they are independent of the
spectral parameter κ.

To give a motivation of the monodromy problem associated with
(4.2), we consider the variable η as an intermediate dependent variable
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on a 2-step configuration in a multidimensional lattice, where the el-
ementary shifts correspond to Lax operations of the type (4.3) but in
perhaps additional lattice directions. Thus, the monodromy problem
given in the form of the elliptic difference equation (4.2) would amount
to a de-autonomization of a 2-step periodic reduction on that lattice.
The 2-step periodic reduction, illustrated in the diagram below, leads to
a spectral problem of the form: χ̂ = λχ, constituting the spectral part
of a Lax pair describing a higher-order stationary discrete flow. A sub-
sequent de-autonomization, in the spirit of the paper [43], on the level of
the Lax representation by making the replacement λχ � χκ+τ , leads
then to a monodromy problem of the form (4.2), in which the interme-
diate value η of the dependent variable ξ, shifted in a relevant direction,
can be left unspecified. This allows us to determine the value η from the
consistency of the Lax pair.

� �

�

χ, ξ χ,η

λχ, ξ

Fig. 2. 2-step periodic reduction.

The elliptic isomonodromic deformation system comprising (4.2)
and (4.3) leads to the following set of compatibility conditions:

T̃
′
κ Lκ = Lκ+τ T

′
κ ,(4.4a)

T̂
′
κ Mκ = Mκ+τ T

′
κ ,(4.4b)

L̂κ Mκ = M̃κ Lκ .(4.4c)

We note that the combination of multiple lattice shifts appearing in the
monodromy problems of Painlevé type equations was first made appar-
ent in [35, 36] where it was made manifest in the monodromy problem
of PVI, and in the structure of lattice Garnier systems. Recently, in [41],
this was also exploited in the construction of difference and q-difference
Garnier systems. In what follows, we will focus on one the lattice shifts,
namely the one generated by (4.3a), and the compatibility condition
(4.4a), while (4.4c) was analysed in section 2.
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To analyse the system (4.4a) most effectively we need to use the
(seemingly novel) elliptic identities presented in Appendix C, the struc-
ture of which is summarised in the Lemma. In particular, where we
used (B.1) in the first order case, we now need identities such as (C.8)
and (C.9) to analyse the structure of the compatibility relations. The
consistency condition (4.4a) can be worked out as follows. The left-hand
side can be written as

N∑
l,l′=1

S̃
(l′)
il HljΦκ(ξ̃i − η̃l′)Φκ(η̃l′ − ξ̃l − γ̃)Φκ(ξ̃l − ξj − α)

=

N∑
l,l′=1

S̃
(l′)
il Hlj

1
2Φκ(ξ̃i − ξj − α− γ̃)

×
[(

ζ(κ)− ζ(κ+ ξ̃i − ξj − α− γ̃) + ζ(ξ̃i − η̃l′)

+ ζ(η̃l′ − ξ̃l − γ̃) + ζ(ξ̃l − ξj − α)
)2

+ ℘(κ)−
(
℘(κ+ ξ̃i − ξj − α− γ̃) + ℘(ξ̃i − η̃l′)

+ ℘(η̃l′ − ξ̃l − γ̃) + ℘(ξ̃l − ξj − α)
)]

,

where we have made use of the identity (C.8). The right-hand side,
using again the identity Φκ(τ)Φκ+τ (x) = Φτ (x)Φκ(τ + x) leads to

N∑
l,l′=1

Hil S
(l′)
lj σ(τ)Φκ(τ)Φκ+τ (ξ̃i − ξl − α)Φκ(ξl − ηl′)Φκ(ηl′ − ξj − γ)

=
N∑

l,l′=1

Hil S
(l′)
lj σ(τ)Φτ (ξ̃i − ξl − α)Φκ(τ + ξ̃i − ξl − α)

× Φκ(ξl − ηl′)Φκ(ηl′ − ξj − γ)

=
N∑

l,l′=1

Hil S
(l′)
lj

1
2σ(τ)Φτ (ξ̃i − ξl − α)Φκ(ξ̃i − ξj − α− γ + τ)

×
[(

ζ(κ)− ζ(κ+ ξ̃i − ξj − α− γ + τ) + ζ(τ + ξ̃i − ξl − α)

+ ζ(ξl − ηl′) + ζ(ηl′ − ξj − γ)
)2

+ ℘(κ)−
(
℘(κ+ ξ̃i − ξj − α− γ + τ) + ℘(τ + ξ̃i − ξl − α)

+ ℘(ξl − ηl′) + ℘(ηl′ − ξj − γ)
)]

.
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Setting (once again) γ̃ = γ− τ the common factor Φκ(ξ̃i− ξj −α− γ̃) =

Φκ(ξ̃i − ξj − α − γ + τ) on both sides cancel out, and after factoring
them out the remaining terms can be separated in accordance with their
different dependence on κ. The latter only appears in combination with
the external indices i, j and do not mix with the summation indices.
Thus, we only have three types of terms w.r.t. to the dependence on κ:

constant terms, terms linear in (ζ(κ)−ζ(κ+ ξ̃i−ξj−α− γ̃)) and terms of

the form (ζ(κ)−ζ(κ+ξ̃i−ξj−α−γ+τ)2+℘(κ)−℘(κ+ξ̃i−ξj−α−γ+τ)).
These then yield the following relations (in reverse order):

N∑
l,l′=1

S̃
(l′)
il Hlj =

N∑
l,l′=1

σ(τ)Φτ (ξ̃i − ξl − α)Hil S
(l′)
lj ,(4.5a)

N∑
l,l′=1

S̃
(l′)
il Hlj

[
ζ(ξ̃i − η̃l′)+ζ(η̃l′ − ξ̃l − γ + τ)+ζ(ξ̃l − ξj − α)

]
(4.5b)

=

N∑
l,l′=1

σ(τ)Φτ (ξ̃i − ξl − α)Hil S
(l′)
lj

×
[
ζ(τ + ξ̃i − ξl − α) + ζ(ξl − ηl′) + ζ(ηl′ − ξj − γ)

]
,

and

(4.5c)
N∑

l,l′=1

S̃
(l′)
il Hlj

[(
ζ(ξ̃i − η̃l′) + ζ(η̃l′ − ξ̃l − γ + τ) + ζ(ξ̃l − ξj − α)

)2

− ℘(ξ̃i − η̃l′)− ℘(η̃l′ − ξ̃l − γ + τ)− ℘(ξ̃l − ξj − α)
]

=

N∑
l,l′=1

Hil S
(l′)
lj σ(τ)Φτ (ξ̃i − ξl − α)

×
[(

ζ(τ + ξ̃i − ξl − α) + ζ(ξl − ηl′) + ζ(ηl′ − ξj − γ)
)2

− ℘(τ + ξ̃i − ξl − α)− ℘(ξl − ηl′)− ℘(ηl′ − ξj − γ)
]
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By combining (4.5b) with (4.5a), and using (A.4), the former can also
be re-cast in the form

(4.6)
N∑

l,l′=1

S̃
(l′)
il Hlj

σ(ξ̃i−ξ̃l−γ̃)σ(η̃l′−ξj−γ̃−α)σ(ξ̃i+ξ̃l−ξj−η̃l′−α)

σ(ξ̃i − η̃l′)σ(η̃l′ − ξ̃l − γ̃)σ(ξ̃l − ξj − α)

=
N∑

l,l′=1

Hil S
(l′)
lj

σ(ξ̃i−ηl′+τ−α)σ(ξl−ξj−γ)σ(ξ̃i−ξl−ξj+ηl′−α−γ̃)

σ(ξ̃i − ξl − α+ τ)σ(ξl − ηl′)σ(ηl′ − ξj − γ)
,

while combining (4.5c) with both (4.5b) and (4.5a), and using again
(C.8), we can obtain a simpler form of the third relation, namely

N∑
l,l′=1

S̃
(l′)
il Hlj σ(−τ)Φ−τ (ξ̃i − η̃l′)(4.7)

× Φ−τ (η̃l′ − ξ̃l − γ̃)Φ−τ (ξ̃l − ξj − α)

=
N∑

l,l′=1

Hil S
(l′)
lj Φ−τ (ξl − ηl′)Φ−τ (ηl′ − ξj − γ) .

As before, we want to eliminate the quantities S
(l′)
i,j and Hi,j in these

relations to obtain a (possibly coupled) system of equations for the vari-
ables ξj and ηj alone. To do the analysis it may prove helpful to use the
notation introduced in section 3, using glued matrices. In that notation
eqs. (4.5a) and (4.7) can be written as

[S̃] ·H = [AτH ] · [S] ,(4.8a)

[Ẽ−τ [S̃]F̃−τ ] · [A−τH] = H · [E−τ [S]F−τ ] ,(4.8b)

with A±τ as given in section 3, and where [S] denotes the matrix with

entries ([S])i,j =
∑

l′ S
(l′)
ij . Furthermore, we are compelled to introduce

a somewhat ad-hoc notation for∑
l′

S
(l′)
ij σ2(−τ)Φ−τ (ξi − ηl′)Φ−τ (ηl′ − ξj − γ) =: [E−τ [S]G−τ ]ij

a kind of ‘doubly glued’ matrix involving the upper index in the quantity

S
(l′)
i,j , and where Eκ and F κ (for arbitrary κ) denote the matrices with

entries

(Eκ)i,j := σ(κ)Φκ(ξi − ηj) , (F κ)ij := σ(κ)Φκ(ηi − ξj − γ) .
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The ‘middle’ relation (4.6), or (modulo the first relation) equiva-
lently (4.5b), is the more complicated one to write in matrix form. To
achieve that we rewrite the original form (4.5b) as follows:

N∑
l,l′=1

S̃
(l′)
il Hlj

[
ζ(ξ̃i − η̃l′)+ζ(η̃l′ − ξ̃l − γ + τ)+ζ(−τ)−ζ(ξ̃i − ξ̃l − γ)

+ ζ(ξ̃i − ξ̃l − γ) + ζ(τ) + ζ(ξ̃l − ξj − α)− ζ(ξ̃i − ξj − α− γ̃)
]

=
N∑

l,l′=1

Hil S
(l′)
lj σ(τ)Φτ (ξ̃i−ξl−α)

[
ζ(τ+ξ̃i−ξl−α)+ζ(ξl−ξj−γ̃)+ζ(−τ)

− ζ(ξ̃i−ξj−α−γ̃)+ζ(ξl−ηl′)+ζ(ηl′−ξj − γ)+ζ(τ)−ζ(ξl−ξj−γ̃)
]
,

and apply the identity (B.1) on each quadruple of ζ-terms in the sum-
mands, thus, obtaining:

(4.9)
N∑

l,l′=1

S̃
(l′)
il Hlj

Φ−τ (ξ̃i − ξ̃l − γ̃)

[
Φ−τ (ξ̃i − η̃l′)Φ−τ (η̃l′ − ξ̃l − γ̃)

+ Φ−τ (ξ̃i − ξj − α− γ̃)Φτ (ξ̃l − ξj − α)
]

=
N∑

l,l′=1

Hil

S
(l′)
lj

Φτ (ξl − ξj − γ)
σ(τ)Φτ (ξ̃ − ξl − α)

×
[
Φτ (ξ̃−ξj−α−γ̃)Φ−τ (τ+ξ̃i−ξl−α)+Φτ (ξl−ηl′)Φτ (ηl′−ξj−γ)

]
.

This relation can be written more concisely using the notation of glued
matrices, extending the latter further by introducing the notation

([A/B])ij := Aij/Bij ,

in the following form[
[Ẽ−τ [S̃]F̃−τ ]/G̃−τ

] ·H − [ (
[S̃/G̃−τ ] · [AτH ]

)
C−τ

]
=

[
(H · [S/Gτ ])Cτ

] − [AτH] · [[Eτ [S]F ]/Gτ

]
,(4.10)

where Cκ (for arbitrary κ) is given by

(Cκ)ij = σ(κ)Φκ(ξ̃i − ξj − α− γ̃) .

In spite of the unconventional notation, we believe this way of writing
the relations to which the coefficients are subject are somewhat more
insightful than the expressions in terms of components.
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4.2. Case N = 1

For N = 1 the original system of equations (4.5) takes a simple form
in terms of the single variables ξ := ξ1, η := η1, and leads to the coupled
system of equations:

ζ(ξ̃ − η̃) + ζ(η̃ − ξ̃ − γ̃) + ζ(ξ̃ − ξ − α)(4.11a)

= ζ(ξ̃ − ξ + τ − α) + ζ(ξ − η) + ζ(η − ξ − γ) ,

℘(ξ̃ − η̃) + ℘(η̃ − ξ̃ − γ̃) + ℘(ξ̃ − ξ − α)(4.11b)

= ℘(ξ̃ − ξ − α+ τ) + ℘(ξ − η) + ℘(η − ξ − γ) ,

for ξ and η, together with the relation

S̃

S
= σ(τ)Φτ (ξ̃ − ξ − α) ,

for S := S1,1. There are various solutions of the system (4.11) via the
viable identifications of the terms, namely
Case i)

ξ̃ − ξ − α
.
= η − ξ − γ

ξ̃ − η̃
.
= ξ − η

}
⇒(4.12a){

ξ(n) = ξ(0) + (η(0)− ξ(0)− γ(0) + α+Ω)n+ 1
2n(n− 1)(τ +Ω′)

η(n) = η(0) + (η(0)− ξ(0)− γ(0) + α+Ω)n+ 1
2n(n− 1)(τ +Ω′)

Case ii)

ξ̃ − ξ − α
.
= ξ − η

η̃ − ξ̃ − γ̃
.
= η − ξ − γ

}
⇒(4.12b){

ξ(n) = ξ(0) + (ξ(0)− η(0) + α+Ω)n+ 1
2n(n− 1)(τ +Ω′)

η(n) = η(0) + (ξ(0)− η(0) + α+Ω)n+ 1
2n(n− 3)(τ + Ω′)

Case iii)

ξ̃ − ξ − α
.
= η − ξ − γ

η̃ − ξ̃ − γ̃
.
= ξ − η

}
⇒(4.12c)⎧⎪⎪⎪⎨⎪⎪⎪⎩

ξ(n) = ξ(0) +
(
α− 1

2γ0 − 1
4τ +Ω′)n+ 1

4n(n− 1)τ

+ 1
2

(
ξ(0)− η(0)− 1

4τ + 1
2 (γ0 +Ω)

)
((−1)n − 1)

η(n) = η(0) +
(
α− 1

2γ0 − 1
4τ +Ω′)n+ 1

4n(n− 3)τ

+ 1
2

(
η(0)− ξ(0) + 1

4τ − 1
2 (γ0 +Ω)

)
((−1)n − 1)
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Case iv)

ξ̃ − ξ − α
.
= ξ − η

ξ̃ − η̃
.
= η − ξ − γ

}
⇒(4.12d)⎧⎪⎪⎪⎨⎪⎪⎪⎩

ξ(n) = ξ(0) +
(
α− 1

2 (γ0 +Ω)− 1
4τ +Ω′)n+ 1

4n(n− 1)τ

− 1
2

(
ξ(0)− η(0) + 1

2 (γ0 +Ω) + 1
4τ

)
((−1)n − 1)

η(n) = η(0) +
(
α− 1

2 (γ0 +Ω)− 1
4τ + Ω′)n+ 1

4n(n− 3)τ

+ 3
2

(
η(0)− ξ(0)− 1

4τ − 1
2 (γ0 +Ω)

)
((−1)n − 1)

in which Ω and Ω′ denote arbitrary periods of the elliptic functions.
Note that cases iii) and iv) differ from the cases i) and ii) by the ap-
pearance of alternating terms. As in the first order scheme we see that in
the linearisable case there is quadratic dependence on the independent
variable n, but in the higher order scheme it appears within a coupled
system for ξ(n) and η(n).

4.3. Case N = 2

We will discuss the strategy to analyse the system of relations (4.5),
or, in the shorthand notation we introduced, comprising (4.8) together
with (4.10) for the case N = 2. As before, we assume the matrix H to
be of rank 1, where we can write as before H = h+(h−)T . From (4.8a)
we observe that either det(Aτ ) = 0 or that the matrix [S] has to be
singular (in fact, of rank 1 when N = 2). We pursue for convenience

the latter case; in fact we will assume the coefficient S
(l′)
ij to be of the

form S
(l′)
ij = s+i s

0
l′s

−
j , in other words: fully factorized. Going back to the

original form of the constitutive relations (4.5), and inserting this Ansatz
into (4.5a) we find that s−j = ρh−

j for some factor ρ and furthermore the
following relation:

(4.13a) (H1 +H2)
S̃0

S0

S̃i

Hi
=

2∑
l=1

(Aτ )ilSl ,

using as in section 2 the notation Sl = s−l s
+
l , Hl = s̃−l h

+
l , and introduc-

ing S0 := s01 + s02. Eq. (4.7) yields

(4.13b)
S̃i

Hi

2∑
l=1

(K̃−τ )ilHl(A−τ )lj =
2∑

l=1

Sl(K−τ )lj ,

in which

(Kκ)ij :=
2∑

l′=1

s0l′ (Eκ)il′(F κ)l′j .
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From (4.13b) it follows that the matrix A−τ must be of rank 1, and
hence we have again the condition

−τ + Ξ̃− Ξ− 2α
.
= 0 .

Finally, from (4.5b) we have

S̃i

Hi

2∑
l=1

Hl

[
(Z̃)il + S̃0ζ(ξ̃l − ξj − α)

]
(4.13c)

=
2∑

l=1

(Aτ )ilSl

[
S0ζ(τ + ξ̃i − ξl − α) + (Z)lj

]
,

where the matrix Z has entries

(Z)ij :=
2∑

l′=1

s0l′ [ζ(ξi − ηl′) + ζ(ηl′ − ξj − γ)] .

The resolution of the system (4.13) can in principle be done following
similar lines as the parallel system in section 3. However, in this case
we have more variables at our disposal, including the coefficients s0i and
the intermediate variables ηi, (i = 1, 2), exploiting also the additional
relation (4.13b). Elimination of the coefficient variables are expected to
yield a coupled set of first order equations for ξ1(n) and η1(n), but the
full analysis and assessment of the consequences, as well as generaliza-
tions to higher rank (N ≥ 3) and higher order (m ≥ 3), remain to be
done and will be pursued in a follow-up paper.

§5. Conclusions

In this paper we proposed a general system of elliptic discrete isomon-
odromic deformation problems from de-autonomisation of elliptic Lax
pairs presented in our earlier paper [11]. While the first order scheme
for N = 1 and N = 2 only leads to linearisable equations, we laid out
the structure for the higher order (i.e., two-step) scheme and derived
the constitutive relations by using some possibly novel elliptic identi-
ties. In principle the analysis in section 4 can be readily extended to the
3-step, or multi-step, case by using higher-order elliptic identities such
as (C.9) and the ones described in the Lemma of Appendix C. These
constitutive relations contain coefficient matrices that are to be elimi-
nated in order to yield a system of nonlinear non-autonomous elliptic
ordinary difference equations which we expect to constitute higher-order
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and higher-rank versions of elliptic type Painlevé equations (i.e. ellip-
tic Garnier and Schlesinger systems6), but further analysis is needed to
confirm those expectations.

While we refer to the Lax systems investigated in this paper as
isonomodromic deformation problems, it remains to be investigated in
what sense these Lax systems are indeed isomonodromic. A general
elliptic version of isomonodromic deformation theory was established
some time ago by Krichever, [29], and a closer comparison with that work
may establish that the systems proposed here are indeed isomonodromic
in the sense of that theory. However, in that paper the compatibility
conditions of the isomonodromic system were not pursued, while here we
have shown how to obtain a handle on that problem by using a system
of elliptic identities which is excellently suitable for that purpose. This
is the main purpose of the present paper. The explicit formulae we
obtained for the cases N = 1 and N = 2 confirm that the resulting
equations have behaviour that one would expect from discrete Painlevé
type equations, but further work is needed to make those assertions
rigorous.

We, furthermore, point out that, as a byproduct of the higher or-
der isomonodromic scheme laid out in section 4, we can consider its
autonomous limit, which amounts to a 2-step higher-time flow of the
elliptic discrete-time Ruijsenaars model of [34]. The Lax pair in that
case is a discrete iso-spectral problem given by

(5.1) T ′
κχκ = λχκ , χ̃κ = Lκ χκ , χ̂κ = Mκ χκ ,

obtained by supplementing (4.3) with τ = 0 and γ constant. In the
stationary case the compatibility relations become

T̃
′
κ Lκ = Lκ T

′
κ , T̂

′
κ Mκ = Mκ T

′
κ ,(5.2)

together with (2.2).
The compatibility of (5.2) follows similar analysis as the one for non-

autonomous case, making use of (C.8) and the result is the following set

6We note, in proof, that in a recent preprint [42], which appeared after
acceptance of the present paper, an elliptic Garnier system was proposed. Since
that approach uses a multiplicative representation of the elliptic functions, a
comparison with our Lax approach is not immediately obvious.
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of constitutive relations:

N∑
l,l′=1

Hil S
(l′)
lj =

N∑
l,l′=1

S̃
(l′)
il Hlj ,(5.3a)

N∑
l,l′=1

Hil S
(l′)
lj

σ(ξ̃i−ηl′−α)σ(ξl−ξj−γ)σ(ξ̃i−ξl−ξj+ηl′−α−γ)

σ(ξ̃i−ξl−α)σ(ξl−ηl′)σ(ηl′−ξj−γ)

=
N∑

l,l′=1

S̃
(l′)
il Hlj

σ(ξ̃i−ξ̃l−γ)σ(η̃l′−ξj−γ−α)σ(ξ̃i+ξ̃l−ξj−η̃l′−α)

σ(ξ̃i−η̃l′)σ(η̃l′−ξ̃l−γ)σ(ξ̃l−ξj−α)
,

(5.3b)

and

N∑
l,l′=1

Hil S
(l′)
lj Φκ0(ξ̃i − ξl − α)Φκ0(ξl − ηl′)Φκ0(ηl′ − ξj − γ)(5.3c)

=
N∑

l,l′=1

S̃
(l′)
il Hlj Φκ0(ξ̃i − η̃l′)Φκ0(η̃l′ − ξ̃l − γ)Φκ0(ξ̃l − ξj − α) ,

where in the latter we can fix κ0 to be any non-singular fixed value.
The relations (5.3a) and (5.3b) can be directly obtained by setting
τ = 0 in the corresponding relations for the non-autonomous case, while
(5.3c) is just the Lax compatibility for any fixed value κ0 of the spectral
parameter (in this case we cannot set κ0 = −τ as in (4.7)). We will leave
the problem of attaining an explicit resolution of this system leading
to closed-form expressions for higher discrete-time flows, to a future
publication.

Appendix A: Weierstrass elliptic functions

Here, we collect some useful formulae for elliptic functions, see also
the standard textbooks e.g. [5, 51]. The Weierstrass sigma-function is
defined by

(A.1) σ(x) = x
∏

(k,�) �=(0,0)

(
1− x

ωk�

)
exp

[
x

ωk�
+

1

2

( x

ωk�

)2
]

,

with ωkl = 2kω1 + 2�ω2 and 2ω1,2 being a fixed pair of the primitive
periods. The relations between the Weierstrass elliptic functions are
given by

(A.2) ζ(x) =
σ′(x)
σ(x)

, ℘(x) = −ζ ′(x) ,
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where σ(x) and ζ(x) are odd functions and ℘(x) is an even function of
its argument. We recall also that the σ(x) is an entire function, and
ζ(x) is a meromorphic function having simple poles at ωkl, both being
quasi-periodic, obeying

ζ(x+ 2ω1,2) = ζ(x) + 2η1,2 , σ(x+ 2ω1,2) = −σ(x)e2η1,2(x+ω1,2) ,

in which η1,2 = ζ(ω1,2) satisfy η1ω2−η2ω1 = πi
2 , whereas ℘(x) is doubly

periodic. The most important properties, for the sake of the computa-
tions in the main text, are the addition formulae, which are functional
relations holding for arbitrary values (apart from singular points) for
the variables in the arguments. The most fundamental is perhaps the
three-term relation for σ(x), which can be written as (A.4)

σ(x+ a)σ(x− a)σ(y + b)σ(y − b)(A.3)

− σ(x+ b)σ(x− b)σ(y + a)σ(y − a)

= σ(x+ y)σ(x− y)σ(a+ b)σ(a− b) .

A limiting case of the latter is he relation

(A.4) ζ(α)+ ζ(β)+ ζ(γ)− ζ(α+β+γ) =
σ(α+ β)σ(β + γ)σ(γ + α)

σ(α)σ(β)σ(γ)σ(α+ β + γ)
,

between the σ- and ζ-functions. Furthermore, we have as a consequence
of the latter

(A.5) ζ(α+ β)− ζ(α)− ζ(β) =
1

2

℘′(α)− ℘′(β)
℘(α)− ℘(β)

.

as well as the addition formula for the Weierstrass elliptic ℘-function:

(A.6)
(
ζ(α+ β)− ζ(α)− ζ(β)

)2

= ℘(α) + ℘(β) + ℘(α+ β) .

Finally we have the fundamental relation between σ- and ℘-functions

(A.7)
σ(x+ y)σ(x− y)

σ2(x)σ2(y)
= ℘(y)− ℘(x) ,

which in turn gives back the three-term relation (A.3) by using the
identity

(℘(x)− ℘(a)) (℘(y)− ℘(b))− (℘(x)− ℘(b)) (℘(y)− ℘(a))

= (℘(x)− ℘(y)) (℘(a)− ℘(b)) ,

thus, showing that no information gets lost if we reduce one functional
relation to another.
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Appendix B: The function Φκ(x) and determinantal iden-
tities

The function Φ(x) was introduced in (2.4) and in terms of this func-
tion the various addition formulae of Appendix A can be conveniently
expressed. Thus, eq. (A.4) can be cast into the form

(B.1) Φκ(x)Φκ(y) = Φκ(x+ y) [ζ(κ) + ζ(x) + ζ(y)− ζ(κ+ x+ y)] ,

while (A.3) can be rewritten as

(B.2) Φκ(x)Φλ(y) = Φκ(x− y)Φκ+λ(y) + Φκ+λ(x)Φλ(y − x) ,

which can be considered as an elliptic analogue of the partial fraction
expansion. Furthermore, (A.7) takes the form

(B.3) Φκ(x)Φ−κ(x) = ℘(x)− ℘(κ) .

Furthermore, in terms of this function we have the famous Frobenius
formula, which can be considered to be an elliptic version of the well-
known Cauchy determinantal identity. It reads:

det (Φκ(xi − yj)) = Φκ(Σ)σ(Σ)

∏
k<� σ(xk − x�)σ(y� − yk)∏

k,� σ(xk − y�)
,(B.4)

where Σ ≡
∑
i

(xi − yi) ,

cf. [17]. From (B.4), by expanding along one of its rows or columns, an
elliptic form of the Lagrange interpolation formula can obtained, which
reads:

(B.5)
N∏
i=1

σ(ξ − xi)

σ(ξ − yi)
=

N∑
i=1

Φ−Σ(ξ − yi)

∏N
j=1 σ(yi − xj)∏N
j=1
j �=i

σ(yi − yj)
,

for Σ �= 0, where

(B.6) Σ ≡
N∑
i=1

(xi − yi) .

When Σ = 0 we recover the following formula

(B.7)
N∏
i=1

σ(ξ − xi)

σ(ξ − yi)
=

N∑
i=1

[ζ(ξ − yi)− ζ(x− yi)]

∏N
j=1 σ(yi − xj)∏N
j=1
j �=i

σ(yi − yj)
,
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in which x denotes any one of the zeroes xi. Note that in this case
the left hand side is a meromorphic function on the elliptic curve as a
consequence of Abel’s theorem. Using (B.5) it can be easily verified that
eq. (B.7) is independent of the choice of x. In fact, this follows from the
key property that

(B.8)
N∑
i=1

∏N
j=1 σ(yi − xj)∏N
j=1
j �=i

σ(yi − yj)
= 0 ,

whenever
∑

i(xi−yi) = 0. This latter relation (B.8) is nothing else than
a rewriting of (B.5). Finally, we give the expression for the inverse of
the elliptic Cauchy matrix, namely

(B.9)
[
(Φκ(x· − y·))

−1
]
ij
= Φκ+Σ(yi − xj)

X(yi)Y (xj)

Y1(yi)X1(xj)
,

(with Σ as in (B.6)), in terms of the elliptic polynomials

X(ξ) =
N∏

k=1

σ(ξ − xk) , Y (ξ) =
N∏

k=1

σ(ξ − yk) ,

and

(B.10) X1(xj) =
∏
k �=j

σ(xj − xk) , Y1(yi) =
∏
k �=i

σ(yi − yk) .

Equation (B.9) can be derived using (B.5) and (B.7).

Appendix C: Higher-order identities

The addition formulae in terms of the function Φκ(x) lend them-
selves fairly easily to a higher-order generalizations, which can be proven
by induction from the basic ones. Thus, from (B.2) one can prove the
following general product identity

(C.1)
n∏

i=1

Φκi(xi) =
n∑

i=1

Φκ1+···+κn(xi)
n∏

j=1
j �=i

Φκj (xj − xi) .

Extending this identity to n + 1 variables, including a κ0 and x0, and
subsequently taking the limit x0 = x1 + ε, with ε → 0, we obtain
the following identity (after some obvious relabelling of parameters and
changes of variables):



520 F. Nijhoff and N. Delice

(C.2)

(−1)n−1Φκ0+κ1+···+κn(x1 + · · ·+ xn)
σ(x1 + · · ·+ xn)∏n

j=1 σ(xj)

×
[
ζ(κ0)+

n∑
j=1

(ζ(κj)+ζ(xj))−ζ(κ0+κ1+ · · ·+κn+x1+ · · ·+xn)
]

=
n∑

i=1

Φκ0+κ1+···+κn(x1 + · · ·+ /xi + · · ·+ xn)

×σ(x1 + · · ·+ /xi + · · ·+ xn)σ
n−1(xi)∏n

j=1
j �=i

σ(xi − xj)

n∏
j=0

Φκj (xi) .

These identities, which express sums of even numbers of ζ-functions, are
associated with the famous Frobenius-Stickelberger (i.e., an elliptic van
der Monde) determinantal formula, [16], which is given by:∣∣∣∣∣∣∣∣∣∣∣∣

1 ℘(x0) ℘′(x0) · · · · · · ℘(n−1)(x0)
1 ℘(x1) ℘′(x1) · · · · · · ℘(n−1)(x1)
...

...
...

. . .
...

...
...

...
. . .

...
1 ℘(xn) ℘′(xn) · · · · · · ℘(n−1)(xn)

∣∣∣∣∣∣∣∣∣∣∣∣
(C.3)

= (−1)
1
2n(n−1)1!2! · · ·n! σ(x0 + x1 + · · ·+ xn)

∏n
i<j=0 σ(xi − xj)

σn+1(x0)σn+1(x1) · · · σn+1(xn)
.

A particular example of such an identity is the following one generalizing
(A.4) to a 6-term relation:

σ(κ+ x)σ(λ+ x)σ(μ+ x)σ(κ+ λ+ μ+ y)σ2(y)(C.4)

− σ(κ+ y)σ(λ+ y)σ(μ+ y)σ(κ+ λ+ μ+ x)σ2(x)

= σ(κ)σ(λ)σ(μ)σ(x)σ(y)σ(κ+ λ+ μ+ x+ y)σ(y − x)

× [ζ(κ) + ζ(λ) + ζ(μ) + ζ(x) + ζ(y)− ζ(κ+ λ+ μ+ x+ y)]

which derives from:

ζ(κ) + ζ(λ) + ζ(μ) + ζ(x) + ζ(y)− ζ(κ+ λ+ μ+ x+ y)(C.5)

=
Φκ(x)Φλ(x)Φμ(x)Φκ+λ+μ(y)− Φκ(y)Φλ(y)Φμ(y)Φκ+λ+μ(x)

Φκ+λ+μ(x+ y) (℘(x)− ℘(y))
.
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In the same vein, we have the following 8-term ζ-function relation:

(C.6)

Φκ+λ+μ+ν(x+ y + z)
σ(x+ y + z)σ(x− y)σ(x− z)σ(y − z)

σ3(x)σ3(y)σ3(z)

×
[
ζ(κ) + ζ(λ) + ζ(μ) + ζ(ν) + ζ(x) + ζ(y) + ζ(z)

− ζ(κ+ λ+ μ+ ν + x+ y + z)
]

= Φκ(x)Φλ(x)Φμ(x)Φν(x) (℘(z)− ℘(y)) Φκ+λ+μ+ν(y + z)

+ Φκ(y)Φλ(y)Φμ(y)Φν(y) (℘(x)− ℘(z)) Φκ+λ+μ+ν(x+ z)

+ Φκ(z)Φλ(z)Φμ(z)Φν(z) (℘(y)− ℘(x)) Φκ+λ+μ+ν(x+ y) .

In the treatment of the main text of the paper we also need suit-
able formulae for multiple products of Φκ(x)-functions carrying the same
index κ. By expansion of the Frobenius formula (B.4) we find the fol-
lowing identity for products of Φκ(x) functions with different arguments
but with the same label κ:

n∏
j=1

Φκ(xj) =
(−1)n−1

n−1 Φκ(x1 + · · ·+ xn)(C.7)

×
∣∣1 , ℘(x) , ℘′(x) , · · · , ℘(n−2)(x)

∣∣∣∣∣1 , 1
2
℘′(x)−℘′(κ)
℘(x)−℘(κ) , ℘(x) , ℘′(x) , · · · , ℘(n−3)(x)

∣∣∣ ,

where the r.h.s. contains a ratio of two n × n Frobenius-Stickelberger
determinants and where each f(x) stands for a function f(x) denotes a
column with entries f(xj) with j = 1, . . . , n.

Particular examples of such identities, generalizing (B.1) are the
following higher-order relations:

Φκ(x)Φκ(y)Φκ(z)(C.8)

= 1
2Φκ(x+ y + z)

[
(ζ(κ) + ζ(x) + ζ(y) + ζ(z)− ζ(κ+ x+ y + z))

2

+ ℘(κ)− (℘(x) + ℘(y) + ℘(z) + ℘(κ+ x+ y + z))
]
.
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involving products of three Φκ functions, and the next higher one reads:

Φκ(x)Φκ(y)Φκ(z)Φκ(w) =
1
6Φκ(x+ y + z + w)(C.9)

×
{(

ζ(κ) + ζ(x) + ζ(y) + ζ(z) + ζ(w)− ζ(κ+ x+ y + z + w)
)3

− 3
(
ζ(κ) + ζ(x) + ζ(y) + ζ(z) + ζ(w)− ζ(κ+ x+ y + z + w)

)
×

(
℘(x) + ℘(y) + ℘(z) + ℘(w) + ℘(κ+ x+ y + z + w)− ℘(κ)

)
−

(
℘′(κ) + ℘′(x) + ℘′(y) + ℘′(z) + ℘′(w)− ℘′(κ+ x+ y + z + w)

)}
.

The salient feature of the identities (C.8) and (C.9) is the way in which
the label variable κ appears in the expressions between brackets on the
right-hand sides: the κ appears on its own or in combination with the
sums of all the arguments. The general structure of how these relations
develop for higher and higher products is follows:

Lemma: The general form of identities of the type of products of
the form

n∏
j=1

Φκj (x) =: 1
(n−1)!F (κ1, . . . , κn;x) ,

is as follows. The function F is given by the expansion of the (n − 1)th

derivative of the Weierstrass σ-function divided by σ in terms of ζ-
functions and the ℘-function and its derivative, where whenever we have
an odd function in this expansion (namely ζ and ℘′) we replace it by a
combination of the form

ζ(x) +
n∑

j=1

ζ(κj)− ζ

⎛⎝ n∑
j=1

κj + x

⎞⎠ ,

(and similar for ℘′) and when we encounter an even function (℘ and
powers of it) we replace it by

n∑
j=1

℘(κj) + ℘

⎛⎝ n∑
j=1

κj + x

⎞⎠ − ℘(x) .

In fact, if we inspect the first few cases of σ(n−1)(x)/σ(x):

σ′(x)
σ(x)

=ζ(x),
σ′′(x)
σ(x)

=ζ2(x)−℘(x),
σ′′′(x)
σ(x)

=ζ3(x)−3ζ(x)℘(x)−℘′(x), . . .

expanded in ζ, ℘ and ℘′, we see that they correspond exactly to the
terms in the identities (B.1), (C.8) and (C.9).
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Painlevé equations, Duke Math. J. Vol. 134, # 3 (2006), 515–556.

[ 7 ] G.D. Birkhoff, General theory of linear difference equations, Trans. Amer.
Math. Soc. 12, # 2 (1911) 243–284.

[ 8 ] G.D. Birkhoff, The generalized Riemann problem for linear differential equa-
tions and the allied problem for linear difference and q-difference equa-
tions, Proc. Amer. Acad. 49 (1913) 512–568.

[ 9 ] A. Borodin, Isomonodromy Transformations of Linear Systems of Differ-
ence Equations, Ann. Math.(Series 2) Vol. 160 # 3 (2004) 1141–1182.

[10] P. Clarkson, N. Joshi, M. Mazzocco, F.W. Nijhoff and M. Noumi, One hun-
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l’intégrale générale est uniforme et sur une classe d’équations nouvelles

d’ordre supérieur, Ann. Écol. Norm. Sup., vol. 29:1–126 (1912).
[21] B. Grammaticos, F.W. nijhoff and A. Ramani, Discrete Painlevé Equations,
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