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A tale of two surfaces

Arnaud Beauville

Abstract.

We point out a link between two surfaces which have appeared
recently in the literature: the surface of cuboids and the Schoen surface.
Both give rise to a surface with ¢ = 4, whose canonical map is 2-to-1
onto a complete intersection of 4 quadrics in P® with 48 nodes.

Dedicated to Yujiro Kawamata on his 60th birthday

§1. Introduction

The aim of this note is to point out a link between two surfaces
which have appeared recently in the literature: the surface of cuboids
[ST, vL] and the surface (actually a family of surfaces) discovered by
Schoen [S]. We will show that both surfaces give rise to a surface X
with ¢ = 4, whose canonical map is 2-to-1 onto a complete intersection
of 4 quadrics ¥ C P® with 48 nodes. In the first case (§2) X is a
quotient (C' x C")/(Z/2)?, where C' and C’ are genus 5 curves with a
free action of (Z/2)%. In the second case (§3), X is a double étale cover
of the Schoen surface.

When the canonical map of a surface X of general type has degree
> 1 onto a surface, that surface either has p, = 0 or is itself canonically
embedded [B1, Th. 3.1]. Our surfaces X provide one more example of
the latter case, which is rather exceptional (see [CPT] for a list of the
examples known so far).

§2. The surface of cuboids and its deformations

In P4, with coordinates (z,y; u, v, w), we consider the curve C' given
by

(1) w’ =a(z,y) , v =blzy) . w?=c(,y)
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where a, b, c are quadratic forms in x,y. We assume that the zeros of
a,b,c form a set Z C P! of 6 distinct points. Then C is a smooth
curve of genus 5, canonically embedded. It is preserved by the group
Iy = (Z/2)® which acts on P* by changing the signs of u,v,w. Let
[ C Iy be the subgroup (isomorphic to (Z/2)?) which changes an even
number of signs. It acts freely on C', so the quotient curve D := C/T
has genus 2. The subring of I'-invariant elements in & H°(C, K%) is
generated by x,y and z := uvw, with the relation 22 = abc; thus D is
the double cover of P! branched along Z .

Let JDy be the group of 2-torsion line bundles on D (isomorphic
to (Z/2)*). The I'-covering m : C — D corresponds to a subgroup of
J D, isomorphic to (Z/2)?, namely the kernel of 7* : JD — JC. Let
Dl DDy, D3 ey P be the Weiderstrass points of D lying over the zeros
of a,b and ¢ respectively. Since the divisor 7*(p), + p) is cut out on C
by the canonical divisor u = 0, we have 7*(p}, — pl/) ~ 0, and similarly
for b and c¢; thus Kern* = {0,p,, — pl/,p, — py,p. — p’}. This is a
Lagrangian subgroup of JDy for the Weil pairing [M2]; conversely, any
Lagrangian subgroup of JD; is of that form. Thus the curves C' we are
considering are exactly the (Z/2)?-étale covers of a curve D of genus 2
associated to a Lagrangian subgroup of JDs. In particular they form a
3-dimensional family.

The group I'y/T' =2 7Z/2 acts on D = C/T" through the hyperelliptic
involution, so C/T'y is isomorphic to P!.

Proposition 1. Let C,C" be two genus 5 curves of type (1), and
let X be the quotient of C x C' by the diagonal action of T' = (Z/2)?.

1) X is a minimal surface of general type with ¢ = 4, py = 7,
K? =32.

2) The involution ix of X defined by the action of To/T = Z/2
has 48 fized points. The canonical map ¢y : X — PS factors through
ix , and induces an isomorphism of X/ix onto a complete intersection
of 4 quadrics in PS with 48 nodes.

Proof : The computation of the numerical invariants of X is straight-
forward.

Let us denote by (2/,y';u/,v’,w’) the coordinates on ¢’ C P*, and
by a’,b',c the corresponding quadratic forms. A basis of the space

H(X,Kx) = (H°(C,K¢c) ® HO(C’,KC/))F is given by the elements

X=2®2 Y=y Z=yx2s T=yxvy
U=uu V=i W=wouw .
They satisfy the relations XT —YZ =0 and

U? = AX,Y,2,T), V= B(X,Y,2,T), W? = C(X,Y,Z,T) ,
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where A, B,C' are quadratic forms satisfying A(X,Y,Z,T) =
a(z,y) ®a(z’,y") , and the analogous relations for B and C.

Let ¥ be the surface defined by these four quadratic forms, and let
@ X — 3 be the induced map. We have poix = ¢, so ¢ induces a
map @ from X/ix = (CxC")/T( into X. We consider the commutative
diagram

(Cx C")/Ty ‘ x

S, A

Q=P x P!

where p: (C' x C")/Ty — (C/Ty) x (C'/Ty) is the quotient map by Ty,
and ¢ the projection (X,Y,Z,T;U,V,W) — (X,Y,Z,T). The group
(Z/2)® acts on ¥ by changing the signs of (U,V,W); then ¢ is an
equivariant map of (Z/2)3-coverings, hence an isomorphism.

It remains to show that iy has 48 fixed points. These fixed points
are the images (mod. T') of the points of C' x C’ fixed by one of the
elements of I'g ~\ I'. Such an element changes the sign of one of the
coordinates ¢ = u,v or w, hence fixes the 64 points (m,m’) of C' x C’
with ¢(m) = £(m') = 0. This gives (3 x 64)/4 = 48 fixed points in
X. QE.D.

Ezample. Let us take for C' and C’ the curve Cy defined by

uzzxy R v2:x27y2 s w2:x2+y2 .
The set of zeros of a,b,c is {0,00,+1,+i}, so the genus 2 curve D is
given by 22 = z(z* —1).
We get for ¥ the following equations :

XT=YZ=U?,V*=X2-Y?-Z%4+T7%  W? = X2 4+Y? 4+ 2% +7T7;

or, after the linear change of variables X =x+t, T=t—x, Y =y + iz,
Z=y—iz, U=u, V=2v, W =2w:

P=4y2 42 | =y 42 =47 w2 =2 4y2 .
These are the equations of the surface of cuboids, studied in [ST, vL]. Tt
encodes the relations in a cuboid (= rectangular box) between the sides
X,Y,z, the face diagonals u,v,w, and the space diagonal t. Thus the
surface of cuboids belongs to a 6-dimensional family of intersection of 4
quadrics in P with 48 nodes.

The curve Cj is isomorphic to the modular curve X(8), and the
map Cy x Cy — X can be described in terms of theta functions [FS].
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Remark 1. In [B3] we show that the surface X = (Cy x Cp)/T" has
mazimum Picard number p = h'', by analyzing the action of T' on
JCy; it follows that the desingularization ¥ of the surface of cuboids
Y. has the same property — a result obtained in [ST] via a computer
calculation.

Remark 2. Our surfaces X fit into a tower of (Z/2)2-étale coverings:
CxC' —X-5DxD.

The abelian covering r is the pull back of a (Z/2)?-étale covering of
JD x JD' :

X .4

DxD' —— JDxJD".

The abelian variety A is the Albanese variety of X, and « is the
Albanese map. Since the quotient X/ix is regular, ix acts as (—1) on
the space H(X,QL); therefore if we choose « so that it maps a fixed
point of ix to 0, ix is induced by (—14).

§3. The Schoen surface

The Schoen surfaces S have been defined in [S], and studied in
[CMR]. A Schoen surface S is contained in its Albanese variety Aj; it
has the following properties:

a) KZ2=16,p,=5, ¢=4 (hence x(0g) =2);

b) The canonical map ¢g4 : S — P?* factors through an involution
is with 40 fixed points, and induces an isomorphism of S/ig onto the
complete intersection of a quadric and a quartic in P* with 40 nodes
[CMR].

Since S/ig is a regular surface, ig acts as (—1) on the space
HY(S,QL). Therefore if we choose the Albanese embedding S — A
so that it maps a fixed point of ig to 0, ig is induced by the involution
(=1a).

Let ¢ be a line bundle of order 2 on A; we denote by 7 : B — A the
corresponding étale double cover, and put X := 7~ 1(S). The restriction
of ¢ to S, which we will still denote by ¢, is nontrivial (because the
restriction map Pic°(A) — Pic®(S) is an isomorphism), hence X is
connected.
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Proposition 2. X is a minimal surface of general type with q = 4,
pg =7, K% =32.

Proof : The formulas K% = 32 and x(Ox) = 4 are immediate; we must
prove q¢(X) =4, that is, H'(S,¢) = 0.

By construction [S] a Schoen surface fits into a flat family over the
unit disk A:

SC—= A

N\

A

where:

e A/A is a smooth family of abelian varieties;

e at a point z # 0 of A, 8, is a Schoen surface, and 8§, — A, is
the Albanese embedding;

e Ay = JC x JC for a genus 2 curve C'; 8y is the union of JC
embedded diagonally in JC' x JC', and of C'x C C JC x JC' (we choose
an Abel-Jacobi embedding C C JC'). These two components intersect
transversally along the diagonal C' C C x C'.

The line bundle ¢ extends to a line bundle £ of order 2 on A. Let
o be the restriction of £ to 8p; we want to compute H'(8g, ). We
have an exact sequence

(2) 0=ty — o0 ®lojoxc — Lojc — 0.

The line bundle £y on JC x JC can be written o X 3, where « and
[ are 2-torsion line bundles on JC', not both trivial; we use the same
letters to denote their restriction to C'. The cohomology exact sequence
associated to (2) gives

H(JC,a®p) ® H'(CxC,aRp) — H(C,a®) — H' (S0, b)) —
HY(JC,a®p)® H(C x C,aRB) — H(C,a®pj) .

The restriction map H°(JC,a ® B) — H°(C,a @ B) is surjective,
so u is injective. If @ and B are nontrivial, H!(C' x C,a X 3) is zero,
and the restriction map H'(JC,a ® B) — H*(C,a ® ) is injective, so
HY(80,0y) = 0. If, say, B8 is trivial, H!(JC,a) is zero and the map
H(C x C,pria) — HY(C,a) is bijective, hence H!(8y,4y) = 0 again.

By semi-continuity this implies H'(S,,£.) = 0 for z general in A,
or equivalently q(gz) = ¢q(8.) = 4, where § — § is the étale double
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covering defined by £. But ¢ is a topological invariant, so this holds
for all z# 0 in A, hence H'(S,¢) =0. Q.E.D.

The surface X has a natural action of (Z/2)?, given by the involu-
tion ix induced by (—1p) and the involution 7 associated to the double
covering X — S, which is induced by a translation of B. We want to
determine how these involutions act on H°(X, Kx). The decomposition
of H(X, Kx) into eigenspaces for 7 is

H(X,Kx) = HS,Ks) ® H*(S,Ks ® 1) .

By property b) above, ig acts trivially on H°(S, Kg). It remains to
study how it acts on HY(S,Kg @ £), or equivalently on H?(S,¢). To
define this action we choose the isomorphism w : (—14)*¢ = ¢ over A
such that «(0) = 1, and we consider the involutions

HP(is,u) : HP(S,0) ~5 HP(S,i%0) 5 HP(S,0) .

Proposition 3. There exist line bundles £ of order 2 on A for
which ig acts trivially on H?(S,f). In that case ix has 48 fized points.

Proof : We will denote by Ay and As the 2-torsion subgroups of A and
its dual abelian variety A, and similarly for B. The fixed point set of
ig is Ao NS, and that of ix is Bo N X.

We apply the holomorphic Lefschetz formula to the automorphism
is of S and the ig-linearization wu g :igl — £ :

Z(—l)pTer(ig,u):% S ula) .

P acAsNS

(At a point a of As, u(a) : £, — ¢, is the multiplication by a scalar,
which we still denote u(a).)

Let a € Ay. By [M1], property iv) p. 304, we have u(a) = (—1)*%
where (| ) : Ay % Ay — Z/2 is the canonical pairing. Thus the right
hand side of the Lefschetz formula is %(fo — f1), where f;, for i € Z/2,
is the number of points a € Ay N S with (a,?) = 1.

We have HO(S,¢) = H(S,¢) = 0 (Proposition 2), hence
dim H?(S,¢) = x(Og) = 2. Thus the left hand side is Tr H?(ig,u) €
{2,0,—2}. Since fo + f1 =40 this gives f; € {16,20,24}, and we want
to find ¢ such that H?(ig,u) = Id, that is fo = 24.

Put F := As N S. Consider the homomorphism j : Ay — (Z)2)F
given by j(¢) = ({(a,€))aqecr. For ¢ # 0, the weight of the element
§(0) of (Z/2)F (that is, the number of its nonzero coordinates) is fi,
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which belongs to {16,20,24}. Therefore j is injective; its image is a 8-
dimensional vector subspace of (Z/2)% | that is, a linear code, such that
the weight of any nonzero vector belongs to {16,20,24}. A simple linear
algebra lemma [B2, lemme 1] shows that a code in (Z/2)%° of dimension
> 7 contains elements of weight < 20; thus there exist elements ¢ in
Ay with f1 =16, hence fy=24.

It remains to compute the number of fixed points of ix in that case.
The fixed locus of iy is BoNX = 7~ 1(7(B2)NS). Dualizing the exact
sequence of (Z/2)-vector spaces

0— (Z/2)0 — Ay = By

and using the canonical pairings we get an exact sequence

B, " A, M7 0.

Thus the points a of Az NS which belong to m(Bs) are those with
(a,€) = 0. There are fy = 24 such points, hence 48 fixed points of
ix . Q.ED.

Remark 3. There exist line bundles ¢ in Ay with fo=/f1=20. In-
deed otherwise j(As) would be an 8-dimensional linear code in (Z,/2)%
with weights 16 and 24, projective in the sense of [CK]; this is impos-
sible since equation (3.10) of [CK] does not hold. Thus in the next
Proposition the hypothesis on /¢ is necessary.

Proposition 4. Choose ¢ as in Proposition 3. Then the canonical
map o : X — P factors through ix , and induces an isomorphism of
X/ix onto a complete intersection of 4 quadrics in P° with 48 nodes.

Proof : Since ix acts trivially on H(X, Kx), we have a commutative
diagram

X X, ywo L pb

I
lﬂ' \Lpz Ip

A
S s = > pt

where ¢y and ¢g are the canonical maps, ¥ and Z their images, p the
projection corresponding to the injection H°(S, Kg) — H°(X,Kx), ps
its restriction to X.

The map pgom : X — E gives the quotient of X by the action of
(Z/2)%. Since T acts non-trivially on H°(X, Kx), ¢ identifies 3 with
the quotient X/ix. Thus all the maps in the left hand square of the
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above diagram are double coverings, étale outside finitely many points.
In particular, since K% = 32, we have deg¥ = 16.

We choose bases (xg,...,24) and (u,v) of the (+1) and (—1)-
eigenspaces in H°(X, Kx) with respect to 7. The elements u?, uv,v
of H(X, K%Q) are invariant under 7 and iy, therefore they are pull-
back of ig-invariant forms in H°(S, K§?). Such a form comes from
an element of H°(Z,0=(2)), hence from an element of H°(P* Op(2)).
Thus we have

u? = a(x) uv = b(x) v? = ¢(x)

where a, b, ¢ are quadratic forms in xg, ..., 4. Moreover the irreducible
quadric @ containing Z is defined by a quadratic form g¢(z) which
vanishes on X.

Thus ¥ is contained in the subvariety V of PS defined by these 4
quadratic forms. If V is a surface, it has degree 16 and therefore is
equal to ¥. Thus it suffices to prove that the morphism p,, : V — @
induced by the projection p is not surjective.

Assume that py, is surjective; it has degree 2, and we have a carte-
sian diagram

> =V
lpz J/PV

The variety V is irreducible: otherwise ¥ is contained in one of
its component, which maps birationally to @), and py, has degree 1, a
contradiction. Since @ \ Sing(Q) is simply connected, py is branched
along a surface R C ). Since E is an ample divisor in @ (cut out by a
quartic equation), it meets R along a curve, and py is branched along
that curve, a contradiction. Q.E.D.

Remark 4. Tt follows that = = p(X) is defined by the equations
q(x) = b(x)? — a(z)c(x) = 0. The 40 nodes of = break into two sets:
the 16 points in P* defined by a(z) = b(z) = ¢(z) = q(x) = 0 are the
images by ps; of smooth points of ¥ fixed by the involution induced by
T; px is étale over the other 24 nodes of =, giving rise to the 48 nodes
of X.

Remark 5. The two families of surfaces X that we have constructed
in §2 and §3 are different; in fact, a surface X; of the first family is not
even homeomorphic to a surface X5 of the second one. Indeed X,
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admits an irrational genus 2 pencil X — D, and this is a topological
property [C]. But for a general member X5 of the second family, the
Albanese variety of the corresponding Schoen surface is simple [S], so
its double cover Alb(X5) is also simple; therefore X5 cannot have an
irrational pencil of genus 2.

It follows that the corresponding surfaces ¥ belong to two different
connected components of the moduli space of complete intersections of
4 quadrics in P® with an even set of 48 nodes.
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