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Homomorphisms on groups of volume-preserving
diffeomorphisms via fundamental groups

Tomohiko Ishida

Abstract.

Let M be a closed manifold. Polterovich constructed a linear map
from the vector space of quasi-morphisms on the fundamental group
71 (M) of M to the space of quasi-morphisms on the identity component
Diffy (M)o of the group of volume-preserving diffeomorphisms of M.
In this paper, the restriction H* (7, (M ); R) — H*(Diffy (M)o; R) of the
linear map is studied and its relationship with the flux homomorphism
is described.

§1. Introduction

Let M be a closed connected Riemannian manifold and 2 a volume
form on M. We denote by Diff 3’ (M)o the identity component of the
group of volume-preserving C'*°-diffeomorphisms of M. We assume that
the center of the fundamental group 7y (M) is finite. In [4], Gambaudo
and Ghys constructed countably many quasi-morphisms on the group of
area-preserving diffeomorphisms of the 2-disk from the signature quasi-
morphism on the braid groups. After that Polterovich introduced in
[6] a similar construction of quasi-morphisms on Diff&’ (M) from quasi-
morphismsony (M ). Recently, Brandenbursky generalized thesestrategy
and defined a linear map from the vector space of quasi-morphisms on the
braid group or the fundamental group to the space of quasi-morphisms
of area-preserving diffeomorphisms of surfaces [2], [3].

Polterovich’s construction induces a linear map from the vector space
of quasi-morphisms on 71 (M) to the vector space of quasi-morphisms
on Diffgy’(M)g. By restricting it on H'(m(M);R), we have the lin-
ear map I': HY(m(M);R) — HY(Diffg (M)o; R), which is defined in
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section 2 of this paper. Studying the linear map I': H* (7 (M);R) —
HY(Diffgy (M)o; R), we have a sufficient condition for vanishing of the
volume flux group which is first obtained by Kedra—Kotschick—Morita in
another way.

Theorem 1.1 (Kedra—Kotschick—-Morita [5]). If the center of w1 (M)
18 finite, then the volume flux group of M is trivial.

Let Flux: Diffgy’ (M) — Hijg ' (M;R) be the Q-flux homomorphism.
Let I*: HE (M;R) — H*(M;R) be the isomorphism which gives the
identification of the de Rham cohomology and the singular cohomology
defined by

I*([n))(0) = / .

for k dimensional closed differential form 7 and for singular k-chain o.
Let PD: H" Y(M;R) — Hi(M;R) be the Poincaré duality. Our main
result is the following.

Theorem 1.2. For any ¢ € H' (7 (M);R) = H'(M;R),

I(¢) = ¢ o PD o I""" o Flux: Diffg’ (M)o — R.

§2. Preliminaries
In this section, we define a linear map
I H'Y(7 (M);R) — HY(Diffgy (M)o; R)

and recall a definition of the flux homomorphism.

Here and throughout this paper, we use functional notation. That
is, for any homotopy classes y; and 2 of loops with a fixed base point,
the multiplication ;72 means that v, is applied first.

Choose a base point 2° of M. For almost every x € M, we choose the
shortest geodesic a,: [0,1] — M connecting #° with  if it is uniquely
determined. For any f € Diffy’(M)p and almost every z € M for
which both the geodesics a, and ay(,) are defined, we define the loop
I(f;2): [0,1] = M by

ag(3t) (0<t<y,
Uf;z)(t) = < fa—1(z) (3 <t<2),
ap@)(3-3t) (3<t<1),

where {f;}ic0,1) is an isotopy such that fy is the identity and f; = f.
Of course for some = € M there exist two or more shortest geodesics
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connecting ¥ with . However for almost every x € M the loop I(f; )
is well-defined. We denote by ~v(f; ) the homotopy class represented by
the loop I(f;x). For a homomorphism ¢ € H!(m;(M);R), we define the
homomorphism I'(¢) € H'(Diffg (M)o; R) by

r6)(f) = / et

For almost every a € M, the homotopy class v(f;x) is well-defined
and is unique up to elements of the center of 7y (M) [6]. Since the
center of 71 (M) is finite, the image of v(f;x) by the homomorphism
¢: T (M;2°) — R is independent of the choice of the flow {ft}eepo.1-
Since the manifold M is compact, the loops I(f;x) have uniformly
bounded lengths for fixed {fi}icjo,1. Hence the map ~(f; -): M —
71 (M;2°) has a finite image and the value T'(¢)(f) is well-defined.

Let Diffy’(M)o be the universal cover of Diffg’ (M)g. Consider a
path {fi}ep,1) in Diffy’(M)o such that fo is the identity. Let X;

be the corresponding vector field. Then the map Flux: Diffy (M) —
H7 ' (M;R) is defined by

Fx((ih = | [ (@) .

where tx, is the interior product by X;. The map Flux: ]ngg(M)o —
HYZ'(M;R) is a well-defined homomorphism and called the Q-fluz
homomorphism. The fundamental group m (Diffg’ (M )g) is contained in

Diffy (M)o as a subgroup of deck transformations. The image Gq =
Flux(my (Diffy (M)g)) of w1 (Diff g (M)g) by the Q-flux homomorphism

—_—

Flux: Diffy (M) — Hlz ' (M;R) is called the volume fluz group of M

—~

and the homomorphism Flux: Diffgy (M)o — Hiz ' (M;R) descends to
the homomorphism Flux: Diffey (M)o — Hlz ' (M;R)/Gg, which is also
called the Q-flux homomorphism.

83. Proofs

In this section, we give proofs of Theorems 1.1 and 1.2. The following
theorem is mentioned in [6] without proof.

Theorem 3.1. The linear map
I H'Y(7 (M);R) — HY(Diffgy (M)o; R)

18 1njective.
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We give a proof of Theorem 3.1. Let 8 € 71(M;2°). Then we can
choose a loop [ representing 8 without self-intersection. Choose a tubular
neighborhood N C M of [ and a diffeomorphism ¢: N — D"~ ! x St
Let (z,5s) be the coordinate on D"~! x S'. We may assume that there
exists ' € A"1(D""1;R) such that »*(2'ds) = Q|y by changing the
neighborhood N and the diffeomorphism ¢ if necessary. Let w: D"~ ! —
R be a function such that w(z) = 0 in a neighborhood of the boundary.
We define the volume-preserving diffeomorphism f,, of D"~! x S! by

fulzy8) = (2,8 + w(2)).

and define F,, € Diff (M )y to be the identity outside N and F,, =
¢ fup in N.
Lemma 3.2. For any ¢ € H(m(M);R),

D (6)(F.) = 6(8) / L

Proof. Note that the base point z° of M is in N. Let us denote
o(z%) by (29, 5%) and p(x) by (2!, s'). Let v be the smallest non-negative
number such that s' + v = s®. For each & € N we define the paths
l1,19,13: [O, 1] — D=1 x St by

B(t) = (t20 + (1 - )21, 1),

lh(t) = (2,5 + tv),

(1) = (', s + tw(z!) = [w(M)).
We define the homotopy classes (., n, of loops in M by

Co= e Dulalad), me = lag () ()a)

Since the path {Fi,}ico,1) connects the identity and F, in
Diffy’ (M)g, the homotopy class y(F,;x) can be written as

V(F; ) = 0ot B0,

if x € N. On the other hand, the homotopy class v(F,;x) is trivial if
x & N. Therefore,

T(6)(F,) = / 600
— $(8) / _ i+ / ot
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Since F¥ = Fy,, for any k € Z,

DO)(F) = Jim 1 T(6)()(Fiui 2))0.

k—o0

Since the domain N is compact, the value ¢(7,) is bounded and thus
we have

Q.E.D.

Proof of Theorem 3.1. Suppose a homomorphism
b€ H'(mi (M); R)

is non-trivial. Then there exists a homotopy class S of a loop without
self-intersection in M such that ¢(5) # 0. It is sufficient to prove that
there exists g € Diffy (M) such that I'(¢)(g) # 0. If we choose a function
w: D" ! — R such that

/ w(2)Q #0,
zeDn—1
then by Lemma 3.2 we have I'(¢)(F,) # 0. Q.E.D.

Proof of Theorem 1.1. It is known that the flux homomorphism
gives the abelianization of the group Diffg (M)y [1]. Hence for any
homomorphism ¢ € H' (71 (M);R) there exists a homomorphism

Ay HIZYW(M;R)/Go — R

such that the homomorphism I'(¢) € HY(Diffgy' (M)o;R) can be rep-
resented by the composition of homomorphisms Flux: Diffy’ (M)g —
HYZ (M3 R)/Gg and Ay Hig'(M;R)/Go — R. That is,

I'(¢) = Ay o Flux: Diff 5’ (M)o — R.
Since the diffeomorphism F, is the time 1-map of the time independent

vector field p '
Y. (e Du(w(z)L) if zeN,
* 0 if =¢ N,

we have
Flux(F,) = txQ = ¢*[w(2)Q].
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In particular,
Flux(Fy,) = t Flux(F,,)

for any B € 7 (M), any function w: D"~! — R and any ¢t € R. On the
other hand by Lemma 3.2

I'(¢)(Fi) = tT(0)(Fu)

for any ¢ € R. Choose elements f31, ..., B € 71 (M, z") whose images by
the projection 71 (M, z") — Hy(M;Z) form a basis of Hy(M;R). If we
replace 8 with f1,..., B, then (n— 1)-classes p*[w(z)Q]’s form a basis
of Hiy ' (M;R). Hence if there exists a non-trivial element ¢ € G, then
Ay(t§) =0 for any t € R. The map A, descends to the R-linear map
Ay HYZH(M;R)/(Go) — R, where (Go) means the vector subspace of
H''7 ' (M;R) spanned by elements of Gg.
By Theorem 3.1,

rankg H'(M;R) = rankg ImI" < rankg Hom(H} ' (M;R)/(Ga),R).
If there exists a non-trivial element £ € Gq, then
rankg Hom(H; ' (M;R)/(Gq),R) < rankg H" ' (M;R)
while by the Poincaré duality
rankg H'(M;R) = rankg H""*(M;R).

This contradiction shows that there are no non-trivial elements in Gq.
Q.E.D.

Proof of Theorem 1.2. The statement is that
Ay =¢oPDol" ' HIZ'(M;R) — R.

Since Ay: H''w'(M;R) — R is an R-linear map, it is sufficient to choose
N, .-, Nm generating Hé’gl(M;R) and prove that Ay(n;) = ¢ o PD o
I"L(n;) for 1 <i < m.

Since
Flux(F,) = txQ = ¢*[w(2)Q],
we have
I" o Flux(F,) (o) = / w(z)Q.
PO
Therefore,

PD o I""! o Flux(F,,)

(L)
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Comparing this equation with Lemma 3.2, we have
I'(¢)(F,) = ¢o PDol" ' oFlux(F,)

for any ¢ € H'(M;R).

As in the proof of Theorem 1.1, choose homotopy classes (i, ...,
Bm € 71 (M, 2°) whose images by the projection 1 (M, 2°) — Hy(M;Z)
form a basis of Hy (M;R). If wereplace S with 01, ..., Bm, then Flux(F,,)’s
form a basis of Hjp 1(M;R) and hence this completes the proof. Q.E.D.
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