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Homomorphisms on groups of volume-preserving
diffeomorphisms via fundamental groups

Tomohiko Ishida

Abstract.

Let M be a closed manifold. Polterovich constructed a linear map
from the vector space of quasi-morphisms on the fundamental group
π1(M) ofM to the space of quasi-morphisms on the identity component
Diff∞

Ω (M)0 of the group of volume-preserving diffeomorphisms of M .
In this paper, the restrictionH1(π1(M);R)→H1(Diff∞

Ω (M)0;R) of the
linear map is studied and its relationship with the flux homomorphism
is described.

§1. Introduction

Let M be a closed connected Riemannian manifold and Ω a volume
form on M . We denote by Diff∞

Ω (M)0 the identity component of the
group of volume-preserving C∞-diffeomorphisms of M . We assume that
the center of the fundamental group π1(M) is finite. In [4], Gambaudo
and Ghys constructed countably many quasi-morphisms on the group of
area-preserving diffeomorphisms of the 2-disk from the signature quasi-
morphism on the braid groups. After that Polterovich introduced in
[6] a similar construction of quasi-morphisms on Diff∞

Ω (M)0 from quasi-
morphismsonπ1(M). Recently,Brandenburskygeneralizedthesestrategy
and defined a linear map from the vector space of quasi-morphisms on the
braid group or the fundamental group to the space of quasi-morphisms
of area-preserving diffeomorphisms of surfaces [2], [3].

Polterovich’s construction induces a linear map from the vector space
of quasi-morphisms on π1(M) to the vector space of quasi-morphisms
on Diff∞

Ω (M)0. By restricting it on H1(π1(M);R), we have the lin-
ear map Γ: H1(π1(M);R) → H1(Diff∞

Ω (M)0;R), which is defined in
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section 2 of this paper. Studying the linear map Γ: H1(π1(M);R) →
H1(Diff∞

Ω (M)0;R), we have a sufficient condition for vanishing of the
volume flux group which is first obtained by Kȩdra–Kotschick–Morita in
another way.

Theorem 1.1 (Kȩdra–Kotschick–Morita [5]). If the center of π1(M)
is finite, then the volume flux group of M is trivial.

Let Flux: Diff∞
Ω (M)0 →Hn−1

dR (M ;R) be the Ω-flux homomorphism.
Let Ik : Hk

dR(M ;R) → Hk(M ;R) be the isomorphism which gives the
identification of the de Rham cohomology and the singular cohomology
defined by

Ik([η])(σ) =

∫
σ

η

for k dimensional closed differential form η and for singular k-chain σ.
Let PD : Hn−1(M ;R) → H1(M ;R) be the Poincaré duality. Our main
result is the following.

Theorem 1.2. For any φ ∈ H1(π1(M);R) = H1(M ;R),

Γ(φ) = φ ◦ PD ◦ In−1 ◦ Flux: Diff∞
Ω (M)0 → R.

§2. Preliminaries

In this section, we define a linear map

Γ: H1(π1(M);R) → H1(Diff∞
Ω (M)0;R)

and recall a definition of the flux homomorphism.
Here and throughout this paper, we use functional notation. That

is, for any homotopy classes γ1 and γ2 of loops with a fixed base point,
the multiplication γ1γ2 means that γ2 is applied first.

Choose a base point x0 ofM . For almost every x ∈M , we choose the
shortest geodesic ax : [0, 1] → M connecting x0 with x if it is uniquely
determined. For any f ∈ Diff∞

Ω (M)0 and almost every x ∈ M for
which both the geodesics ax and af(x) are defined, we define the loop
l(f ;x) : [0, 1] → M by

l(f ;x)(t) =

⎧⎪⎨
⎪⎩
ax(3t) (0 ≤ t ≤ 1

3 ),

f3t−1(x) ( 13 ≤ t ≤ 2
3 ),

af(x)(3− 3t) ( 23 ≤ t ≤ 1),

where {ft}t∈[0,1] is an isotopy such that f0 is the identity and f1 = f .
Of course for some x ∈ M there exist two or more shortest geodesics
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connecting x0 with x. However for almost every x ∈ M the loop l(f ;x)
is well-defined. We denote by γ(f ;x) the homotopy class represented by
the loop l(f ;x). For a homomorphism φ ∈ H1(π1(M);R), we define the
homomorphism Γ(φ) ∈ H1(Diff∞

Ω (M)0;R) by

Γ(φ)(f) =

∫
x∈M

φ(γ(f ;x))Ω.

For almost every x ∈ M , the homotopy class γ(f ;x) is well-defined
and is unique up to elements of the center of π1(M) [6]. Since the
center of π1(M) is finite, the image of γ(f ;x) by the homomorphism
φ : π1(M ;x0) → R is independent of the choice of the flow {ft}t∈[0,1].
Since the manifold M is compact, the loops l(f ;x) have uniformly
bounded lengths for fixed {ft}t∈[0,1]. Hence the map γ(f ; · ) : M →
π1(M ;x0) has a finite image and the value Γ(φ)(f) is well-defined.

Let D̃iff∞
Ω (M)0 be the universal cover of Diff∞

Ω (M)0. Consider a
path {ft}t∈[0,1] in Diff∞

Ω (M)0 such that f0 is the identity. Let Xt

be the corresponding vector field. Then the map F̃lux: D̃iff∞
Ω (M)0 →

Hn−1
dR (M ;R) is defined by

F̃lux({ft}) =
[∫ 1

0

ιXt(Ω) dt

]
,

where ιXt is the interior product by Xt. The map F̃lux: D̃iff∞
Ω (M)0 →

Hn−1
dR (M ;R) is a well-defined homomorphism and called the Ω-flux

homomorphism. The fundamental group π1(Diff∞
Ω (M)0) is contained in

D̃iff∞
Ω (M)0 as a subgroup of deck transformations. The image GΩ =

F̃lux(π1(Diff∞
Ω (M)0)) of π1(Diff∞

Ω (M)0) by the Ω-flux homomorphism

F̃lux: D̃iff∞
Ω (M)0 → Hn−1

dR (M ;R) is called the volume flux group of M

and the homomorphism F̃lux: D̃iff∞
Ω (M)0 → Hn−1

dR (M ;R) descends to

the homomorphism Flux: Diff∞
Ω (M)0 → Hn−1

dR (M ;R)/GΩ, which is also
called the Ω-flux homomorphism.

§3. Proofs

In this section, we give proofs of Theorems 1.1 and 1.2. The following
theorem is mentioned in [6] without proof.

Theorem 3.1. The linear map

Γ: H1(π1(M);R) → H1(Diff∞
Ω (M)0;R)

is injective.
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We give a proof of Theorem 3.1. Let β ∈ π1(M ;x0). Then we can
choose a loop l representing β without self-intersection. Choose a tubular
neighborhood N ⊂ M of l and a diffeomorphism ϕ : N → Dn−1 × S1.
Let (z, s) be the coordinate on Dn−1 × S1. We may assume that there
exists Ω′ ∈ An−1(Dn−1;R) such that ϕ∗(Ω′ds) = Ω|N by changing the
neighborhood N and the diffeomorphism ϕ if necessary. Let ω : Dn−1 →
R be a function such that ω(z) = 0 in a neighborhood of the boundary.
We define the volume-preserving diffeomorphism fω of Dn−1 × S1 by

fω(z, s) = (z, s+ ω(z)).

and define Fω ∈ Diff∞
Ω (M)0 to be the identity outside N and Fω =

ϕ−1fωϕ in N .

Lemma 3.2. For any φ ∈ H1(π1(M);R),

Γ(φ)(Fω) = φ(β)

∫
z∈Dn−1

ω(z)Ω′.

Proof. Note that the base point x0 of M is in N . Let us denote
ϕ(x0) by (z0, s0) and ϕ(x) by (z1, s1). Let v be the smallest non-negative
number such that s1 + v = s0. For each x ∈ N we define the paths
l1, l2, l3 : [0, 1] → Dn−1 × S1 by

l1(t) = (tz0 + (1− t)z1, s1),

l2(t) = (z0, s1 + tv),

l3(t) = (z1, s1 + t(ω(z1)− [ω(z1)])).

We define the homotopy classes ζx, ηx of loops in M by

ζx = [(ϕ−1)∗(l2l1)ax], ηx = [a−1
Fω(x)(ϕ

−1)∗(l3)ax].

Since the path {Ftω}t∈[0,1] connects the identity and Fω in
Diff∞

Ω (M)0, the homotopy class γ(Fω;x) can be written as

γ(Fω;x) = ηxζ
−1
x β[ω(z′)]ζx

if x ∈ N . On the other hand, the homotopy class γ(Fω;x) is trivial if
x �∈ N . Therefore,

Γ(φ)(Fω) =

∫
x∈N

φ(γ(Fω;x))Ω

= φ(β)

∫
x∈N

[ω(z′)]Ω +

∫
x∈N

φ(ηx)Ω.
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Since F k
ω = Fkω for any k ∈ Z,

Γ(φ)(Fω) = lim
k→∞

1

k
Γ(φ)(γ(Fkω;x))Ω.

Since the domain N is compact, the value φ(ηx) is bounded and thus
we have

Γ(φ)(Fω) = φ(β)

∫
x∈N

ω(x)Ω

= φ(β)

∫
z∈Dn−1

ω(z)Ω′.

Q.E.D.

Proof of Theorem 3.1. Suppose a homomorphism

φ ∈ H1(π1(M);R)

is non-trivial. Then there exists a homotopy class β of a loop without
self-intersection in M such that φ(β) �= 0. It is sufficient to prove that
there exists g ∈Diff∞

Ω (M)0 such that Γ(φ)(g) �=0. If we choose a function
ω : Dn−1 → R such that ∫

z∈Dn−1

ω(z)Ω′ �= 0,

then by Lemma 3.2 we have Γ(φ)(Fω) �= 0. Q.E.D.

Proof of Theorem 1.1. It is known that the flux homomorphism
gives the abelianization of the group Diff∞

Ω (M)0 [1]. Hence for any
homomorphism φ ∈ H1(π1(M);R) there exists a homomorphism

Aφ : H
n−1
dR (M ;R)/GΩ → R

such that the homomorphism Γ(φ) ∈ H1(Diff∞
Ω (M)0;R) can be rep-

resented by the composition of homomorphisms Flux: Diff∞
Ω (M)0 →

Hn−1
dR (M ;R)/GΩ and Aφ : H

n−1
dR (M ;R)/GΩ → R. That is,

Γ(φ) = Aφ ◦ Flux: Diff∞
Ω (M)0 → R.

Since the diffeomorphism Fω is the time 1-map of the time independent
vector field

Xx =

{
(ϕ−1)∗

(
ω(z) d

ds

)
if x ∈ N,

0 if x /∈ N,

we have
Flux(Fω) = ιXΩ = ϕ∗[ω(z)Ω′].
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In particular,
Flux(Ftω) = tFlux(Fω)

for any β ∈ π1(M), any function ω : Dn−1 → R and any t ∈ R. On the
other hand by Lemma 3.2

Γ(φ)(Ftω) = tΓ(φ)(Fω)

for any t ∈ R. Choose elements β1, . . . , βm ∈ π1(M,x0) whose images by
the projection π1(M,x0) → H1(M ;Z) form a basis of H1(M ;R). If we
replace β with β1, . . . , βm, then (n− 1)-classes ϕ∗[ω(z)Ω′]’s form a basis
of Hn−1

dR (M ;R). Hence if there exists a non-trivial element ξ ∈GΩ, then
Aφ(tξ) = 0 for any t ∈ R. The map Aφ descends to the R-linear map

A′
φ : H

n−1
dR (M ;R)/〈GΩ〉 → R, where 〈GΩ〉 means the vector subspace of

Hn−1
dR (M ;R) spanned by elements of GΩ.
By Theorem 3.1,

rankR H1(M ;R) = rankR ImΓ ≤ rankR Hom(Hn−1
dR (M ;R)/〈GΩ〉,R).

If there exists a non-trivial element ξ ∈ GΩ, then

rankR Hom(Hn−1
dR (M ;R)/〈GΩ〉,R) < rankR Hn−1(M ;R)

while by the Poincaré duality

rankR H1(M ;R) = rankR Hn−1(M ;R).

This contradiction shows that there are no non-trivial elements in GΩ.
Q.E.D.

Proof of Theorem 1.2. The statement is that

Aφ = φ ◦ PD ◦ In−1 : Hn−1
dR (M ;R) → R.

Since Aφ : H
n−1
dR (M ;R)→ R is an R-linear map, it is sufficient to choose

η1, . . . , ηm generating Hn−1
dR (M ;R) and prove that Aφ(ηi) = φ ◦ PD ◦

In−1(ηi) for 1 ≤ i ≤ m.
Since

Flux(Fω) = ιXΩ = ϕ∗[ω(z)Ω′],

we have

In−1 ◦ Flux(Fω)(σ) =

∫
ϕ∗σ

ω(z)Ω′.

Therefore,

PD ◦ In−1 ◦ Flux(Fω) =

(∫
z∈Dn−1

ω(z)Ω′
)
β.
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Comparing this equation with Lemma 3.2, we have

Γ(φ)(Fω) = φ ◦ PD ◦ In−1 ◦ Flux(Fω)

for any φ ∈ H1(M ;R).
As in the proof of Theorem 1.1, choose homotopy classes β1, . . . ,

βm ∈ π1(M,x0) whose images by the projection π1(M,x0) → H1(M ;Z)
form a basis ofH1(M ;R). If we replace β with β1, . . . , βm, thenFlux(Fω)’s
form a basis ofHn−1

dR (M ;R) and hence this completes the proof. Q.E.D.
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