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Asymptotic properties of MMM-classes

Jonathan Bowden

Abstract.

We study geometric properties of characteristic classes of surfaces
bundles. In particular, we show that oriented surface bundles over
bases with amenable fundamental groups and dimension at least 2 have
trivial simplicial volume. We show furthermore that all MMM-classes
are hyperbolic in the sense of Gromov, verifying a weakened version of
a conjecture due to Morita. Finally we consider surface bundles over
products and restrictions on their characteristic classes

§1. Introduction

In this article we discuss several properties of characteristic classes of
surface bundles. Since the results of Madsen–Weiss [10] it is known that
the set of stable rational characteristic classes of oriented surface bundles
consists of so-called tautological or Mumford–Miller–Morita (MMM)
classes ek and their products (cf. Definition 2.1). It therefore remains
to investigate the properties of these classes more closely and we do this
by looking at the asymptotic properties of these classes as well as their
behaviour for certain classes of base manifolds.

It has been conjectured by Morita that all the MMM-classes are
bounded in the sense of Gromov. It is known that the odd classes are
bounded [12] so it remains to deal with the even classes. As a partial
result in this direction Morita showed that all the rational MMM-classes
vanish on amenable subgroups (cf. [12]). In this article we will show that
the MMM-classes are hyperbolic in the sense of Gromov (Theorem 5.8),
a concept that is strictly weaker than boundedness in general, but which
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implies for example vanishing on amenable groups. We also give an alter-
nate proof of the fact that the rational MMM-classes vanish on amenable
groups, which is based on reduction systems for subgroups of the map-
ping class groups and showing that the total space of a surface bundle
over a base with amenable fundamental group has vanishing simplicial
volume, unless the base is the circle:

Theorem 3.2. Let Σ → E → B be an oriented surface bundle
over a closed, oriented manifold of dimension dim(B) ≥ 2. If π1(B) is
amenable, then the simplicial volume ‖E‖ vanishes.

Note that the assumption that the base has dimension at least 2
is essential, since there are mapping tori over S1 which are hyperbolic
manifolds and thus have non-trivial simplicial volume.

In a similar direction using reduction systems we show how the
MMM-classes can evaluate on non-trivial products:

Theorem 4.2. Let Σ → E → B be an oriented surface bun-
dle over a base B = M1 × M2 that is a non-trivial product. If m =
max{dim(M1),dim(M2)}, then ek(E) = 0 for all k > m

2 .

This theorem then says that the MMM-classes are indecomposable
with respect to products.

Conventions. All manifolds and bundles will be assumed to be
oriented and smooth.

§2. Surface bundles and characteristic classes

We begin by recalling certain generalities about surface bundles,
which for the most part can be found in [11]. Let

Γh = Diff+(Σh)/Diff0(Σh)

denote the mapping class group of an oriented Riemann surface Σh of
genus h. By the classical result of Earle and Eells [4] the identity com-
ponent Diff0(Σh) is contractible in the C∞-topology if h ≥ 2. Thus the
classifying space BDiff+(Σh) is homotopy equivalent to BΓh which is
in turn the Eilenberg–MacLane space K(Γh, 1).

In general, any oriented surface bundle is determined up to bun-
dle isomorphism by the homotopy class of its classifying map and since
BDiff+(Σh) is aspherical, a surface bundle Σh → E → B is deter-
mined up to bundle isomorphism by the conjugacy class of its holonomy
representation:

ρ : π1(B) → Γh.
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The conjugation ambiguity is a result of the choice of base points. Con-
versely, any homomorphism ρ : π1(B) → Γh induces a map

B → K(Γh, 1) = BΓh

and thus defines a bundle that has holonomy ρ.
In the presence of a marked point we can define the group of isotopy

classes of diffeomorphisms fixing a marked point, which we denote by
Γh,1. Furthermore there is a natural exact sequence given by forgetting
the marked point

1 → π1(Σh) → Γh,1 → Γh → 1

and one may identify BΓh,1 with the the total space EΓh of the universal
bundle over BΓh.

There is a tautological cohomology class

e ∈ H2(BΓh,1,Z) = H2(EΓh,Z)

which is defined as the Euler class of the oriented rank-2 bundle of
vectors tangent to the fibers of EΓh → BΓh. Alternately, one can define
e as the Euler class associated to the central extension

1 → Z → Γ1
h → Γh,1 → 1

where Γ1
h = Diffc(Σ1

h)/Diffc
0(Σ

1
h) denotes the mapping class group of a

once punctured, genus h surface. Here the right most map is given by
collapsing the boundary to a point and the kernel is generated by a Dehn
twist along a curve parallel to the boundary.

A family of characteristic classes of oriented surface bundles can be
defined using the vertical Euler class. These are the so-called Mumford–
Miller–Morita (MMM)-classes.

Definition 2.1. The (universal) k-th MMM-class of a surface bun-
dle is defined as

ek = π!e
k+1 ∈ H2k(BΓh,Z),

where e is the vertical Euler class of the universal oriented surface bundle
EΓh → BΓh and π! denotes integration along the fiber.

The k-th MMM-class of a particular bundle E → B is denoted
ek(E) ∈ H2k(B,Z).

If the genus of the fibre is at least 2, then we can consider the k-th
MMM-class as an element in the group cohomology of the mapping class
group itself ek ∈ H2k(Γh,Z).
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2.1. Boundedness of the vertical Euler class

In [5] Gromov introduced the so-called l1-norm on homology that is
defined as follows.

Definition 2.2 (l1-norm). Let c =
∑

i λiσi be a chain in Ck(X,R).
We define the l1-norm of c to be

‖c‖1 =
∑
i

|λi|.

For a class α ∈ Hk(X,R) we define

‖α‖1 = inf{‖z‖1 | α = [z]}.
If X is an orientable, closed manifold, then the norm of the fun-

damental class is called the simplicial volume and is denoted ‖X‖. By
considering the natural pairing between homology and cohomology, one
obtains a norm on cohomology that is dual to the l1-norm.

Definition 2.3 (l∞-norm). Let c be a cochain in Ck(X,R). We
define the l∞-norm of c to be

‖c‖∞ = sup
σ∈Sk(X)

|c(σ)|
‖σ‖1 .

For a class α ∈ Hk(X,R) we define

‖α‖∞ = inf{‖c‖∞ | α = [c]}.
This definition of the �∞-norm on cohomology agrees with the �∞-

norm on cohomology as introduced by Gromov [5]. We then say that
a cohomology class is bounded, if it is bounded with respect to the l∞-
norm.

A fundamental fact first observed by Morita is that the vertical
Euler class is bounded. This follows from the fact that the vertical
Euler class can be described as a pull-back of the Euler class in the
group cohomology of Homeo+(S

1), which is bounded. This fact can
also be seen as a consequence of the adjunction inequality as explained
in [2].

Proposition 2.4 (Morita, [12]). Let h ≥ 2, then the vertical Euler
class e is bounded when considered as a class in H2(Γh,1,R).



Asymptotic properties of MMM-classes 287

§3. MMM-classes vanish on amenable groups

In this section we show that all MMM-classes vanish on amenable
groups as rational classes. Let us first recall the definition of amenability.

Definition 3.1. A group G is called amenable if it admits a left-
invariant mean, i.e. there is a left-invariant map from the set of bounded
functions

μ : L∞(G) → R

such that μ(1) = 1 and μ(f) ≥ 0 if f ≥ 0.

The main tool we shall use to understand bundles over spaces with
amenable fundamental groups is the theory of reduction systems for
subgroups of mapping class groups (see [1], [8]). It will be convenient
to use slightly different notation from the previous section. Namely,
we consider a compact, orientable surface Σ with possibly non-empty
boundary and define

MCG(Σ) = P Diff+(Σ)/Diff0(Σ).

Here P Diff+(Σ) is the group of pure orientation preserving diffeo-
morphisms of Σ, i.e. those diffeomorphisms that do not permute
boundary components, and Diff0(Σ) denotes those diffeomorphisms
that are isotopic to the identity where the isotopy need not fix the
boundary. We will also want to consider the group of diffeomorphisms
that fix the boundary up to isotopy which we denote by

MCG(Σ, ∂Σ) = P Diff+(Σ, ∂Σ)/Diff0(Σ, ∂Σ).

A subgroup G ⊂ MCG(Σ) is called reducible if there exists a homotopi-
cally non-trivial, embedded 1-dimensional submanifold C ⊂ Σ which
is componentwise fixed by every element in G up to isotopy. If Σ has
boundary we require that no component of C is isotopic into the bound-
ary. Such a submanifold is called a reduction system for G. If no such
C exists, then we say that G is irreducible.

Next we consider a reducible subgroup G ⊂ MCG(Σ). We let
MCG(Σ, C) denote the subgroup of the mapping class group that fixes
each component of C up to isotopy. If we let {Qi} for 1 ≤ i ≤ k de-
note the closures of the components of Σ \ C, then the holonomy map
factors through the map MCG(Σ, C) → ∏

i MCG(Qi). An important
fact is that after taking a finite index subgroup G′ ⊂ G, there is always
a so-called maximal reduction system Cmax so that the image of G′ in
each MCG(Qi) is irreducible or trivial ([8], Corollary 7.18).
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Moreover, any irreducible subgroup either contains a free group on
two generators or is virtually cyclic ([8], Corollary 8.6 and Theorem 8.9).
Thus if G is amenable it contains no free groups on two generators and
hence the image Hi of G

′ in MCG(Qi) is virtually cyclic. After taking
finite index subgroups one may then assume that eachHi is either infinite
cyclic, or trivial. The analogous result for solvable groups is older and
goes back to Birman–Lubotzky–McCarthy in [1].

We summarise this discussion in the following theorem.

Theorem 3.2 ([8], Theorem 8.9). Let Σ be any compact surface and
let G ⊂ MCG(Σ) be amenable. Then G is virtually abelian. Moreover,
there exists a finite index subgroup G′ ⊂ G and a reduction system C so
that the images of G′ in MCG(Qi) are infinite cyclic or trivial.

We are now able to state and prove the following theorem.

Theorem 3.3. Let Σ → E → B be an oriented surface bundle
over a closed, oriented manifold of dimension dim(B) ≥ 2. If π1(B) is
amenable, then the simplicial volume ‖E‖ vanishes.

Proof. Since the vanishing of the simplicial volume is unchanged
under finite covers, we may assume by Theorem 3.2 that the image of
the holonomy map of E is free abelian. That is E is obtained as the
pullback of some bundle E′ over a torus TN and we have the following
commuting diagram:

E
f̄ ��

π

��

E′

π′
��

B
f �� TN .

Since the kernel of the induced map π1(E) → π1(E
′) is amenable,

Gromov’s Mapping Theorem implies that ‖[E]‖1 = ‖f̄∗[E]‖1 (cf. [5],
p. 40). Moreover, by applying the transfer homomorphism in homology
to the above diagram we have

Hn+2(E)
f̄∗ �� Hn+2(E

′)

Hn(B)
f∗ ��

π!

��

Hn(T
N ).

(π′)!

��

Since every class in H∗(TN ) can be represented as a sum of tori, the
class f∗([B]) can also be represented as a sum of tori. The commutativity
of the above diagram then implies that the class f̄∗[E] is representable
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by a sum of the fundamental classes of several Σ-bundles over tori of
dimension n = dim(B). Thus it suffices to prove the theorem under the
assumption that the base B is a torus of dimension n ≥ 2 and from now
on we shall assume this.

We let Cmax be a maximal reduction system for the holonomy of E
which gives a fiberwise embedded S1-bundle ξi ⊂ E for each component
of Cmax. These S1-bundles are π1-injective and have amenable funda-
mental group. Thus Gromov’s Cutting-off Theorem (cf. [5], p. 58) implies

‖E‖ =

∥∥∥∥∥E \
⋃
i

ξi

∥∥∥∥∥ .
Since the holonomy group of each component Qi of Σ \ Cmax is either
infinite cyclic or trivial, we see that each component of E \ ⋃

i ξi is
diffeomorphic to Mi × Tn−1, where Mi is a mapping torus with fiber
Int(Qi) and holonomy ψi. This manifold admits proper self-maps of
arbitrary degree, since n ≥ 2. Hence the simplicial volume is either zero
or infinite. As E is closed we know that ‖E‖ < ∞ and we conclude that

‖E‖ =

∥∥∥∥∥E \
⋃
i

ξi

∥∥∥∥∥ =
∑
i

‖Mi × Tn−1‖ = 0.

Q.E.D.

As a consequence of Theorem 3.3 and the boundedness of the verti-
cal Euler class (cf. Proposition 2.4) we will show that all MMM-classes
vanish on amenable subgroups of Γh = MCG(Σh).

Theorem 3.4 (Morita, [12]). The images of the MMM-classes in
H∗(G,Q) are trivial for amenable G ⊂ Γh.

Proof. After taking a finite index subgroup we may assume that
G = ZN is free abelian. This subgroup corresponds to a surface bundle

Σh → E → TN

over the N -torus. Moreover, by Proposition 2.4 the vertical Euler class
is bounded with ‖e‖∞ = C < ∞ and thus ek+1 ∈ H2k+2(Γh,1) is
bounded with

‖ek+1‖∞ ≤ Ck+1.

The group H2k(T
N ) has a basis consisting of (embedded) tori Tj ↪→ TN

and the theorem will follow if we show that ek is trivial on each Tj .
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We let Ej denote the restriction of E to Tj and compute

|〈ek(E), [Tj ]〉| = |〈π!e
k+1, [Tj ]〉|

= |〈ek+1, π![Tj ]〉|
= |〈ek+1, [Ej ]〉|
≤ ‖ek+1‖∞ ‖Ej‖ ≤ Ck+1‖Ej‖.

We may assume dim(Tj) ≥ 2, since ek+1 is a cohomology class in degree
at least four. Hence Theorem 3.3 implies that ‖Ej‖ = 0 and the result
follows. Q.E.D.

§4. MMM-classes and products

We will next investigate which classes in H∗(Γh) can be represented
as the image of the fundamental class of a non-trivial product B = M1×
M2 of closed manifolds, where dim(M1),dim(M2) > 0. In particular, we
will show that if m = max{dim(M1),dim(M2)}, then ek([B]) = 0 for
all k > m

2 . This means that in particular ek vanishes modulo torsion
for any bundle over a non-trivial product N of dimension dim(N) = 2k.
We begin by proving the following lemma.

Lemma 4.1. Let Σ be a closed, connected, oriented surface and let
C be a disjoint collection of embedded circles on Σ. We let Qj be the

components of Σ \ C and let Qj be the closed surface obtained from Qj

by identifying each boundary component to a point. We further let ρ̄j be

the natural map MCG(Σ, C) → MCG(Qj). Then the k-th MMM-class
on MCG(Σ, C) satisfies

ek =
n∑

j=1

ρ̄∗jek.

Proof. For simplicity let Gj = MCG(Qj) and GC = MCG(Σ, C).

We also let Qj denote the closed surface obtained by identifying each

boundary component of Qj to a point and Gj = MCG(Qj) the corres-
ponding mapping class group.

By definition, the universal bundle over BGC has a natural decom-
position

E =
n⋃

j=1

Ej ,

where Ej is a bundle with fiber Qj . Moreover, the vertical bundle is
trivial over ∂Ej with a trivialisation given by taking vectors tangent to
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the boundary. We let ξC denote the union of the S1-bundles correspond-
ing to ∂Ej . Then the vertical vector bundle on E descends to a bundle
on the quotient space E∗ = E/ξC . Similarly the vertical bundle on Ej

descends to E∗
j = Ej/∂Ej and we note that E∗ =

∨n
j=1 E

∗
j . Since E∗ is

a wedge sum and the Euler class is natural under pullbacks, we compute

(1) ek+1(E) =
n∑

j=1

ek+1(E∗
j ).

We let Ej denote the bundle obtained from Ej by fiberwise identifying

each boundary component of Qj to a point and we let BGC
ρ̄j−→ BGj

be the classying map of this bundle. We also let E denote the union of
the Ej . In this way we obtain the following commuting diagram:

E∗
j

E

π

��

������������
�� E

��

��

Ej

πj

��

�� ��

�����������
EGj

p̄j

��
BGC

Id �� BGC BGC

ρ̄j ��Id�� BGj .

We conclude that π!(e
k+1(E∗

j )) = ρ̄∗jek(EGj) and the lemma follows by
equation (1). Q.E.D.

We may now prove the following theorem.

Theorem 4.2. Let Σ → E → B be an oriented surface bundle
over a base B = M1 × M2 that is a non-trivial product. If the m =
max{dim(M1),dim(M2)}, then ek(E) = 0 as a rational class for all
k > m

2 .

Proof. We let Gi = π1(Mi) and we also let G = G1 × G2
ρ−→

MCG(Σ) denote the holonomy map of E. If the image of G lies in the
kernel of the modular map

MCG(Σ)
Φ3−−→ Aut(H1(Σ,Z3))

then the existence of a maximal reduction system is guaranteed by ([8],
Corollary 7.18). Thus after taking finite index subgroups of the Gi we
may assume that this is the case and without loss of generality we have

a maximal reduction system Cmax so that the images in G
ρi−→ MCG(Qi)
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are trivial or irreducible. If ρi(G) is non-trivial it must contain a pseudo-
Anosov element φ = ρi(a, b). Since the subgroup generated by α =
ρi(a, e) and β = ρi(e, b) is irreducible, abelian and consists of elements
in the kernel of the modular map Φ3, it must be infinite cyclic and
is generated by a pseudo-Anosov element ψ ([8], Corollary 7.14 and
Corollary 8.6). In particular, α is pseudo-Anosov if it is non-trivial and
its centraliser C(α) in the kernel of Φ3 is infinite cyclic ([8], Lem. 8.13).

Without loss of generality we assume that the α defined above is
non-trivial. Then since the subgroup ρi(G2) commutes with α it is
contained in the centralizer of α and it follows that ρi(G2) is infinite
cyclic and generated by a pseudo-Anosov element or it is trivial. If it is
non-trivial then the fact that G1 commutes with G2 again implies that
the image ρi(G) is also cyclic. Thus we conclude that either ρi factors

through one of the projections G
πi−→ Gi or that the image is cyclic (or

trivial).
We let Σ1 denote the subsurface of Σ on which ρ(G1) is non-trivial

but ρ(G2) is trivial. Similarly, we let Σ2 be the subsurface where ρ(G2)
is non-trivial but ρ(G1) is trivial. We finally let Σ3 be the subsurface
on which the holonomy is component-wise cyclic or trivial. We let ρ̄j
denote the induced maps to MCG(Σj) and by applying Lemma 4.1 we
conclude that

ek =
3∑

j=1

ρ̄∗jek.

The first two summands vanish for dimension reasons if k > m
2 and since

the image of ρ̄3 is abelian the third vanishes by Theorem 3.4. Q.E.D.

We contrast the above result with those of Morita in [11]. In particu-
lar, Morita showed that for sufficiently large genus any MMM-class is
detected by an iterated surface bundle given by what is now called the
Morita m-construction. Repeated application of Theorem 4.2 implies
that the only MMM-classes that are possibly non-trivial over a base
that is a product of surfaces are of the form ek1 . Moreover, it can be
shown that these classes can be detected by products of Riemann sur-
faces if the genus of the fiber satisfies h ≥ 3k. In fact, the proof of
Theorem 4.2 means that this bound is sharp for such bundles, since e1
is trivial for bundles with fiber of genus h ≤ 2.

§5. MMM-classes are hyperbolic

As previously mentioned Morita has conjectured that the MMM-
classes have representatives that are bounded in the sense of Gromov.
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In particular, he showed that ek vanishes on amenable groups (cf. The-
orem 3.4). In studying certain properties of Kähler manifolds
Gromov introduced the weaker notion of hyperbolicity, which is called
d̃(boundedness) in [6]. We will extend Morita’s original argument to
show that the MMM-classes are hyperbolic.

We shall first recall the definition of hyperbolicity for simplicial com-
plexes following [3]. To this end we need to consider metrics and differ-
ential forms on simplicial complexes. Recall that a metric on a simplicial
complex is given by a metric gσ on each simplex σ so that when τ ⊂ σ
is a face, one has gσ|τ = gτ . Similarly, a differential form is a collection
of forms on each simplex compatible with restriction to faces. One can
then define the exterior derivative on each simplex and the resulting co-
homology is isomorphic to ordinary cohomology for simplicial complexes
(cf. [14]).

Theorem 5.1 (Simplicial de Rham theorem). Let X be a simplicial

complex. Then there is a natural isomorphism Hk
dR(X)

Ψ−→ Hk
Δ(X,R)

from de Rham cohomology to simplicial cohomology given by integration
over chains.

The de Rham isomorphism Ψ has a natural inverse on the chain
level. This is defined as follows: let σ be an oriented simplex of X and
let μi denote the baracentric coordinate map defined by the the i-th
vertex vi of σ. That is for a simplex τ of X we define μi|τ to be zero
if vi is not a vertex of τ , otherwise we let μi|τ (p) be the coefficient of
vi given by writing p as a convex combination of the vertices of τ . The
functions μi are well-defined elements in Ω0(X). Then for any oriented
cosimplex σ∗ ∈ Ck

Δ(X,R) we define

Φσ∗ = k!
k∑

i=0

(−1)iμi dμ0 ∧ · · · ∧ d̂μi ∧ · · · ∧ dμk.

This is a so-called elementary k-form and has support in the set st(σ).
For an arbitrary simplicial cochain c =

∑
λσσ

∗ we set

Φ(c) =
∑

λσΦσ∗ .

and this map is the desired inverse of Φ (cf. [15], p. 229 ff).
Recall that a k-form α ∈ Ωk(M) on a manifold is bounded if

‖α‖g = sup
x∈M

|αx(e1, . . . , ek)| < ∞

for all k-tuples of orthonormal vectors in TxM . For a simplicial complex
a form is bounded if there is a universal bound over all simplices.
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For a simplicial cochain c ∈ Ck
Δ(X,R) one also has a notion of

boundedness. Indeed, one has the L∞-norm

‖c‖Δ = sup
σ∈Sk

Δ(X)

|c(σ)|

where the supremum is taken over all k-simplices σ of X. If this number
is finite then c is said to be bounded. Moreover, the set of bounded sim-
plicial chains is a subcomplex of C∗

Δ(X,R) that we denote by Ĉ∗
Δ(X,R).

Under certain fairly natural assumptions the de Rham isomorphism and
its inverse preserve boundedness:

Proposition 5.2. Let X be a simplicial complex and let g be a met-

ric so that for all k-simplices Vol(σ, g) ≤ Ck. Then the map Ωk(X)
Φ−→

Ck
Δ(X,R) given by integration over chains preserves boundedness.

Conversely, assume that the star of each simplex of X contains a
bounded number of k-simplices for some universal constant Sk and that g
is a metric on X so that the 1-forms dμi given by baracentric coordinates
are uniformly bounded. Then the inverse of the de Rham isomorphism
preserves boundedness.

In particular, if X
p−→ Y is a (simplicial) covering map and Y is

finite, then X endowed with the pullback metric satisfies the hypoth-
eses above.

Proof. We let Ψ denote the de Rham isomorphism, given by inte-
gration over chains. For the first statement note that for any k-form ω
and any k-simplex

|Ψ(ω)(σ)| =
∣∣∣∣
∫
σ

ω

∣∣∣∣ ≤ Vol(σ, g)‖ω‖g ≤ Ck‖ω‖g

and hence Ψ(ω) is a bounded simplicial cochain.
Conversely, let c be a bounded simplicial cochain that we write as

c =
∑

λσσ
∗. Then

Φ(c) =
∑

λσΦσ∗

and the λσ are bounded by definition. Moreover, the Φσ∗ are elementary
k-forms and as the forms dμi are uniformly bounded the same holds
for Φσ∗ . Note that every point p ∈ X lies in the interior of a unique
simplex τp and Φσ∗(p) is necessarily zero unless σ lies in st(τp). Thus
Φσ∗(p) is non-zero for at most Sk simplices and it follows that Φ(c) is
uniformly bounded.

Finally, if gX = p∗g is the pullback metric on X, then the volumes
of simplices are the same as their images in Y and these are uniformly
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bounded by the assumption that Y is finite. The same holds for the
1-forms dμi, since these are locally pullbacks of the corresponding forms
on Y . Moreover, the star of each simplex in X has at most Sk sim-
plices, where Sk denotes the number k-simplices in Y which is finite by
assumption, thus proving the final claim. Q.E.D.

We now consider a finite simplicial complex X with a metric g and let

g̃ denote the pullback metric on the universal cover X̃
p−→ X. With this

notation we have the following definition of hyperbolicity of cohomology
classes on finite complexes.

Definition 5.3 (Hyperbolicity for cohomology). A class α ∈
Hk(X,R) is called hyperbolic if there exists a de Rham represen-
tative η ∈ Ωk(X) of α, so that the p∗η has a bounded primitive with
respect to the metric g̃.

By Proposition 5.2 this is equivalent to the statement that the sim-

plicial cochain p∗Ψ(η) = Ψ(p∗η) ∈ Ĉ∗
Δ(X̃,R) is exact as a bounded

simplicial cochain. Hence it is clear that the definition is independent
of the metric and the chosen representative η. Furthermore, since any
continuous map can be approximated by a simplicial map, hyperbolicity
is natural under maps between finite complexes.

More generally, if Y is any topological space, then we make the
following definition.

Definition 5.4. Let Y be a topological space. A class α ∈ Hk(Y,R)

is hyperbolic if f∗α is hyperbolic for every continuous map X
f−→ Y of a

finite complex X to Y .

As in the case of bounded cohomology, all hyperbolic classes are
trivial if π1(X) is amenable. The proof of Brunnbauer and Kotschick in
[3] is geometric and uses certain isoperimetric inequalities. One can how-
ever give a more direct proof that follows Gromov’s original argument
in the bounded case:

Theorem 5.5. Let X be a finite simplicial complex with amenable
fundamental group. Then all hyperbolic classes are trivial.

Proof. We let X̃
p−→ X denote the universal cover and let G =

π1(X). Then G acts on X̃ by (simplicial) deck transformations that we
denote by Tg. Now assume that α ∈ Hk(X,R) is a hyperbolic class.
By Proposition 5.2 this means that for any simplicial representative a

of α the cochain p∗a ∈ Ĉ∗
Δ(X̃,R) is exact. We let b ∈ Ĉk−1

Δ (X̃,R) be a
primitive. Then since G is amenable there is an averaging operator on
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bounded singular chains

Ck
b (X̃,R)

A−→ Ck
G(X̃,R)

that maps an arbitrary bounded cochain to a G-equivariant one. This
map is defined as follows: let μ : L∞(G) → R be a left-invariant mean,

which exists since G is amenable. Let c ∈ Ck
b (X̃,R) and let σ be any

k-simplex, we define a function φc,σ : G → R by

φc,σ(g) = c((Tg−1)∗ σ).

We then set
A(c)(σ) = μ(φc,σ).

Since μ was left invariant A(c) is a G-equivariant cochain on X̃, that
is A(c) = p∗c′ for a unique cochain in Ck(X,R). One also checks that
A is a chain map. Finally, as the deck transformations are simplicial
A induces a well-defined map on bounded simplicial cochains. If we let
b′ ∈ CΔ(X,R) be such that A(b) = p∗b′ we compute

p∗δb′ = δp∗b′ = δA(b) = A(p∗a) = p∗a.

Thus δb′ = a since p∗ is injective and the class α ∈ Hk(X,R) is trivial.
Q.E.D.

In order to show that the MMM-classes are hyperbolic, we shall need
two technical lemmata, the first of which is in essence Theorem 2.1 in [9].
In [9] Kȩdra considered only the universal cover of a manifold, however
our assumption that p∗α is exact in bounded cohomology ensures that
his proof goes through.

Lemma 5.6. Let X̄
p−→ X be a covering of simplicial complexes,

with X finite. Let α ∈ Hk
b (X,R) be a bounded cohomology class such

that p∗α is trivial in Hk
b (X̄,R). Then there is a de Rham representative

Φα of α and a bounded (k − 1)-form Φβ with

dΦβ = p∗Φα.

Proof. We first lift the simplices of X to X̄ and let ḡ be the lifted
metric. Now let β be a bounded singular (k − 1)-cochain on X̄ so that
δβ = p∗α. By restricting to the simplicial cochain complex, we obtain a
simplicial cochain

βs =
∑

λσ̄σ̄

where the λσ̄ are bounded and δβs = p∗αs as simplicial cochains. Apply-
ing the inverse of the de Rham isomorphism to αs, βs we obtain forms
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Φα, Φβ such that d = p∗Φα and by Proposition 5.2 the form Φβ is
bounded. Q.E.D.

The next lemma gives sufficient conditions under which integration along
the fiber maps bounded forms to bounded forms.

Lemma 5.7. Let F → E
π−→ M be a smooth fiber bundle over a

manifold M , whose fiber is a closed manifold of dimension m. Let gM
be a metric on M and gE a submersion metric on E. Let Ωv denote the
fiberwise volume form induced by gE . If π!Ωv is bounded, then the map

π! : Ω
k+m(E) → Ωk(M)

maps bounded forms to bounded forms.

Proof. Let φ be a bounded (k+m)-form with respect to the metric
gE . Let U be an open neighbourhood of p ∈ B and choose a trivialisation
V = π−1(U) ∼= U × F . We let {e1, . . . , en} be a local orthonormal
frame on U with respect to gB and {e1, . . . , en} its dual. On V we may
decompose φ as

φ =
∑
I

(fIΩv) ∧ (π∗eI) + ψ

where I is a multi-index of length k and ψ vanishes on k-tuples of
vertical vectors. Choose a local orthonormal frame f1, . . . , fk about
a point (p, x) in V and let ē1, . . . , ēn be a lift of this frame to E
that is guaranteed by the assumption that gE is a submersion metric.
Then {f1, . . . , fk, ē1, . . . , ēn} is an orthonormal frame and hence as φ
is bounded

|φ(f1, . . . , fk, ē1, . . . , ēn)(p, x)| = |fI(p, x)| < C.

Thus we conclude locally

π!φ(p) =
∑
I

∫
Fp

(fIΩv)e
I

and ∣∣∣∣
∫
Fp

fIΩv

∣∣∣∣ ≤ C|π!Ωv(p)|

so π!φ is bounded if π!Ωv is. Q.E.D.

With the aid of these results we will prove the hyperbolicity of the
MMM-classes.

Theorem 5.8. The MMM-classes are hyperbolic.
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Proof. We let e denote the vertical Euler class and we also let

X
f−→ BΓh be the classifying map of a bundle E over a finite simplicial

complex X. We first assume that X = B is a smooth, compact manifold

(possibly with boundary). We let Ẽ be the pullback bundle over the
universal cover of B

Ẽ
p ��

π

��

E

π

��

�� EΓh

��
B̃

p �� B
f �� BΓh

and further let Σh
ι−→ Ẽ be the inclusion of a fiber. Morita has shown

that ι∗e2 is trivial in bounded cohomology (cf. [12], Section 6). Thus the

same holds for ι∗ek+1. Moreover, since π1(Ẽ) ∼= π1(Σg) this inclusion
induces an isomorphism on bounded cohomology. We may thus choose

a bounded chain bk ∈ C2k−1
b (Ẽ,R) with p∗ek+1 = δbk.

Then by Lemma 5.6 there is a form Φk on Ẽ which is bounded
with respect to the pullback metric and a form Ψk+1 on E that is a
representative of ek+1 so that p∗Ψk+1 = dΦk. Since integration along the
fiber is natural and commutes with the exterior derivative, we compute

p∗ek = p∗π!Ψk+1 = π!p
∗Ψk+1

= π! dΦk = d(π!Φk)

We finally need to check that π!Φk is bounded with respect to the pull-

back metric on B̃. Let gB be any metric on the base and let gE be a
submersion metric on E. The pullback metric g̃ = p∗gE is a submer-

sion metric for gB̃ = p∗gB and the vertical volume form Ω̃v on Ẽ is the
pullback of the vertical volume form Ωv on E and thus

π!Ω̃v = π!p
∗Ωv = p∗π!Ωv

is a pullback of a form on B and is hence bounded. Now φk is bounded
with respect to the metric g̃ and thus by Lemma 5.7 it follows that π!Φk

is bounded. Hence ek ∈ H2k(B) is hyperbolic.
In the general case let X be an arbitrary finite simplicial complex.

We may embed X in RN for some sufficiently large N . We then let B =
ν(X) be a (compact) regular neighbourhood of X in RN . Since ν(X)
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deformation retracts ontoX we have the following commutative diagram

X ��

f ���
��

��
��

��
ν(X)

f̄

��
BΓh.

Then by the argument above, f̄∗ek is hyperbolic and hence by naturality
so is f∗ek. Q.E.D.

In general, the notion of hyperbolicity is strictly weaker than that of
boundedness—the reason being that hyperbolicity is preserved under
cup products so that the space of hyperbolic cohomology classes forms
an ideal, whereas the space of bounded classes is only a subring. In
particular the dual of the fundamental class of any product Tn ×M is
hyperbolic if ‖M‖ 
= 0, but [T k×M ]∗ ∈ Hk+n(T k×M) is not bounded.
However, in the case of classes of degree two it is still open as to whether
hyperbolicity implies boundedness. In terms of group cohomology the
hyperbolicity condition seems to be closely related, or even equivalent to
the notion of weak boundedness considered in [13]. This might provide
a better basis for finding examples of hyperbolic classes of degree 2 that
are not bounded.
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[ 9 ] J. Kȩdra, Symplectically hyperbolic manifolds, Differential Topol. Appl. 27
(2009), 455–463.



300 J. Bowden

[10] I. Madsen and M. Weiss, The stable moduli space of Riemann surfaces:
Mumford’s conjecture, Ann. of Math. (2) 165 (2007), 843–941.

[11] S. Morita, Characteristic classes of surface bundles, Invent. Math. 90
(1987), 551–577.

[12] S. Morita, Characteristic classes of surface bundles and bounded co-
homology, in A Fête of Topology, Academic Press, 1988, 233–258.

[13] W. Neumann and L. Reeves, Regular cocycles and biautomatic structures,
Internat. J. Algebra Comput. 6 (1996), 313–324.

[14] R. G. Swan, Thom’s theory of differential forms on simplicial sets, Topology
14 (1975), 271–273.

[15] H. Whitney, Geometric Integration Theory, Princeton University Press,
1957.

Jonathan Bowden
University of Augsburg
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