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Order 40 automorphisms of K3 surfaces

JongHae Keum

Abstract.

In each characteristic p �= 2, 5, it is shown that order 40 auto-
morphisms of K3 surfaces are purely non-symplectic. Moreover, a K3
surface in characteristic p �= 2, 5, with a cyclic action of order 40 is
isomorphic to the Kondō’s example.

Let X be a K3 surface over an algebraically closed field k of char-
acteristic p ≥ 0. An automorphism g of X is called symplectic if it
preserves a non-zero regular 2-form ωX , and purely non-symplectic if no
power of g is symplectic except the identity.

Over k = C Kondō [7] gave an example of a complex K3 surface
with a purely non-symplectic automorphism of order 40 as the minimal
resolution X40 of X ′

40 ⊂ P(1, 1, 1, 3):

(0.1) X ′
40 : w2 = x(x4z + y5 − z5),

(0.2) g40(x, y, z, w) = (x, ζ240y, ζ
10
40z, ζ

5
40w)

where ζ40 ∈ k is a primitive 40th root of unity. The surface X ′
40 is a

double plane branched along the union of a line and a smooth quintic
curve. The surface X ′

40 is defined over the integers and both the surface
and the automorphism have a good reduction mod p unless p = 2, 5.

The main result of this short note is the following.

Theorem 0.1. Let k be an algebraically closed field of characteristic
p �= 2, 5. Let X be a K3 surface defined over k with an automorphism
g of order 40. Then

(1) g is purely non-symplectic;
(2) the pair (X, 〈g〉) is isomorphic to the pair (X40, 〈g40〉).
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Over k = C the second statement of Theorem 0.1 was proved by
Machida and Oguiso [8], under the assumption that g is purely non-
symplectic. Our proof is characteristic free, does not use lattice theory
and the holomorphic Lefschetz formula.

A similar characterization of K3 surfaces with a tame cyclic action of
order 60 was given in [6], where it was proven that for such a pair (X, 〈g〉)
the K3 surfaceX admits a g-invariant elliptic fibration, thus can be given
by a g-invariant Weierstrass equation. In the case of order 40, we show
that the K3 surface admits a g-invariant double plane presentation.

Using the algorithm for determining the Artin invariant of a weighted
Delsarte surface whose minimal resolution is a K3 surface ([11], [3]), one
can show that in characteristic p ≡ −1 (mod 40) the surface X40 is a
supersingular K3 surface with Artin invariant 1.

Remark 0.2. In characteristic 5, cyclic actions of order 40 are
wild and have been classified in [5] (Section 9 and Example 9.5). More
precisely, a K3 surface in characteristic 5 with a cyclic action of order
40 must be isomorphic to the minimal resolution of the pair (Y, 〈g〉):
(0.3) Y : w2 = z(y5 − yx4 + xz4 +B5x

5), B5 ∈ k

(0.4) g(x, y, z, w) = (x, 2x+ y, ζ28z, ζ8w)

where ζ8 ∈ k is a primitive 8th root of unity. The surface Y is a double
plane branched along the union of a line and a smooth quintic curve.

Notation

• NS(X) : the Néron-Severi group of X.

• Xg = Fix(g) : the fixed locus of an automorphism g of X.

• e(g) := e(Fix(g)), the Euler characteristic of Fix(g) for g tame.

• Tr(g∗|H∗(X)) :=
∑2 dimX

j=0 (−1)jTr(g∗|Hj
et(X,Ql)).

For an automorphism g of a K3 surface X,

• [g∗] = [λ1, . . . , λ22] : the eigenvalues of g∗|H2
et(X,Ql).

• ζa : a primitive a-th root of unity in Ql.

• ζa : φ(a) : all primitive a-th roots of unity where φ is the Euler
function and φ(a) the number of conjugates of ζa.

• [λ.r] ⊂ [g∗] : λ repeats r times in [g∗].

• [(ζa : φ(a)).r] ⊂ [g∗] : the list ζa : φ(a) repeats r times in [g∗].
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§1. Preliminaries

We first recall the following basic result used in the paper [5].

Proposition 1.1. (Proposition 2.1 [5]) Let g be an automorphism of
a projective variety X over an algebraically closed field k of characteristic
p > 0. Let l be a prime �= p. Then the following hold true.

(1) (3.7.3 [4]) The characteristic polynomial of g∗|Hj
et(X,Ql) has

integer coefficients for each j. The characteristic polynomial
does not depend on the choice of cohomology, l-adic or crys-
talline. In particular, if a primitive m-th root of unity appears
with multiplicity r as an eigenvalue of g∗|Hj

et(X,Ql), then so
does each of its conjugates.

(2) If g is of finite order, then g has an invariant ample divisor,
and g∗|H2

et(X,Ql) has 1 as an eigenvalue.
(3) If X is a K3 surface, g is tame and g∗|H0(X,Ω2

X) has ζn ∈ k

as an eigenvalue, then g∗|H2
et(X,Ql) has ζn ∈ Ql as an eigen-

value.

For a smooth projective variety Z in characteristic p > 0, the Kum-
mer sequence in étale cohomology [9] induces an exact sequence of Ql-
vector spaces

(1.1) 0 → NS(Z)⊗Ql → H2
et(Z,Ql) → T 2

l (Z) → 0

where T 2
l (Z) = Tl(Br(Z)) in the standard notation in the theory of

étale cohomology (cf. [11]). The Brauer group Br(Z) is known to be
a birational invariant, and it is trivial when Z is a rational variety. In
fact, one can show that

NS(Z)⊗Ql = Ker(H2
et(Z,Ql) → H2(k(Z),Ql));

T 2
l (Z) = Im(H2

et(Z,Ql) → H2(k(Z),Ql)).

Here H2(k(Z),Ql) = lim−→UH
2(U,Ql), where U runs through the set of

open subsets of Z. It is known that the dimension of all Ql-spaces from
above do not depend on l prime to the characteristic p.

Proposition 1.2. (Proposition 2.2 [5]) Let Z be a smooth projective
variety in characteristic p > 0 and g be an automorphism of Z of finite
order. Assume l �= p. Then the following assertions are true.

(1) Tr(g∗|H2
et(X,Ql)) = Tr(g∗|NS(Z)) + Tr(g∗|T 2

l (Z)) and the
three traces are integers.

(2) rank NS(Z)g = rank NS(Z/〈g〉).
(3) dimH2

et(Z,Ql)
g = rank NS(Z)g + dimT 2

l (Z)g.
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(4) If dimZ = 2 and the minimal resolution Y of Z/〈g〉 has
T 2
l (Y ) = 0 (e.g., if Z/〈g〉 is rational or birational to an

Enriques surface), then

dimH2
et(Z,Ql)

g = rank NS(Z)g.

Proposition 1.3. (Topological Lefschetz formula, cf. [1] Theorem
3.2) Let X be a smooth projective variety over an algebraically closed
field k of characteristic p > 0 and let g be a tame automorphism of X.
Then Xg = Fix(g) is smooth and

e(g) := e(Xg) = Tr(g∗|H∗(X)).

A tame symplectic automorphism h of a K3 surface has finitely many
fixed points, the number of fixed points f(h) depends only on the order
of h and the list of possible pairs (ord(h), f(h)) is the same as in the
complex case (Theorem 3.3 and Proposition 4.1 [2], see also Nikulin’s
paper [10] for the complex case) :

(ord(h), f(h)) = (2, 8), (3, 6), (4, 4), (5, 4), (6, 2), (7, 3), (8, 2).

Thus by the topological Lefschetz formula, we obtain the following.

Lemma 1.4. (Lemma 2.6 [5]) Let h be a tame symplectic automor-
phism of a K3 surface X. Then h∗|H2

et(X,Ql) has eigenvalues

ord(h) = 2 : [h∗] = [1, 1.13, −1.8]
ord(h) = 3 : [h∗] = [1, 1.9, (ζ3 : 2).6]
ord(h) = 4 : [h∗] = [1, 1.7, (ζ4 : 2).4, −1.6]
ord(h) = 5 : [h∗] = [1, 1.5, (ζ5 : 4).4]
ord(h) = 6 : [h∗] = [1, 1.5, (ζ3 : 2).4, (ζ6 : 2).2, −1.4]
ord(h) = 7 : [h∗] = [1, 1.3, (ζ7 : 6).3]
ord(h) = 8 : [h∗] = [1, 1.3, (ζ8 : 4).2, (ζ4 : 2).3, −1.4]

where the first eigenvalue corresponds to an invariant ample divisor.

Lemma 1.5. (Lemma 1.6 [6]) Let X be a K3 surface in char-
acteristic p �= 2, admitting an automorphism h of order 2 with
dimH2

et(X,Ql)
h = 2. Then h is non-symplectic and has an h-invariant

elliptic fibration ψ : X → P1,

X/〈h〉 ∼= Fe

a rational ruled surface, and Xh is either a curve of genus 9 which is a
4-section of ψ or the union of a section and a curve of genus 10 which is
a 3-section. In the first case e = 0, 1 or 2, and in the second e = 4. Each
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singular fibre of ψ is of type I1 (nodal), I2, II (cuspidal) or III, and
is intersected by Xh at the node and two smooth points if of type I1, at
the two singular points if of type I2, at the cusp with multiplicity 3 and
a smooth point if of type II, at the singular point tangentially to both
components if of type III. If Xh contains a section, then each singular
fibre is of type I1 or II.

Remark 1.6. If e �= 0, the h-invariant elliptic fibration ψ is the
pull-back of the unique ruling of Fe. If e = 0, either ruling of F0 lifts to
an h-invariant elliptic fibration.

The following easy lemmas also will be used frequently.

Lemma 1.7. (Lemma 2.10 [5]) Let S be a set and Aut(S) be the
group of bijections of S. For any g ∈ Aut(S) and positive integers a and
b,

(1) Fix(g) ⊂ Fix(ga);
(2) Fix(ga) ∩ Fix(gb) = Fix(gd) where d = gcd(a, b);
(3) Fix(g) = Fix(ga) if ord(g) is finite and prime to a.

Lemma 1.8. (Lemma 2.11 [5]) Let R(n) be the sum of all primitive
n-th root of unity in Q or in Ql, where gcd(l, n) = 1. Then

R(n) =

{
0 if nhas a square factor,

(−1)t if n is a product of t distinct primes.

For an automorphism g of finite order of a K3 surface X, tame or
wild, we write

ord(g) = m.n

if g is of ordermn and the natural homomorphism 〈g〉→GL(H0(X,Ω2
X))

has kernel of order m and image of order n.

§2. Proof: the Tame Case

Throughout this section, we assume that the characteristic p > 0,
p �= 2, 5. Let g be an automorphism of order 40 of a K3 surface X.

Lemma 2.1. [g∗] �= [1, ζ8 : 4, ±1, ζ40 : 16].

Proof. Suppose that [g∗] = [1, ζ8 : 4, ±1, ζ40 : 16]. Then

[g20∗] = [1, −1.4, 1, −1.16].

One can apply Lemma 1.5 to h = g20. The quotient surface X/〈g20〉 is
isomorphic to a rational ruled surface

X/〈g20〉 ∼= Fe,
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X has a g20-invariant elliptic fibration

ψ : X → P1

and Fix(g20) is either a curve C9 of genus 9 which is a 4-section of ψ or
the union of a section R and a curve C10 of genus 10 which is a 3-section.
The automorphism ḡ of X/〈g20〉 ∼= Fe induced by g preserves the ruling
of Fe if e �= 0, and either preserves or interchanges the two rulings of Fe

if e = 0.

Case 1: ḡ preserves the ruling(s) of Fe.
In this case g preserves the fibration ψ : X → P1. The fibre class is
g-invariant and linearly independent from any g-invariant ample divisor
class. Thus the eigenvalue 1 appears twice in [g∗] and [g∗] = [1, ζ8 :
4, 1, ζ40 : 16]. Then we compute e(g) = e(g2) = e(g4) = e(g5) =
e(g10) = 4. Consider the order 20 action of g on C9 or C10 ⊂ Fix(g20).
The action of g on C9 (resp. C10) has 4 (resp. 2) points of ramification
index 20 and no other ramifications. Neither is compatible with the
Hurwitz formula.

Case 2: e = 0 and ḡ interchanges the rulings of F0.
In this case Fix(g20) = C9 and g interchanges the two elliptic fibrations
coming from the rulings. Since g interchanges the two elliptic fibrations,
−1 should appear as an eigenvalue and [g∗] = [1, ζ8 : 4, −1, ζ40 : 16].
We compute e(g) = e(g5) = 2, e(g2) = e(g4) = e(g10) = 4. The order
20 action of g on C9 has 2 points of ramification index 20, 2 points
of ramification index 10 and no other ramifications. Unfortunately the
Hurwitz formula cannot rule out this case.

The automorphism g2 preserves the elliptic fibration ψ : X → P1.
It preserves two fibres. By Lemma 1.5 a fibre of ψ is of type I0 (smooth),
I1, I2, II or III. We claim that g2 does not preserve a reducible fibre
of type I2 or III. Suppose it does. Then g4 preserves both components
which, with an invariant ample class, give 3 linearly independent g4-
invariant classes, hence [g4∗] ⊃ [1, 1, 1], absurd. If g2 preserves a fibre
F0 of type I1 or II, then g4 fixes all points in the set F0 ∩ Fix(g20),
which consists of 3 points if F0 is of type I1 and 2 points if F0 is of
type II. If g2 preserves a smooth fibre F0, then the involution g20|F0 of
the elliptic curve F0 has non-empty fixed locus, hence must have 4 fixed
points, thus the set F0 ∩ Fix(g20) consists of 4 distinct points and g4

fixes all of them. Since e(g4) = 4 and Fix(g4) ⊂ Fix(g20) = C9, we see
that Fix(g4) consists of 4 points. From these we infer that g2 preserves
two fibres of type II, say F1 and F2. Let

F ′
i ⊂ X/〈g20〉 ∼= F0
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be the line, the image of Fi. On F0 consider the rectangle with 4 sides
F ′
1, F

′
2, ḡ(F

′
1) and ḡ(F ′

2). Let C ′
9 ⊂ F0 be the image of C9. At each

vertex of the rectangle, the genus 9 curve C ′
9 intersects one side with

multiplicity 3 and the other with multiplicity 1. This configuration ad-
mits no symmetry except rotations, and ḡ must be a rotation by 90
degrees. Then ḡ2 interchanges F ′

1 and F ′
2, so g2 interchanges F1 and F2,

a contradiction. Q.E.D.

By [5] Lemma 4.5 and 4.7, g cannot be of order 2.20, 4.10 or 8.5. It
remains to exclude the possibility 5.8.

Lemma 2.2. ord(g) �= 5.8.

Proof. Suppose that ord(g) = 5.8. Then by Proposition 1.1 the
action of g∗ on H2

et(X,Ql) has ζ8 ∈ Ql as an eigenvalue. Hence [ζ8 : 4] ⊂
[g∗]. By Lemma 1.4,

[g8∗] = [1, 1.5, (ζ5 : 4).4].

From this we infer that

[g∗] = [1, ζ8 : 4, ±1, η1, . . . , η16]

where [η1, . . . , η16] is a combination of ζ5 : 4, ζ10 : 4, ζ20 : 8, ζ40 : 16, and
the first eigenvalue corresponds to a g-invariant ample divisor.
By Lemma 2.1, ζ40 : 16 cannot appear. Then

[g4∗] = [1, −1.4, 1, (ζ5 : 4).4],

hence e(g4) = Tr(g4∗|H∗(X)) = −4. But Fix(g4) ⊂ Fix(g8) and the
latter consists of finitely many points, hence e(g4) ≥ 0. Q.E.D.

We have proved that g is purely non-symplectic, the first statement
of Theorem 0.1.

Lemma 2.3. If ord(g) = 1.40, then

(1) [g∗] = [1, ζ40 : 16, ζ5 : 4, 1]
where the first eigenvalue corresponds to a g-invariant ample
class;

(2) Fix(g20) = R ∪ C6

where R is a smooth rational curve and C6 a curve of genus 6;
(3) Fix(g8) = D2 ∪ { one point on R }

where D2 is a curve of genus 2 with D2C6 = 5, D2R = 1.
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Proof. Suppose that ord(g) = 1.40. Then by Proposition 1.1 the
action of g∗ on H2

et(X,Ql) has ζ40 ∈ Ql as an eigenvalue. Thus

[g∗] = [1, ζ40 : 16, η1, . . . , η5]

where the first eigenvalue corresponds to a g-invariant ample divisor and
[η1, . . . , η5] is a combination of ζ8 : 4, ζ10 : 4, ζ5 : 4, ζ4 : 2, ±1.
By Lemma 2.1, [η1, . . . , η5] �= [ζ8 : 4, ±1].

Claim: [η1, . . . , η5] is not a combination of ζ4 : 2, ±1.

Suppose that it is. Then

[g20∗] = [1, −1.16, 1.5], e(g20) = −8

[g8∗] = [1, (ζ5 : 4).4, 1.5], e(g8) = 4

[g4∗] = [1, (ζ10 : 4).4, 1.5], e(g4) = 12.

Thus
Fix(g20) = R1 ∪ . . . ∪Rd ∪ Cd+5, d ≤ 5

where Rj ’s are smooth rational curves and Cd+5 a curve of genus d+5.
Note that a non-symplectic automorphism of order 2 like g20 cannot have
an isolated fixed point. The locus Fix(g4), being a subset of Fix(g20),
consists of isolated points and possibly some R′

js. The action of g4 on

Fix(g20) has order 5. If d = 5 and g4 permutes Rj ’s, then g4|Cd+5 would
have 12 fixed points, too many for an order 5 automorphism of a genus
10 curve. Thus

(∗) g4(Rj) = Rj for each j and g4|Cd+5 has 12− 2d fixed points.

If d ≤ 2, then the order 5 automorphism g4|Cd+5 would have too many
fixed points. Thus d ≥ 3.

Now we consider Fix(g8). Suppose that Fix(g8) does not contain a
curve of genus > 1. Then it consists of 2k points, d′ smooth rational
curves and possibly some elliptic curves. Since e(g8) = 4, 2k + 2d′ = 4.
The action of g4 on Fix(g8) has order 2. We infer that there are 2 elliptic
curves E1, E2 ⊂ Fix(g8) on each of which g4 has 4 fixed points. Then g4

fixes more than two fibres of the elliptic fibration |E1| = |E2|, hence fixes
all fibres. Note that Fix(g8) ∩ Fix(g20) = Fix(g4). By (∗), g4|Cd+5 has
at most 6 fixed points, so we see that there is an Rj , say R1, that meets
E1. If R1E1 = R1E2 > 1, then g4|R1 has more than two fixed points,
hence is the identity, then R1 ⊂ Fix(g4) ⊂ Fix(g8), contradicting the
smoothness of a fixed locus. If R1E1 = R1E2 = 1, then R1 is a section of
|E1|, hence R1 ⊂ Fix(g4), again contradicting the smoothness of Fix(g8).
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We have proved that Fix(g8) contains a curve Da of genus a > 1. Note
that Da ∩ Cd+5 ⊂ Fix(g4), hence the intersection number

DaCd+5 ≤ 12− 2d.

By the Hodge Index Theorem

(D2
a)(C

2
d+5) ≤ (12− 2d)2.

This is possible only if

d = 3, a = 2 and D2C8 = 6.

Therefore
Fix(g20) = R1 ∪R2 ∪R3 ∪ C8,

Fix(g8) = D2 ∪ {2k points } ∪R′
1 ∪ . . . ∪R′

c

where R′
1, . . . , R

′
c are smooth rational curves. We know that e(g4) = 12.

By (∗) g4 acts on Rj for j = 1, 2, 3, hence g4|Rj fixes 2 points or the
whole Rj . Thus the action of g4|C8 fixes 6 points. Since Fix(g4) =
Fix(g20) ∩ Fix(g8), we see that C8 ∩ Fix(g8) consists of 6 points. Since
C8D2 = 6, we infer that

(∗∗) C8 ∩ Fix(g8) = C8 ∩D2 = {6 points }.
The order 5 automorphism g8 is non-symplectic and tame. The quotient

Y := X/〈g8〉
is a normal surface. The image C̄8 ⊂ Y of C8 has self intersection
number

C̄2
8 =

1

5
C2

8 =
14

5

which is not an integer, so C̄8 must pass through some singular points
of Y , then C8 must pass through some isolated fixed points of g8, con-
tradicting (∗∗). The claim is proved.

Now we may assume that [η1, . . . , η5] = [ζ10 : 4, ±1] or [ζ5 : 4, ±1].
In these cases we have

[g20∗] = [1, −1.16, 1.5], e(g20) = −8

[g10∗] = [1, (ζ4 : 2).8, 1.5], e(g10) = 8

[g8∗] = [1, (ζ5 : 4).4, ζ5 : 4, 1], e(g8) = −1

[g4∗] = [1, (ζ10 : 4).4, ζ5 : 4, 1], e(g4) = 7
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[g2∗] = [1, (ζ20 : 4).4, ζ5 : 4, 1], e(g2) = 3.

Thus
Fix(g20) = R1 ∪ . . . ∪Rd ∪ Cd+5, d ≤ 5

where Rj ’s are smooth rational curves and Cd+5 a curve of genus d+5.
For a divisor r of 20 with r < 20, the locus Fix(gr), being a subset of
Fix(g20), consists of isolated points and possibly some R′

js. Consider
the action of g on the set {R1, . . . , Rd} of d elements. In its cycle de-
composition each cycle has length 1, 2, 4 or 5. If d = 5, then g4 or
g10 preserves each Rj , so has a negative number of fixed points on C10,
absurd. If d = 4, then g4 preserves each Rj , so has a negative number
of fixed points on C9. If d = 2 or 3, then g2 preserves each Rj , so has
a negative number of fixed points on C8. If d = 0, then g4 has 7 fixed
points on C5, too many for an order 5 automorphism. We have shown
that d = 1, Fix(g20) = R ∪ C6, giving (2).

Since e(g8) < 0, Fix(g8) must contain a curve Da of genus a > 1
(hence no elliptic curves). Since g4|C6 has 5 fixed points and Da ∩
C6 ⊂ Fix(g4), the intersection number DaC6 ≤ 5. By the Hodge Index
Theorem

(D2
a)(C

2
6 ) ≤ 52.

This is possible only if

a = 2 and D2C6 = 5.

Since e(g8) = −1, Fix(g8) consists of D2 and a point p. Since g4 acts
on Fix(g8), it is easy to see that p ∈ Fix(g4). Since Fix(g4) = Fix(g8) ∩
Fix(g20) and e(g4) = 7, we infer that p ∈ R and D2R = 1. This proves
(3).

Since g5 acts on Fix(g20) = R ∪ C6 and Fix(g5) ⊂ Fix(g20), we see
that e(g5) > 0. This rules out the possibility [η1, . . . , η5] = [ζ10 : 4, ±1].
Thus we have

[η1, . . . , η5] = [ζ5 : 4, ±1].

Finally, g10 fixes 6 points on C6 (and g5 fixes 6 or 4 points on C6).
Considering the action of g on these 6 points, we see that g fixes at
least one of them, hence e(g) ≥ 3. Thus the last eigenvalue must be 1,
proving (1). Q.E.D.

Proof of the second statement of Theorem 0.1.

Lemma 2.3 plays a key role in the proof. We modify the proof of [8]
Section 4. The quotient

Y := X/〈g20〉
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is a smooth rational surface with

KY = −1

2
(R̄+ C̄6)

where R̄, C̄6 ⊂ Y are the images of R and C6. Note that

R̄2 = −4, C̄2
6 = 20.

Let
π : X → Y

be the projection map. By Proposition 1.2 Y has Picard number ρ(Y ) =
6.

Claim: If E ⊂ Y is a smooth rational curve with E2 < −1, then
E = R̄.

If E2 < −2. Then KY E > 0, thus (R̄ + C̄6)E < 0. This is possible
only if E = R̄. Suppose that E is a (−2)-curve on Y . Then KY E = 0,
thus E is disjoint from the branch divisor R̄ + C̄6, and π∗(E) ⊂ X is a
disjoint union of two (−2)-curves, say E1 and E2. Note that E1.E2 =
0, E1.g

10(E1) = g10(E1).E2 ≥ 0. It is easy to check that the four
(−2)-curves E1, g

10(E1), g
20(E1) = E2, g

30(E1) = g10(E2) are linearly
independent in the Néron-Severi group of X, hence their Chern classes
are linearly independent in the second cohomology group. They are
rotated by g10∗, hence [1, ζ4, ζ

2
4 , ζ

3
4 ] ⊂ [g10∗], impossible. This proves

the claim.

The linear system |D2| gives a degree 2 morphism φ : X → P2.
Take the Stein factorization

X
μ−→ X ′ φ′

−→ P2.

Let R̃, C̃6 ⊂ P2 are the images of R and C6. Since D2C6 = 5, D2R = 1,
we infer that R̃ is a line, C̃6 is a quintic and their union is the branch
of the double cover φ′ : X ′ → P2. Thus the map φ : X → P2 factors
through

X
π−→ Y

ν−→ P2

where ν is the contraction of five mutually disjoint (−1)-curves,
E1, . . . , E5 ⊂ Y by Claim. Each Ei satisfies EiR̄ = EiC̄6 = 1. Their
pre-images E∗

i ⊂ X are (−2)-curves satisfying E∗
i R = E∗

i C6 = 1, and
contracted by μ. Our automorphism g induces an automorphism g̃ of
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P2. Thus the automorphism ḡ of Y permutes E1, . . . , E5. This permu-
tation must be a cycle of length 5, because otherwise g8 would fix R
pointwise. It implies that g5 fixes R pointwise, hence

Fix(g̃5)) = R̃.

We may assume that the equation of R̃ is given by x = 0 and (0, 1, ζi5) are

the five intersection points of R̃ and C̃6. Now a standard computation
of invariant polynomials such as in ([8] p. 293) yields the result.

§3. Proof: the Complex Case

We may assume that X is projective, since a non-projective com-
plex K3 surface cannot admit a non-symplectic automorphism of finite
order (see [12], [10]) and its automorphisms of finite order are symplec-
tic, hence of order ≤ 8. Now the same proof goes, once H2

et(X,Ql)
is replaced by H2(X,Z) and Proposition 1.3 by the usual topological
Lefschetz formula.

References

[ 1 ] P. Deligne, G. Lusztig, Representations of reductive groups over finite fields,
Ann. of Math. (2) 103 (1976), no. 1, 103–161.

[ 2 ] I. Dolgachev, J. Keum, Finite groups of symplectic automorphisms of K3
surfaces in positive characteristic, Ann. of Math. 169 (2009), 269-313

[ 3 ] Y. Goto, The Artin invariant of supersingular weighted Delsarte surfaces,
J. Math. Kyoto Univ., 36 (1996), 359–363.

[ 4 ] L. Illusie, Report on crystalline cohomology, in “Algebraic Geometry, Arcata
1974”, Proc. Symp. Pure math. vol. 29 , AMS, pp. 459–478

[ 5 ] J. Keum, Orders of automorphisms of K3 surfaces, arXiv:1203.5616
[math.AG]

[ 6 ] J. Keum, K3 surfaces with an order 60 automorphism and a characteri-
zation of supersingular K3 surfaces with Artin invariant 1, Math. Res.
Letters, 21 (2014), no. 3, 509–520.
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