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Stable patterns and Morse index one solutions 

Yasuhito Miyamoto 

Abstract. 

We survey results on shapes of the stable steady states of two 
nonlinear problems: a variational problem with a mass constraint and 
the shadow system of activator-inhibitor type. We see that the stable 
steady states of the two problems are the Morse index one solutions of a 
scalar reaction-diffusion equation. We study shapes of the Morse index 
one solutions and see that the shapes of the Morse index one solutions 
are deeply related to the "hot spots" conjecture of J. Rauch. We also 
survey results on the "hot spots" conjecture and related problems. 

§1. Introduction 

In this article we survey results on 

(I) shapes of the stable patterns of two nonlinear problems, which 
are (1) and (2) below, in a convex domain and 

(II) shapes of the second eigenfunctions of the Neumann Laplacian. 

In Sections 2, 3, and 4 we study (I). In Section 2 we study shapes of 
the local minimizers of the variational problem with a mass constraint 

(1) I(u) := fo c~;l 2 
- F(u)) dx, m = fo udx, 

where n is a convex domain. In Section 3 we study shapes of the stable 
steady states of the shadow system of activator-inhibitor type 

(2) 
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T~t = 1~1 fo g(u, Odx in n, 
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where u = u(x, t), e = e(t), and T > 0. We show that if a nonconstant 
critical point of (1) is a local minimizer, then u is a Morse index one 
solution of the Euler-Lagrange equation 

(3) !:l.u + f(u) = c in n, a~.~u=O on an, 
where f(u) := F'(u) and cis the Lagrange multiplier. Since cis con­
stant and f is a general homogeneous nonlinear term, (3) is essentially 
equivalent to 

(4) !:l.u + f(u) = 0 in n, a~.~u = 0 on an. 
Here the Morse index is the number of the strictly positive eigenvalues. 
We also show that if a nonconstant steady state (u,e) of (2) is stable, 
then u is a Morse index one solution of the stationary problem of the 
first equation of (2) with fixed e. Thus, it is important to study shapes 
of the Morse index one solutions of the scalar reaction-diffusion equation 
(4). In Section 4 we study those shapes in the case where the domain is 
a disk or rectangle. In Section 5 we study (II). Since the study of those 
shapes in a general convex domain is difficult, we study shapes of the 
second eigenfunctions of the Neumann Laplacian which is a Morse index 
one solution of the simplest reaction-diffusion equation !:l.u +f-LU = 0. In 
particular, we study the locations of the local maximum points of the 
second eigenfunctions which we call "hot spots". 

§2. Variational problem 

Let c: > 0 be small. The shape of a global minimizer of the varia­
tional problem with a mass constraint 

(5) m= in udx 

is well understood. Let ue be a minimizing sequence of (5). Modica [20] 
and Sternberg [25] have shown that the limit of minimizers ue as c: .j.. 0 
is a function with values ±1 almost everywhere and that the interface 
minimizes the area under the constraint that the ratio of I { ue ~ 1} I and 
l{ue ~ -1}1 is a certain value. Luckhaus-Modica [11] have shown that 
the area of minimizing interface is a hypersurface with constant mean 
curvature. (Let n be a domain in JR.N. The theory of minimal surfaces 
ensures the following: If N :::; 7, then the interface is smooth, and if 
N 2 8, then the interface may have singularities, however the Hausdorff 
dimension of the set of the singularities is at most N - 8.) Sternberg­
Zumbrun [26] studied (5) with a general double-well potential. They 
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have shown that, if n is strictly convex, then, for some k 2': 1, the 
interface {a" + c:k < u" < b" - c:k}, the super level set { u" > a" + c:k}, and 
the sublevel set { u" < b" - c:k} are connected, where a" and b" (a" < b") 
go to two stable zeros of the derivative of the potential term as c: ..l- 0. In 
[26] the connectivity of the interface and the boundary was also shown. 

When c: > 0 is not necessarily small, Gurtin-Matano [7] studied the 
shape of the local (and global) minimizers in the case where n is a disk, 
annulus, or cylinder. In [7] they have shown that when n is a disk, each 
global minimizer is monotone in some direction. 

We study (1). In particular, we do not assume the smallness of the 
diffusion coefficient or the double-well potential term. 

The next lemma is an abstract instability criterion. 

Lemma 1. Let u be a critical point of (1). If the second eigenvalue 
of the eigenvalue problem 

(6) ~¢+f'(u)¢=tJ¢ inn, 

is positive, then u is not a local minimizer. 

Proof. This lemma is well known. See [18, Lemma 2.2] for example. 
Q.E.D. 

The contrapositive of the lemma is a necessary condition for a local 
minimizer. 

Corollary 2. Let u be a local minimizer of (1). Then the Morse 
index of u with respect to (6) is zero or one. 

It is well known that if the domain is convex, then every Morse 
index zero solution is constant (See [6], [12]). Thus, if a local minimizer 
is nonconstant, then the Morse index should be one provided that the 
domain is convex. 

§3. Shadow system of the activator-inhibitor type 

In this section we consider (2). We impose the following assump­
tions: 

(7) 
f~;(u,~) < 0, g~;(u,~) < 0, and 

there is k(~) such that gu(u,~) = k(~)ft.(u,~). 

We call (2) with (7) the shadow activator-inhibitor system. The as­
sumption (7) appeared in [13] and this system was studied in [13], [14], 
[15], [16]. The first and second assumptions are natural, since they are 
included in a certain definition of the activator-inhibitor system (See 
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[14]). The third assumption is technical. However, a special case of 
the shadow Gierer-Meinhardt system and the shadow system with the 
FitzHugh-Nagumo type nonlinearity are included in (7). 

The next lemma is an abstract instability criterion. 

Lemma 3. Let ( u, ~) be a steady state of (2) with (7). If the second 
eigenvalue of the eigenvalue problem 

(8) f:l.¢ + fu(u,~)¢ = J.L¢ in 0, 

is positive, then ( u, ~) is unstable. 

Proof. See [16, Lemma 2.3] or [13, Lemma 3,2]. Q.E.D. 

The contrapositive of the lemma is a necessary condition for a stable 
steady state. 

Corollary 4. Let ( u, ~) be a steady state. If ( u, ~) is stable for some 
T > 0, then the Morse index of u with respect to the eigenvalue problem 
(8) is zero or one. 

Since ~ is constant, f( ·, ~) can be seen as a general homogeneous 
nonlinear term of one variable, i.e., f ( u, ~) is essentially equivalent to 
f(u). Hence, (8) is equivalent to (6). 

The two problems (1) and (2) have the same structure. Shapes of 
the Morse index one solutions of ( 4) become important. 

§4. Shapes of the Morse index one solutions 

In Sections 2 and 3 we saw that the study of shapes of the local 
minimizers of (1) and the stable steady states of (2) can be reduced 
to the study of shapes of the Morse index one solutions of (4). When 
the domain is an interval, the nonconstant Morse index one solution is 
monotone. This fact was used in the study of the stable patterns of 
(2) by [21], [22]. However, in the high-dimensional case it is difficult 
to characterize shapes of the Morse index one solution. Therefore, we 
study cases of simple domains, e.g., a disk and rectangle. In [13], [14], 
[18] the author studied the case where the domain is a disk. 

Theorem 5 ([18, Theorem A]). Let 0 be a disk D, and let u be 
a nonconstant solution of (4). If the Morse index of u is one, then u 
satisfies the following (a) and (b): 
(a) u has exactly two critical points in D and those are on oD. In 
particular, u attains its maximum and minimum at those two points 
and there is no critical point in D. 
(b) For every c E (minxEDu(x),maxxEDu(x)), the c-level set of u is 
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a unique C 1 -curve whose edges hit 8D at two different points and it 
divides D into exactly two simply connected regions. 

In [15] the case of a rectangle is studied. 

Theorem 6 ([15, Lemma 3.2]). Let n be a rectangle R := [0, a] x 
[0, b], and let u be a nonconstant solution of (4). If the Morse index of 
u is one, then u satisfies the following (a) or (b): 
(a) u(x, y) is strictly monotone in both x andy. 
(b) u( x, y) is strictly monotone in x and constant in y (or constant in 
x and monotone in y). 

In both disk and rectangle cases u has no critical point inside the 
domain. Yanagida [27] posed the following conjecture: 

Conjecture 7. Let n be a convex domain, and let u be a noncon­
stant solution of (4). If u has a critical point inside n, then the Morse 
index is two or larger. 

Theorems 5 and 6 are partial positive answers to Conjecture 7. He 
pointed out that Conjecture 7 is a nonlinear version of the "hot spots" 
conjecture of J. Rauch: 

Conjecture 8 ([24]). Let n be a convex domain. Then every second 
Neumann eigenfunction on n attains its maximum only on the boundary 
an. 

We set f(u) = f.LIU, where f.LI is the second Neumann eigenvalue. 
Then Conjecture 8 immediately follows from the contrapositive of Con­
jecture 7. 

§5. Second eigenfunctions of the Neumann Laplacian 

When the domain is not convex, it was believed that a counter­
example to Conjecture 8 existed (See [9, p. 56]). Burdzy-Werner [5] 
gave the first counter-example in 1999. Their domain is a planar domain 
with three holes. Several counter-examples were later given by [2], [3], 
[4]. These domains have hole(s). However, a counter-example without 
hole is not known. 

On the other hand, there are partial positive answers. Kawohl [9] 
proved Conjecture 8 for the domain of the type n = Dx (0, 1). Baiiuelos­
Burdzy [3] and Jerison-Nadirashivili [8] proved Conjecture 8 for planar 
convex domains with two axes of symmetry. ([3] imposed an additional 
assumption which was removed by [8].) Pascu [23] proved Conjecture 8 
if the domain is a planar convex domain with one axis of symmetry and 
if the second eigenfunction is anti-symmetric. Using results of [10], the 
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Fig. 1. The shape of n4 ,1J given in Theorem 9. The second 
eigenfunction attains its maximum at five vertices 
A~4l, ... ,Ai4). 

author [19] showed that the conjecture holds for the isosceles triangles. 
In [3], the conjecture was proved for the obtuse triangles. See [1], [17] 
for other domains without symmetry. Conjecture 8 remains open even 
for a general triangle. 

Our ultimate goal is to characterize the shapes of the Morse index 
one solutions of (4). Even if Conjecture 7 were proved, we do not obtain 
the information of the shapes of the solutions on the boundary. Hereafter 
we study shapes of the Morse index one solutions on the boundary. In 
particular, we consider the number of the critical points on the boundary. 
Since the nonlinear problem (4) is difficult, we study the Morse index 
one solution of the linear problem 

Dou + J.LlU = 0 in fl, 

which is the second Neumann eigenfunction. When the domain is a 
polygon, the second Neumann eigenfunction has a critical point at each 
corner, hence the number of the critical points on the boundary can be 
large even if the domain is convex. Therefore, we consider the number of 
the local maximum points on the boundary. When the domain is a disk, 
Theorem 5 indicates that only a single boundary peak solution can be 
stable. However, the next theorem says that many hot spots can exist 
on the boundary even if the domain is convex. 

Theorem 9 ([19, Theorem A]). Let() > 0 be small. Let 0 be the 

origin ofiR2 , and let A~n) = (cos(n22k()),sin(n22k())). Let On,O denote 
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the convex polygon OA6n) Ain) · · · A~n). For each integer n ~ 1, there is 
a small (} > 0 such that ILl ( On,IJ) is simple, the associated eigenfunction 
attains its local and global maximum at A6n), ... , A~n), and it does not 
have an interior critical point. In particular, the eigenfunction has ex­
actly n + 1 isolated local and global maximum points on the boundary. 
See Fig. 1 for the case n = 4. 

This theorem indicates that the number of the isolated local maxi­
mum points on the boundary can be arbitrary large, hence it is impossi­
ble to characterize the shapes of the Morse index one solutions with the 
number of the local maximum points on the boundary. We have to find 
other properties in order to characterize the shapes of the Morse index 
one solutions. 

The relation between the location of each hot spot and the curvature 
of the boundary is not clear from our study. This relation is a key to 
further research. 
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