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§1. Introduction 

Let 1f be a free profinite group with free generators x 1 , x2 and let 1f1 

(resp. 1r11 ) denote the commutator (resp. double-commutator) subgroup 
of 1r. Regard the full automorphism group A:= Aut(1r) acting on the left 
of 1f. The purpose of this paper is to study some elementary arithmetic 
properties of a certain series of invariants 

A 2 A 

1Em : A x Z --+ Z ( m E N) 

reflecting the action of A on the meta-abelian quotient 1r I 1r11 • In partic­
ular, we shall introduce a canonical series of finite index subgroups of A 
fully exhausting congruity of the invariants 1Em in a systematical way. 

Motivation to this paper came from our previous work [NlO] where 
1f was given as the fundamental group of an affine elliptic curve E : y2 = 
4x3 - g2 x - g3 over a field K of characteristic zero. A choice of a K­
rational tangential base point at infinity of the elliptic curve E gives rise 
to a natural Galois representation '{! : Gal(k I K) --t A. Given 1f being 
presented as (x1 , x 2 , z I [x1 , x 2]z = 1) so that z generates an inertia 
over the infinity puncture, we introduced in loc. cit. certain arithmetic 
invariants 

1Em : Gal(K I K) X 7!} --+ Z (mEN) 

(induced from '{!) that converge to the "Eisenstein measure" Ea (a E 

Gal( k I K ( Etar)) of [N95]-[N99]. Especially, we showed an explicit for­
mula for 1Em in terms of Kummer properties of modular units evaluated 
at E. By Galois correspondence, those finite index subgroups of A ob­
tained in this paper yield a sequence of finite Galois extensions of K that 
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can be controlled by the invariants Em. We hope to discuss applications 
to arithmetic of elliptic curves in our future works. 

Our first main statement is: 

Theorem A. Let m, M E N, and set N = 26 M with s = 0,1 
according as 2 f M, 2\M respectively. If (u, v) == (u', v') mod mN, then 
Em(cr; u, v) == Em(cr; u', v') mod M for every cr EA. 

This theorem improves our previous result in [N10] Corollary 6.9.8 
(cf. Remark 3.4.3 in loc.cit.) where the congruence was shown for M 
square integers by using a geometric method different from the present 
paper. 

By virtue of the above theorem, we can define a map 

which sends cr E A to an element Em,M ( cr) of the finite group ring 
(Z/MZ)[(Z/mN)2] given by 

Em,M(cr) == L Em(cr;u,v)ea modM. 
aE(Z/mNZ)2 

Here ( u, v) E Z2 is chosen to be a representative for any class a E 
(Z/mNZ) 2, while ea denotes the symbol for the image of xf:X2 by the 
natural projection: 

Next, let p: A--t GL2(Z) be the induced action of A on the abelianiza­
tion nab := 1r jn' as in 

(1.1) ( a( cr) 
p(cr) = c(cr) 

b( CT)) 
d(cr) (cr E A), 

so that cr(xi) == x~(u)x~(u), cr(x2) == x~(u)x~(u) mod n'. Letting N = 
26 M being as above, we shall consider two subsets A':,,M c A'm,M of A 
defined by 

A'm,M := {cr E A I p(cr) == 1 mod mN}, 

" { I I - } Am,M:= crEAm,M Em(cr;u,v)==:OmodM(Vu,vEZ). 

By definition, A'm,M obviously forms a finite index subgroup of A. 
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Theorem B. The mapping lEm,M restricted on A'm,M gives an ad­
ditive homomorphism 

with kernel A':n M. Especially, A':n,M forms a finite index subgroup of 
A'm,M· ' 

The construction of this paper is as follows. In §2, we review the ba­
sic definition of our Eisenstein invariants lEm mostly from [N10]. In §3, 
we introduce certain arithmetic sums (Fourier-Dedekind-like sums) Sm 
and discuss their congruence properties. In §4, the sums Sm are slotted 
into certain elementary measures R~,{3 E Z[[Z2]] which will turn out to 
vanish in reduced group rings (ZIMZ)[(ZimZ) 2] under suitable congru­
ence assumptions on parameters a, (3, "(with respect tom, M (Theorem 
4.5). We then give a proof of Theorem A. Finally, in §5, making use of 
Theorem 4.5, we settle a proof of Theorem B. 

Acknowledgements. The author would like to thank very much the 
anonymous referee for many valuable comments including a crucial point 
which completes the proof of Theorem A in §4. 

§2. The Eisenstein invariants lEm 

In this section, we shall recall the construction of our invariants lEm 
and add a couple of basic properties which will be necessary for later 
sections. 

Let Jr be the free profinite group with given generators x1, x2, z and 
a relation [x1 , x 2]z = 1, and denote Jr :=J Jr 1 :=J Jr 11 :=J • • · the derived series 
(in the profinite sense). Then, the first quotient JriJr' is the abelianiza­
tion Jrabof Jr and may be regarded as 

(2.1) 

The second subquotient Jr 1 l1r" has a natural action of Jrab by conju­
gation, hence may be regarded as a module over the complete group 
ring Z[[1rab]]. The profinite Blanchfield-Lyndon-Ihara exact sequence 
(cf. [Ih86, Ih99-00]) shows that Jr1 l1r" is a free Z[[Irab]]-cyclic module 
generated by the image z of z E Jr 1 in Jr1 I Jr11 : Each element of Jr 1 I Jr11 can 
be written uniquely as 11 · z (!1 E Z[[1rab]]). 

Notations being as in §1, suppose we are given an automorphism 
cr E A. For each pair ( u, v) E Z2 , observe that 

(2.2) S ( ) ·- ( -v -u) . ( a(u)u+b(u)v c(u)u+d(u)v) 
uv CJ .- CJ x2 xl xl x2 
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lies in Jr1 • Then, one obtains, by virtue of the above free cyclic Z[[7rab]]­
module structure of Jr 1 j1r", a unique element Guv(u) E Z[[1rab]] deter­
mined by the equation 

(2.3) 

in 1r1 j1r". Note that, by definition, S 00 (u) = 1, hence G00 (u) = 0. 
Now, regard the above element Guv(u) as a measure on the profinite 

space Jrab = Z2 and define lEm ( u; u, v) to be the volume of the subspace 
(mZ? C Z2 by the measure Guv(u): 

lEm(u; u, v) := 1 ~ dGuv(u). 
(mZ) 2 

(2.4) 

In general, the integration over (mZ) 2 c Z2 of the measure djL corre­
sponding to an element JL E Z2[[1rab]] may be rephrased in the following 
more down-to-earth terminologies. First, recall that the complete group 
ring Z[[1rab]] is the projective limit of the group rings: 

(2.5) 
n 

where the projective system forms over n E N multiplicatively. Take the 
m-th component of JL and write 

m-lm-1 
(2.6) JL = L L aijxix~ mod (xl'- 1, x2- 1) 

i=O j=O 

in the group ring Z[(Z/mZ)2] = Z[x1,x2]/(x1- 1,x2- 1). The is­
sued integral is then nothing but the principal coefficient a00 of this 
expression: 

(2.7) 1 ~ dJL = aoo­
(mZ)2 

Remark 2.8. In the study of monodromy representations in fun­
damental groups of once punctured elliptic curves, the subgroup 

AD:= {u E Alu(z) = za (3a E zx)} C A 

is more essential than A itself. In particular, for u E AD with p(u) = (~~), 
we have Tsunogai's equation ([Tsu95] Prop.l.12): 

(2.9) (x~xg- 1)G-I,o(u)- (xrx~ -1)Go,-I(u) 

= (ad_ be)_ (x~- 1)(x1x2- 1)- (x2- 1)(x~x~- 1). 
(x1- 1)(x2- 1) 
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This is especially important to relate the invariants lEm (a; u, v) with 
Eisenstein measure£" studied in [N95], [N99]. However, in the following 
algebraic arguments, we often do not need to restrict ourselves to AD. 

Proposition 2.10. For each a E A, we have 

G ( ) - (x;-bx2d)v -1G ( ) (--b--d)v (x;-ax2c)u -1G ( ) 
uv a - --b--d 1 01 a + x 1 x 2 --a--c 1 10 a 

xl x2 - xl x2 -

-Rest(~~).(~). 

Here, (~~) = p(a) E GL2(Z) and Rest(~~).(~) is an explicit element in 
X:1, X:2 defined by 

x-bv - 1 x-cu - 1 
Rest(~~).(~) :=Rbd+(x;-bx2d)vR~c+ : :_ X:2dv, 

' ' X1- 1 X2- 1 

where, for any a, (3, ry E Z, 

, 1 ( (x;-"'x;-,e)' - 1 x;-,e - 1 x;-,e, - 1) 
Ra,,B := x1 - 1 x;-"'x;-,B - 1 . X:2 - 1 - X:2 - 1 . 

We understand the dot between(~~) and(~) in the notation Rest(~~).(~) 
separates matrix component and vector component. Namely, Rest is a 
map from SL2(Z) X Z2 to z. 

Proof. This follows exactly in the same manner as [N10] Proposition 
3.4.2, though arguments in loc. cit. were given for a coming from the 
monodromy image in AD. That geometric condition is not necessary for 
this proposition. Q.E.D. 

Question 2.11. In [N10] Proposition 3.4.5, it is shown that the 
collection {lEm (a; u, v) I ( u, v) E Z2' m ~ 1} recovers the action of a E 

AD on 1r / 1r11 , equivalently, determines the measures G10 (a) and Go1 (a). 
Even for general a E A, the measure G10 (a) turns out to be recovered 
from the collection {lEm(a; u, v)}. In the proof of loc.cit., we made use 
of Tsunogai's equation (2.9) to convert knowledge of G10 (a) to that of 
G01 (a) for a E AD. It seems unclear if there is a detour to it with no use 
of (2.9) for general a E A. 

§3. Fourier-Dedekind-like sum: Sm 

Define U : IR ---+ IR to be the upper continuous saw tooth function 

(3.1) 
1 1 

U(x) = x + l-xj + 2 = P1(x) + 2b;z(x), 
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where l a J denotes the greatest integer not exceeding a, bz is the char­
acteristic function of the subset Z c JR., and P1 ( x) is the usual saw tooth 
function 

(3.2) P1(x) = {x- lxJ - ~' 
0, 

(x r/c Z), 

(x E Z). 

Let (m denote a primitive m-th root of unity. By the standard 
formula 

(!!..._) = ]_ ~ (~ ~) (ai = ]_ ~1 (-1-. _ ~) (ai 
p 1 m m ~ 1 - (~ + 2 m m ~ 1 - (in 2 m 

(a E Z,m EN) 

(cf. [RG72] p.14), it follows that 

(3.3) 
a 1 1 m- 1 (: 

U(-)--=-L-·. 
m 2m m . 1- (in 

"=1 

The following lemmas are our basic tools. We shall write (a, m) to 
denote the greatest common divisor of a, mE Z. 

Lemma 3.4. For a, bE Z, mEN, let d := (a, m) > 0. Then, we 
have 

This formula is essentially equivalent to a well known formula (3.11) 
appearing later. Here, we shall give a direct proof using the distribution 
relation of P1. 

Proof. By (3.1), the left hand side is equal to 

Put a= ad, m = md. The first term can be written d ~~~ 1 P1 ( ai+;::/d)) 

which turns out to be dP1 ( ~) by the distribution relation of P1 ( cf. 
[RG78] p.4, Lemma 1). For the second term, we need to count the 
number of solution i mod m of the congruence ai + b == 0 mod m. There 
are none when b =/= 0 mod d, while when b =db, the solutions of ai+b == 0 
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mod m are in one to one correspondence to those d classes that lift the 
unique solution of ai + b = 0 mod m. Thus the above sum equals to 

Q.E.D. 

Definition 3.5. For a, c, a, f3 E Z, define 

Sm(a,c;a,f3) = ~1 (u(ai~a)- 2~) (u(ci~f3)- 2~). 
Lemma 3.6. 

(<" ~(3 
--·--
1-( 1-~ 

Proof. By using (3.3), one computes: 

1 m-1 m-1 m-1 ($,':i+a) 8 

Sm(a,c;a,f3) = m2 L L L 1- (8 
i=O 8=1 t=1 m 

= _2_ ~ ~ _1 ___ 1_ (~ (i(as+ct)+as+(3t) . 
m2 L...t L...t 1 _ (8 1 _ (t L...t m 

s=1 t=1 m m i=O 

Observe that the last bracket is equal to m(;¢,8 +(3t if as+ ct = 0 mod m, 
and to 0 otherwise. The lemma follows immediately from this. Q.E.D. 

Question 3.7. In [BR07], studied are certain Fourier-Dedekind 
sums Sn ( a1, a2, ... , am; b) and their reciprocity laws. Its special type 
reads 

1 (2 
s2(a1,a2;b) = b L (1 - (a1 )(1- (a2 ) 

(E!-'b\{1} 

which, according to the above lemma, overlaps with our Sm (a, c, a, (3) 
in some special cases. An interesting question will be how to formulate 
(and prove) a reciprocity law well-suited to Sm (a, c, a, (3). 

Lemma 3.8. Let m E N and a, b, c, x, y, z E Z such that (a, m) 
divides y. Then, 

Sm(a, c,x + y, z)- Sm(a, c, x, z) 

= 'I:1 (u(ai+;+y)-U(ai~x))u(ci~z). 
i=O 
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Proof. It follows from Definition 3.5 and Lemma 3.4 that the differ­
ence of both sides amounts to 

_1_ I=1 (u(ai + x + y) _ U(ai + x)) 
2m m m 

i=O 

= (a, m) (u( x + y) _ U(-x-)) 
2m (a,m) (a,m) 

which vanishes under the condition (a, m)IY· Q.E.D. 

Lemma 3.9. Foru,v,s E Z with (v,m) = 1, we have 

u vu(u- 1) su 
S (v -1 vu-s 0)-S (v -1 -s 0) = -- +-

;z 
mod-

2' m ' ' ' m ' ' ' - 2m 2m m 

Proof. By Lemma 3.8, the LHS equals to 

which is, by virtue of Lemma 3.4, congruent to 

m-1 l' J m-1 l' J u -s v 2 - u s 2 - u 
=-U(-)+- I>- -- L -

m (m, v) m . m m . m 
2=0 2=0 

;z 
mod-. 

2 

Define 15 := l-u/mJ, k := m(/5 + 1) + u so that 15 = l-;:J = ... 

l-u;;;-1 J, 15 + 1 = l-':;tk J = · · · = l-u-;:- 1 J. Then, noting that 
( v, m) = 1 and k = u mod m, we continue the above computation to 

= ~U(O) 
m 

+ - vu + v - s mu + m -1 { .\"m(m-1) (m+k-1)(m-k) ( .\" ( k))} 
m 2 2 

_ u vu( u - 1) su 
=-- +-

2m 2m m 

;z 
mod-. 

2 

Q.E.D. 
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Lemma 3.10. For a, c, r, s E Z and mEN, we have 

Sm(a, c, a- r, -s)- Sm(a, c, -r, -s) 

=-- -- + --- 2 -- +1 +-_ a(m, c) { 2 l s J 1} c(m, a) { l r J } ac 
2m (m, c) 2m (m, a) 2m 

z 
mod-2. 

Proof. Since (a, m) \a, we may apply Lemma 3.8 to see that the LHS 
equals to 

_ ~1 (a l ai+a-rj l ai-rj) (ci-s l ci-sj 1) - L...J - + - - --- -- + --- +- . 
m m m m m 2 

i=O 

Moding out half integers, it is congruent to the sum A+ B + C mod ~, 
where 

A:= f !!_U(ci- s) = a(m,c)U(----=!._) 
. m m m (m,c) 
2=0 

a(m,c) ( -s l s J 1) 
= ------:;;;:- (m, c) + (m, c) + 2 

---+-- 2 -- + _ as a(m, c) { l s J 1} 
m 2m (m,c) ' 

B := _ ~ ~ (l- a(i +~)- r J -l- ai~ r J) 

=-~ ( l- amm- r J -l-: J) = :' 

C:=: ~ (l-a(i+~)-rj -l-ai~rj)i 
c am- r aJ- r ( l J m-1 l . J) = m - m (m- 1)-~ -------:;;;:- . 
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Making use of the convenient formula 

(3.11) 

~ l mkn+x J (m- 1)(n- 1) (m, n)- 1 ( ) l x J 
2 + 2 + m, n (m, n) 

(mE Z, n EN, x E ffi.) 

(see [Kn73], exercise 2.4.37), we find 

C = !}_ { (m- 1)(a + 1) _ (m, a)- 1 _ (m, a) l-r-J 
m 2 2 (m, a) 

+ l:J + (-a+ l:J) (m- 1)} 
= .!!!!:__ c(m,a) { 2 l_r J + 1} 

2m 2m (m, a) 
z 

mod-
2" 

One concludes the lemma by evaluating A + B + C after the above 
computation. Q.E.D. 

§4. Congruence properties of elementary terms: R~,/3 or Q~,c 

In this section, we shall consider the elementary terms 

1 1 ( _ _ ) 1 ( (x;-ax;-/3)' - 1 x;-/3 - 1 x;-/31 - 1) 
R = R XI' X2 := -_-- . - -==------,--

a,/3 a,/3 XI - 1 x;-ax;-/3 - 1 X2 - 1 X2 - 1 

introduced in Proposition 2.10 for a, (3, 1 E ±. Just for convenience of 
presentation, we convert R~,/3 to equivalent Q~,c(:XI, x 2) := R'IL_c,-a (x2, xl), 

i.e., define for a, c, u E ±, 
( 4.1) 

Qu = Qu (- - ) ·= _1_ ((x!x~)u -1. :X:!-1- x!u -1) 
a c a c XI' X2 · - a c - · 

' ' X2 - 1 XI x 2 - 1 XI - 1 XI - 1 

Recall that these are elements of Z[[1rab]] where 

Z[[1rabll = ±[[±2]] = ~(Z/mZ)[xi,x2]/(x'[- 1,x~ -1) 
m,n 

and can be regarded as ±-valued measures on Z2 . There is a natural 
immersion of 
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into Z[[1rab]] with dense image. 
We begin by detecting explicit forms of Q~ c evaluated at pairs of 

roots of unity: ' 

Lemma 4.2. For((,~) E Jlm X Jlm, we have 

( 4.3) 

0, 

( ( # 1, ~ # 1, (a ~c # 1) , 

(( # 1, ~ # 1, (a~c = 1), 

(( # 1, ~ = 1, (a~c # 1), 

(( = 1, ~ # 1, (a~c # 1), 

( ( = ~ = 1' (a ~c = 1)' 
(otherwise). 

Proof. Let us examine Q~ c ( (, ~) case by case: 
Case 1: ( # 1, ~ # 1, cake # 1. In this case, the terms Q~,c( (, 0 

remain as they are, i.e., 

Case 2: ( # 1, ~ # 1, (a~c = 1. In this case, using de l'Hospital's 
rule, we find: 

u 1 ( (a _ 1 (au _ 1) u( (a _ 1) _ ((au _ 1) 
Qa,c((, ~) = ~- 1 U (- 1 - (- 1 = (~- 1)((- 1) . 

Case 3: ( # 1, ~ = 1, (a~c # 1. In this case, using de l'Hospital's 
rule, we find: 

u - caucu((a- 1)- c((au- 1)(a (a- 1 
Qa,c((,0- ((a -1)2 . ( -1 

cu(au c( (au - 1 )(a 
---
( - 1 ((a - 1) ( ( - 1 )" 

Case 4: ( = 1, ~ # 1, (a~c # 1. In this case, it follows that 

u 1 ~cu - 1 a ~cu - 1 
Qa,c((,~)= ~-1(a ~c-1 -au)= ~-1(~c-1 -u). 
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Case 5: ( = ~ = 1, (a~c = 1. In this case, using de !'Hospital's rule 
twice, we find: 

u . a (ycu_1-uyc-u) 
Qa,c((, ~) = hm1 --1 c 1 y--+ y- y -

. a(cuycu-1- cuyc-1) = hm ..........:.__;:___ __ __;:._____:_,.. 
y--+1 (c + 1)yc- 1- cyc-1 

. a(cu(cu- 1)ycu-2 - cu(c- 1)yc-2 ) 
= hm --'---:--:-'---:----:---'--::---'--;;-----'-

y--+1 (c + 1)cyc-1 - c(c- 1)yc-2 

a(cu(cu- 1)- cu(c- 1)) acu(u- 1) 

c2 +c-c2 +c 2 

Case 6: ( = ~ = 1, (a~c # 1. This case is impossible. 
Case 7: ( = 1, ~ # 1, (a~c = 1. In this case, it follows that 

1 ycu - 1 xau - 1 1 
Q~ c((, ~) = -c -(lim ·a-lim ) =--(au-au)= 0. 

' c, - 1 yc--+1 yc- 1 x--+1 X- 1 ~- 1 

Case 8: ( # 1, ~ = 1, (a~c = 1. In this case, it follows that 

u . {. (xa-1) ((xayc)u-1 )} 
Qa c((, ~) = hm hm ( )(( ) - 1 = 0. 

' y--+1 xa--+1 y- 1 - 1 xayc- 1 

Q.E.D. 

Notation 4.4. For a E Z and m E Z, we denote by (a, m) the 
positive greatest common divisor, i.e., the maximal integer dividing both 
a, min Z. 

Theorem 4.5. Let m, N be natural numbers, and suppose that 
a, c, u E Z satisfy one of the following conditions: 

(i) u = 0 mod mN; 
(ii) a= 0 mod mN and (c, m) = 1; 
(iii) c = 0 mod mN and (a, m) = 1. 

Then, for any r, s E Z, we have the congruence 

Proof. As recalled in (2.7), the left hand integral fcmz) 2 x:;-rx2 8dQ~,c 
can be interpreted as the principal coefficient a00 of the congruence: 

m-1m-1 

x:;-rx;-sQ~,c = L L aijxix~ mod (xi"- 1, x;"- 1) 
i=O j=O 
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in the group ring Z[(Z/mZ) 2] = Z[x1 ,x2]/(x1-1,x2" -1). Without 
loss of generality, we may assume r, s E Z. By standard Fourier trans­
formation, we then obtain the following expression 

(4.6) 

Case (i): u = 0 mod mN. Using (4.6) and Lemma 4.2, one finds: 

1 ( acu(u-1)) 
aoo = m 2 02 + 03 + 04 + 2 , 

where, denoting by Oi the terms from Case i (i = 2, 3, 4) in (the proof 
of) Lemma 4.2, 

02=U L 
(,t;EI'rn \{1} 

ca.;c=l 

ca-T~-S _ c-T~-S 

((-1)(~-1) 

= mu( Sm(a, c, a- r, -s)- Sm(a, c, -r, -s)), 

03=cu L ((=r-1 =cu((m,a)U((~,ra))-mU(:)) 
(EJ.Lrn \J.L(rn,a) 

= uc(~, a) ( 2l (:,a) J + 1) - u~m ( 2l:J + 1)' 
04 =-au L 1:~-s =au ((m,c)U(( -s )) - mU(-8 )) 

c, -1 m,c m 
~EJ.Lrn \f.'(rn,c) 

=- ua(;,c) (2l(:,c)J + 1) + uc;n (2l~J + 1). 

It is then easily seen from Lemma 3.10 that a00 = 0 mod N /(N, 2). 
Case (ii): a= 0 mod mN and (c, m) = 1. Using (4.6) and Lemma 4.2, 
one finds: 

_ ~ (o' 0 , acu(u -1)) 
aoo - m 2 4 + 4 + 2 ' 
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where 

1 ~cu-s _ ~-s 

c4 =a 2:::: (~- 1)(~c- 1) 
f.EJ-Lm \{1} 

=am( Sm(c, -1, cu- s, 0)- Sm(c, -1, -s, 0)), 

11 L ~-s (1 (-s)) C = -au -- = -au - - mU -
4 ~-1 2 m 

f.EJ-Lm\{1} 

It then follows easily from Lemma 3.9 (applied for v :=c) that aoo = 0 
mod N/(N,2). 
Case (iii): c = 0 mod mN and (a, m) = 1. Using (4.6) and Lemma 4.2, 
one finds: _ 1 (c1 C" acu( u - 1)) 

aoo- m2 3 + 3 + 2 ' 

where 
I cau-r+a _ c-r+a 

c3 = -c 2:::: 
(EJ-Lm\{1} (( -1)((a -1) 

= -cm(Sm(a, -1, au- r +a, 0)- Sm(a, -1, -r +a, o)), 

It then follows easily from Lemma 3.9 (applied for v := a, s := r- a) 
that a00 = 0 mod N/(N,2). Q.E.D. 

Proof of Theorem A. According to Proposition 2.10, Guv(CJ) is de­
composed as a sum 

(x!b:X2d)v - 1 G (CJ) + (x-bx-d)v (:X:1a:X:2c)u - 1 G (CJ) 
--b--d 1 01 1 2 --a--c 1 10 
x1 x2 - x1 x2 -

- Rest(~~).(~) 

with(~~)= p(CJ) E GL2 (Z), where Rest(~~).(~) is a sum 
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It suffices to show that the volume Em(a; u, v) = f(mz)2 dGuv(a) does 

not alter modulo M when (u, v) is replaced by (u', v') = (u, v) mod mN. 
Let us first consider behaviors of the three terms free from R'b d, R~ c 

in the above decomposition of Guv(a), namely, the first two t~rms ~f 
Guv(a) and the last term of Rest(~~).(~). Observe that, under our as­
sumption u = u', v = v' mod mN, each of the differences 

turns out to be annihilated by reduction modulo the ideal (N, :X:1 -
1,x!J -1) of Z[[1rab]]. This, together with the expression (2.7), implies 
that 

is invariant modulo M (a factor of N) as long as ( u, v) E Z2 belongs 
to a same congruence class modulo mN. It remains to consider the 
behavior of f(mz)2 d(R'b,d + (:X:1b:X:2d)v R~,c) under the change from ( u, v) 
to (u',v') = (u,v) mod mN. First, note the general equation: 
(4.7) 

I I I I X-()e"/- 1 X-(3('-y-•y')- 1 
R"~ - R"~ = (x-"'x-f3)'Y R"~-"~ + x-f3'Y 1 . ----"-2----

a,f3 a,(3 1 2 a,(3 2 X1 - 1 X2 - 1 
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Applying (4.7) with (a,/3) = (b,d) and (!,1') = (v,v'), we find from 

Theorem 4.5 (i) that f(mz) 2 (dR'b,d- dR'b:d) = 0 mod M. We can also 
see that the integration of 

(--b--d)vRu _ (--b--d)v'Ru' 
xl x2 a,c xl x2 a,c 

= (X.1b:X.2d)v(R~,c- R~:c) + ((x1bx;zdr- (X.1b:X.2d)v')R~:c 

over (mZ) 2 is congruent to 0 mod M, after applying (4.7) with (a, (3) = 
(a, c), (!,1') = (u,u') to the first term of the above last line. Thus, 
summing up these arguments we conclude 

lEm(u; u, v) = lEm(u; u', v') mod M 

under the condition (u,v) = (u',v') mod mN. Q.E.D. 

§5. Proof of Theorem B 

It suffices to show the following more refined proposition: 

Proposition 5.1. Let m, M EN and set N = 2" M where E = 0, 1 
according as M is odd or even respectively. Let u, T E A satisfy p( u) = 
p(T) = 1 mod mN. Then, for every pair (u, v) E Z2 , 

Guv(uT) = Guv(u) + Guv(T) 

in (Z/MZ)[(Z/mZ) 2 ]. In particular, it holds that 

lEm(uT) = lEm(u) + lEm( T) mod M. 

In fact, the twisted composition law ([N10] §3.5) implies that, gen­
erally for u, T E A, ( u, v) E Z, 

(5.2) 

holds, where 

(5.3) G(J?(u) := [(uT) (:~: = ~)] · Gp(T)(~)(u) 
+ [(uT) ( x;zv:f: = ~)] · Gp(T)(6)(u) 

- [Restp(uT).(~)] + x(u) · u [Restp(T).(~)]. 

(In [N10] §3.5, twisted composition laws were discussed for the mon­
odromy images in A>, but the arguments in loc. cit. hold true for general 
elements of A.) First, Theorem 4.5 (ii), (iii) ensure the following 
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Lemma 5.4. Assume A E GL2 (Z) satisfies A= 1 mod mN. Then, 

1 , :X1,..:X2 3 dRestA.(~) = 0 modM 
(mZ) 2 

for all (r, s) E 7!}, in other words, RestA.(~) = 0 in (Z/MZ)[(Z/mZ) 2 ]. 

D 

From this lemma we immediately see that the last two terms of (5.3) 
vanish in the reduced group ring (Z/MZ)[(Z/mZ?J and that the proof 
of the above proposition is reduced to 

Lemma 5.5. Suppose p(a) = p(T) = 1 mod mN. Then, for every 
( u, v) E Z2 , we have 

in (Z/MZ)[(Z/mZ)2]. 

Proof. Again by using Lemma 5.4, we find that Proposition 2.10 
implies, for a E A with p(a) = 1 mod mN, 

in (Z/MZ)[(Z/mZ) 2]. Assume p(T) = (~~) E GL2 (Z) which is assumed 
= 1 mod mN. In particular, since (a, c) = (1, 0), (b, d) = (0, 1) mod mN, 
we have 

Putting all together into (5.3), we obtain 

G('i)\a) = [(ap(T)) (:f: = ~)] · Gbd(a) 

+ [(ap(T)) ( x;-v:~: = ~)] · Gac(a) 

in (Z/MZ)[(Z/mZ) 2]. This completes the proof. Q.E.D. 

Thus, the proof of Proposition 5.1, and hence that of Theorem B, 
are settled. 
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§6. Numerical examples for Theorem A 

Before closing this paper, we shall provide some numerical exam­
ples illustrating congruence periodicity properties of 1Em ( O"; u, v) in ( u, v) 
of Therem A. We employ O" E Aut(1r) defined as the composite O" ·­

T:[2T~TfTz(T1T2)-3 of the basic two automorphisms T1,T2 E Aut(1r): 

In [N10] §7, we obtained an explicit formula to calculate 1Em(O"; u, v) 
(u, v E Z) from the matrix image of O" by p: Aut(1r)-+ GLz(Z) (1.1): 

p(G) = G nG ~) (!2 ~) G i) (!1 1) - 3 = (11 
0 24 151) 

through relevant generalized Dedekind sums together with certain other 
elementary terms. According to this formula, the values lE2 ( O"; u, v), for 
m = 2 and say in the range -4 ::; u, v ::; 4, are given by the following 

table. More precisely, the matrix [ JE2 ( O", i - 5, j - 5) r . is given by 
t,J=l 

-1137 -981 -812 -681 -542 -436 -327 -246 -167 

-783 -654 -518 -414 -308 -229 -153 -99 -53 

-494 -393 -289 -213 -139 -88 -44 -18 -4 

-272 -198 -127 -78 -37 -13 -2 -3 -22 

-115 -69 -30 -9 0 -4 -25 -54 -105 

-25 -6 0 -6 -30 -61 -115 -171 -255 

0 -9 -35 -69 -125 -184 -270 -354 -470 

-42 -78 -137 -198 -287 -373 -492 -603 -752 

-149 -213 -304 -393 -514 -628 -779 -918 -1099 

Theorem A tells us certain periodical properties of the above matrix 
after taking the entries' residues by a fixed modulus: Generally, the 
residual values "lEm(O"; u, v) mod M" have mN x mN-periodicity, where 
N = 2" M (c: = 0, 1 according as 2 f M or 21M respectively). In the 
case m = 2, M = 3, the values "lE2 ( O"; u, v) mod 3" should have 6 x 6-
periodicity. For the above chosen O", cutting out the range -6 ::; u, v ::; 6, 

we obtain the following matrix [1E2 ( O", i - 7, j - 7) mod 3] 13 
, where 

",J=l 
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we find 6 x 6-periodicity: 

0 2 2 0 0 0 0 2 

0 2 2 0 0 0 0 2 

2 0 0 0 0 

2 0 0 0 0 

2 0 0 

1 2 0 0 

0 

0 

2 0 0 

2 0 0 

0 

0 1 

2 2 0 2 0 2 2 1 0 2 0 2 

2 2 1 0 2 0 2 2 1 0 2 0 2 

0 2 2 0 0 0 0 2 2 0 0 0 0 

0 2 2 0 0 0 0 2 2 0 0 0 0 

2 0 0 

2 0 0 

0 

0 

2 0 0 

2 0 0 

0 

0 

2 2 1 0 2 0 2 2 1 0 2 0 2 

2 2 1 0 2 0 2 2 0 2 0 2 

0 2 2 0 0 0 0 2 2 0 0 0 0 

In the case m = 2, M = 2 (hence N = 4), the values "lE2(a; u, v) 
mod 2" should have 8 x 8-periodicity. For the above chosen a, cutting 

out the range -8 ::; u, v ::; 8, we obtain the following matrix [1E2(a, i-

] 
17 

9,j- 9) mod 3 . . , where 8 x 8-periodicity is found: 
2,J=l 

0 0 

0 1 

0 0 0 0 0 1 

1 

0 0 0 0 

0 0 0 0 

1 1 0 0 0 0 

0 1 0 

0 0 0 0 

1 

0 

0 0 1 0 

0 

0 0 0 1 

1 0 0 0 

1 0 0 0 0 

0 0 0 0 

0 0 0 

0 0 0 0 1 1 1 0 0 0 0 

0 0 0 0 

1 

1 0 

0 0 

0 

0 0 

0 1 

1 

0 

0 1 0 1 0 0 1 0 

0 0 1 0 1 0 0 

1 1 0 0 0 0 

0 0 0 0 

0 0 0 0 

1 0 0 0 0 1 

0 0 0 0 0 0 0 

0 1 

0 1 

0 1 0 0 0 

0 

0 

1 

0 0 0 0 

1 0 

0 1 0 0 

0 0 0 0 1 0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 

0 0 

0 1 0 1 0 0 1 0 1 0 

0 1 

0 
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