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Lie algebras of Galois representations 
on fundamental groups 

Zdzislaw Wojtkowiak 

Abstract. 

In this paper we are studying Lie algebras associated with Galois 
representations on the fundamental groups of lP'~ \ ( {0, oo} U p,2n) and 

JP'~ \ ( { 0, 00} U 1J,3n). 

§0. Introduction 

The Galois group Gal(Ql/Q(Mn)) acts on the etale fundamental group 
• -+ 

1r]'t (lP'~ \ ( { 0, oo} U !in); 01). One of the most interesting problems is to 

describe the image of Gal(Ql/Q(Mn)) in the group of automorphisms of 
. -+ 

1r]'t (lP'~ \ ( {0, oo} U Mn); 01). To simplify the situation one usually consid-
ers pro-Z quotient of 1r1 and then an infinitesimal version of the problem 
(see [1] and [7]). 

Let Lie(X, Y0 , ... , Yn-d be a free Lie algebra over Q1 on n + 1 free 
generators X, Yo, ... , Yn_ 1 . We equipped it with the Ihara bracket {,} 
and we denote the resulting Lie algebra by Lie(X, Y0 , ... , Yn-d{ }· 

In the infinitesimal version of the problem we get a representation 
of the associated graded Lie algebra, denoted by Lz(Z[Mn][~]), of a cer­
tain weighted Tate completion of Gal(Ql/Q(Mn)) into the Lie algebra 
Lie(X, Y0 , ... , Yn- 1){ }· In Section 2, as the first step to understand 
the Galois action on 1r1 , we are studying the Lie algebra Lie(X, Y0 , ... , 

Yn- I) { } . The results of Section 2 are very elementary and very likely 
well known. 

In Sections 1 and 3 there are collected some general facts about 
Galois actions on fundamental groups of the projective line minus a 
finite number of points taken from the previous papers of the author. 
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In Sections 4 and 5 we are studying the infinitesimal version of Galois 
actions on fundamental groups of lP'~ \ ( {0, oo} U P,2n) and lP'~ \ ( {0, oo} U 

p,3n). In the case of lP'~ \ ( { 0, oo} U f-t2n) we extend slightly our previous 
result (see [13, Corollary 15.6.3.]). We show that the image of the Lie 
subalgebra of Lz(Z[p,2nm]) in Lie(X, Yo, ... , Y2n~do generated by all 
generators in degrees greater than one and 3/4 of generators in degree 
one is free. We prove also the analogous result for lP'~ \ ( {0, oo} U P,3n ). 

Finally, in the last section we show that the Lie algebra representa­
-+ 

tion associated with the action of Gal(Ql/Ql) on 1rft(lP'~ \ {0, 1, oo }; Op), 
where pis a prime number, has a big kernel. 

Acknowledgments. This research was inspired by the talk given by 
P. Deligne in Schloss Ringberg (see [2]). Parts of this paper were written 
during our visit in Max-Planck-Institut fi.ir Mathematik in Bonn. We 
would like to thank very much MPI for support. Section 6 was added 
after receiving the referee report, though we mentioned this example in 
our Kyoto talk. 

0.1 Notation Let L be a Lie algebra. We define 

Let X andY belong to L. We shall use the following inductively defined 
short hand notation: 

[y x(m)l ·- { y ' .- [[Y, xcm~l)J, X] 
ifm = 0 
form> 0. 

We denote by X : G K -+ zr the l-adic cyclotomic character. We denote 
by N the set of positive integers 1, 2, 3, .... 

§1. Galois action on 1r1 

In this section we review some results and constructions from our 
previous papers (see [11], [12], [13], [14] and [16]). 

Let K be a number field. Let a 1 , ... , an E K. Let us set 

V := lP'k \ {a1, ... , an, oo}. 

Let v and z be K-points of V or tangential K-points of V. Let l be a 
fixed prime. We denote by 
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the maximal pro-l quotient of the etale fundamental group of V k based 
at v and by 1r(Vk;z,v) the 1r1(Vk;v)-torsor of l-adic paths from v to 
z. Let Vi be a tangential K-point on Vk at ai for i = 1, ... , n. Let 
si E 1r1 (Vk; vi) be a generator of the inertia group of a place over ai and 
let ri E 1r(Vk;vi,v). 

We set 
-1 

Xi := li . Si . ri 
for i = 1, ... , n. The elements x1, ... , Xn are free generators of 1r1 (V k; v). 

Let r be a path from v to z. For any u E G K we set 

Proposition 1.1. (see [11, Proposition 2.2.1.]) The action of GK on 
1r1 (V k; v) is given by the formulas 

for i = 1, ... , n. 

Let Qz{{X1, ... , Xn}} be a Qz-algebra offormal power series on non­
commuting variables X 1, ... , Xn equipped with the topology of the pro­
jective limit. We denote by 

the group of continuous automorphisms of the Q1-algebra Q1{{X1, ... , 
Xn}} and by 

the group of continuous linear automorphisms of the Qz-vector space 
Qz{{X1, ... , Xn}}· 

Let Qz{X1, ... , Xn} be a Qz-algebra of polynomials on non­
commuting variables X1, ... , Xn. We denote by 

the Lie algebra of derivations of the Qz-algebra Qz{ X1, ... , Xn} and by 

the Qe-vector space of endomorphisms of the Qz-vector space Qz{X1, ... , 
Xn}· 

Observe that Der(Qz{X1, ... , Xn}) is the associated graded Lie al­
gebra of the Lie algebra of Aut(Qz{{X1, ... ,Xn}}) and End(Qz{X1, ... , 
Xn}) is the associated graded Lie algebra of the Lie algebra of 
GL(Qz{{X1, ... , Xn}}). 
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We define a continuous multiplicative embedding 

setting E(xi) = exp(Xi) for i = 1, ... , n. 
Let set 

ky(a) := E(f,(a)). 

The action of G K on 1r1 (V K; v) induces an action of G K on Qlz {{X 1, ... , 

Xn}} by automorphisms of Qlz-algebra. Hence we get the representation 

It follows from Proposition 1.1 that 

for i = 1, ... , n. 
Let t 1 : n(V.K;z,v)--+ n1 (V.K;v) be given by t 1 (o) = 1'-1 · o. Com­

posing t 1 with the embedding Ewe get an embedding of n(V.K; z, v) into 
Qlz{{Xl, ... , Xn}}. The action of GK on the torsor of paths n(V.K; z, v) 
induces a linear action of G K on Qlz{{ X 1 , ... , Xn}}. Hence we get the 
representation 

It follows from [11, Lemma 1.0.2] that for any wE Qlz{{X1 , ... , Xn}} we 
have 

We shall write also <pv,v and 1/Jv,1 instead of <pv and 1j;1 if we want to 
indicate the dependence of representations on the algebraic variety V. 

We denote by 

{! IZ}K 

the set of finite places of K lying over the prime ideal (Z) of Z. 
The representations IPv and 1j;1 are weighted Tate representations 

(see [15, Proposition 1.0.3, Theorem 2.1 and Proposition 2.3]). We recall 
below the definition of weighted Tate representations (see [5] and [6]). 

Definition 1.2. Let K be a number field and let S be a finite set of 
finite places of K. Let W be a finite dimensional vector space over Qlz 
equipped with an increasing filtration 
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such that Wn = 0, Wm =Wand Wi = Wi-1 fori even. A continuous 
representation 

¢: GK -t GL(W) 

is called a weighted Tate representation unramified outsideS U {l ll}K 
if 

i) ¢(Wi) c Wi for all i; 
ii) ¢ acts on W2i/W2i_ 2 by the ( -i)th power of the l-adic cyclo­

tomic character; 
iii) ¢ is unramified outside S U { [ ll} K. 

Projective limits of weighted Tate representations unramified outside 
S U { [ ll} K we shall call also weighted Tate representations. 

Let us assume that the pair (V, v) and the triple (V, z, v) have 
good reduction outside a finite set S of finite places of K. Then the 
representations 'Pv and '1/J'Y are unramified outside S U {l I l}K, hence 
they factor through the weighted Tate Qz-completion Q(OK,su{!ll}x;l) 
of 1r1 (SpecOK,SU{!Il}x; SpecK) (see [5] and [6]). 

Let L(OK,Su{!IZ}x;l) be the associated graded Lie algebra with re­
spect to the weight filtration of the affine prounipotent proalgebraic 
group 

The representations 'Pv and '1/J'Y induce morphisms of graded Lie algebras 

and 

respectively. 
In degree one the Lie algebra L(OK.Su{(ll}x; l) has more generators 

than the corresponding Lie algebra of the motivic fundamental group of 
mixed Tate motives over SpecOK,S· These additional generators come 
from divisors of (l) which are not in S. Rain and Matsumoto showed 
in [6], using the notion of crystalline representations, how to construct 
weighted Tate completion, when S does not contain {l ll}K· 

In [16] we gave a different, elementary construction of the corre­
sponding graded Lie algebra when S does not contain { [ I l} K. We 
recall briefly our construction of this Lie algebra (see [16, Section 1]). 

Let u E o~,SU{(Il}x" The Kummer character of u induces 
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where L(OK,SU{!Il}K;l)! is the subspace of elements of degree one in 
L( 0 K,Su{ rll} K; l). Let us set 

(l ll)K,S := n (Ker(K(u): L(OK,SU{(Il}K;l)!--+ «J!z)). 
uEO~,s 

We define 
(( ll)K,S 

to be the Lie ideal of L(OK,SU{!Il}K;l) generated by (t ll)K,S· We define 

Lz(OK,s) := L(OK,Su{rll}K;l)/(l ll)K,S· 

The Lie algebra Lz(OK,s) is graded. We have 

00 

Lz(OK,s) = EBLz(OK,s)i, 
i=l 

where L1(0K,S)i is the vector subspace of elements of degree i. 
The graded Lie algebra L1(0K,s) has the same number of genera­

tors as the Lie algebra of the motivic fundamental group of mixed Tate 
motives over SpecOK,S (see [16, Proposition 1.3]). The construction of 
the graded Lie algebra L 1(0K,s) is functorial (see [16, Proposition 2.3]). 

It follows from [16, Theorem 3.1] that the representations <I>v and 
\]! z,v factor through the graded Lie algebra Lz ( OK,S ). The induced rep­
resentations we shall also denote by 

<I>v : Lz(OK,s)--+ Der(Qz{Xl, ... , Xn}) 

and Wz,v: Lz(OK,s)--+ End(Qz{XI, ... , Xn}) 

or by 
<I>v,v and Wv,z,v 

if we want to indicate the dependence on the algebraic variety V. 
Finally we recall the definition of l-adic polylogarithms from [12]. 

--+ 
Let'/ be a path on lP'~ \ {0, 1, oo} from 01 to a K-point of lP'k \ {0, 1, oo} 
or to a tangential point defined over K. After the standard embedding 

--+ 
of 1r1 (lP'~ \ {0, 1, oo }; 01) into Qz{{X, Y}} we get a formal power series 

A1 (0") E Qz{{X, Y}}. 

Let h be an ideal of Q1 {{X, Y}} generated by monomials with two or 
more Y's. The l-adic poly logarithms ln ( z )1 and the l-adic logarithm 
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l ( z ), are functions from G K to CQlz. They are coefficients of the formal 
power series log A, ( cr). They are defined by the following congruence 

00 

logA,(cr) = l(z),(cr)X + Lln(z),(cr)[Y,X(n-l)] mod h 
n=l 

The l-adic logarithm l(z), is the Kummer character associated to z and 
h(z), is the Kummer character associated to 1- z. The l-adic polylog­
arithms satisfy the same functional equations as the classical complex 
polylogarithms. In [12] we showed that the inversion relation and the 
distribution relations are satisfied by l-adic polylogarithms. We shall 
use them in the last two sections. 

§2. Lie algebras 

Let K be a field. The set of Lie polynomials in the K-algebra 
K {{X, Y0 , ... , Yn-l }} of formal power series on non-commuting variables 
X, Yo, ... , Yn-l we denote by 

Lie( X, Yo, ... , Yn-d. 

It is a free Lie algebra over a field K on n + 1 free generators X, Y0 , ... , 

Yn-l· The Lie bracket we denote by [, ]. 
Let A = A(X, Y0 , ... , Yn-d E Lie(X, Yo, ... , Yn-l)· We define a 

derivation 

D A : Lie(X, Yo, ... , Yn-d --+ Lie( X, Yo, ... , Yn-d 

by the formulas 

for i = 0, 1, ... , n- 1. The sum a+ b is calculated modulo n. Observe 
that 

(2.1) DA 0 DB- DB 0 DA = D[A,B]+DA(B)-DB(A)· 

We denote by Der(Lie(X, Y0 , ... , Yn-l)) the Lie algebra of all deriva­
tions of Lie(X, Y0 , ... , Yn-d· It follows from (2.1) that 

Derz;n(Lie(X, Yo, ... , Yn-l)) := 

{DA E Der(Lie(X, Yo, ... , Yn-d) I A E Lie(X, Yo, ... , Yn-d} 



608 z. Wojtkowiak 

is a Lie subalgebra of Der(Lie(X, Y0 , ... , Yn-d). 
Let (a) be a one-dimensional vector subspace of Lie( X, Yo, ... , Yn-l) 

generated by a. The map 

Lie(X, Yo, ... , Yn-d/(Yo)-+ Deri;n(Lie(X, Yo, ... , Yn_I)), A-+ DA 

is an isomorphism of vector spaces. 
We define a new bracket {, }, called the Ihara bracket (see [8]), on 

the vector space Lie(X, Y0 , ... , Yn_ 1 )/(Y0 ) by the formula 

(2.2) {A,B} := [A,B] + DA(B)- DB(A). 

It follows from (2.1) that the bracket {,} satisfies the Jacobi identity. 
Hence the vector space Lie(X, Yo, ... , Yn-d/(Yo) equipped with {,}is 
a Lie algebra, which we shall denote by 

Lie( X, Yo, ... , Yn-d{} . 

Observe that the one-dimensional vector subspace (X) is a Lie ideal of 
the Lie algebra Lie(X, Yo, ... , Yn-d{ }· Hence 

Lie(X, Yo, ... , Yn-l){} =(X) E8 (Lie(X, Yo, ... , Yn-d{ })/(X) 

as Lie algebras. 
If n is a prime number greater than 3 then the Lie algebra 

(Lie(X, Y0 , ... , Yn-l){ })/(X) is not free (see [16, Proposition 8.1] and 
also [14, Proposition 20.5] for n = 5 and [4, Theorem 4.1] for n = 7). 

The main method to show that a family of elements of the Lie alge­
bra Lie(X, Y0 , ... , Yn-d{} generates a free Lie subalgebra of 
Lie(X, Y0 , ... , Yn-d{} is to show that the Lie bracket {,} on these ele­
ments modulo some vector subspace reduces to the standard Lie bracket 
[,] of the Lie algebra Lie(X, Yo, ... , Yn-l) (see [2] and [3]). Hence first 
we shall study some useful Lie ideals and Lie subalgebras of the Lie 
algebras Lie(X, Yo, ... , Yn-d and Lie(X, Yo, ... , Yn-l){ }· 

We denote by 
Ir 

the Lie ideal of Lie( X, Y0 , ... , Yn-l) generated by Lie brackets in gener­
ators X, Y0 , ... , Yn_ 1 , which contain at least r elements (possible with 
repetitions) of the set {Yo, ... , Yn-1}· 

It is clear that Ir+1 C Ir. The filtration {Ir }rEN of Lie( X, Yo, ... , 
Yn-d is called the depth filtration. Observe that 

n-1 = 
(2.3) Lie( X, Yo, ... ' Yn-dl I2 ~ (X) E8 EB Elj([Yi, x(k)]) 

i=O k=O 
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as vector spaces. Observe that in the quotient Lie algebra Lie(X, Y0 , ... , 

Yn~l)/h the classes of [Yi,X(k)] and [Yj,X(ll] commute and the Lie 
bracket of the class of [Yi, X(k)] and of the class of X is the class of 
[Yi, X(k+l)J, i.e. [[Yi, X(k)J, X] = [Yi, X(k+ll]. 

It is clear that Iris also a Lie ideal of Lie(X, Y0 , ... , Yn~l){ }· The 
quotient Lie algebra 

n~l oo 

Lie( X, Yo, ... ' Yn~d{ }/ h ~ (X) EB ( EB EB([Yi, x(k)])) I (Yo) 
i=O k=O 

is commutative. We do not know if the natural surjection 

Lie(X, Yo, ... , Yn~d{ }/r2 (Lie(X, Yo, ... , Yn~l){ }) 

----t Lie(X, Yo, ... , Yn~d{ }/h 

is an isomorphism. 
Let S be a subset of {0, 1, ... , n- 1 }. Let r 2:: 2. We denote by 

Ir(S) 

the Lie ideal of Lie(X, Y0 , ... , Yn~d generated by Lie brackets in gener­
ators X, Y0 , ... , Yn~l, which contain at least r elements (possible with 
repetitions) of the set {Yo, Y1, ... , Yn~d and at least one of these ele­
ments is Ys with 8 E S and at least one of these elements is Yt with 
t tj. S. 

It is clear that Ir+ 1 (S) C Ir(S) for any r 2:: 2. Hence we have a 
filtration {Ir(S)}r>2 of Lie(X, Yo, ... , Yn~d by Lie ideals. Notice that 
Ir(S) is not a Lie ideal of the Lie algebra Lie( X, Yo, ... , Yn~d{ }· 

Let A(S) be a Lie subalgebra of Lie(X, Yo, ... , Yn~d generated by 
elements X and Ys with 8 E S. We set 

Ir(A(S)) := Ir n A(S). 

We identify the set {0, 1, ... , n- 1} with Zjn. If S C {0, 1, ... , n- 1} 
then the subsets S + S := {a+ bE Zjn I a, bE S} and -S := {-a E 

Zjn I a E S} are well defined. 

Lemma 2.4. LetS be a subset of {0, 1, ... ,n-1} such that (S+S)nS = 
0. Let r,r1 2:: 2 and p,p1 2:: 1. Let w E Ir(S), w1 E Ir,(S) and 
a E Ip(A(S)), a 1 E Ip, (A(S)). Then 

[w,w1] E Ir+r 1 (S), Dw(wl) E Ir+r 1 (S), [a,w] E Ir+p(S), 

Da(w) E Ir+p(S),Dw(a) E Ir+p(S), Da(al) E Ip+p,(S). 
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Proof. It is clear that [w,w1] and Dw(w1) belong to Ir+r1 (S) as 
well as that [a,w] and Da(w) belong to Ir+p(S). 

Let s, s1 E S. Observe that Dy81 (Ys) = [Y8 , Ys+s 1 ]. The element 
s E Sands+ s1 tf. S by the assumption that (S + S) n S = 0. Hence it 
follows that Dw(a) E Ir+p(S) and Da(al) E Ip+p1 (S). Q.E.D. 

Corollary 2.5. The assumptions are the same as in Lemma 2.4. Then 

and 

{a,w} = [a,w] + Da(w)- Dw(a) E Ir+p(S), 

{w,wl} = [w,w1] +Dw(wl)- Dw1 (w) E Ir+r1 (S) 

{a,al} = [a,a1] mod Ip+p 1 (S). 

Let V(S) be a vector subspace of Lie( X, Yo, ... , Yn-d generated by 
Lie brackets in X, Y0 , ... , Yn- 1 which contain at least one Ys with s E S. 
V(S) is clearly a Lie ideal of Lie(X, Yo, ... ,Yn-d· 

Proposition 2.6. LetS be a subset of {O,l, ... ,n -1} such that 
( S + S) n S = 0. Then 

i) V(S) is a Lie subalgebra of the Lie algebra Lie(X, Y0 , ... , 

Yn-1){ }· 

ii) For any r 2: 2, Ir(S) C V(S). 
iii) Ir(S) is a Lie ideal of V(S) considered as a Lie subalgebra of 

the Lie algebra Lie(X, Yo, ... , Yn-1){} and {Ir(S), V(S)} C 

Ir+1(S). 

Proof. Let a= a(Y8 ••• ) and b = b(Y81 •.• ) belong to V(S). Then 
{a, b} =[a, b] + Da(b) ~Db( a) E V(S), hence V(S) is a Lie subalgebra 
of Lie(X, Yo, ... , Yn-d{ }· It is clear that Ir(S) C V(S). If a E V(S) 
and wE Ir(S) then [a,w] E Ir+1(S), Da(w) E Ir+l(S). The assumption 
(S+S)nS = 0 implies that Dw(a) E Ir+1(S). Hence {a, w} E Ir+1(S) C 

Ir(S). Q.E.D. 

Let £be a Lie algebra over a field K. Let Z = {zi E £ I i EN} be 
a linearly independent subset of£. We denote by 

£(Z) 

a Lie subalgebra of£ generated by the subset Z. 
Let Lie(Zi I i E N) be a free Lie algebra over K on symbols zi, 

i EN. We denote by 

Hallbasis(Zi I i EN) 
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the set of basic Lie elements of Lie(Zi I i E N) formed from the sequence 
Z1, Z2 , ... , Zn, ... following the rules described in [9] on pages 322-327. 
The set Hallbasis(Zi I i EN) is a basis of the vector space Lie(Zi I i E 
N) (see [9, Theorem 5.8.]). 

Let 

P : Lie(Zi I i E N) -t .C 

be a morphism of Lie algebras given by P(Zi) = Zi for i E N. Observe 
that the image of P is the Lie algebra .C(Z). We denote by 

1iB(Z)£ 

the image of the set Hallbasis(Zi I i EN) by the morphism P. 

Lemma 2. 7. The Lie subalgebra .C(Z) of .C is free, freely generated by 
the subset Z of .C if and only if the set 1iB(Z)£ is linearly independent 
over K. 

Proof. If the Lie algebra .C(Z) is free, freely generated by the subset 
Z of .C then it follows from [9, Theorem 5.8.] that the subset 1iB(Z)£ 
of .C is linearly independent. 

If the subset 1iB(Z)£ of .Cis linearly independent then the morphism 
of Lie algebras P : Lie(Zi I i E N) -t .C(Z) is an isomorphism. Hence 
the Lie algebra .C(Z) is free, freely generated by Z. Q.E.D. 

In the next proposition we indicate how to construct various free 
Lie subalgebras of the Lie algebra Lie( X, Yo, ... , Yn-d { } . 

Proposition 2.8. LetS C {0, 1, ... ,n~1} be such that (S+S)nS = 0. 
Let z~ E Lie( X, Yo, ... , Yn-d{} for s E Sand kEN be such that 

(2.8.1) 

Then the elements z~ for s E S and k E N generate freely a free Lie 
subalgebra of the Lie algebra Lie(X, Yo, ... , Yn-d{}. 

Proof. Let us set y~ := [Ys, X(k-ll]. Let Z := {z~ I s E S, k E 

N} and Y := {y~ I s E S, k E N}. Observe that the subset Y of 
Lie(X, Y0 , ... , Yn-d is linearly independent. It follows from the con­
gruences (2.8.1) that the subset Z is also linearly independent. 

The Lie subalgebra of Lie(X, Y0 , ... , Yn-d generated by Y is free, 
freely generated by Y by the Shirshov-Witt theorem (see [9, page 331]). 
Hence Lemma 2.7 implies that the subset 1iB(Y)Lie(X,Yo, ... ,Yn_ 1 ) of 
Lie(X, Y0 , ... , Yn-l) is linearly independent. 
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It follows from the congruences (2.8.1) that for any arrangements of 
brackets of length m 

(2.8.2) { .. {z~~,z~n .. ,z~;:} = { .. {y~~,y~~} .. ,y~,:} mod Im+1· 

Observe that 
{ykt yk2} = [yk1 yk2] mod I (S). 

81 ' 82 81 ' 82 2 

It follows by induction from Corollary 2.5 that for any arrangements of 
brackets of length m 

(2.8.3) 

The set HB(Y)Lie(X,Yo, ... ,Yn-tl is linearly independent. Hence it follows 
from the congruences (2.8.3) that the set HB(Y)Lie(X,Yo, ... ,Yn-tl{} is also 
linearly independent. Therefore it follows from the congruences (2.8.2) 
that the set HB(Z)Lie(X,Yo, ... ,Yn-tl{} is linearly independent. 

It follows from Lemma 2.7 that the elements of Z generate freely a 
free Lie subalgebra of Lie(X, Y0 , ... , Yn-d{ }· Q.E.D. 

We finish this section with a definition which will be very useful in 
the last two sections. 
Definition 2.9. We define 

Pol(X, Yo, ... , Yn-d 

to beaK-vector subspace of Lie(X, Y0 , ... , Yn- 1) generated by X and 
by Lie brackets [Y;, xCk- 1l] for 0 :::; i < n and k = 1, 2, .... We define 

Pr: Lie(X, Yo, ... , Yn-1) -+ Pol(X, Yo, ... , Yn-d 

to be a projection such that KerPr = h. 

§3. Galois action on the fundamental group of the projective 
line minus 0, oo and the nth roots of 1 

From now on let 

The generators 

x, Yo,···, Yn-1 
~ ~ 

of 1r1 (VI(ll; 01) we choose as in [13]. Let p be the standard path from 01 
~ ~ 

to 10 on VQ. The Galois group G!Q(J-Ln) acts on n 1 (Vi(jl;Ol). The action is 
described in the next proposition. 
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Proposition 3.1. (see [13, Proposition 15.1.7]). Let a E GI!J(Mn)· We 
have 

a(x) = xx(u), 

a(yo) = (fp(a)(x,yo, · · · ,Yn-d)-1 · Y~(u) · fp(a)(x,yo, ... ,Yn-1) 

and 

-(x(u)-l)k ( -1 -1 )-1 
a(yk) =X n . fp(a)(x, Yk, ... 'Yn-1, X YoX, ... 'X Yk-1X) 

x(u) ( )( -1 -1 ) (x(u)-l)k 
·yk ·fp a x,yk,···,Yn-1,X YoX, ... ,x Yk-1X ·X n 

for 1 < k < n. 
-+ 

As usual we embed n 1 (V1Qi; 01) into the Q1-algebra Q1{{X, Y0 , ... , 

Yn-d} by the continuous multiplicative map 

-+ 
E : 1r1 (VIQi; 01) -+ Qz{{X, Yo, ... , Yn-1}} 

such that E(x) = exp X and E(yi) = exp Yi fori= 0, 1, ... , n- 1. 
Let Sn be the finite set of finite places of Q(JLn) lying over prime 

divisors of n. Then the ring oi!J(Mn),Sn is equal 

1 
Z[JLn][ -]. 

n 
-+ 

The pair (V, 01) has good reduction outside the prime divisors of n. 
Hence it follows from [16, Theorem 3.1] that the action of GI!J(Mn) on 

-+ 
n1 (Vi()i; 01) induces a morphism of graded Lie algebras 

1 . 
<I> --+ : Lz(Z[JLn][-])-+ L2e(X, Yo, ... , Yn-d{ }· 

V,01 n 

271"v'=T 
Let us set ~n := e-n-. The next result follows immediately from [13, 
Lemma 15.3.1]. 

Proposition 3.2. 

i) Let k > 1 and let a E Lz(Z[JLn][~])k. Then 

n-1 

<1> --+(a)= 2.: zk(~~i)(a)[Yi, x<k-1)l mod 12. 
V,01 

i=O 

ii) Let a E Lz(Z[JLn][~])l. Then we have 

n-1 

<I> --+(a) = L Z(1- ~~i)(a)Y:;. 
V,01 

i=1 
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§4. Projective line minus 0, oo and the 2nth roots of 1 

Let 

--+ 
The pair (V, 01) has good reduction everywhere outside (2). Notice that 

--+ 
the ring OQ(M2 n ),(2) = Z[p,2n m ]. The action of GQ(M2 n) on 1r1 (VI()>; 01) 
induces the morphism of graded Lie algebras 

The number of complex places of the field Q(p,2n) is 2n-2. Hence 
the Lie algebra Lz (Z[p,2n ][ ~]) has 2n-2 free generators in each degree 
greater than one. In degree one, the Lie algebra Lz(Z[p,2n][~]) has 
dimQ(Z[p,2n][~]x 0 Q) = 2n-2 generators. Generators in degree one are 
constructed in the following way. The 2-units (1 ~ ~2n) for 0 < i < 2n-l 
and (i, 2) = 1 generate freely (Z[p,2n mJY 0 Q. Therefore the Kummer 
characters 

l(l ~ ~~n) 

for 0 < i < 2n-l and i odd form a base of the Q1-vector space 

Let 
(1) 

(Ji 

for 0 < i < 2n-l and i odd be the dual base of Lz(Z[tt2n ][~])1, i.e. 

l(l ~ ~~n)(a?)) = ot. 
Observe that we have the following equalities between 2-units: 

and 

(1 ~ ~~n) = ~~~n · (1 ~ ~2ni); 

(1 ~ ~l) . (1 ~ ~]) = 2 

i i+2k-l i 
(1 ~ ~2k). (1 ~ ~2k ) = (1 ~ ~2k-d 

for 0 < i < 2n-l, i odd and k = n, n ~ 1, ... , 3. Hence we get 
the following relations between the Kummer characters l ( 1 ~ ~~n) on 
Lz(Z[tt2nmJh= 

( 4.1) 
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(4.2) l(1- d)+ l(1- d) = l(2) 

and 

(4.3) i i+zk-1 i 
l(1- ~2k) + l(1- ~zk ) = l(1- ~zk-1) 

for 0 < i < 2n-l, i odd and k = n, n- 1, ... , 3. 

Lemma 4.4. We have 

n-2 

<!> -+ (oP)) = Y; + Y2n-i + l_)Yzai + Yzn_zai) + 2Yzn-1. 
V,Ol 

a=l 
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Proof. The lemma follows from Proposition 3.2, the equalities (4.1), 

( 4.2) and ( 4.3) and the very definition of the elements oP). Q.E.D. 

Generators of the Lie algebra Lz (Z[JLzn ][ ~]) in degree k greater than 
one we denote by 

(k) 
(Ji 

for 0 < i < 2n-l and i odd and we choose them to be dual to l-adic 
poly logarithms 

lk (~~n) 

for 0 < j < 2n-l and j odd in the sense that 

We recall that l-adic polylogarithms satisfy the inversion relations (see 
[12, Corollary 11.2.6]) 

( 4.5) 

and the distribution relations (see [12, Corollary 11.2.3]) 

zn-1 

(4.6) (2n)k-l · L lk(Gn) = lk(1) 
i=O 

and 

(4.7) 

for j = n, n - 1, ... , 2 and i odd. 
We recall from Section 2, Definition 2.9 that 

Pr: Lie(X, Yo, ... , Yzn_l)--+ Pol(X, Yo, ... , Yzn_l) 
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is the natural projection. 

Lemma 4.8. Let k be greater than 1. Then we have 

and 

Proof. The first congruence is clear from the definition of the pro­
jection Pr. Proposition 3.2 implies that 

i=O 

Observe that 

lk(~:;J)(cJY)) = (-l)k-1, lk(~~n)(aY)) = 1 and lk(~~n)(aY)) = 0 

fori odd and i tf. {j,-j}. It follows from the relations (4.5), (4.6) 
and (4.7) that lk(~:;J) for j even is equal 2 times a linear combination 
with Zc2l-coefficients of lk(~~n) for 0 < i < 2n-1 and i odd. Hence 

lk(~~n)(aY)) fori even is a multiple of 2 in Zc2l. Therefore 

2n-1 

Pr(<I>vm (ajkl)) = L lk(G~)(aY))[Yi, xCk-1)] 
' i=O 

and 

2n-1 

L lk(~2ni)(aY))[Yi, xCk-1)] = [Yj, xCk-1)] + [Y2n-j, xCk- 1)] mod 2. 
i=O 

Q.E.D. 

We define elements a}1l for any i odd setting 

Definition 4.9. Let 
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be a Lie subalgebra of Lz(:Z.[J.L2n m]) generated by differences 

(1) (1) (1) (1) (1) (1) 
cri - cr -i+2n~l' cri+2n~2 - cr -i+2n~l' cr -i+2n~2 - cr -i+2n~l 

for 0 < i < 2n-3 and i odd and by the elements 

(k) 
cri 

fork> 1 and 0 < i < 2n- 1 and i odd. 

617 

(Th f l (1) (1) (1) (1) 
e our e ements cri , cr -i+2n~ 2 , cri+2n~ 2 and cr -i+2n~l are such that 

in their images by <P --+ there appear exactly the same yt 's with t = 0 
V,Ol 

modulo 4.) 

Theorem 4.10. The morphism of graded Lie algebras 

restricted to the Lie subalgebra £ 2n is injective. 

by 
Proof. We define elements ofthe Lie algebra Lie( X, Y0 , ... , Y2n_I){} 

zi1l := Y,; + Y2n-i + Y2i + Y2n-2i 

- (Y2n~l_i + Y2n-2n~l+i + Y2n-2i + Y2i), 

z~1]+2n~ 2 := Y2n~2-i + Y2n_2n~2+i + Y2n~l_ 2 i + Y2n_2n~1+2i 
- (Y2n~l_i + Y2n-2n~l+i + Y2n-2i + Y2i), 

z;.;2n~ 2 := Yi+2n~2 + Y2n_2n~2-i + Y2i+2n~l + Y2n_2n~1_ 2i 
- (Y2n~l_i + Y2n-2n~l+i + Y2n-2i + Y2i), 

for 0 < i < 2n-3 and i odd and 

fork> 1 and 0 < i < 2n- 1 and i odd. Let us denote by 

z 
the set of all these elements. 

Observe that if i is odd then one of the two numbers i and 2n - i is 
congruent to 1 modulo 4 and the other is congruent to 3 modulo 4. 

Let us write 

(4.10.1) z(k) = y(k) + d(k) 
J J J ' 
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where in y?) there appear only Ya 's with a = 1 modulo 4 and in dJl) 
there appear only Y13 's with (3 = 3 modulo 4 and Y13 's with (3 = 2 modulo 
4. Let 

y 

be the set of all elements y;k) Let us denote by 

!(0,2,3) 

a Lie ideal of Lie(X, Y0 , ... , Y2n_I) generated by yt's with t = c modulo 
4, where c E {0, 2, 3}. 

We shall show by induction the following two statements: 
A(r): for any Lie bracket of length r and any r elements of Z, z1 

Yl + d1, ... , Zr = Yr + dr we have 

(4.10.2) 

B(r): a Lie bracket only with Ya's such that a= 0 modulo 4 does not 
appear in the decomposition of { .. { z1, z2} .. , Zr}. 

The statements A(l) and B(l) are true. For any two elements z = y+d 
and z1 = y1 + d1 of the set Z one checks that 

{z, zl} = [y, Yl] mod I(O, 2, 3). 

Observe also that a Lie bracket only with Ya's such that a = 0 mod 
4 does not appear in the decomposition of { z, z1 } in a Hall base of 
Lie(X, Y0 , ... , Y2n_I). Hence the statements A(2) and B(2) are also 
true. 

Let us assume that the statements A(k) and B(k) are proved for 
all k::;: m. Let 1 ::;: r::;: m and 1 ::;: s ::;: m. Let zi = Yi + di, i = 1, ... , r 
and zj = yj + dj, j = 1, ... , s be elements of Z decomposed accordingly 
to (4.10.1). Let 

Z = { .. {z1, z2} .. , Zr}, Y = [ .. [yl, Y2] .. , Yr], 

Z' = { .. {z~,z~} .. ,z~}, Y' = [ .. [y~,y~] .. ,y~]. 
By the inductive hypothesis we have 

Z = Y + d and Z' = Y' + d' , 

where d,d' E !(0,2,3). Calculating the Lie bracket {Z,Z'} we get 

(4.10.3) {Z, Z'} = [Y, Y'] + [Y, d'] + [d, Y'] + [d, d']+ 



Lie algebras of Galois representations 619 

The assumption B(r) (resp. B(s)) implies that Dd(Y') E J(O, 2, 3) 
(resp. Dd'(Y) E J(O, 2, 3) ). It is clear that all other terms on the 
left hand side of the equality (4.10.3) except [Y, Y'] belong to I(O, 2, 3). 
Hence it follows that 

{Z, Z'} = [Y, Y'] mod I(O, 2, 3). 

Therefore we have proved the statement A(m+l). From the form of 
all terms on the right hand side of (4.10.3) it is clear that B(m+l) is 
also true. 

Let K be a field. At this stage of the proof we shall consider Lie 
algebras Lie(X, Yo, ... , Y2n_l), Lie(X, Yo, ... , Y2n-d{} to be Lie alge­
bras over K. We fix a Hall base of the Lie algebra Lie(X, Yo, ... , Y2n_l). 
The coefficients of elements of Z and Y are integers with respect to the 
Hall base. Observe that the subset Y of Lie( X, Y0 , ... , Y2n_ 1 ) is linearly 
independent over any field K including the field JF2 = Z/2. Therefore 
the Lie subalgebra Lie(X, Yo, ... , Y2n_l)(Y) of Lie(X, Yo, ... , Y2n-d is 
free freely generated by the set Y. It follows from Lemma 2. 7 that the 
set HB(Y)Lie(X,Ya, ... ,Y2 n_ 1 ) is linearly independent over K. Hence it fol­
lows from the congruence (4.10.2) that the set HB(Z)Lie(X,Ya, ... ,Y2 n_l){} 

is also linearly independent over any field K including the field JF2 . 

Let us set 

( (k) := <I> -+ (o-(k)) and w(k) := Pr(((k)) 
" V,01 " " ' 

fork> 1 and 0 < i < 2n-1 and i odd. Fork= 1 and 0 < i < 2n-3 and 
i odd we set 

W (1) ·= ((1) 
~ • 2 ' 

(1) ·- (1) (1) ) 
(_i+2n-2 .- <I>v,m(o-_i+2n-2- o--i+2n-1 ' 

Observe that 

(4.10.4) 

for i odd and 0 < i < 2n-2 + 2n-3 . It follows from Lemma 4.8 that for 
k > 1 we have 

(4.10.5) 

and 

( 4.10.6) 
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Let 

E 

be the set of all elements dk) and let 

w 

be the set of all elements wik). 

Let (1, ... ,(r E E, w1, ... ,Wr E Wand Z1, ... ,zr E Z be such 

Then it follows from (4.10.4) and (4.10.5) that for any Lie bracket of 
length r in the Lie algebra Lie( X, Y0 , ... , Y2n_I){} over Qz we have 

(4.10.7) 

The elements of W and Z have coefficients in Zc2l in a Hall base. It 
follows from ( 4.10.4) and ( 4.10.6) that 

We have seen already that the set 1iB(Z)Lie(X,Ya, ... ,Y2 n_,){} is linearly 
independent in the Lie algebra Lie( X, Y0 , ... , Y2n-1){} over lF2. There­
fore the set HB(W)Lie(X,Ya, ... ,Y2 n_,){} is linearly independent in the 
Lie algebra Lie( X, Y0 , ... , Y2n_1){} over lF2, hence also over Q and Qz. 
Hence it follows from the congruence ( 4.10. 7) that the set 

is linearly independent over Q 1. Therefore the Lie subalgebra of Lie(X, 
Yo, ... , Y2n -l) { } generated by the set E is free, freely generated by the 
set E. Hence it follows that the morphism 

restricted to the Lie subalgebra .C2nis injective. Q.E.D. 

§5. Projective line minus 0, oo and the 3nth roots of 1 

Let 
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-+ 
The action of GIJ(!-'3 n) on 1r1 (VIQJ; 01) induces the morphism of graded Lie 
algebras 

The 3-units (1- ~~n) for 0 < i < 32n and (i, 3) = 1 generate freely 
(Z[J.L3n mn X Q9 Q. Therefore the Kummer characters Z(1 - ~~n) for 0 < 
i < 3n-l and (i,3) = 1 form a base ofHomrJJ1 (Lz(Z[J.L3nmJh;Qz). Let 

(1) 
ai 

for 0 < i < 3; and (i,3) = 1 be the dual base of Lz(Z[J.L3nmD1· 
For farther applications we introduce the following convention 

a (l) · ·= a(l) and a(l) ·= a(l) 3n -t • 2 t±3n · t • 

There are the following relations between 3-units. For any 0 < i < 
3n . 
2 , (z, 3) = 1 and k = n, n- 1, ... , 2 we have 

and 

Hence we get the following relations between the Kummer characters 
l(1-~~k) on Lz(Z[J.L3nm])l 

(5.1) l(1- ~1k) + l(1- ~;t3k-l) + l(1- ~;t2 · 3k-l) = l(1- ~~k-t) 

and 

(5.2) 

Lemma 5.3. We have 

for 0 < i < 3; and (i, 3) = 1. 

Proof. The lemma follows from Proposition 3.2, the relations (5.1) 

and (5.2) and the very definition of the elements a?). Q.E.D. 
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The field Q(JJ3n) has 3n-1 complex places. Hence in degree k greater 
than one, the graded Lie algebra Lz (Z[JJ3 n ][~]) has 3n-1 free generators. 
We denote by 

(k) 
(J"i 

for 0 < i < 32n and (i, 3) = 1, generators in degree k > 1. We chose 

them to be dual to Z-adic polylogarithms lk(~~n) for 0 < j < 3; and 
(j, 3) = 1, in the sense that 

The Z-adic polylogarithms lk(~~n) satisfy the inversion relation 

(5.4) 

and the distribution relations 

3n-1 

(5.5) 3n(k-1)( L Zk(~1n)) = Zk(1) 
i=O 

and 

(5.6) 

for 0 < i < 32n, (i, 3) = 1 and j = n, n- 1, ... , 2. It follows from the 
relations (5.4), (5,5) and (5.6) that 

3n-1 

(5.7) 3n(k- 1)( L dilk(~1n)) = (1- 3n(k-1))Zk(1) 
i=1 (3,i)=1 

for certain di E Z. 

Lemma 5.8. We have 

fork> 1, 

for k > 1 and odd, 

Pr(<P --+(O"(k))) = -[1: X(k- 1)] + [Yn_· x(k-1)] mod 3 
V,01 t t' 3 "' 

for k > 1 and even. 
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Proof. Lemma follows from Proposition 3.2, the inversion relation 
(5.4), the distribution relations (5.5), (5.6), (5.7) and the definition of 

the generators aY) as duals to l-adic polylogarithms. Q.E.D. 

Unfortunately once more we are not able to show that the morphism 

1 . 
<f>v,m: Lz(::Z[JL3n]["3])-+ Lze(X, Y0 , ... , Y3n_l){} 

is injective. We shall define a certain Lie subalgebra of Lz(::Z[JL3n m]) 
and we shall show that the map <f> --+ restricted to this subalgebra is 

V,01 
injective. 

Definition 5.9. Let 
L3n 

be a Lie subalgebra of Lz(::Z[JL3n m]) generated by differences 

(1) (1) (1) (1) 
(}"i - (}"i+2·3n-l l (}"i+3n-l - (}"i+2·3n-1 

for 0 < i < i.~ and (i, 3) = 1 and by elements u)k) fork> 1, 0 < j < 3; 

and (j, 3) = 1. 

Notice that £ 3n is a free Lie algebra, freely generated by the elements 
indicated in the definition. 

Theorem 5.10. The morphism of graded Lie algebras 

1 . 
<f> --+ : Lz(::Z[JL3n][-])-+ Lze(X, Yo, ... , Y3n-do 

V,01 3 

restricted to the Lie subalgebra £ 3 n is injective. 

Proof. Let us set 

z~~3n-1 := Yi+3n-l + Y3n_(i+3 <n-'l)- Yi+2·3n-1- Y3n_(i+2.3n-1) 

for 0 < i < i.~, (i,3) = 1 and 

fork> 1 and 0 < i < 3
2n and (i, 3) = 1. Let us denote by 

z 

the set of all these elements. 
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Let k > 1. We shall write 

z(k) = y(k) + d(k) 
1- 2 2 ' 

where Yik) = (-1)k-1 [Yi,X(k- 1l] and dik) = [Y3n-i,X(k- 1l] ifi = 1 (3) 
and vice versa if i = 2 (3). Similarly we decompose 

z(l) = y(1) + d(1) 
't 2 ?, ' 

where in yi1) there appear only Ya's with a = 1 (3) and in dil) there 
appear only Y13's with f3 = 2 (3). Let 

y 

be the set of all elements Yik). 

We denote by 
1(0,2) 

a Lie ideal of Lie(X, Y0 , ... , Y3n_I) generated by yt's with t = 2 (3) and 
by yt 's with t = 0 (3). 

The rest of the proof is same as in the proof of Theorem 4.10 in 
Section 4. Q.E.D. 

§6. An example when the Lie algebra representation associ­
ated with Galois action has a big kernel 

_, 
Let p be a prime number. The pair (IP'~ \ {0, 1, oo }, Op) has good 

reduction everywhere outside p. Hence the action of G{J;_ on 1r1 (IP'~ \ 
_, 

{0, 1, oo }; Op) induces 

1 . 
<l\ 1 \{ }-+ :Lz(::Z[-])-+Lze(X,Y){}· 

IP'Q 0,1,oo ,Op p 

We shall show that the Lie algebra representation <l\ 1 -+ has a 
IP'ij \ {0,1,oo },Op 

very big kernel. First we describe the action of GI!J. on 1r1 (IP'~ \ {0, 1, oo }; 
_, _, _, 
Op). Let r be the standard path from 01 to 10 and let a be the standard _, _, _, _, 
path from Op to 01. Then 0 = r. a is a path from Op to 10. Let X and _, 
y be the standard generators of 1r1 (IP'~ \ {0, 1, oo }; 01). Then 

X1 := a-1 · x ·a and Y1 := a- 1 · y ·a 
_, 

are generators of 1r1 (IP'~ \ { 0, 1, oo}; Op). 
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Lemma 6.1. Let CJ E GIQ. Then we have 

CJ(xl) = x~(a-) , 

625 

CJ(yl) = x~ 1 ( 1 /P)(a-). a-1 . f'Y(CJ)- 1 . a. y~(a-). a-1 . f,(CJ). a. xi(1/P)(a-). 

Proof. Observe that CJ(yl) = fo(CJ)- 1 · y~(a-) · f0 (CJ) by [11, Proposi­
tion 2.1.]. It follows from [11, Lemma 1.0.6.] that fo(CJ) = a-1 · f,(CJ) · 
a · fa ( CJ). Hence it rests to calculate fa ( CJ). 

Lett (resp. z) be a local parameter at 0 corresponding to the tan-
~ ~ /n 

gential point Op (resp. 01). Then fa(C!) = a-1 · CJ ·a· CJ-1 acts on t1 1 

as follows 

t1W ~t1W ~ (1/p1W)z1W ~~f~1/p)(a-)(1/p1W)z1/ln 

~ ~f21P)(a-)t1W . 

Therefore we get that fa(C!) = xi(1/P)(a-). · Q.E.D. 

Observe that dimCQ(Z[~] x 181 Q) = 1. It follows from [10, Theorem 

1] that H 1 (GCQ;Qt(k)) = 0 fork> 0 and even and H 1 (GCQ;Qt(k)) = Ql 
fork> 1 and odd. Hence the Lie algebra Lt(Z[~]) has one generator in 
each odd degree. We denote them by 

for k = 1, 3, 5, .... 
The Kummer character associated top induces an isomorphism 

1 
l(p): Lt(Z[-])1--+ Qz. 

p 

The generator CJ1 of L 1 (Z[ l]) in degree one we choose such that 
p 

l(1/p)(CJ1) = 1. The generator CJk for k > 1 we choose to be dual to 
~ ~ 

the l-adic polylogarithm lk(10) in the sense that lk(10)(C!k) = 1. 

Definition 6.2. We denote by 

I(CJ1) 

the Lie ideal of L 1 (Z[ l]) generated by all brackets 
p 

in generators CJ 1, CJ3 , CJ 5 , ... of length r, for all r greater than one and 
such that at least one of the elements CJi', CJi 2 ... , CJ 2r is CJ1 
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Proposition 6.3. Let 

1 . 
<I> 1 -+ : Lz(Z[-])---+ Lze(X, Y)o. 

IP'Q \ {O,l,oo },Op p 

be the morphism of Lie algebras induced by the action of GQ on 1r1 (lP'~ \ 
---+ 

{0, 1, oo }; Op). Then we have 

<I> 1 -+(al) =X 
IP'Q \{O,l,oo},Op 

and 
<I> -+ (ak) = [Y X(k-ll] mod I2 

IP'/)\{O,l,oo},Op - ' 

for k > 1 and odd. 

Proof. It follows immediately from Lemma 6.1 that <I> 1 \{ }·-+ ( a 1) 
IP'Q O,l,oo ,Op 

=X. The element f,(a) was studied in [1] and in [7]. Hence it follows 
the description of <I> 1 . -+ ( ak) for k > 1. Q.E.D. 

IP'Q \ {O,l,oo },Op 

Corollary 6.4. We have 

J(a1)cKeril> 1 \{ }-+. 
IP'Q O,l,oo ,Op 

Proof. We have already observed in Section 2 that in the Lie al­
gebra Lie(X, Y){} the element X commutes with any other element. 

Q.E.D. 
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