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Abstract. 

In this note, we study the problem of localizing the signature of 
a fibered surface, i.e., a compact complex surface equipped with the 
structure of a fiber space over a compact Riemann surface. As appli­
cations, we. give an estimate for the number of critical points and a 
formula for the Horikawa index for a certain class of fibered surfaces. 
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§1. Introduction 

Let f : S --+ B be a proper surjective holomorphic map from a 
compact complex surface S to a compact Riemann surface B, whose 
general fiber is a compact Riemann surface of genus g. We call f afibered 
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surface of genus g. Forb E B, the fiber germ induced by f is denoted by 
(!, Fb := f- 1 (b)). Let Sign(S) E Z be the signature of the intersection 
form on H 2 (S, Q). If there exists a map O" : B 3 b -+ O"(j, Fb) E Q 
supported at certain finite subset of B such that 

Sign(S) = L O"(j, Fb), 
bEB 

then we say that Sign(S) is localized and we call O" a local signature. (See 
Section 3 for more precise definition.) As far as we know, this concept 
has its origin in Matsumoto [32], [33], Ueno [44], Atiyah [7], Xiao [47] ... 
(See [16], [34], [1], [4], [22], [30] etc. for recent related results). 

The aim of this paper is to give a construction of a local signature, 
together with its applications. We mainly study the local signature for 
stable fibered surfaces, i.e., fibered surfaces whose every fiber is a stable 
curve. (For the local signature for unstable fibered surfaces, see [3].) 

Let M 9 be the Deligne-Mumford compactification of the moduli 
space of compact Riemann surfaces of genus g. For a stable fibered 
surface f : S -+ B of genus g, let f.LJ : B -+ M 9 be the map sending 
b E B to the isomorphism class of Fb. A Q-divisor Vsign on M 9 with 
the following property is called a signature divisor: 

By the Grothendieck-Riemann-Roch theorem and the Hirzebruch signa­
ture theorem, a signature divisor Vsign should be Q-linearly equivalent 
to 4>.. - 8, where >.. is the class of Hodge bundle and 8 is the class of 
boundary divisor on M 9 . We seek after an "explicit" divisor in the 
class 4>.. - 8 whose pull back via f.LJ is expressible in terms of certain 
geometric properties of the fiber germs of f. 

First we assume that f is Harris-Mumford general (HM-general for 
short). Namely, the general fiber F off is a compact Riemann surface 
of odd genus g = 2k- 1 2: 3 with maximal gonality, i.e., (k + 1)-gonal. 
This condition means that JLt(B) is not contained in the support of the 
Harris-Mumford divisor VHM, i.e., the closure of the locus of smooth 
curves with gonality ::::; k. By the Harris-Mumford formula [19], 4>..- 8 
is linearly equivalent to an explicit linear combination of VHM and the 
irreducible components of 8. As a result, Sign(S) is localized at the 
germs of singular fibers and smooth fibers with gonality ::::; k, so that 
the resulting local signature O"HM (Harris-Mumford local signature) for 
a stable fibered surface f is written as a linear combination of the local 
intersection numbers f.L f · 8 and f.L f · VHM. 
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When f is unstable and HM-general, a correction term called the lo­
cal signature defect comes into the formula for the local signature (Theo­
rem 4.2), whose explicit formula using the monodromy data is obtained 
by the first author [3]. Together with Theorem 4.2 below and the main 
result of [3], we have an explicit formula for the local signature of HM­
general fiber germs without the assumption of stability. 

As applications of the construction of a local signature, we study 
two other related topics for HM-general fibered surfaces. 

The one is the problem of estimating the number of critical points 
of a fibered surface f : S --+ B. This problem was posed by Szpiro, and 
remarkable results have been obtained by Beauville [10], Tan [41] etc. 
(For recent topological and gauge-theoretic approaches, see e.g. [39].) In 
this paper, we estimate the number of the critical points of a HM-general 
fibered surface f : S --+ B using Sign(S) and the genus of F (Theorem 
5.1). By a result of Green-Lazarsfeld [18], our estimate is sharp; there 
are some examples attaining the equality in the estimate. 

The other is a formula for the Horikawa index IndHM, i.e., the in­
variant measuring the contribution of the fiber germ in the geographical 
lower bound of slope. Note that the notion of Horikawa index originated 
from the work of Horikawa [21] for genus 2 fibrations, and recently several 
works have been done in more general situations (see [6]). We study the 
Horikawa index appearing in Konno's slope bound [28]. For semi-stable 
fibered surfaces, we give an expression of the Horikawa index IndH M us­
ing again the local intersection numbers /.Lf • 8 and /.Lf • VHM (cf. (6.4)). 
We propose a conjectural formula for Konno's Horikawa index [28] for a 
certain class of fibered surfaces (Conjecture 6.6). 

Replacing the Harris-Mumford divisor by the Eisenbud-Harris divi­
sor, we t>tudy similar problems for fibered surfaces of genus 4. Using the 
Eisenbud-Harris formula [15], we construct a local signature CJEH for 
those fibered surfaces of genus 4 whose general fiber has mutually dis­
tinct trigonal structures (Theorem 7.2). In those cases, CJEH is supported 
at the germs of singular fibers, smooth fibers with exactly one trigonal 
structure and smooth hyperelliptic fibers. Moreover, in the semi-stable 
case, we construct a Horikawa index IndEH, which measures the local 
contributions of fiber germs in Chen-Konno's slope bound [11], [27]. It 
is very likely that, when g + 1 is composite, most of the results in this 
note hold by replacing the Harris-Mumford divisor by the Brill-Noether 
divisor [20, Theorem6.62]. 

This paper is organized as follows. In Section 2, we recall the results 
of Harris-Mumford and Eisen bud-Harris. In Section 3, we introduce the 
notion of local signature, In Section 4, we give an explicit formula for the 
Harris-Mumford local signature. In Section 5, we estimate the number 
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of critical points for HM-general stable fibered surfaces. In Section 6, we 
recall Konno's slope inequality and give its simple proof for HM-general 
stable fibered surfaces. In Section 7, we introduce Eisenbud-Harris local 
signature. In Section 8, we study some examples. 
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ported by the Grants-in-Aid for Scientific Research (B) 19340016 and 
(S) 17104001, JSPS. 

§2. Signature divisor on the moduli space of stable curves 

A connected, reduced projective curve Cis a stable curve of genus 
g if the following conditions are satisfied: 

(1) The singular set of C consists of (possibly empty) nodes; 
(2) if an irreducible component r of C is a smooth rational curve, 

then r meets other components at three points or more; 
(3) h1(C,Oc) =g. 

By Deligne-Mumford [14], there exists a coarse moduli space of sta­
ble curves of genus g. Let M 9 be the coarse moduli space of stable 
curves of genus g. Let M 9 be the Zariski open subset of M 9 con­
sisting of the isomorphism classes of smooth stable curves of genus g. 
Then M 9 is the coarse moduli space of compact Riemann surfaces of 
genus g. For a stable curve C of genus g, the isomorphism class of 
C is denoted by [C] E M 9 . For [C] E M 9 , let (Def(C), [C]) de­
note the Kuranishi space of C and let r[c] := Aut(C) denote the 
group of automorphisms of C. One has the isomorphisms of germs 
of complex spaces (Def(C), [C]) ~ (Ext1(0h,Oc),O) and (M 9 , [C]) ~ 
(Def(C)/ Aut( C), [C]) ~ (Ext1 (0b, Oc)/r[c]> 0) (cf. [14, §1]). Hence 
M 9 is a complex orbifold. 

There exist irreducible Weil divisors ~o, ... , ~[g/21 c M 9 such that 

M 9 \ M 9 = U~!;'g1 ~i· There exists a Zariski open subset ~i c ~i 
with the following property: If [C] E ~g, then Cis an irreducible stable 
curve of genus g with a unique node. If i > 0 and [C] E ~i, then Cis a 
reducible stable curve of genus g with a unique node whose irreducible 
components consist of a smooth curves of genus i and a smooth curves 
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of genus g- i. Following [19, p.51], [20, Corollary3.95], we define the 
Q-divisors 8o, ... , 8[9 ; 2] and 8 C M 9 as 

(2.1) 8i:={ ~i (i:rf1) 
~1/2 (i = 1) 

[g/2] 

8 == 2:: 8i. 
i=O 

We often identify 8i and 8 with the corresponding Q-line bundles over 
Mg. 

Let X be a connected complex space, let B be a complex space, 
and let f: X ----> B be a proper surjective flat holomorphic map. Then 
f: X ----> B is called a stable curve of genus g over B if every fiber of f 
is a stable curve of genus g. For a stable curve f: X ----> B of genus g 
over B, the induced map f-lJ: B----> M 9 is defined by 

bE B. 

In the rest of this section, we consider a stable curve f : S ----> B 
of genus g such that the base space B is a Riemann surface and S is 
a normal complex space. The surface S has at most rational double 
points of type A and the dualizing sheaf ws of S is locally free. Let 
WsjB := ws@ f*w}/ denote the relative dualizing sheaf of the family f 
and set 

>..(Sf B):= (det f*Os)@ (det R 1 f*Ost = det f*ws;B, 

which is a holomorphic line bundle over B. Let CH1 (B) denote the 
divisor class group of B. There exists a unique divisor class >..9 E 

Pic( M 9 ) @ Q such that for every stable curve f: S ----> B of genus g 
over a compact Riemann surface B, 
(2.2) 

1 . 
f-lj>..9 = - [d1v(s)] E CH1 (B) ®Q, V s E H 0 (B, >..(Sf B) 0 v), v » 0. 

v 

The divisor class ).9 is called the Hodge class. The critical locus of 
f: S ----> B is the subset of S defined as 

I'.t :={xES\ SingS; df(x) = 0} USing S. 

The discriminant divisor of f : S ----> B is defined as 

T>t := L f-ls(P) f(p) E Div(B), 
pE'Bt 

where !-ls(p) is the Milnor number of the point (p, Os,p)· If pis an An­
singularity of S, then f-ls(p) = n + 1. The line bundle defined by T>t is 
denoted by [TJ f ]. 
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Lemma 2.1. The following identities of cohomology classes of B 
hold: 

Proof. The first assertion follows from (2.2) and the second one 
follows from [20, Proposition3.92 and 3.93, Lemma 3.94, Corollary3.95]. 

Q.E.D. 

In this note, a Q-divisor D of M 9 is called a signature divisor if the 
following identity holds in Pic(M9 ) ® Q: 

(2.3) D = 4.A9 -15. 

Let 1r: S' ___, S be the minimal resolution of the singularities of S. 
Then f' := f o 1r: S' ___, B is a semi-stable curve over B, i.e., every fiber 
of f' is reduced, has at most normal crossing singularities and contains 
no ( -1 )-curves. The fibration f' is called the semi-stable model off. We 
denote by Sign(S') the signature of the intersection form on H 2 (S', Q). 
The following is the functorial property of the signature divisor. 

Proposition 2.2. Let V C M 9 be a signature divisor. Let f: S ___, 
B be a stable curve of genus g over a compact Riemann surface. Then 

where S' is the total space of the semi-stable model off. 

Proof. By the Grothendieck-Riemann-Roch formula, Mumford for­
mula and the Hirzebruch signature formula, the following identity holds 
(cf. Smith [40]): 

Sign(S') = 4 deg .A(S' I B) - deg:D f'. 

Since S has at most rational double points, we have .A(S' I B) ~ .A(SI B). 
Since deg :D f' = deg :D f by the definition of :D f, the assertion follows 
from Lemma 2.1 Q.E.D. 

In this note, we mainly use two types of explicit signature divisors 
which come form the results of Harris-Mumford [19] and Eisenbud­
Harris [15], respectively. 

First, for a compact Riemann surface C, let C(C) denote the field 
of meromorphic functions on C. The gonality of Cis the integer defined 
by 

gon(C) := min{degf; f E C(C), f is not constant}. 
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Then gon(C):::; [(g(C) + 3)/2]. When g = 2k- 1, define the locus VHM 

of Mg by 

VHM := {[C] E Mg; gon(C):::; k = (g + 1)/2} c Mg. 

When g = 2k - 1, we define the Harris-Mumford divisor of Mg as 
the closure VHM of VHM in Mg, which is a Weil divisor. By [19, p.62 
Thorem5], one has VHM n Mg = VHM· See [19, §4] for more details 
about the Harris-Mumford divisor. 

Theorem 2.3 (Harris-Mumford). When g = 2k- 1, the following 
identity holds in Pic(Mg) 181 Q: 

- - (2k- 4)! { k-l . . } 
(2.4) VHM = k!(k- 2)! 6(k + 1)Ag - k Oo - tt 3z(2k- 1 - z) oi . 

In particular, the following Q-divisor is a signature divisor of Mg when 
g = 2k -1: 

2. k!(k- 2)! - k + 3 
VsignHM := 3(k + 1)(2k- 4)! VHM- 3(k + 1) Oo 

~ 2i(2k- 1- i)- (k + 1) 0· 
+ ~ k 1 ,. 

i=l + 
Proof. See [19, §6]. Q.E.D. 

For the related notion, we also recall the following which will be 
used afterward. 

Definition 2.4. Let C be a compact Riemann surface of genus 
g ;:::: 2. If g ;:::: 4, define the Clifford index Cliff( C) of C as 

Cliff(C) := min{degL- 2dimiLI; L E Pic(C), h0 (L) > 1, h1(L) > 1}. 

If g = 2, set Cliff( C) = 0. If g = 3, set Cliff( C) = 0 or 1 according to 
whether C is hyperelliptic or not. 

For the properties of Clifford index, see e.g. [13]. Assume that g is 
odd and g;:::: 3. Then the inequality 0:::; Cliff(C) :::; g;l is well-known. 
We put 

. g -1 
Vcuff := {[C] E Mg; Chff(C) < - 2-} c Mg. 

Since the inequality gon(C) ;:::: Cliff(C) + 2 holds for every compact 
Riemann surface C ( cf. [13, p.199]), there is an inclusion 
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Next, put g = 2{k- 1) with k 2: 3. Let E~ be the locus of the Rie­
mann surfaces [C] of genus g possessing a linear pencil V in a complete 
linear system ILl of degree k with "violating the Petri condition", i.e., 
the product map 

is not injective. Let E! be its closure in M 9 , which is a Weil divisor. 

Theorem 2.5 (Eisenbud-Harris). When g = 2(k-1), the following 
identity holds in Pic(M9 ) ® Q: 

-1 (2k - 4)! . 2 
{ 

k-1 } 

Ek = 2 k!(k _ 2)! (6k + k- 6)A- t; ai8i , 

where ao = k(k- 1), a1 = (2k- 3)(3k- 2), a2 = 3(k- 2)(4k- 3). 
In particular, the following Q-divisor is a signature divisor of M 9 when 
g=2(k-1): 

k! k - 2 ! -1 4ai ( ) k-1 ( ) 

VsignEH := 2 (2k- 4)!(6k2 + k- 6) Ek + t; 6k2 + k- 6 - 1 8i. 

Proof. See [15, Theorem 2]. Q.E.D. 

Note that Eisenbud-Harris also determined the coefficients ai (3 ::; 
i ::; k- 1) explicitly [15, §5]. 

§3. Local signature 

By a fibered surface f: S --t B, we mean that f is a proper surjec­
tive holomorphic map from a compact connected nonsingular complex 
surface S to a compact Riemann surface B such that f is relatively min­
imal, i.e., any fiber off contains no ( -1)-curve. The genus of a fibered 
surface is defined as the genus ofits general fiber. Although f is an un­
stable curve in general, since B is complex one-dimensional, the induced 
map from the complement of the critical locus B \ ~ f to M 9 extends to 
a holomorphic map from B to M 9 by [23] or by the valuative criterion. 
This extended map is again written as J.LJ: B --t M 9 and is called the 
induced map. 

We consider the infinitesimal neighborhood of a fiber of a fibered 
surface. Let !Ioc: (S, So) --t (Ll, 0) be a relatively minimal one-parameter 
deformation germ of a curve So of arithmetic genus g, whose total space 
Sis assumed to be smooth. For simplicity, we write (f, So) ( = (!Joe, So)) 
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for !toe: (S, So) --+ (Ll, 0) and call it a fiber germ. We often identify a 
fiber germ with its representative. 

Definition 3.1. Let A be a subset of Mg. 
(1) A fiber germ f: (S, So) --+ (Ll, 0) of genus g is said to be A­

general if the induced map satisfies J.L f ( Ll \ { 0}) C A. A fibered 
surface f: S --+ B of genus g is A-general if the fiber germ 
f: ( S, Sb) --+ ( B, b) is A-general for all b E B. The set of all 
A-general fiber germs of genus g is denoted by Germ(A). 

(2) When A = Mg \ Supp VHM, an A-general fibered surface 
of genus g is said to be Harris-Mumford general (HM-general 
for short). An Eisenbud-Harris general (EH-general for short) 
fibered surface is defined in the same manner by putting A = 

Mg \SuppE~. 

We introduce the notion of local signature as follows. 

Definition 3.2. Let A be a subset of Mg. A function OA: Germ(A) 
--+ Q is called a local signature with respect to A if the following hold: 

(1) If (So] E A and if f: (S, So) --+ (Ll, 0) is an A-general fiber 
germ, then 

a A(!, So)= 0. 

(2) For every A-general fibered surface f: S--+ B of genus g, 

Sign(S) =La A(!, Sb), 
bEB 

which is a finite sum by (1). 

Once a signature divisor V c Mg is given, we can associate the 
corresponding local signature with respect to Mg \ Supp V. To do this, 
we need the notion of local signature defect, which was introduced by 
the first author (3]. 

Let f: ( S, So) --+ ( Ll, 0) be a fiber germ of genus g. The topological 
monodromy around So belongs to the conjugacy class of the pseudo­
periodic map of negative twist in the mapping class group of genus g 
(e.g. (31]). Let No be the (minimal) pseudo-period of the monodromy, 
i.e., No is the smallest positive integer so that the No-th power of the 
monodromy map is isotopic to the identity on the complement of the 
admissible system of cut curves of the pseudo-periodic map. 

Let p: Ll' --+ Ll be the cyclic cover of degree No totally ramified at 0. 
Then there exists a unique semi-stable curve f' : S' --+ ..:1' so that S' is 
birational to the fiber product of f-1 (..:1) and Ll' over Ll. The fiber germ 
(f',S~,) over O' = p-1(0) is called the germ of the minimal semi-stable 
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reduction of(!, S 0 ). (See [14], [3, §2].) For the fiber germ (!, S 0 ), the 
point f-LJ(O) E M 9 is the isomorphism class of the stable curve obtained 
by contracting the ( -2)-curves in Sb,. 

Take the closure f: S -> L1 of f in the complex topology, where L1 
is a closed disk. Let [: S -> L1 be the normally minimal model of f. By 
definition, j is the unique minimal element in the birational equivalence 
class of f so that the reduced scheme of the central fiber is normal 
crossing, i.e., any ( -1 )-curve in the component of the fiber intersects 
other components of the fiber at least three points (and therefore the 
germ after contracting it cannot have the normal crossing property). 

Let has be a Riemannian metric on aS. Since we have the natural 
identification aS= aS, has is regarded as a Riemannian metric on aS. 
The ry-invariant of (aS, has) is denoted by ry(aS, has)· See [8] for the 
definition of the ry-invariant. 

--1 -
On the other hand, let f': S -> L1 be the closure of the minimal 

semi-stable reduction of f. If p : s' \ Sb -> S \ S0 denotes the projec­
tion induced from pr1: f-1(L1) X,1 L1' -> f- 1(L1), then Plas' : aS' -> 

aS = aS'/ (Z/ NoZ) is an etale covering of degree N0 and p* has is a 

Riemannian metric on aS'. Let ry( aS', p* has) denote the ry-invariant of 
(aS',p*has)· 

Definition 3.3. The local signature defect of the fiber germ (!,So) 
is defined as 

where Sign(S) (resp. Sign(S')) is the signature of the cup-product on 
H 2 (S, aS; Q) (resp. H 2 (S', as'; Q)). 

Since the difference ry(aS, has) - J0 ry(aS',p*has) is independent 
of the choice of the metric has by [8, II, Theorem 2.4], so is Lsd(f, S0 ). 

Hence Lsd(f, S0 ) is an invariant of the fiber germ(!, S0 ). More precisely, 
Lsd(f, So) is explicitly written in terms of the monodromy data. See §8.1 

By definition, Lsd(f, S 0 ) = 0 for any stable fiber germ (!, S 0 ). Fi­
nally, we define 

Lsd(f, So):= Lsd(f, So)+ #BdNR· 

1 For the global formalism of this type of argument in another viewpoint, 
see [42]. 
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Here #BdNR is the number of contracted ( -1)-curves of S to obtain 
0e relatively minimal model fioc from the normally minimal model 
fioc· Note that 

Sign(S) = Sign(S) + #BdNR· 

Theorem 3.4. Let Vsign be a signature divisor on M 9 • Then 

is a local signature with respect to A= M 9 \ Supp(Vsign), where 
multt=O [t-tj, Vsign] is the multiplicity of the divisor f.tj, Vsign at the origin 
of the base D.' of the minimal semi-stable reduction. 

Proof Let f: 8 ---+ B be a A-general fibered surface. Let T := 

{b1, · · · , be, bl+b · · · , bn, b~, · · · , bU be the set of all points in B such 
that 

(i) 8b, (1 ::::; i ::::; n) are not semi-stable; 
(ii) f.tt(bl), · · · , f.tt(be), f.tt(bD, · · · , f.tt(bU E Supp Vsign· 

Let Nb, be the minimal pseudo-period of the topological local mon­
odromy around the singular fiber 8b,. Write N for the least common 
multiple of Nb1 , • • • , Nbn. Adding one more generic point bn+l E B \ T 
if necessary, we can construct a Galois covering p: B ---+ B of degree 
N branched exactly at b1, · · · , bn, (bn+l) so that p-1 (bi) (1 ::::; i ::::; n) 
consists of N/Nb, points with ramification index Nb,· (Note that the 
presence of bn+l does no!_ a~ect t~e calculation below.) Then there ex­
ists a semi-stable curve f: 8 ---+ B birational to the fiber product of 8 
and B over B (cf. (9, p.95]). Now a result in (3] says that 

1 - ~ ~ 
Sign(8) = N · Sign(8) + L...J Lsd(f, 8b.). 

i=l 

On the other hand, since f is semi-stable, it follows from Proposition 
2.2 that 

Sign( B) = h t-tj c1 (Vsign)· 

The fiber germ of 1 over p- 1 (bi) (1::::; i::::; n) is N/Nb, copies of(!, 8bJ· 
The fiber germ of 1 over p-1 (b) (bE B \ {b1, ... , bn+l}) is N copies of - _, -
(!, 8b)· Therefore, by choosing a point bi (resp. bj) on B such that 
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p(b;,) = bi (resp. p(bJ) = bj), we obtain 

1{£ N k } 
Sign(S) = N ~ Nb; multb; [JL}Dsign] + N ~ multbj[JL}Dsign] 

n 

+ L Lsd(f, sb;) 
i=l 

= t, ( ~b; multb; [JL}Dsign] + Lsd(f, sb;)) 

n k 

+ L Lsd(f, Sb;) + L multbj[JL}Dsign] 
i=£+1 j=l 

n k 

= LO"A(j,Sb;) + LO"A(f,Sbj)· 
i=l j=l 

Hence the assertion follows. Q.E.D. 

§4. A local signature for Harris-Mumford general fibered sur­
faces 

In this section, we assume that f: S -+ B is a HM-general fibered 
surface of genus g = 2k - 1 ~ 3. 

Definition 4.1. The Harris-Mumford local signature is defined as 

Theorem 4.2. Let f: S -+ B be a HM-general fibered surface. 
Then 

Sign(S) = L O"HM(f, Sb)· 
bEE 

Proof. The assertion follows from Theorems 2.3 and 3.4. Q.E.D. 
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Corollary 4.3. Let f: S ---+ B be a non-hyperelliptic fibered surface 
of genus 3. Then 

Sign(S) = :~::>·HM(/,Sb) = L {~ (~multb'[ll}Vhyper] 
bEB bEB b 

-~ multb' [J.tj,8o] + ~ multb' [J.tj,81]) + Lsd(f, Sb)}, 

where Vhyper is the divisor defined as the closure of the hyperelliptic locus 
inM3. 

Proof The result follows from the fact that VHM = Vhyper when 
g= 3. Q.E.D. 

Example 4.4. If(!, Sb) is a germ of a generic smooth hyperelliptic 
curve (resp. a generic non-separated Lefschetz fiber, resp. a generic sep­
arated Lefschetz fiber) in a non-hyperelliptic fibered surface of genus 3, 
then OHM(/, Sb) = 4/9 (resp.-5/9, resp. 1/3). Therefore OHM coincide 
with Kuno's local signature [30] in these cases. 

§5. The number of critical points and signature 

In this section, we prove the following result, which seems to be 
closely related to [17, §2]. 

Theorem 5.1. Let f: S---+ B be a stable fibered surface of genus 
g = 2k -1 > 1. 

(1) Iff: S---+ B is HM-general, then 

(5.1) #'E1 2 3:: ~ (-Sign(S)). 

In particular, iff has no critical points, then Sign(S) 2 0. 
(2) If the equality holds in (5.1), then JLJ('iJJ) C Supp(8o \Ui>l8i) 

and every regular fiber of f: S ---+ B has the maximal gonality 
k+ 1. 

(3) The inequality (5.1) is sharp. Namely, for every odd g > 1, 
there exists a HM-general Lefschetz-fibration f: S ---+ P 1 of 
genus g with 

#'EJ = 3 g + 37 (-Sign( B)). 
g+ 

For the proof of Theorem 5.1 (3), we need the following two results. 
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Proposition 5.2. Let g be a positive integer with g 2: 3. Then there 
exists a polarized K3 surface (8, H) such that every smooth member 
C E IHI has maximal gonality [(g + 3)/2). 

Proof. By [18), the Clifford index is constant on all smooth curves 
in a fixed complete linear system on a K3 surface. Let (8, H) be a 
polarized K3 surface with p(8) = 1 and H 2 = 2g - 2. Then IHI is 
free from base points. Let C E IHI be a non-singular member. If 
Cliff( C) < [(g- 1)/2], then it also follows from [18) that there exists a 
line bundle M on 8 such that Mlc computes the Clifford index of C. 
Since p(8) = 1, we have M = nH for some positive integer n. However, 
it is impossible, because Hie is the canonical bundle of C and Mlc 
should be a special line bundle with h1 (Mic) > 1. The contradiction 
shows Cliff( C)= [(g- 1)/2) and, therefore, gon(C) = [(g + 3)/2). Note 
that this also implies the very ampleness of H for g 2: 3. Q.E.D. 

Proposition 5.3. Let X be a smooth algebraic surface and let H be 
a very ample line bundle on X. Let f: X ---. P 1 be a generic Lefschetz 
pencil of the complete linear system IHI. Let g be the genus of a general 
fiber off: X ---. P 1 . Then 

#'EJ _ 3 g+3 = 2H2 (Kx ·H) 
-Sign(X) g + 7 (H2 - Sign(X))(H2 + Kx · H + 16) 

(x(X) + 3 Sign( X) + 24)H2 + 2(Kx · H)2 

+ (H2 - Sign(X))(H2 + Kx · H + 16) 

(x(X) + 3 Sign( X) + 32)Kx · H 
+ (H2 - Sign(X))(H2 + Kx · H + 16) 

(5.2) 

16 x(X) + 24 Sign( X) 
+ (H2 - Sign(X))(H2 + Kx · H + 16)' 

where x(X) is the topological Euler number of X. In particular, when 
X is a K3 surface, the following identity holds: 

(5.3) #'E f ~ = 3 g + 3 0 

-Sign( X) g + 7 

Proof. Since H is very ample, a generic pencil of H is Lefschetz by 
[25). In particular, #'E f is equal to the number of the singular fibers 
of f: X --'-+ P 1 . Let L c IHI be the line corresponding to the pencil 
f: X ---. P 1 . Let <PI HI (X) v C IHI be the projective dual variety of the 
projective embedding <PI HI (X). The number of the singular fibers of 

f: X ---. P 1 is given by the intersection number of the line L with the 
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Let c(X) = 1 + c1 (X) + c2(X) be the total Chern class of X. By a 
formula of N. Katz [25], we have 

(5.5) deg «<> IHI (X) v = ( -1)2 L (1 clX2)2 = 3 H 2 + 2 Kx . H + x(X). 

By (5.4), (5.5), we have 

(5.6) #'Et = 3H2 + 2Kx · H + x(X). 

If C E IHI is a smooth member, we get by the adjunction formula 

(5.7) g = g(C) = C2 + C · Kx + 1 = H 2 + Kx · H + 2 
2 2 

Since X is the blow-up of X at (H)2 points, we have 

(5.8) Sign( X) = Sign(X) - H 2. 

Equation (5.2) follows from (5.6), (5.7), (5.8). 
Assume that X is an algebraic K3 surface. Since Kx = 0, x(X) = 

24, and Sign(X) = -16, the right hand side of (5.2) vanishes, which 
implies (5.3). Q.E.D. 

It is pointed out by the referee that the degree of the dual variety is 
known as the class of the surface and that (5.5) (or (5.6)) is classically 
known. 

Proof of Theorem 5.1. By the definition of the discriminant divisor, 
we have 

k 

#'Et = degi't = degJ.tj8 = L degJ.tj8i. 
i=O 

Since f : S ---+ B is a stable fibered surface, we get 
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for all b E B in Definition 4.1. By Theorem 2.3 and the positivity of the 
coefficients of VHM, 81 , ... , 8k in the expression of VsignHM, we have 

. * 2. k!(k- 2)! *-
Sign(S) = degfLJVsignHM = 3(k + 1)(2k _ 4)! degfLJVHM 

k+3 d *8 ~2i(2k-1-i)-(k+1) d *8· 
- 3(k + 1) egfLJ o +~ k+ 1 egfLJ • 

k+3 d *8 
> 3(k + 1) egfLJ o 

k+3 
= - 3(k + 1) #'E'If. 

Substituting k = (g + 1)/2 into this inequality, we get (5.1). This proves 
(1). 

If the equality holds in (5.1), then we have 

deg fLjVHM = deg 1Lj81 = · · · = deg fLj8k-l = 0. 

The equality deg fLj81 = · · · = deg fLj8k-l = 0 implies that 

fLt(':D f} C 8o \ U 8i. 
i<::O 

Since degfLjVHM = 0, we get fLt(B\':Dt) C M 9 \VHM· Thus gon(Sb) = 
k + 1 for b E B \ ':Dt· This proves (2). By Propositions 5.2 and 5.3 
Equation (5.3), we get (3). Q.E.D. 

An extension of Theorem 5.1 shall be given in the end of the next 
section. A simple way of constructing a stable fibered surface is to take 
a Lefschetz pencil of curves on a surface. Unfortunately, it is rather rare 
for a Lefschetz pencil to be HM-general by the following result due to 
the referee. 

Proposition 5.4. Let H be a nef and big line bundle on a smooth 
projective surfaceS. If h0 (S,H) ;::: 2, then every smooth member of 
lmHI is not HM-general form;::: 5. 

Proof. Let H be a nef and big line bundle on a surface S with 
h0 (S, H) ;::: 2. We put g(H) = Ks~+H2 + 1. Since H E IHI is 1-
connected, we have g(H) = h1(H, OH ). Recall that we have g(H) ;::: 
q(S), an inequality immediately verified with 
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and Ramanujam's vanishing theorem H 1 (S, -H)= 0. Let m be a posi­
tive integer such that there is a smooth member C E lmHI. 

We claim that h0 (C,He) > 1 and h1(C,He) > 1 hold when m ~ 5, 
where He denotes the restriction of H to C. 

The first inequality is easy: We get h0 ( C, He) = h0 (S, H) form~ 2 
using 

0 ~ Os(-(m -1)H) ~ Os(H) ~ Oe(He) ~ 0. 

Since we have assumed that h0 (S,H) ~ 2, we get h0 (C,He) ~ 2. 
The second one can be shown as follows. We have h 1 ( C, He) = 

h0 (C,Ke- He) by the Serre duality. Bythe Riemann-Roch theorem 
and the Kawamata-Viehweg vanishing theorem, we have 

m-1 · 
h0 (S,Ks+(m -1)H) = - 2 -(KsH + (m -1)H2 ) + x(Os) 

m-2 
= g(H)- q(S) + p9 (S) + - 2 -(KsH + mH2 ) 

m-2 
= g(H)- q(S) + p9 (S) + - 2 -(2g(H) + (m- 1)H2 ). 

The cohomology long exact sequence for 

0 ~ Os(Ks- H)~ Os(Ks + (m- 1)H) ~ Oe(Ke- He)~ 0 

yields 

h0 (C,Ke- He)~ h0 (S,Ks + (m -1)H)- h0 (S,Ks- H). 

We have h0 (S, Ks- H) ~ p9 (S). Hence 

m-2 
h0 (C, Ke- He)~ g(H)- q(S) + - 2-(2g(H)- 2 + (m- 1)H2 ) ~ 2 

form ~ 5. In sum, we have shown the claim and see that He contributes 
to the Clifford index of C. 

Using 

2g(C)- 2 = m(KsH +mH2 ), Cliff(He) = mH2 - 2h0 (C, He)+ 2, 

one gets 

2g(C)- 6- 4Cliff(He) = (m2 - 4m)H2 + mK8 H + 8h0 (S, H) -12 

= m(m- 5)H2 + 2m(g(H)- 1) + 8h0 (S, H) - 12. 

When g(H) ~ 1 and m ~ 5, we have Cliff(He) < (g- 3)/2. Assume 
that g(H) = 0. Then q(S) = 0 and h0 (H, HIH) = H 2 + 1. Hence 
h0 (S, H)= H 2 + 2 and it follows 

2g(C)- 6- 4Cliff(He) = (m2 - 5m + 8)H2 - 2m+ 4, 
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which is positive if m 2 5. 
We have shown Cliff( C) :::; Cliff(Hc) < (g- 3)/2 form 2 5. This 

implies that Cis not HM-general when g( C) is odd, because the gonality 
of C can not exceed Cliff( C)+ 3 by a result of Coppens-Martens [13]. 

Q.E.D. 

§6. Konno's slope (in)equality 

For a fibered surface f: S--+ B of genus g, we set 

The ratio 
AJ := K~;B/Xt 

is called the slope of f. The slope inequality of Xiao [46] says that 

4(g - 1) :::; AJ :::; 12. 
g 

If f belongs to a certain restricted class of fibered surfaces, a sharper 
inequality and also the existence of a local invariant are expected. 

Definition 6.1. Let A be a subset of M 9 , and let A E Q be a con­
stant with 4-4/ g :::; A:::; 12. A non-negativefunction IndA: Germ(A) --+ 

Q::o:o is called a Horikawa index with respect to the pair (A, A) if the fol­
lowing hold: 

(1) If [So] E A and if(!, S0 ) is an A-general fiber germ of genus g, 
then 

IndA(f, So)= 0. 

(2) For every A-general fibered surface f: S --+ B of genus g, the 
following slope equality holds: 

K~/B = AXJ + LindA(f,Sb)· 
bEB 

If there exists a Horikawa index IndA(·) with respect to (A, A), then 

(6.1) 
4 8-A 

CJA(·) := -- IndA(·)- -- E(·) 
12- A 12- A 

is a local signature with respect to A, where the function E: Germ(A) --+ 

Z is the topological Euler contribution 
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See [4], [6] for more about Horikawa index. 
In the rest of this section, we assume that g is odd and g 2: 3. A 

fibered surface f: S ____, B of genus g is Clifford-general if it is M g \ 'Dclifr­
general, i.e., a general fiber off: S ____, B has the maximal Clifford index 
(g-1)/2. Note that the Clifford-generality of a fibered surface f: S ____, B 
implies its HM-generality. 

Theorem 6.2 (Konno). With respect to the pair (Mg \ 'Dcliff, 6(g-
1)/(g + 1)), there exists a Horikawa index. In particular, the following 
slope inequality holds for every Clifford-general fibered surface f: S ---> B 
of odd genus g: 

Proof. See [28]. 

A > 6(g- 1) 
f- g+1 . 

Q.E.D. 

Notice that the stability off is not assumed in Theorem 6.2. The 
proof of Konno's theorem is involved and relies on the solution of the 
Green conjecture [45]. 

Now we restrict our consideration of the above slope equality prob­
lem to (semi-)stable curves over compact Riemann surfaces. Namely, 
fibered surfaces in Definition 6.1 are assumed to be (semi-)stable. In 
this restricted setting, we give a simpler proof of Konno's theorem as an 
application of the Harris-Mumford formula: 

Proposition 6.3. With respect to the pair (Mg \'DHM, 6(g-1)/(g+ 
1)), there exists a Horikawa index for (semi-)stable curves over compact 
Riemann surfaces. In particular, the following slope inequality holds for 
every HM-general (semi- )stable curve f: S ---> B of genus g = 2k- 1 2: 3 
over a compact Riemann surface B: 

A > 6(g- 1) 
f- g+ 1 . 

Proof. We have K~1 B = 12 Xt - deg :D 1 by the first Mumford re­
lation [20, Equation (3.110)], so that 

2 6(g-1) { 6(g-1)} 
Ks;B- X!= 12- Xt- deg:DJ 

g+1 g+1 

(6.2) = degJLj [ { 12- 6~; 11)} Ag- 8] 
-d *{6(k+1), -'} - eg IL f k /\g u . 
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We prove that the Q-divisor 6(k + 1)/k )..9 -!) is effective. Since 

= k!(k- 2)! - k k-l i(2k- 1 - i) /j 

Ag- 6(k + 1)(2k- 4)! VHM + 6(k + 1) 60 + t; 2(k + 1) ' 

by the Harris-Mumford formula, we get 
(6.3) 

6(k + 1) - (k- 1)!(k- 2)!- ~ 3i(2k- 1- i)- k . 
k Ag - 0 = (2k- 4)! VHM + ~ k o,. 

Since k 2: 2 by the assumption g = 2k- 1 2: 2, we get 

3i(2k- 1- i)- k 2: 3(2k- 2)- k = 5(k- ~) > 0, 

which implies the effectivity of 6(k + 1)/k )..9 - o. 
For a fiber germ f: (S, S0 )---+ (Ll, 0) belonging to Germ(M 9 \VHM), 

we define the Horikawa index IndHM(·) by 
(6.4) 
IndHM(f, So) 

·- (k- 1)!(k- 2)! *- ~ 3i(2k- 1- i)- k * . 
. - (2k _ 4)! degf.LJVHM + ~ k degf.LJO, 2: 0. 

To get the non-negativity, we used the effectivity of 6(k + 1)/k>-.9 - o 
and the fact that /LJ intersects VHM properly. By (6.2), (6.3), (6.4), we 
get the slope equality 

2 6(g-1) "' 
Ks;E = X!+~ IndHM(f, Sb)· 

g + 1 bEE 

This completes the proof. Q.E.D. 

Corollary 6.4. Let f: S ---+ B be a nonhyperelliptic (semi-)stable 
curve of genus 3. Then 

K~/E- 3xt = L IndHM(f, Sb) 
bEE 

= L { multb (~tjVhyper) + 2 · multb (~tj81 )}. 
bEE 
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Especially if(!, So) is a generic deformation germ of the following curve 
So, then the following holds: 

{ 
an irreducible Lefschetz curve, 

if So is a smooth hyperelliptic curve, 

a reducible Lefschetz curve. 

Proof. The result follows from (6.4). Q.E.D. 

Remark 6.5. The result in the latter part of Corollary 6.4 coincides 
with the ones obtained by Reid [38] and Chen-Tan [12]. 

In view of the definition of the Harris-Mumford local signature and 
the relation (6.1), it seems to be natural to propose the following: 

Conjecture 6.6. For a Clifford-general fiber germ f: (S, So) --+ (~, 0) 
of genus g = 2k- 1 2': 3, let indK(f, So) be Konno's Horikawa index in 
Theorem 6.2 ([28, §3]). Then the following equality holds: 
(6.5) 

. 1 { (k- 1)!(k- 2)! *- k + 3 * 
mdK(f, So) =No (2k _ 4)! deg I-Lf'VHM - ----u;- deg f-Lf'bo 

~ 6i(2k- 1- i)- 3(k + 1) d * <5 } 
+ 6 2k egf-Lf' i 

i=l 

3(k+1)~ k+3 + 2k Lsd(f, So)+ ----u;-E(f, So). 

In particular, the right hand side of (6.5) is non-negative. 

We extend Theorem 5.1 using Konno's slope inequality. 

Theorem 6. 7. Let f: S --+ B be a Clifford-general fibered surface 
of genus g = 2k- 1 > 1. If #'Et < +oo, then the following inequality 
holds: 

(6.6) I: 1-LJ(P) 2': 3 g: ~ ( -Sign(S)), 
pE"2:,f g 

where f.L f (p) is the Milnor number of the critical point p E 'E f. 

Proof. Set 

ef := I: E(j, Sb) = Xtop(X)- Xtop(F)Xtop(S). 
bEE 

By Noether' formula and Hirzebruch's formula, we get 
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Substituting these equalities into the slope inequality in Theorem 6.2, 
we get 

(6.7) 

Since#~!< oo, we deduce from e.g. [24, (5.5)] that 

(6.8) ef = Xtop(X)- Xtop(F)Xtop(S) = 2:.: J-L(f,p). 
pEE! 

The result follows from (6.7) and (6.8). Q.E.D. 

Question 6.8. Does inequality (6.6) remain valid if we replace the 
condition of Clifford-generality by that of HM-generality in Theorem 
6.7? 

§7. Eisenbud-Harris general fibered surfaces of genus 4 

In this section, we discuss the local signature and the Horikawa index 
of an EH-general fibered surface f: S -+ B of genus 4. We start with 
the following Lemma which was pointed out to us by the referee. (See 
also [37], [35].) 

Lemma 7.1. A hyperelliptic curve of genus 4 is in Ej. 

Proof. Take a hyperelliptic curve C of genus 4 and a point x E C. 
Put L = gi + x. Then ILl is a pencil of degree 3 with a base point x. 
Note that any g§ on a hyperelliptic curve is obtained in this way. If 
x' is the conjugate to x, that is, x + x' E gi, then Kc- L = gi + x'. 
Hence IKe- Ll is a pencil of degree 3 with a base point x'. Recall 
that IKcl is free from base points. This implies that the multiplication 
map J-L: H 0 (C, L) ® H 0 (C, Kc- L)-+ H 0 (C, Kc) cannot be surjective, 
because the image consists of those sections vanishing at x + x'. Since 
h0 (C,L) = h0 (C,Kc- L) = 2 and h0 (C,Kc) = 4, one also sees that J-L 
fails to be injective. Q.E.D. 

Therefore the isomorphism class of a Riemann surface C of genus 
4 is contained in Ej of M 4 if and only if C is hyperelliptic or non­
hyperelliptic with a unique trigonal structure g§, i.e. the canonical image 
of C is contained in a singular quadric. Note that a generic Riemann 
surface of genus 4 is non-hyperelliptic with two mutually distinct g§, i.e. 
its canonical image is contained in a smooth quadric. 

We remark that Ej C M 4 coincides with the locus of vanishing 
even theta constants. Namely, the product of all even theta constants 
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IT(a,b) even Oa,b is regarded as a holomorphic section of a holomorphic 
line bundle on M 4 (cf. [43, p.542]), and one has the equation of divisors 

-1 -
div(fl(a,b) even Oa,b) = E3 on M4. 

Now Theorem 2.5 says that 

1J . . _.3_E1-~8 118 198 
signEH .- 17 3 17 0 + 17 1 + 17 2 

is a signature divisor of M4. We define the Eisenbud-Harris local sig­
nature of a fiber germ (!, Sb) off by 

17EH(/,Sb) = ~b ( 1
2
7multb'[tJ}E!J- 1

9
7multb'[J.tj,8o] + ~~multb'[Jkj,81] 

19 ) ~ + 17multb' [J.tj,82] + Lsd(f, Sb)· 

Theorem 7.2. Let f: S---> B be an EH-general fibered surface of 
genus 4. Then 

Sign(S) = L 17EH(/, Sb)· 
bEB 

Proof. The result follows from Theorems 2.5 and 3.4. Q.E.D. 

Furthermore, if f: (S, 80 ) ---> (Ll, 0) is stable and EH-general, the 
Horikawa index is defined as 

which is a non-negative rational number. 

Proposition 7.3. Let f: S --t B be a stable EH-general curve of 
genus 4. Then 

K~/B =~X!+ L IndEH(f, Sb)· 
bEB 

Proof. From the first Mumford relation and Theorem 2.5, the as-
sertion follows. Q.E.D. 

Remark 7.4. Under the same assumption as in Theorem 7.2, Chen 
[11] and Konno [27] proved the following slope inequality 

2 7 
Ks;B 2 2Xf· 

Konno [29] also defined the Horikawa index of unstable EH-general fiber 
germs of genus 4 from another viewpoint. 
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Example 7.5. Let L = Op3(1) be the hyperplane bundle over P 3 . 

Let q0 ,q1 E H 0 (P3 ,2L) be generic quadrics. Then Qo := div(qo) and 
Q1 := div(ql) are generic hyperquadrics of P 3 . Let {QthEPl be the 
pencil of hyperquadrics of P 3 generated by Qo and Q1, where Qt = 
div(toqo + hq1), t = (to : tl) E P 1. 

Let X be a generic cubic hypersurface of P 3 . Then {X n Qt hEPl is 
a Lefschetz pencil of curves of genus 4 with base locus B = X n Qo n Q1, 
where #B = 3 · 2 · 2 = 12 by Bezout's theorem. Let 1r: S --+ X be 
the blow-up of X at B. Then S has the structure of a stable fibered 
surface f: S--+ P 1 of genus 4 over P 1 such that f-1(t) =X n Qt. Since 
f: S --+ P 1 is a Lefschetz pencil, every fiber of f has at most one node. 
Moreover, every fiber of f is irreducible, and every smooth fiber is a 
non-hyperelliptic curve since its canonical map is clearly an embedding. 
By the definition of the Eisenbud-Harris local signature, aHM (!, St) =/= 0 
if and only if one of the following is satisfied: 

(i) Bt is singular. In this case, f.LJ(t) E b"o; 
(ii) Bt is smooth and Qt is singular. In this case, f.LJ(t) E E§. 
Case {i} Since f: S --+ P 1 is a Lefschetz pencil, we get 

#{t E P\ f.LJ(t) E Oo} =#(Singular Fibers of f) 

= deg(<I>I2Lixi(X), 0p(1)) v, 

where P = P(H0 (X, 2Lix)v) and deg(<I>I2Lixi(X), Op(1))v denotes the 
degree of the projective dual variety of <I>1 2Lixi(X) C P. Setting H = 
2Lix in (5.5), we get 

{ 1 2 { c(X) 
# t E p; f.LJ(t) E oo} = (-1) Jx (1 +2Lix)2 = 33. 

Since the total space of the germ (f,Bb) is smooth, f.LJ intersects o0 

transversally at b when Sing Sb =/= 0. Namely, multb[f.Ljo0] = 1 when 
Sing Sb =/= 0. 

Case {ii} Choosing a generic X E 13£1, we may assume X n 
UtEPl Sing Qt = 0. Hence Bt is smooth when Qt is singular. Since 
{ Qt}tEPl c 12£1 is a Lefschetz pencil, we deduce from [25] that 

#{t E P\ f.LJ(t) E Ej} = #{t E P\ SingQt =/= 0} 

= ( -1)3 { c(P3) = 4. 
}p3 (1+2£)2 

Let { t E P\ f.LJ(t) E Ej} = { a1, a2, a3, a4} and set Vi := multa; [JLjE§] E 
Z;::::1-
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By Cases (i), (ii) and Theorem 7.2, we get 

Sign(S) = 1
2
7 L multt[JLjEj]- : 7 L multt[JLj6o] 

tEP 1 ; 1-'J(t)EE§ tEP 1 ; 1-'t(t)Eiio 

4 
= _3_ . """'v _ .2._ . 33 = 2(vl + v2 + v3 + v4) - 297. 

17 ~ ' 17 17 
i=l 

Since Sis the blow-up of a cubic hypersurface X C P 3 at B, S is 
isomorphic to the blow-up of P 2 at 18 points in total, so that 

Sign(S) = 1-18 = -17. 

Comparing these two formulae for Sign( B), we get v1 + v2 + v3 + v4 = 4. 
Since vi ~ 1, we get Vi 1 for all i. Hence we get the formula for 
IJEH(f, Sb) as follows: 

(b E JLj 1 (E§) ), 
(bE JLj 1(6o)), 
(bE P 1 \ JLj 1(E§ U 6o)). 

By (7.1), the formula for the Horikawa index IndEH(f, Sb) is given as 
follows: 

Ind (f S) = { 1/4 (bE JLjl(E§)), 
EH , b O (b (j_ JLjl(Ej)). 

Example 7.6. We study the local signature and Horikawa index for 
hyperelliptic curves of genus 4. A hyperelliptic curve is said to be generic 
if its automorphism group is generated by the hyperelliptic involution. 
Let H 4 C M 4 denote the hyperelliptic locus of genus 4. 

Let C be a generic hyperelliptic curve of genus 4 with hyperelliptic 
involution L, and let L* be the induced action on Def(C) c:::: H 1 (C, 8 0 ). 

Then (M4, [C]) ~ (Def(C)/L*, [C]) ~ (H1 (C, 8c)/L*, [0]). Let H 1 (C, 8c)+ 
(resp. H 1 (C,8c)-) be the invariant (resp. anti-invariant) subspace of 
H 1 ( C, 8c) with respect to the L *-action. Since L is hyperelliptic, it fol­
lows from the Lefschetz fixed point formula that Trace L*IHl(C,ec) = 

10 · ~ = 5, i.e. dimH1 (C, 8 0 )+ = 7 and H 1 (C, 8c)- = 2. Hence we 
get an isomorphism (M4, [C]) ~ (C7 x (C2 /{±1} ), 0). 

Let p: (Def(C), [C]) ---+ (M4, [C]) = (Def(C)/L*, [C]) be the pro­
jection. By Pringsheim [37] and Tsuyumine [43, p.561 l.20-p.562 1.9, 
Theorem4], there exist invariant functions T1 , ... , T7 E Ooef(C),[CJ and 
anti-invariant functions JI, ... , fw E Ooef(C),[CJ with respect to the L*­

action on Ooef(C),[CJ satisfying the following: 
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(i) For any i -1= j, (r1, ... , r 7 , fi, IJ) is a system of coordinates of 
Def(C) such that Def(C) n p-1(H4) = {fi = fJ = 0}. In 
particular, there is an isomorphism of local rings 0 M 4 ,[c] ~ 

C{ 71' ... 'T7' Jf' !J' fdj}. 
(ii) There exist exactly 10 even theta constants { eai,bi hsi::0:10 van­

ishing at [C]. Moreover, fi (1 :::; i :::; 10) is the square root of 
eai,bi' i.e., fi = ,;e::;;:. 

By (i), (ii) and the equation of divisors p-1 (E~) = div[p* (f1(a,b) even ea,b)] 

on Def(C), the germ of analytic subset p- 1 (E~) C Def(C) is defined by 
the ideal 

10 

Ip-l(E;),[c] := Ooef(C),[CJ(IJ /i) 2. 
i=1 

Let r: (Ll,O)----+ (M4 , [C]) be a curve and c: (Ll,O)----+ (Def(C), [C]) 
be a lifting of the curve "Y such that "Y = p o c. Then "Y is said to be 
generic if its lifting c intersects the divisor {fi = 0} C (Def(C), [C]) 
transversally at [C] for all 1 :::; i :::; 10. If "Y is generic, then 

10 
*-1 1 * *-1 1 II 1 ( ( ))2 multt=O"Y E 3 = ~( ) multt=oc p E 3 = 2multt=O i c t = 10. 

g p i=1 

Let f: (S, S0 ) ----+ (Ll, 0) be a stable EH-general fibered surface of 
genus 4 such that S0 is hyperelliptic. The deformation germ (!, S0 ) 

is said to be generic if So is generic and if f.LJ: (Ll, 0) ----+ (M4, [So]) is 
generic. For a generic deformation germ(!, So) of a generic hyperelliptic 
curve S0 of genus 4, we have 

§8. Examples of the local signature of genus 3 

In this section, we give two examples of fiber germs of genus 3, whose 
Harris-Mumford local signatures and hence local signature defects are 
calculated explicitly. For the terminology about monodromy maps, see 
[31], [5] etc. 

For our purpose, we first recall the main result of [3]. Let Pt : R 9 ----+ 
R 9 be the pseudo-periodic map of a Riemann surface R 9 of genus g, 
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which is the monodromy map of !toe : (S, So) ---+ (Ll, 0) as in §3. Let 

A(C) =II A(Cj) II A'(Ck) 
j k 

be the decomposition of the annular neighborhood A( C) of the admis­
sible system of cut curves C for Pf, where A(Cj) is a non-amphidrome 
annulus and A'(Ck) is an amphidrome annulus. For each A(Cj), let 

O"Y) f>..?) and O"Y) />..)2) be the valency at both banks of A(Cj), and let 

8Y) / >..?) and 8Y) / >..)2) be their covalencies, respectively. By definition, 
the following relations are satisfied: 

O"~i)8~i) = 1(mod>..(i)), 
J J - J 

1 < (J(i) < >..~i) 
- J J ' 

1 < ... ~ i) < \ ~ i) ( . 1 2) _ UJ /\J 2 = 1 • 

Let K(Cj) be the integer greater than or equal to -1 defined by 

where s(Cj) is Nielsen's screw number ([36]). For each A'(Ck), let 8k/Ak 
be the covalency at both banks of A'(Ck)· 

Let B := R 9 \A( C)= It Bi be the decomposition into the connected 
components. Each Bi is a Riemann surface of genus .::::: g with boundary. 

Let { O"~i) / >..~)} <> and { 8~) / >..~)} <> be the set of valencies and covalencies 

for P! attached to the multiple points and the boundary curves onBi, 
respectively. Let 

>..w 1 
~) = K1(a,i)- -------1---

0" <> K 2 (a, i) - -----,1,..--

Kr(a,i) 

be the continued linear fraction. 
Let B/ ""= ll [Bi] be the orbit decomposition with respect to the 

cyclic action generated by Pt· Here Bi1 "" Bi2 if and only if Bi2 = 
(Pt )n(BiJ for some integer n, and [Bi] denotes the equivalence class of 
Bi. Similarly, for the set A' of non-amphidrome annuli (resp. the set 
A" of amphidrome annuli), we put A'/""= ll [A(Cj)] (resp. A"/""= 
ll [A(Ck)]). 
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Theorem 8.1. ([3]) The local signature defect of(!, So) is given by 

1 { (i) + o(i) r } 
Lsd(f,So) =- 3 LL era (i) a + LK!3(a,i) 

[B;] a Aa {3=1 

( o\ll o<2l ) (ok ) 
+ L (1) + (2) + Ej + L ~ - 2 ' 

[A(Ci)J \ \ [A'(Ck)] k 

where Ej is the rational number defined in [3]. IfK(Cj);:::: 0, then Ej = 0. 

Example 8.2. Let (e, x, t) be a system of coordinates of X= P 1 x 
pl X~' where e, X are the inhomogeneOUS coordinates of the first and 
the second projective lines, respectively. Define the divisor S' on X by 

The surfaceS' has a simple elliptic singularity oftype Eh at (0, 0, 0). Let 
1r: S -4 S' be the minimal resolution and let f : S -4 ~ be the morphism 
defined as f := pr3 lx o 1r. By the same argument as in [2, pp.67:-68], 
any fiber off except for the central fiber F = f- 1(0) is a smooth non­
hyperelliptic curve of genus 3, and the irreducible decomposition ofF is 
expressed as F = 2E + z=:=l Fi, where E is a nonsingular elliptic curve 
with E 2 = -2 and Fi (1 ::::; i ::::; 4) are (-2)-curves with EFi = 1 and 
Fi1 Fi2 = 0 (i1 =I= i2). (See [2, Fig.1 in p.68].) We compute the local 
signature CTHM(f, F). 

In the classification [5], the topological monodromy map of f is the 
periodic map of order 2 with the total valency 1/2 + 1/2 + 1/2 + 1/2, 
i.e., the list (iii) (12) in [5, p.199]. Since (!,F) is normally minimal, 
Theorem 8.1 implies that 

~ . 1 (1 + 1 ) Lsd(f, F) = Lsd(f, F) = - 3 - 2- + 2 · 4 = -4. 

On the other hand, the minimal semi-stable reduction of f is given 
as follows: Let B0 = {x4 + t 2 = 0} be the branch divisor of the 4-fold 
cover S' -4 W = P 1 x ~- Let ~ -4 ~ be the double cover defined by 
u ~'-+ t = u2. Then the pull back Bb of B 0 on W' = P 1 xA ~is defined 
by the equation x4 + u4 = 0. 

By the elementary transformation at the center (x, u) = (0, 0), the 
P 1-bundle W' is transformed to a new P 1-bundle W so that the proper 
image Bo of Bb is a smooth curve meeting any fiber of 1r: W -4 ~ 
transversally at four points. (See Figure 1.) 
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Let S be the divisor on P 1 x W defined by the equation 

e+b(y,u)=O, 
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where b(y, u) = 0 is the equation defining E0 . Then f:= 7r opr3 ls: S-+ 
~ is a smooth family of non-hyperelliptic curves of genus 3. By the 
uniqueness of the minimal semi-stable reduction, the germ (J, F = 

j- 1(0)) is the minimal semi-stable reduction of (f,F). 
Since F is non-hyperelliptic and hence O"HM(J, F) = 0, we get by 

Theorem 3.4 

Since E(j, F) = 8, the "conjectural Konno's Horikawa index" of 
genus 3 in (6.5) is 

"indK(f, F)" = 1, 

as is expected (cf. [26, §9.7] and [2]). 

Example 8.3. Let X be the same as in Example 8.2, and letS be 
a smooth divisor on X defined by the equation 

~4 + (x2 + t)(x + a)(x +b) = 0, (a# b, a# 0, b # 0). 

Set f := pr3 ls- Then f: S-+ ~is a non-hyperelliptic fibered surface of 
genus 3. The central fiber F = f- 1 (0) is an irreducible singular curve 
with a tacnode, so that the normalization of F is an elliptic curve. We 
compute O"HM(f, F). 
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The central fiber P of the normally minimal model j : S ___, ~ of f 
is written as 

F = E + 4Fl + 2Fz, 

where E is an elliptic curve with E 2 = -8 and F 1 , F2 are rational 
curves with F[ = -1, F:j = -2, EF1 = 2, HFz = 1 and EFz = 0. 
We obtain S from S by blowing down ( -1 )-curves two times. The 
admissible system of cut curves of the monodromy map consists of two 
simple closed curves of type (E) in [5, p.221,Table 2]. The monodromy 
map acts trivially on one body, and acts on another body with the 
total valency 1/4 + 1/4 + 1/2. The screw numbers on both annular 
neighborhoods of the cut curves are -1/4. It follows from Theorem 8.1 
that 

1(1+1 1+1 ) 1 7 Lsd(f,F)=-3 - 4-·2+4·2+-2-+2 +4·2=-2. 

Thus Lsd(f, F) = -3/2. 
The minimal semi-stable reduction of f: S ___, ~ is described sim­

ilarly as in Example 8.2. Namely, by the cyclic base change of degree 
4, the pull back Bb of the branch curve of the 4-fold cover consists of 
three connected components; the one component has a tacnode whose 
tangent line is transversal to the fiber and the other two components 
meet the fiber transversally. The 4-fold cyclic cover S' branched along 
Bb is a normal surface with a simple elliptic singularity of type E7. The 
minimal resolution S of S' has the structure of fibered surface J: S ___, 3. 
induced from f : S ___, 3., whose central fiber F is a stable curve con­
sisting two elliptic components with two nodes. The germ (f, F) is the 
minimal semi-stable reduction of(!, F). 

The locus of stable curves consisting two elliptic components with 
two nodes is of codimension 2 in M 3 , and is contained in the closure of 
the hyperelliptic locus, i.e. the support of VHM· We can see that the 
curve 1-lJ(Li) intersects VHM transversally. (For instance, this is verified 
from the "global method" as in Example 7.5, which is omitted.) Namely, 

multt=o(!Jj-VHM) = 1. 

On the other hand, the germ (f, F) has a splitting deformation in the 
sense of [6, §4] into two deformation germs of an irreducible Lefschetz 
fiber, each of which is stable under deformation (i.e. atomic) by the 
smoothness of S at the nodes of F. Thus 
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Hence 

CJHM(f, F) = ~multt=o(J.LjVHM)- ~multt=o(J.Lj-Jo) + ~multt=o(J.Lj-<51) 
2 

3 

By Theorem 3.4, we obtain 

From the above calculation and (6.5), the conjectural Konno's Horikawa 
index is 

"indK(f, F)" = 0, 

as is expected. 2 
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