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Superconformal field theory and operator algebras 

Yasuyuki Kawahigashi 

Abstract. 

We present an operator algebraic approach to superconformal field 
theory and a classification result in this framework. This is based on a 
joint work with S. Carpi and R. Longo 

§1. Introduction 

This is a review on operator algebraic approach to superconformal 
field theory based on a joint work [6] with S. Carpi and R. Longo. 

In general, we study quantum fields in quantum field theory. From a 
mathematical viewpoint, they are certain operator-valued distributions 
on a spacetime and often called Wightman fields. We also need to fix a 
certain type of a spacetime symmetry group on the spacetime. 

An operator algebraic approach to quantum field theory is called an 
algebraic quantum field theory [19] and has been studied for more than 
40 years. When we deal with operator-valued distributions, they cause 
technical difficulties since they are distributions, rather than functions, 
and they usually produce unbounded operators. In algebraic quantum 
field theory, we deal with a family of algebras of bounded linear operators 
instead, and their algebraic operations are much easier to handle. 

A basic idea in algebraic quantum field theory is as follows. In one 
quantum field theory on one spacetime, we assign to each (bounded) re­
gion in the spacetime an algebra of bounded linear operators generated 
by observables on the region. Recall that observables are represented 
by (generally unbounded) self~adjoint operators in quantum mechanics. 
Our operator algebras are assumed to be closed under the adjoint op­
eration and the weak operator topology, and such an operator algebra 
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is called a von Neumann algebra. On the Hilbert space on which these 
operators act, we also assume to have a projective unitary representa­
tion of the spacetime symmetry group. Thus one quantum field theory 
is described with a Hilbert space, a family of von Neumann algebras 
parameterized by spacetime regions and a projective unitary represen­
tation of the spacetime symmetry group, subject to certain set of phys­
ically natural axioms. We also have a distinguished vector representing 
a vacuum on this Hilbert space. 

We review conformal (quantum) field theory before dealing with 
superconformal quantum field theory. In conformal field theory, we work 
on a (I+ I)-dimensional Minkowski space with conformal symmetry, 
which is explained below. Then we can restrict the theory onto the two 
light rays {(x, t) I x = ±t} and their compactifications, where x, tare the 
space and time coordinates of the (I+ I)-dimensional Minkowski space. 
In this way, we have two restricted theories and each of such two is 
called a chiral conformal field theory. An operator algebraic formulation 
of a chiral conformal field theory is given as follows. (See [24] for a 
more precise formulation. Also see [25]for a formulation on the (I+ I)­
dimensional Minkowski space and the exact meaning of the "restriction" 
procedure. A boundary conformal field theory can be studied in a similar 
framework (34, 29]. See [9] for other aspects of conformal field theory 
including more physical discussions.) 

Now the space and time are mixed and compactified into a one­
dimensional circle 8 1 • A spacetime region is an interval I which is a 
non-empty, non-dense, connected open subset of 8 1 • We have a corre­
sponding von Neumann algebra A(I) for each such interval I, all acting 
on the same Hilbert space. 

We explain basic axioms as follows. 
If we have a larger spacetime region, we expect to have more ob­

servables, hence a larger operator algebra. That is, for intervals h c I 2 , 

we assume to have A(h) C A(I2). This axiom is called isotony. 
On the (1 +!)-dimensional Minkowski space, if we have two space­

like separated regions, we have no interactions between them, so two 
observables on two respective regions commute. In a chiral conformal 
field theory after restriction on a compactified light ray, this condition 
takes an even simpler form. That is, when we have two disjoint intervals 
h, I2, our axiom requires [A(h), A(I2 )] = 0, where the bracket means 
the commutator. This axiom is called a locality axiom. 

Our "spacetime symmetry" group is the conformal group Diff(S1 ), 

that is, the group of orientation group preserving diffeomorphisms on 
8 1. We assume to have a projective unitary representation U of this 
group on the Hilbert space satisfying U(g)A(I)U*(g) = A(gi), where gi 
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is the image of the interval I under the diffeomorphism g. We further 
assume to have U(g)xU*(g) = x for x E A(I) if g acts as the identity 
on I. This axiom is called conformal covariance. 

We further assume that U restricts to a unitary representation of 
the Mobius group Mob, identified with P SL(2, ~), and this restriction 
has a unit invariant vector n, unique up to phase. This vector n is 
called a vacuum vector. The restriction of U to the rotation group gives 
a one-parameter unitary group. We assume its generator is positive. 
This axiom is called positivity of the energy. 

The above net is sometimes called bosonic. We now modify the 
above definition and present a fermionic counterpart to deal with a su­
persymmetric theory. 

First we denote then-cover of Mob by Mob(n) for n = 1, 2, 3, ... , oo. 
Note that Mob(z) and Mob(oo) are naturally identified with S£(2,~) and 
the universal cover of Mob, respectively. 

We now assume to have a Z2-grading r on the Hilbert space sat­
isfying rn = n, r 2 = Id, and r A(I)r = A( I) for all intervals I. We 
write 'Y for Ad(r) and for each element x in some A(I), we say that 
x is bosonic [fermionic] if 'Y(x) = x ['Y(x) = -x], respectively. We can 
naturally define the graded commutator and still use the same symbol 
[x, y] for it. 

Now the locality axiom takes the form [x, y] = 0 for x E A( h), 
y E A(I2 ) with h n Iz = 0, whiCh is the formula as before, but now we 
rnean the graded commutator by [x, y]. This is called graded locality. 

Note that for a graded local net A, the fixed point subnet A~', called 
the Bose subnet of A, satisfies the usual locality. 

Let Diff(2)(S1 ) and Di££}2)(81 ) be the 2-cover of Diff(S1 ) and the 
connected component of the identity of the preimage of Diffr(S1) in 
Diff(Z) ( 8 1), respectively. (Here the group Diff r ( 8 1 ) consists of orienta­
tion preserving diffeomorphisms acting trivially on the complement of 
I.) Then the conformal covariance for a graded local net means the 
following. 

We have a projective unitary representation U extending the uni­
tary representation of Mob(2) satisfying U(g)A(I)U*(g) = A(gi) for 
g E Diff(2)(S1 ) and U(g)xU*(g) = x for x E A(I') and g E Di££}2)(81 ). 

Here g represents the image of g under the natural quotient map onto 
Diff(S1 ), and I' is the interior of the complement of I. 

A graded local net with conformal covariance is called a Fermi con­
formal net. This is our mathematical object to study. 

Now at the end of this section, we briefly mention a theory of vertex 
operator algebra, which is another mathematical framework to study a 
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chiral conformal field theory. A vertex operator is the name for a certain 
operator-valued distribution, and this notion gives a direct algebraic ax­
iomatization of Wightman fields ori the circle 8 1 . See [14] for a detailed 
treatment. A discovery of mysterious relations between sporadic finite 
simple groups and elliptic modular functions predates this theory. Af­
ter the initial discovery due to McKay, a general conjecture called the 
Moonshine conjecture was established by Conway and Norton [8]. The 
theory of vertex operator algebras gives a realization of a new predicted 
algebraic structure and the Moonshine conjecture has been solved by 
Borcherds [2]. 

One local conformal net and one vertex operator algebra are both 
supposed to describe one conformal field theory, so we should have a 
mathematical theorem on a bijective correspondence between local con­
formal nets and vertex operator algebras, at least under natural extra 
assumptions on some kind of finiteness. The Hilbert space for a local 
conformal net should be a completion of the underlying space of a vertex 
operator algebra, and the von Neumann algebras should be generated 
by smeared vertex operators. However, no such theorems have been 
known so far, unfortunately. Still, if one has an example, a construc­
tion or a technique for one of them, it is often possible to "translate" 
it to the other side. (Note that unitarity, existence of a positive defi­
nite inner product on the underlying space, is an essential part of the 
operator algebraic approach and we cannot drop this assumption, while 
vertex operator algebras without unitarity have been often studied. So 
the "translation" is actually for local conformal nets and unitary vertex 
operator algebras.) See [27, 23] for more on relations between the two 
approaches. For example, we have a construction of an operator alge­
braic counterpart of the Moonshine vertex operator algebra [27] based 
on [10]. 

There is also a super version of vertex operator algebras. See [20] 
for a recent progress in this approach. 

§2. Representation theory of Fermi nets 

Representation theory is a very useful tool to study local/Fermi con­
formal nets. This is one of the main advantages of the operator algebraic 
approach, while the counterpart for vertex operator algebras, theory of 
modules, has a more complicated general theory. For a Fermi confor­
mal net A, a slight adaptation of the classical Doplicher-Haag-Roberts 
theory [11] gives a framework to study representations as follows. 

A DHR representation of a net A is a pair of a family of represen­
tations >.1 of A(I) on the same Hilbert space with >.h IA(Il)= >.h for 
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h c h and a projective unitary representation U>. of the universal cover 
Diff( 00 ) ( 8 1) of Diff ( 8 1) on the same Hilbert space with 

>-.9r(U(g)xU*(g)) = U>.(g)>-.r(x)ung), 

for x E A( I) and g E Diff(oo) (81). 
For the net A, we can define a certain universal C*-algebra C*(A) 

generated by A(I)'s with I C 8 1. Then any DHR representation ).. is 
given, up to unitary equivalence, by a certain type of endomorphism, 
called a localized endomorphism, of C*(A), as long as the Hilbert space 
involved is separable. Then we can compose such endomorphisms and 
this composition gives a right notion of a tensor product for representa­
tions. (Note that there are no obvious notions of a tensor product for 
representations of a family of algebras.) If we have a DHR representa­
tion of a Fermi conformal net A, then it gives a DHR representation of 
its Bose subnet A'Y. 

Now we recall some results on representation theory for local confor­
mal nets A. The tensor product operation of representations makes the 
representation category a tensor category. It is known that the tensor 
category is actually braided [13]. Fix an interval I. Then a localized 
endomorphism).. actually gives an endomorphism of A(I) (after a possi­
ble change of representative within the unitary equivalence class). Then 
for the inclusion >-.(A(I)) C A(I), we have a notion of the Jones in­
dex [22], which measures the relative size of A(I) with respect to the 
subalgebra >-.(A(I). The index [A(I) : >-.(A(I))] takes a real value in 
the interval [1, oo] and this number is independent of I. (Actually, the 
von Neumann algebra A(I) is a so-called type III factor, and we need 
Kosaki's version of the Jones index.) A von Neumann algebra is called 
a factor when its center is trivial and now each A(I) is automatically 
a factor. The subalgebra >-.(A(I)) is automatically isomorphic to A(I), 
so in particular it is also a factor, and called a subfactor. Jones [22] 
initiated a systematic study of theory of subfactors. Longo [30, 31] has 
shown that the square root of the Jones index [A(I) : >-.(A(I))] is equal 
to the statistical dimension of ).., which plays the role of a dimension of 
the representation in the Doplicher-Haag-Roberts theory. See [12] for 
a general theory of subfactors and its connection to various topics such 
as quantum invariants in 3-dimensional topology. 

In some very nice situation, we have only finitely many unitary 
equivalence classes of DHR representations of a local conformal net A 
and all have finite statistical dimensions. A similar situation has been 
well studied in theory of quantum groups and the terminology "rational" 
has been used to express this situation. In [28], we have introduced a 
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notion called complete rationality as an operator algebraic counterpart 
of this rationality. Then we have proved the following theorem [28, 
Theorem 33]. 

Theorem 1. Let A be a local conformal net on the circle satisfying 
the following conditions. 

(1) 
(2) 

(3) 

It has a split property. 
The Jones index for a subfactor A(h)V A(I3) C (A(Iz)VA(I4))' 
is finite, where we split the circle into four intervals h, ]z, h, I4 
in this order, say, counterclockwise. 
It is strongly additive. 

Then the number of irreducible DHR representations of A, up to unitary 
equivalence, is finite and all have finite dimensions. Furthermore, the 
braiding on these representations is nondegenemte. 

When we have the above three conditions for A, we say that A 
is completely rational. The third assumption on strong additivity has 
been later shown to be redundant in [35]. The first condition, the split 
property, is known to hold if the vacuum character Tr(exp -tL0 ) is con­
vergent for all t > 0, where L 0 is the conformal Hamiltonian, so the main 
condition of complete rationality is the finiteness of the Jones index. The 
nondegeneracy of the braiding of the representation category is called 
modular in the sense of Turaev [37]. This notion plays an important role 
in theory of quantum invariants in 3-dimensional topology [37]. Rehren 
[36] showed that we have a unitary representation of S£(2, Z) for such 
a modular tensor category where the dimension of the representation 
is the number of unitary equivalence classes of irreducible representa­
tions. That is, this representation arises from the structure of braiding. 
In all the known concrete examples, this representation coincides with 
the one arising from linear fractional transformations on the characters 
of the representations, which has a well-established general theory for 
vertex operator algebras as in [21, 45]. In [26], we have called a local 
conformal net with such coincidence modular, but we do not have a nice 
characterization of such local conformal nets. The action of S£(2, Z) is 
very important in many aspects of conformal field theory, and its role 
in classification theory, as we will see below, is one of such examples of 
this importance. 

We have a natural notion of an extension A(I) c B(I) for local 
conformal nets. Such a situation was first systematically studied in [33] 
under the name of nets of subfactors. An extension with (VI A( I))' n 
B(Io) = <C, for some, hence all I0 , is said to be irreducible. In a usual 
representation theory for groups, we have a notion of an induced repre­
sentation for a subgroup H c G, which produces a representation of the 



Superconformal field theory 75 

larger group from one for the smaller group. For a net of subfactors, we 
have a similar notion called an a-induction. For a DHR representation 
,\ of A, we have an a-induction a>. of .A, but this induction procedure 
depends on a choice of braiding (of ,\ and the so-called dual canonical 
endomorphism of the extension), so we use a symbol a~ to denote the 
choice of over/under crossing. Furthermore, the induced "representa­
tion" is not a genuine DHR representation in general, but a so-called 
soliton representation. (Actually, this a-induction is more similar to re­
striction rather than to induction in the classical situation, but we use 
the name a-induction.) This a-induction was first defined in [33], and 
many interesting properties and examples were given in [39]. We have 
unified this theory of a-induction in [1] with Ocneanu's graphical cal­
culus. In particular, we have shown the following theorem [1, Theorem 
5.7]. Actually, this holds for a more general braided tensor category, as 
explained in [1]. 

Theorem 2. Let Z >.,f.L = dim Hom( at, a-;;). Then the matrix Z is 
a modular invariant, which means that the matrix Z is in the commutant 
of the image of the unitary representation of SL(2, Z) arising from the 
braiding of the DHR representations of the local conformal net, each 
Z>.,f.L is a nonnegative integer, and Zoo is 1, where 0 denotes the vacuum 
representation. 

If a completely rational local conformal net A is given, its any ex­
tension B produces a modular invariant matrix Z through the above 
procedure. The number of possible matrices Z is always finite and often 
very small for a given modular tensor category. Together with Longo's 
notion of Q-system [32, 33], we can, in principle, classify all (irreducible) 
extensions B of A. 

§3. Classification results for superconformal nets with c < 3/2 

First we review our previous classification result for local conformal 
nets with small central charge [24]. 

When we have conformal covariance for a local net A, the Hilbert 
space also has a unitary representation of the Virasoro algebra, which 
is an infinite dimensional Lie algebra generated by Ln, n E Z, and one 
central element c with the relations 

c 3 
[Lm, Ln] = (m- n)Lm+n + 12 (m - m)bm+n,O· 

It has been known [15] that the central element c is mapped to a posi­
tive scalar for an irreducible representation and the value is of the form 
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1- 6/m(m + 1), m = 3, 4, 5, ... , if it is less than 1. The unitary rep­
resentation of the Virasoro algebra arising from conformal covariance is 
not irreducible in general, but still one has that the central element c 
is mapped to a scalar. In this way, we obtain a numerical invariant, 
called the central charge, of a local conformal net A. This number is 
also denoted by c. The representation of the Virasoro algebra produces 
a local conformal subnet of A, called the Virasoro net, and if c < 1, then 
one can show that A is an irreducible extension of the Virasoro net. In 
this way, a classification of A with c < 1 reduces to a classification of 
irreducible extensions of the Virasoro nets with c < 1. 

The Virasoro nets can be also realized with the coset construction 
[18]. In the operator algebraic framework, the coset construction has 
been studied well by Xu [41, 42, 43]. The case of the Virasoro net 
with c < 1 uses Wassermann's construction of the local conformal nets 
corresponding to the Wess-Zumino-Witten models SU(2)k [38]. By 
using another paper of Xu [40] together, one can show that the Virasoro 
nets with c < 1 are completely rational in the sense of [28]. The modular 
invariant matrices for the representation categories of these Virasoro 
nets have been classified by [5], and we have shown in [24] that the 
so-called type I modular invariant matrices in the classification list of 
[5] are in a bijective correspondence to the local conformal nets with 
c < 1. (For uniqueness of the local conformal net corresponding to each 
modular invariant matrix, also see [25].) In this way, we have obtained 
a first classification result in algebraic quantum field theory as follows 
[24, Theorem 5.1]. 

Theorem 3. The following is a complete list of the local conformal 
nets on the circle with central charge less than 1. 

(1) The Virasoro nets with c = 1- 6/m(m- 1). 
(2) The index 2 extensions of the Virasoro nets with c = 1 -

6/m(m- 1), where m = 1, 2 mod 4. 
(3) The four exceptionals at c = 1 - 6/m(m - 1), where m = 

11, 12, 29, 30. 

The four exceptionals in the list arise from the modular invariants la­
beled with pairs of the Dynkin diagrams (A 10 , E5), (E6, A12), (A2s, Es), 
(Es, A3o). Three of them with m = 11, 12, 30, can be constructed with 
another known construction, the coset construction, but the other one 
with m = 29 does not seem to arise from any other known constructions. 
This new construction has been generalized as a mirror extension [44]. 

The vertex operator algebras corresponding to the Virasoro nets 
with c < 1 and their extensions of index 2 are well-known. A result of 
Huang, Kirillov and Lepowsky on extensions of vertex operator algebras 
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ensures that we do have vertex operator algebras corresponding to the 
four exceptionals, including the one at m = 29, but we do not have a 
good understanding on what it really is. 

Now we work on superconformal nets. As a "super" version of the 
Virasoro algebra, we have two super Virasoro algebras and they are the 
super Lie algebras generated by even elements Ln, n E Z, odd elements 
Gr, and a central even element c, satisfying the relations, 

[Lm, Ln] = (m- n)Lm+n + 1c2 (m3 - m)Om+n,o, 

[Lm, Gr] = (~- r) Gm+n 

[Gr, Gs] = 2Lr+s + ~. (r2 - ~) Or+s,o, 

where we haver E Z + 1/2 in the Neveu-Schwarz case and r E Z in 
the Ramond case. The corresponding super Lie algebras are called the 
Neveu-Schwarz and Ramond algebras. We can define the central charge 
again for representations, and now the discrete part of the possible values 
is up to the value 3/2. Again by using a (different) coset construction 
involving the SU(2)k-models, one can construct the super Virasoro nets 
with c < 3/2, and again, their Boson parts are completely rational, so 
we can apply the above procedure to classify irreducible extensions. We 
now define such irreducible extensions to be superconformal nets with 
c < 3/2. (The discrete part of the local conformal nets is given by the 
condition c < 1 as above. Now the discrete part of the superconformal 
nets is given by the condition c < 3/2, since we have contribution 1 from 
a boson and 1/2 from a fermion.) 

We first need a classification of modular invariant matrices for the 
modular tensor categories arising from the representations of the Boson 
parts of the super Virasoro nets with c < 3/2. Such a classification list 
was proposed by Cappelli [4], and certain completeness of the classifica­
tion list has been shown in [16, 17] for the case without so-called fixed 
point resolution. The modular tensor categories for the case having the 
fixed point resolution have been studied in [42], so with this result, one 
can extend the method of [16, 17] to show completeness of the classifi­
cation list of the modular invariant matrices. In this way, we reach a 
complete classification of superconformal nets with c < 3/2 as follows 
[6, Theorem 36]. (We first classify extensions of the Boson parts of the 
super Virasoro nets and deal with Fermionic extensions after that.) 

Theorem 4. The following gives a complete list of superconformal 
nets with c < 3/2, together with the labels for the modular invariants. 



78 Y. Kawahigashi 

(1) The super Virasoro net with c = ~ ( 1- m(: + 2)), labeled 

(Am-1, Am+l)· 
(2) Index 2 extensions of the above {1), labeled (A4m'-b D2m'+2), 

(D2m'+2, A4m'+3}· 
(3) Six exceptionals labeled (Ag, E6), (E6, A13), (A27, Es), (Es, 

A31), (D6, E6), (E6, Ds). 

Again some of the exceptionals can be realized with the coset con­
struction, and others with the :r:uirror extension of [44]. 

At the end, we mention that some connections to noncommutative 
geometry of Connes [7] have been expected and one possible direction is 
given as follows [26, Theorem 30]. 

Theorem 5. Let A be a Fermi conformal net and >. a supersym­
metric irreducible representation of A. Then 

ind(Q.>.+) = d(p) L <I>v(c(p, v)*t:(v, p)*)d(v)null(v, c/24), 
VJiA vE!n 

where p is one of the two irreducible components of >.b. 

Here d(p) is the dimension of p, /-LA is the J.L-index of A, which is the 
square sum of the dimensions of all irreducible representations of the net 
A. A supersymmetric representation >. means that we have 

c 2 
H>.- 24 = Q>., 

where H>. is the conformal Hamiltonian and Q>. is some odd selfadjoint 
operator called the supercharge and ind(Q,+) is the Fredholm index of 
the upper off diagonal part of Q>.. The symbol null(v, h) denotes the 
dimension of the kernel of Hv -h. The set vt is the set of u-Fermi 
irreducible sectors of Boson part Ab. A sector v of Ab is said to be 
u-Fermi if the monodromy of v and u is trivial, where u is the sector of 
Ab dual to the grading of A. The symbol <I>v denotes the left inverse of 
v and c means the braiding. Note that <I>v(c(p, v)*t:(v, p)*) is a complex 
number. 

In this theorem, the Jones index and the Fredholm index are related, 
while these have been unrelated despite their common name. 

Also see [3] for a recent, but different treatment of supersymmetry 
within algebraic quantum field theory. 
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