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Quillen's relative Chern character 

Paul-Emile Paradan and Michele Vergne 

Abstract. 

In the first part of this paper we prove the multiplicative property 
of the relative Quillen Chern character. Then we obtain a Riemann­
Roch formula between the relative Chern character of the Bott mor­
phism and the relative Thorn form. 
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The relative Chern character was defined by Atiyah and al. in [2, 5] 
as a map 

(1) Chxw : K 0 (X, Y) ______, H*(X, Y). 

Here Y c X are finite CW-complexes, K 0 (X, Y) is the relative K-group 
and H*(X, Y) is the singular relative cohomology group. 
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The relative Chern character enjoys various functorial properties. 
In particular, Chis multiplicative: the following diagram 

(2) K 0 (X, Y) 

! ~hX\Y 
H*(X, Y) X 

! Chx\Y' 

H*(X, Y') 

Chx\YuY'! 

~ H*(X,YUY') 

is commutative. Here Y, Y' c X are finite CW-complexes and 8 and 
<> denote the products. This property was extended to the case where 
X is a paracompact topological space and Y any open subset of X by 
Iversen in [14] (see also [12, 13]). Iversen deduces the existence of the 
local Chern character from functorial properties, but his construction is 
not explicit. 

In this article, we work in the context of manifolds and differen­
tial forms. Indeed, in this framework, Quillen [19] constructed a very 
natural de Rham relative cohomology class associated to a smooth mor­
phism between vector bundles, that we call the relative Quillen Chern 
character. Let N be a manifold, and let 0' : £+ ----+ £- be a morphism of 
complex vector bundles over N. Let Supp(O') be the support of 0' : it is 
the set of points n E N where 0'( n) is not invertible. We do not suppose 
that Supp(O') is compact. Quillen [19] associates to 0' a couple (a, f)) of 
differential forms, where o: is given by the usual Chern-Weil construc­
tion, and f) is also constructed a la Chern-Weil, via super-connections. 
The form o: is a closed differential form on N representing the difference 
of Chern characters Ch(£+)- Ch(£-) E 1-{*(N), and f) is a differential 
form on N \ Supp(O') such that 

o:IN\Supp(o-) = df). 

The couple ( o:, f)) defines then an explicit relative de Rham coho­
mology class 

Chrei(O') E 1-l*(N, N \ Supp(O')). 

The main purpose of this note is to show that Quillen's relative 
Chern character Chrel is multiplicative. If 0'1, 0'2 are two morphisms on 
N, then the product 0'1 8 0'2 is a morphism on N with support equal to 
Supp(0'1) n Supp(0'2). We prove in Section 4 that the following equality 

(3) 

holds in 1-l*(N, N \ Supp(0'1 8 0'2)). 
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Intuitively (and true in many analytic cases), the relative Chern 
class could also be represented as a current supported on Supp(O"), but 
currents do not usually multiply. Thus another procedure, involving a 
choice of partition of unity, is needed to define the product o of relative 
classes in de Rham relative cohomology. The multiplicativity property 
(3) can also be deduced from the fact that Quillen's Chern character 
gives an explicit representative of Iversen's local Chern character, due 
to Schneiders functorial characterization oflversen's class (see [20]). Our 
proof does not use Iversen's construction, and our explicit argument can 
be extended to the case of equivariant Chern characters with generalized 
coefficients (see [18]). 

When Supp( O") is compact, there is a natural homomorphism from 
1-l*(N, N \ Supp(O")) into the compactly supported cohomology algebra 
1-l~(N) and the image of the Quillen relative Chern character ChreJ(O") 
is the Chern character Chc(O") with compact support. The equality (3) 
implies the relation 

This last relation is well known and follows also from the fact that Chc ( O") 
is the Chern character of a difference bundle on a compactification of 
N. 

As an important example, we consider O"b the Bott morphism on a 
complex vector bundle O"b : A +v ---+ A -v over V, given by the exterior 
product by v E V. This morphism has support the zero section M of V. 
It leads to a relative class Chrei(O"b) in 1-l*(V, V \ M). One can give a 
similar construction of the relative Thorn form Threl (V) E 1-l* (V, V \ M) 
of the vector bundle V ---+ M, using the Berezin integral instead of a 
super-trace. The explicit formulae for ChreJ(O"b) and Threi(V) allows 
us to derive the "Riemann-Roch" relation between these two relative 
classes at the level of differential forms. Our proof follows the same 
scheme than the proof of the relation between the Chern character and 
the Thorn class with Gaussian looks constructed by Mathai-Quillen [17]. 

Acknowledgements: We are grateful to M. Karoubi, J. Lannes, 
P. Schapira and J.P. Schneiders for enlightening discussions on these 
topics. 

We wish to thank the referee for his careful reading, and suggestions 
for improvements. 
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§2. Cohomological structures 

Let N be a manifold. We denote by A*(N) the algebra of differential 
forms on Nand by H*(N) the de Rham cohomology algebra of N. We 
denote by H~(N) its compactly supported cohomology algebra. 

In this paper, we work with differential forms with complex or real 
coefficients, depending on the context. In order to simplify the notation, 
we use the same notation for A*, H* and 1{~ viewed as complex or real 
vector space : we speak of OC-differential forms, OC-cohomology classes or 
OC-algebras with 

OC E {IR, <C}. 

2.1. Relative cohomology 

Let F be a closed subset of N. To a cohomology class on N vanishing 
on N \ F, we associate a relative cohomology class. Let us explain the 
construction (see [9]). Consider the OC-complex A*(N, N \F) with 

and differential drel ( o:, /3) = (do:, o: I N\F - d/3). 

Definition 2.1. The cohomology of the complex (A*(N, N\F), drei) 
is the relative OC-cohomology space H*(N, N \F). 

The class defined by a dre1-closed element (o:, /3) E A*(N, N\F) will 
be denoted by [o:, /3]. There is a natural OC-linear map H*(N, N \F) ---+ 

H*(N). 
If F1 and F2 are closed subsets of N, there is a natural product 

(5) 1i*(N,N\FI)x1i*(N,N\F2 ) -+ H*(N,N\(F1 nF2)) 

(a, b) f----+ aob, 

which is OC-bilinear. 
We will use an explicit formula foro that we recall. Let U1 := N\F1 , 

U2 := N\F2 so that u := N\ (F1 nF2) = U1 uu2. Let <1> := (<1>1, <1>2) be 
a partition of unity subordinate to the covering U1 U U2 of U. With the 
help of <1>, we define a bilinear map Oq,: A*(N, N \ F 1) x A*(N, N \ F2) 
---+ A* (N, N \ (F1 n F2)) as follows. For ai := (o:i, /3i) E Ak, (N, N \ Fi), 
i = 1, 2, we define 

a1 Oq, a2 := ( 0:1 Ao:2, <1>1/31 Ao:2 + ( -1 )k' 0:1 A <l>2/32- ( -1 )k 1 d<l>1 A/31 A/32). 

Remark that all forms <1>1/31 A o:2, 0:1 A <1>2/32 and d<l>1 A /31 A /32 
are well defined on U1 U U2. Indeed the support of the form d<l>1 is 
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contained in U1 n U2, as dci>1 = -d<I>2. So a1 o<l> a2 E A.k1 +k2 (N, N \ 
(F1 n F2)). It is immediate to verify that drei(a1 0<1> a2 ) is equal to 
(drelal) 0<1> a2 + ( -1)k1 al 0<1> (drela2)· Thus o<l> defines a bilinear map 
1-l*(N, N \ F1) x 1-l*(N, N \ F2) -+ 1-l*(N, N \ (F1 n F2)). 

Let us see that this product do not depend on the choice of the 
partition of unity. If we have another partition <I>' = (<I>~, <I>~), then 
<l>1- <I>~ = -(ci>2- <I>~). It is immediate to verify that, if drei(a!) = 0 
and drei(a2) = 0, one has 

a1 0<1> a2 - a1 O<I>' a2 = drei ( 0, ( -1)k1 ( <l>1 - <I>D.B1 1\ .82). 

So the product on the relative cohomology spaces will be denoted by o. 

2.2. Inverse limit of cohomology with support 

Let F be a closed subset of N. We consider the set FF of all open 
neighborhoods U of F which is ordered by the relation U :::; V if and 
only if V C U. For any U E FF, we consider the OC-algebra A.iJ(N) of 
differential forms on N with support contained in U (that is vanishing 
on a neighborhood of N \ U): this algebra is stable under the de Rham 
differential d, and we denote by 1iiJ ( N) the corresponding cohomology 
OC-algebra. If U:::; V, we have then an inclusion map A.V(N) '----> A.iJ(N) 
which gives rise to a OC-linear map fu,v: 1iv(N)-+ 1-liJ(N). 

Definition 2.2. We denote by HF(N) the inverse limit of the in­
verse system (1-liJ(N), fu,v; U, V E FF ). It is a OC-vector space. 

If F1, F2 are two closed subsets of N, there is a OC-bilinear map 

(6) 

which is defined via the wedge product on forms. 

Now we define a OC-linear map from 1-l*(N, N \F) into 1-l}(N). 
Let ,B E A.*(N \F). If x is a function on N which is identically 1 

on a neighborhood ofF, note that dx,B defines a differential form on N, 
since dx is equal to 0 in a neighborhood of F. 

Proposition 1. For any open neighborhood U ofF, we choose x E 
C00 (N) with support in U and equal to 1 in a neighborhood of F. 

• The map 

(7) 

defines a homomorphism of complexes pfr : A.*(N, N \F)-+ A.iJ(N). 
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Let a E A*(N) be a closed form and (3 E A*(N \F) such that 
aiN\F = d(3. Then pMa, (3) is a closed differential form supported in 
u. 

• The cohomology class of pt).(a, (3) in H[;(N) does not depend on 
X· We denote this class by Pu(a,(3) E 'H[;(N). 

• For any neighborhoods V C U ofF, we have !u,v o Pv = Pu. 

Proof. The equation pt). o drel = d o pt). is immediate to check. In 
particular pt).(a,(3) is closed, if drel (a,(3) = 0. This proves the first 

point. For two different choices X and x', we have pt).(a, (3) -p~ (a, (3) = 
d ( (x- x')f3). Since X - x' = 0 in a neighborhood of F, the term 
(x- x')f3 is a well defined element of A[;(N). This proves the second 
point. Finally, the last point is immediate, since pt).(a, (3) = p~(a, (3) 
for X E C00 (N) with support in V C U. Q.E.D. 

Definition 2.3. Let a E A* (N) be a closed form and (3 E A* (N\F) 
be such that aiN\F = d(3. We denote by PF(a, (3) E HF(N) the element 
defined by the sequence Pu(a, (3) E H[;(N), U E FF. We have then a 
morphism of IK-vector spaces 

(8) PF : H*(N, N \F)---+ H}c(N). 

Proposition 2. If F1 , F2 are closed subsets of N, then we have 

(9) 

for any ak E 'H*(N, N \ Fk)· 

Proof. Let W be a neighborhood of F1 n F2. Let V1, V2 be re­
spectively neighborhoods of F1 and F2 such that V1 n V2 c W. Let 
Xi E C00 (N) be supported in Vi and equal to 1 in a neighborhood of 
Fi. Then X1X2 is supported in W and equal to 1 in a neighborhood of 
F1 n F2. Let <P1 + <P2 = 1N\(F1 nF2 ) be a partition of unity relative to 
the decomposition N \ (F1 n F2) = N \ F1 UN\ F2. 

Then one checks easily that 

is equal to 

for dre1-closed forms ai = (ai,f3i) E Aki(N,N \ Fi)· Remark that 
<P1f31f32 is defined on N \ F2, so that dx2 ( <P1(31f32) is well defined on 
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N and supported in V2. Thus the form ( -l)k1 +1x1dX2(<P1,61,62) + 
( -l)k1 X2dX1 (,61 <l>2,62) is well defined on N and supported in V1 n V2 c 
W. This proves that Pp1 (al) l\pp2 (a2) = PF1 np2 (al oa2). Q.E.D. 

The map PF : H*(N, N \F) -+ HF(N) factors the natural map 
H*(N, N \F)-+ H*(N). 

2.3. Integration 

We consider first the case where F is a compact subset of an oriented 
manifold N. Let H*(N, N \F) be the relative JK-cohomology group. 
Let 1r : N -+ { •} be the projection to the point. We will describe an 
integration morphism n* : H*(N, N \F) -+ JK. 

We have a JK-linear map 

(10) Pc: H*(N, N \F)--+ H~(N) 

which is equal to the composition of PF with the natural map H*p(N) -+ 

H~ ( N). If a E H* ( N, N \F) is represented by the dret-closed differential 
form (a,,6) E A*(N,N\F), the class pc(a) E H~(N) is represented by 
the differential form p~(a, ,6) = xa + dx,6 where x is a function with 
compact support. 

Definition 2.4. If a E H*(N, N \F), then n*(a) ElK is defined by 

If N is compact, the elements a and Pc(a) coincide in 'H*(N), hence 
1r * (a) = IN a. When N is non-compact, an interesting situation is the 
case of a relative class a = [a, ,6] where the closed form a is integrable. 
The two terms 1r * (a) and IN a are defined. However, it is usually not 
true that they coincide. An interesting case is the relative Thorn form 
Threl (V) of a real oriented vector space V (see Section 6. 2). Here N = V, 
F = {0}, and the relative class Thret(V) is represented by [0, ,6] with ,6 
a particular closed real form on V \ { 0}. Here the integral of a = 0 is 
equal to 0, while 1r * (Threl (V)) = 1. See Example 5.3.2. 

In some important cases studied in Subsection 5.2.2, we will however 
prove that the integral of Pc(a) is indeed the same as the integral of a. 
As we have 

(11) 

(x- l)a + dxfJ 

d((x -1),6), 
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the comparison between the integral ofpc(a) and the one of a will follow 
from the careful study of the behavior on N of the form (X- 1),6. 

We consider now the case of an oriented real vector bundle 7r : V --> 

M. We will describe a push-forward JK-linear map 7r* : 1i*(V, V \ M) --> 

1i*(M). 
Let Afiber cpt (V) be the lK-subalgebra of A* (V) formed by the dif­

ferential forms which have a compact support in the fibers of Jr. Let 
1ifiber cpt (V) be the corresponding JK-cohomology space. We have a mor­
phism ffiber : 1ifiber cpt (V) __, 1{* ( M) of integration along the fibers. 

We define a JK-linear map 

(12) Pfiber cpt : 1{* (V' V \ M) --+ 1ifiber cpt (V) 

by setting that Pfiber cpt([a, ,6]) is the class represented by xa + dx,6, 
where x is a function on V with compact support in the fibers, and 
equal to 1 in a neighborhood of the zero section. 

Definition 2.5. If a E 1i*(V, V \ M), the class 1r*(a) E 1i*(M) is 
defined by 

1r*(a) := { Pfiber cpt(a). 
}fiber 

In Section 6.2, we will describe a relative Thorn class Threi(V) which 
is characterized by the fact that 7r*(Thre1(V)) = 1 in 1i*(M). 

§3. Quillen's relative Chern Character 

In this section, we work with differential forms with complex coeffi­
cients. 

3.1. Chern form of a super-connection 

For an introduction to the Quillen's notion of super-connection, see 
[7]. 

If & is a complex vector bundle on a manifold N, we denote by 
A*(N, End(&)) the complex algebra of End( E)-valued differential forms 
onN. 

Let \7 be a connection on &. The curvature \72 of \7 is a End(&)­
valued two-form on N. Recall that the Chern character of & is the 
de Rham cohomology class of the closed differential form Chern(&) := 

Tr( exp( 2i:2
)). Here we simply denote by Ch( &) E 1{* ( N) the de Rham 

cohomology class of Tr(exp(\72 )). We will call it the (non normalized) 
Chern character of & . 
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More generally, let £ = £+ EB &- be a Z2-graded complex vec­
tor bundle on a manifold N. Taking in account the Z2-grading of 
End(£), the algebra A*(N,End(£)) is a Z2-graded algebra: for example 
[A*(N,End(£))]+ = A+(N,End(£)+) EB A-(N,End(£)-). The super­
trace on End(£) extends to a C-linear map Str : A*(N, End(£)) --t 

A*(N). 
Let A be a super-connection on £ and F = A 2 be its curvature, an 

element of [A*(N,End(£))]+. The Chern form of (£,A) is the closed 
differential form 

Ch(A) := Str(eF). 

We will use the following transgression formulaes. 

Proposition 3. • Let At, fortE ffi., be a one parameter family of 
super-connections on E, and let ftAt E [A*(N, End(£))]-. Let Ft be 
the curvature of At. Then one has 

(13) 

• Let A(s, t) be a two-parameter family of super-connections. Heres, t E 

K We denote by F(s, t) the curvature of A(s, t). Then: 

:s Str ((!A(s,t)) eF(s,t))-! Str ((:sA(s,t)) eF(s,t)) 

= d (11 Str ( ( :s A(s, t)) euF(s,t) (! A(s, t)) e(l-u)F(s,t) )du) . 

Proof. These formulae are well known, and are derived easily from 
the two identities: F = A2, and dStr(o:) = Str[A,o:] for any a: E 
A*(N,End(£)) (see [7]). Q.E.D. 

In particular, the cohomology class defined by Ch(A) in 1i*(N) is 
independent on the choice of the super-connection A on £. By definition, 

this is the Chern character Ch(£) of£. By choosing A= ( ~+ ;_ ) 

where V'± are connections on£±, this class is just Ch(£+)- Ch(£-). 
However, different choices of A define very different looking representa­
tives of Ch(£). 

3.2. Quillen's relative Chern character of a morphism 

Let £ = t:+ EB £- be a Z2-graded complex vector bundle on a mani­
fold Nand u: £+ --t £- be a smooth morphism. At each point n EN, 
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a(n) : E;i --+ E;; is a linear map. The support of a is the closed subset 
of N 

Supp(a) = {n EN I a(n) is not invertible}. 

Recall that the morphism a is elliptic when Supp(a) is compact: in 
this situation the data ( £+, E-, a) defines an element of the K 0- theory 
of N. 

In the following, we do not assume a elliptic. We recall Quillen's con­
struction [19] of a C-cohomology class Chrei(a) in 1i*(N, N \ Supp(a)). 
The definition will involve several choices. We choose Hermitian struc­
tures on £± and a super-connection A on E without 0 exterior degree 
term. 

We associate to the morphism a the odd Hermitian endomorphism 
of E defined by 

(14) ( 0 a* ) v,. = a 0 . 

Then v; = ( a~ a a~* ) is a non negative even Hermitian endomor­

phism of E. The support of a coincides with the set of elements n EN 
where the spectrum of v;(n) contains 0. 

Definition 3.1. Let E be a finite dimensional Hermitian vector 
space. If H is an Hermitian endomorphism of E and hE ~. we write 
H 2: h when (Hw, w) 2: hllwll 2 for any wE E. Then H 2: h if and only 
if the smallest eigenvalue of H is larger than h. 

Consider the family of super-connections 

(15) A""(t)=A+itv,., tER 

The curvature of A""(t) is the even element F(a, A, t) E [A*(N, End(£))]+ 
defined by: 

(16) F(a,A,t) = (itv,. +A)2 = -t2v; +it[A,v,.] +A2 • 

Here -t2v;_ is the term of exterior degree 0. As the super-connection A 
do not have 0 exterior degree term, both elements it[A, v,.] and A2 are 
sums of terms with strictly positive exterior degrees. For example, if A = 
V'+EBV'- is a direct sum of connections, then it[A, v,.] E A1 (N, End(£)-) 
and A2 E A 2 (N, End(£)+). 

Definition 3.2. We denote by Ch(a, A, t) the Chern form of(E, A""( 
t)), that is 

Ch(a, A, t) := Str { eF(a,A,t)) . 
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As ivu = ftAu(t), we have the transgression formula ftCh(o-, A, t) = 
-d( ry( a-, A, t)) with 

(17) ry(o-, A, t) :=- Str (ivu eF(u,A,t)) . 

After integration, the transgression formula gives the following equality 
of differential forms on N 

(18) Ch(A)- Ch(o-, A, t) = d (lot ry(o-, A, s)ds) , 

since Ch(A) = Ch(o-, A, 0). 

Proposition 4. Let K be a compact subset of N and let h 2: 0 be 
such that v';(n) 2: h when n E K. There exists a polynomial PJC of degree 
dimN such that, on K, 

(19) II eF(u,A,t) II ::::; PJC(t) e-ht2 for all t 2: 0. 

In particular, when K is contained inN\ Supp(a-), then Ch(o-, A, t) and 
ry(o-, A, t) tends to 0 exponentially fast when t tends to infinity. 

Proof. We work on End(E) 0 A, where A = EB~~N Ak(N). To 
estimate II eF(u,A,t) II, we employ Lemma 9 of the Appendix, with H = 
t2v';, and R = -it[A,vu]- A2 • Here R is a sum of End(E)-valued 
differential forms on N with strictly positive exterior degrees. Remark 
that R is a polynomial in t of degree 1. Lemma 9 gives us the estimate 
II eF(u,A,t) II ::::; P(IIRII) e-ht2 with Pan explicit polynomial with positive 
coefficients of degree dim N. Using the fact that IIRII ::::; at+ bonK, we 
obtain the estimate (19) on N. 

If K is contained in N\Supp(o-), we can find h > 0 such that v';(n) 2: 
h when n E K. Thus we see that II eF(u,A,t) II decreases exponentially fast, 
when t tends to infinity. Q.E.D. 

The former estimates allows us to take the limit t -+ oo in (18) on 
the open subset N \ Supp(o-). There, the differential form Ch(o-, A, t) = 
Str (eF(u,A,t)) tends to 0 as t goes to oo, and we get the following im­
portant lemma due to Quillen. 

Lemma 1. [19] We can define on N \ Supp( a-) the differential form 

(20) (3(o-, A) = 1= ry(o-, A, t)dt 

and we have Ch(A)IN\Supp(u) = d((3(o-,A)). 
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We are in the situation of Definition 2.1. The closed form Ch(A.) on 
N and the form {3(a, A.) on N \ Supp(a) define an even relative coho­
mology class [Ch(A.), {3(a, A)] in 1-l*(N, N \ Supp(a)). 

Proposition 5. • The class [Ch(A.),{3(a,A.)] E 7-l*(N,N\Supp(a)) 
does not depend on the choice of A., nor on the Hermitian structure on 
£. We denote it by Chrel(a) and we call it the Quillen Chern character. 

• Let F be a closed subset of N. ForsE [0, 1], let as : £+-+ &- be 
a family of smooth morphisms such that Supp( as) C F. Then all classes 
Chrel(as) coincide in 1-l*(N, N \F). 

Proof. Let us prove the first point. Let As, s E [0, 1], be a smooth 
one parameter family of super-connections on £ without 0 exterior degree 
terms. Let A.(s, t) =As+ itvu. Thus fsA.(s, t) = fsA.s and ftA(s, t) = 
ivu. Let F(s, t) be the curvature of A.(s, t). We have fs Ch(As) = d"(s 

with 'Ys = Str ( (fs As) eF(s,O)) and 1J(a, As, t) = - Str ( ( ftA.(s, t)) eF(s,t)). 

We apply the double transgression formula of Proposition 3, and we ob­
tain 

with 

v(s, t) 11 Str ( (! A(s, t)) euF(s,t) (! A.(s, t)) e(l-u)F(s,t) )du 

11 Str ( (!As) euF(s,t) ( ivu) e(l-u)F(s,t) ) du. 

For u, s E [0, 1] and t 2: 0, we consider the element of A*(N, End(£)) 
defined by I(u,s,t) = (f8 A.s)euF(s,t)(ivu)eC1-u)F(s,t). 

On a compact subset /C of N\F, a is invertible and we can find h > 0 
such that v;(n) 2: h when n E /C. We have uF(s, t) = -t2uv; - uRt,s, 
with Rt,s = -it[A.s, Vu ]-A~ which is a sum of terms with strictly positive 
exterior degrees. Remark that Rt,s is a polynomial of degree 1 in t. By 
the estimate of Lemma 9 of the Appendix, we obtain 

III(u, 8 ' t) II < II! Asllllvu 1111 euF(s,t) 1111 e(l-u)F(s,t) II 

< II! Asllllvull e-ht2 P(ui1Rt,sii)P((1- u)IIRt,sll) 

where P is a polynomial of degree less or equal to dim N. So, we can 
find a constant C such that IIJ(u, s, t)ll :-:; C(1 + t 2 )dimN e-ht2 for all 
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u, s E [0, 1] and t 2:: 0. Thus we can integrate Equation (21) in t, from 0 
to oo. Since - J0

00 ft[Str({f8 A(s, t)) eF(s,tl)]dt = "fs, it follows that 

(22) 

where E8 = J0
00 v(s, t)dt and v(s, t) = J0

1 I(u, s, t)du. The first equality 
in Equations (22) holds on N, and the second on N \ Supp(a). These 
equations (22) exactly mean that 

So the cohomology class [Ch(A), ,B(a, A)] in H*(N, N \ Supp(a)) does 
not depend on the choice of A. With a similar proof, we see that this 
cohomology class does not depend on the choice of Hermitian structure 
on£. 

The proof of the second point is similar. Q.E.D. 

We have defined a representative of the relative Chern class Chrel (a) 
using the one-parameter family A" ( t) of super-connections, for t varying 
between 0 and oo. We can define another representative as follows. We 
have Ch(a, A, t) = d(,B(a, A, t)) with 

(23) ,B(a,A,t) = 100 
ry(a,A,s)ds. 

Lemma 2. For any t E JR., the relative Chern character Chrel (a) 
satisfies Chret(a) = [Ch(a, A, t), ,B(a, A, t)] in H*(N, N \ Supp(a)). 

Proof. It is easy to check that 

(24) ( Ch(A), ,B(a, A)) - ( Ch(a, A, t), ,B(a, A, t)) = dret(8(t), 0), 

with 8(t) = J~ry(a,A,s)ds. Q.E.D. 

Remark 1. Quillen relative Chern character seems to be very re­
lated to the "multiplicative K -theory" defined by Connes-Karoubi {see 
[15], [16]). For example, even if£+,&- are flat bundles, the Quillen 
Chern character is usually non zero, as it also encodes the odd closed 
differential form w = ,B(a, A). 
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§4. Multiplicative property of Chrel 

Let £~, £2 be two Z2-graded complex vector bundles on a manifold 
N. The space £I ® £2 is a Z2-graded complex vector bundle with even 
part ei ® ei EB £1 ® e:; and odd part £1 ® ei EB ei ® e:;. 

The complex super-algebra A* ( N, End( £I ® £2)) can be identified 
with A*(N, End(£I)) ® A*(N, End(£2)) where the tensor is taken in the 
sense of super-algebras. Then, if Vk E A0 (N, End(£k)-) are odd endo­
morphisms, we have (VI® ldt:2 + ldt\ ® v2)2 = (VI )2 ® ldt:2 + ldt:1 ® ( v2)2. 

Let ai : ei ---+ £1 and a2 : ei ---+ e:; be two smooth morphisms. 
With the help of Hermitian structures, we define the morphism 

Let v,.1 and v,.2 be the odd Hermitian endomorphisms of £I, £2 as­
sociated to ai and a2 (see (14)). Then v,.1 0u2 = v,.1 ® ldt:2 + ldt:1 ® v,.2 

and v;10,.2 = v;1 ® ldt:2 + ldt:1 ® v;2 • It follows that 

We can now state one of the main result of this paper. 

Theorem 4.1. (Quillen's Chern character is multiplicative) 
Let a I, a2 be two morphisms over N. The relative cohomology classes 

• Chrei(ak) E 1i*(N, N \ Supp(ak)), k = 1, 2, 
• Chrei(ai 0 a2) E 1i*(N, N \ (Supp(ai) n Supp(a2))), 

satisfy the following equality 

Chrei(O"I 0 a2) = Chrei(ai) <> Chrei(a2) 

in 1i*(N, N \ (Supp(al) n Supp(a2))). Here<> is the product of relative 
classes (see (5)). 

Proof. Fork= 1, 2, we choose super-connections Ak, without 0 ex­
terior degree terms. We consider the closed forms ck(t) := Ch(ak, Ak, t) 
and the transgression forms TJk(t) := ry(ak, Ak, t) so that 1t,(ck(t)) = 

-d(TJk(t)). Let f3k = f0
00 TJk(t)dt. A representative of Chrei(ak) is (ck(O), 

f3k)· 
For the symbol O"I 0 a2, we consider A(t) = A+ itv,.10,.2 where 

A = AI ® ldt:2 + ldt:1 ® A2. Then Ch(A) = ci(O)c2(0). Further­
more, it is easy to see that the transgression form for the family A(t) is 
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ry(t) = 7J1(t)c2(t) + c1(t)772(t). Let /312 = J0
00 ry(t)dt. A representative of 

Chre!(0"1 8 0"2) is (c1(0)c2(0), /312). 
We consider the open subsets U = N \ (Supp(0"1) n Supp(0"2)), and 

Uk = N\Supp(O"k)· Let <1>1 +<l>2 =lube a partition of unity subordinate 
to the decomposition U = U1 u U2. The proof will be completed if one 
shows that 

is dre1-exact. We need the following lemma. 

Lemma 3. The integrals 

B1 J 1$t$s <I>17J1(s) A 7J2(t)dsdt, 

B2 J1$s$t <I>27J1(s) A7J2(t)dsdt 

are well defined differential forms on U. 

Proof. The function (s, t) f--+ <1>1ry1(s) A ry2(t) is a function on JR.2 

with values in A*(U). We have to see that the integral B1 is convergent 
on the domain 0 ::; t ::; s. This fact follows directly from the estimates 
of Proposition 4. Indeed, let K be a compact subset of U. Since <1>1 is 
supported on U1 = N \ Supp(0"1), there exists h > 0, and a polynomial 
P1 ins such that, on K, 

On the other hand, there exists a polynomial P2 in t such that; on K, 

II7J2(t)11 ::; P2(t) for t ~ 0. 

Then, when 0 ::; t ::; s, we have, on K: II<I>17J1 (s )A772(t) II ::; P1 (s )P2(t) e-hs2 

and the integral B1 is absolutely convergent on 0::; t < s. Reversing the 
role 1 ~ 2, we prove in the same way that B2 is well defined. Q.E.D. 

We now prove that (25) is equal to drel ( 0, B1 - B2). Indeed 

( c1 (0), /31 )<>.p ( c2(0), /32) = ( c1 (O)c2(0), <l>1f31 c2 (O)+c1 (O)<I>2f32-d<l>1f31f32), 

so that (25) is equal to ( 0, <l>1f31c2 (O)+c1 (O)<I>2/32 -d<l>1f31f32-!312). Thus 

we need to check that dB2- dB1 = <l>1f31c2(0) +c1(0)<I>2f32- d<l>1f31f32-
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f312· We have dB1 = R1 + 81 with 

R1 d<l>11\ J1$.t$.s rll(S)TJ2(t)dsdt, 

81 <1>1 J 1$.t$.s ( d'f/1 (s )TJ2 (t) - 'f/1 (s )d'f/2 (t)) ds dt. 

Now we use dry1(s) =- f8 c1(s), so that we obtain 

<1>1 Jr r ((- dd cl (s))ry2(t) + 'f/1 (s)( dd c2(t))) ds dt 
Jo5,.t$_s s t 

<1>1 ( 1
00 

c1 (t)ry2(t)dt + 1
00 

'f/1 (s )c2 (s)ds) - c2(0)<I>1f31, 

that is 81 = <1>1(312 - c2(0)<I>1f31· Similarly, we compute that dB2 is 
equal to d<l>2 1\ ffo<s<t 'f/1 (s )TJ2(t) ds dt - <1>2(312 + c1 (O)<I>2f32. So finally, 
as d<I>l = -d<I>2, we get 

dB2-dB1 = -d<I>11
00
1

00 
'f/1(s)TJ2(t)dsdt-f312+c2(0)<I>1f31 +c1(0)<I>2f32 

which was the equation to prove. Q.E.D. 

§5. Chern character of a morphism 

We employ notations of Section 3.2. We work here with differential 
forms with complex coefficients. 

5.1. The Chern Character 
Let a:£+ --?&-be a morphism on N. Following Subsection 2.2, we 

consider the image of Chret(a) through the map 1i*(N, N \ Supp(a)) --? 
1isupp(1Y}(N). Applying Propositions 1 and 5, we obtain the following 
theorem. 

Theorem 5.1. • For any neighborhood U of Supp(a), take X E 
C00 (N) which is equal to 1 in a neighborhood ofSupp(a) and with support 
contained in U. The differential form 

(26) c(a,A,x) = x Ch(A) + dxf3(a,A) 

is closed and supported in U. Its cohomology class cu(a) E 1i[;(N) does 
not depend on the choice of A, x and the Hermitian structures on t:±. 
Furthermore, the inverse family cu(a) when U runs over the neighbor­
hoods of Supp(a) defines a class 

Chsup(a) E 1isupp(1Y)(N). 
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The image of this class in 1i*(N) is the Chern character Ch(£) of£. 
• Let F be a closed subset of N. ForsE [0, 1], let a8 : £+---+ &- be 

a family of smooth morphisms such that Supp( a 8 ) c F. Then all classes 
Chsup(as) coincide in 1iF(N). 

Using Lemma 2 we get 

Lemma 4. For any t 2:: 0, the class Chsup(a) can be defined with 
the forms c(a, A, x, t) = x Ch(a, A, t) + dx (3(a, A, t). 

Proof. It is due to the following transgression 

(27) c(a, A, x) - c(a, A, x, t) = d(x8(t)), 

which follows from (24). Q.E.D. 

In some situations, Quillen's Chern character ChQ(a) = Ch(a, A, 1) 
enjoys good properties relative to the integration. So it is natural to 
compare the differential forms c(a, A, x) and ChQ(a). 

Lemma 5. We have 

Proof. 
(27). 

This follows immediately from the transgressions (11) and 
Q.E.D. 

Definition 5.1. When a is elliptic, we denote by 

(28) Chc(a) E 1i~(N) 

the cohomology class with compact support which is the image of Chrel (a) 
through the map Pc: 1i*(N, N \ Supp(a)) ---+ 1i~(N) (see (10}). 

A representative of Chc(a) is given by c(a, A, x), where X E C00 (N) 
is chosen with a compact support, and equal to 1 in a neighborhood of 
Supp(a) and c(a, A, x) is given by Formula (26). 

We will now rewrite Theorem 4.1 for the Chern classes Chsup and 
Chc. Let a1 : £i ---+ £1 and a2 : £i ---+ £:; be two smooth morphisms. 
Let a 1 0 a2 : (£1 0 £2)+---+ (£1 0 £2)- be their product. 

Following (6), the product of the elements Chsup(ak) E 1i~upp(uk) (N) 
fork= 1, 2 belongs to 1isupp(ul)nSupp(u2 )(N) = 1isupp(u10u2 )(N). 



272 P.-E. Paradan and M. Vergne 

Theorem 5.2. • We have the equality 

Chsup(at) 1\ Chsup(a2) = Chsup(a1 8 a2) in 1-lsupp(u10,.2 )(N). 

• If the morphisms a1, a2 are elliptic, we have 

Proof. The second poirit is a consequence of the first point. The­
orem 4.1 tells us that Chrei(a1 8 a2) = Chrei(at) o Chrei(a2) holds in 
7-l*(N, N \ (Supp(at) n Supp(a2))). We apply now the morphism "p" 
and use the relation (9) to get the first point. Q.E.D. 

The second point of Theorem 5.2 has the following interesting refine­
ment. Let a 1, a2 be two morphisms on N which are not elliptic, and 
assume that the product a 1 8 a2 is elliptic. Since Supp(a1) n Supp(a2) 
is compact, we consider neighborhoods Uk of Supp(ak) such that U1 nU2 
is compact. Let Xk E C00 (N) be supported on Uk and equal to 1 in a 
neighborhood of Supp(ak)· Then, the differential form c(a1, A1, x1) 1\ 

c(a2, A2, X2) is compactly supported on N, and we have 

Chc(a18a2)= [c(a1,A1,X1)/\c(a2,A2,X2)] in 7-l~(N). 

Note that the differential forms c(ak, Ak, Xk) are not compactly sup­
ported. 

5.2. Comparison with other constructions. 
5.2.1. Trivialization outside Supp(a) Outside the support of a, the 

complex vector bundles £+ and &- are "the same", so that it is natural 
to construct representatives of Ch( £) = Ch( £+)- Ch( &-) which are zero 
"outside" the support of a by the following identifications of bundles 
with connections. For simplicity, we assume in this section that a is 
elliptic. 

A connection V' = v+ EEl v- is said "adapted" to the morphism a 
when the following holds 

(29) v- 0 a + a 0 v+ 0, 

v+ 0 a* + a* 0 v- 0, 

outside a compact neighborhood of Supp(a). An adapted connection is 
denoted by V'adap. It is easy to construct an adapted connection. 

Proposition 6. Let \i'adap be a connection adapted to a : £+ -+ 

&-. Then the differential form Ch(\i'adap) is compactly supported and its 
cohomology class coincides with Chc(a) in 7-l~(N). 
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Proof. Suppose that \7adap satisfies (29) outside a compact neigh­
borhood C of Supp(a). We verify that the forms Ch(\7adap) as well as 
the form (3(a, \7adap) are supported on C. Thus if X E C00 (N) is equal to 
1 on C, we see that the differential forms c( a, \7adap, x) and Ch(\7adap) 
coincide. Q.E.D. 

Remark 2. IfF is compact, the closed differential form Ch(\ladap) 
represents the Chern character of a difference bundle [V+]- [v-J, where 
[V+] and [v-] are complex vector bundles (isomorphic outside F) on a 
compactification N F of N (see for example [8]). Thus Ch(\ladap) is a 
representative of the Chern character as defined by Atiyah and al. in 
[2, 5]. In this case, Theorem 5.2 is just the multiplicativity property of 
the Chern character in absolute theories. 

5.2.2. Gaussian look In [17], Mathai-Quillen gives an explicit rep­
resentative with "Gaussian look" of the Bott class of a complex vec­
tor bundle N -+ B. The purpose of this paragraph is to compare the 
Mathai-Quillen construction of Chern characters with "Gaussian look" 
and the Quillen relative construction. 

Let N be a real vector bundle over a manifold B. We denote by 
1r : N -+ B the projection. We denote by (x, ~) a point of N with x E B 
and~ E Nx. Let£± -+ B be two Hermitian vector bundles. We consider 
a morphism a : n* £+ -+ n* E-. 

We choose a metric on the fibers of the fibration N-+ B. We work 
under the following assumption on a. 

Assumption 1. The morphism a : n* £+ -+ n* E- and all its partial 
derivatives have at most a polynomial growth along the fibers of N -+ B. 
Moreover we assume that, for any compact subset KB of B, there exist 
R ~ 0 and c > 0 such that1 v;.(x, ~) ~ cll~ll 2 when 11~11 ~ R and x E KB. 

We may define the sub-algebra Ad.ec-rap(N) of forms on N such 
that all partial derivatives are rapidly decreasing along the fibers. Let 
1id.ec-rap(N) be the corresponding cohomology algebra. Under Assump­
tion 1, the support of a intersects the fibers of 1r in compact sets. We 
have then a canonical map from H~upp(a)(N) into 1id.ec-rap(N). We will 
now compute the image of Chsup(a) under this map. 

Let \7 = \7+ EB \7- be a connection on E -+ B, and consider the 
super-connection A = n*\7 so that Aa(t) = n*\7 + itva. Then, the 
Quillen Chern character form Chq(a) := Ch(a, A, 1) has a "Gaussian" 
look. 

1This inequality means that iia(x, e)wll 2 2:: ciiell 2 ilwll 2 for any wE Ex. 
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Lemma 6. The differential forms Ch( u, A., 1) and (3( u, A., 1) are 
rapidly decreasing along the fibers. 

Proof. The curvature of A.a(t) is 

F(t) = 1r*F- t2v; + it[1r*V', Va ]. 

Here F E A 2 (B, End(£)) is the curvature of \7. Assumption 1 implies 
that [1r*V', va] E A 1 (N, End(1r*£)) has at most a polynomial growth 
along the fibers. Furthermore, for any compact subset KB of the basis, 
there exists R 2': 0 and c > 0 such that v;(x, ~) 2': cll~ll 2 when 11~11 2': R 
and x E KB. 

To estimate eF(t), we apply Lemma 9 of the Appendix, with H = 

t2v;, and R = -1r*F - it[1r*V', Va ]. The smallest eigenvalue of H is 
greater or equal to t2 cll~ll 2 , when 11~11 2': R, and R is a sum of terms 
with strictly positive exterior degrees. Remark that R is a polynomial 
in t of degree 1 and is bounded in norm by a polynomial in 11~11 along 
the fibers. It follows that from Lemma 9 that, for t 2': 0, we have 

II eF(t) ll(x,~) S P(IIRII) e-t2cJI~II2. 

Our estimates on the polynomial growth of R in t and 11~11 implies 
that there exists a polynomial Q such that, for t 2': 0, 

(30) 

for (x, ~) EN, x E KB, 11~11 2': R. 
This implies that Ch(u, A, 1) = Str(eF(l)) is rapidly decreasing along 

the fibers. Consider now (J(u, A., 1) = -i Jt' Str(va eF(t))dt which is 
defined (at least) for 11~11 2': R. The estimate (30) shows also that 
(J(u, A., 1) is rapidly decreasing along the fibers. We can prove in the 
same way that all partial derivatives of Ch( u, A., 1) and (3( u, A., 1) are 
rapidly decreasing along the fibers: hence Ch(u, A, 1) E Adec-rap(N) and 
(J(u,A., 1) E Adec-rap(N \ Supp(u)). Q.E.D. 

Proposition 7. Quillen's Chern character form ChQ(u) E Adec-rap( 
N) represents the image of the class Chsup(u) E Hsupp(a)(N) in 7-{dec-rap( 
N). 

Proof. Choosing x supported on 11~11 S R + 1 and equal to 1 in 
a neighborhood of 11~11 S R, the transgression formula of Lemma 5: 
c( u, A, x) - Ch( u, A., 1) = d(x f0

1 TJ( u, A., s )ds) + d ( (x - 1 )(3( u, A., 1)) im­
plies our proposition, since the form c(u, A, x) represents Chsup(u) in 
7-{dec-rap(N). Q.E.D. 
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When the fibers of 1r : N ~ B are oriented, we have an integration 
morphism Jfiber: 7-ld.ec-rap(N) ~ 1-l*(B). 

Corollary 1. We have Jfiber Chq(a) = Jfiber Chsup(a) in 1-l*(B). 

5.3. Examples 
If £ is a trivial bundle N x E on a manifold N, an endomorphism 

of End(£) is determined by a map from N to End( E). We employ the 
same notation for both objects, so that if a is a map from N to End(E), 
we also denote by a the bundle map a[n,v] = [n,a(n)v], for n EN and 
vEE. 

We will use the following convention. Let E = E+ EB E- be a 
Z2-graded finite dimensional complex vector space. Let A be a super­
commutative algebra (the ring of differential forms on a manifold for 
example). The elements of the super-algebra A0End(E) will be repre­
sented by matrices with coefficients in A. This algebra operates on the 
space A Q9 E. We take the following convention: the forms are always 
considered as operating first: for example, if E+ = C and E- = C, the 

matrix ( ~ ~ ) represents the operator 

(31) 

on A0 E. 
5.3.1. The cotangent bundle T* 8 1 . We consider T* 8 1 := 8 1 x lR 

the cotangent bundle to the circle 8 1 . The group K 0 (T* 8 1) of K-theory 
is generated, as a Z-module, by the class [a] of the following elliptic 
symbol. 

Take £+ = &- the trivial bundles T* 8 1 X c over T* 8 1. Let u E 
C00 (JR) be a function satisfying u(~) = 1 if 1~1 > 1 and u(~) = 0 if 
I~ I < 1/2. The symbol a : £+ ~ &- is defined by the map a : T* 8 1 ~ 
Endc(C) = C: 

a(eiO ~) = {u(~) eio, if ~ ~ 0; 
' u(~), if ~ :::; 0. 

Here Supp( a) = {( ei0 , ~); u( ~) = 0} is compact. Note that the class 
[a] E K 0 (T* 8 1) does not depend on the choice of the function u. 

We choose on t:± the trivial connections v+ = v- = d and we let 
A= v+ EB v- be the trivial connection on t:+ EB &-. Then Ch(A) = 0. 
The curvature F(a, A, t) of the super-connection 

( d o ) ( o itu(~0) e-io ) 
Aa(t) = 0 d + itu(~)ei0 
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is represented by the matrix ( ~ ~b ) where a(t, (ei0 ,~)) = -t2u(~) 2 
and 

b(t (eiiJ C)) = {-it e-iiJ ( u' (~)~ - iu(~)dO), if ~ 2:: O; 
' '"' -itu'(~)~, if ~ ::; 0. 

Then eF(u,A,t) is represented by the matrix e-t2 u(e) 2 ( ~ -::] ) , 

where 

A(t,(eio,~)) = g,+it2u(~)u'(~)~d0, ~~ ~ ~ ~~ 

Thus ry(a, A, t) =- Str (iva eF(u,A,t)) is given by 

Finally, integrating ry(a, A, t) in t from 0 to oo, we find that f3(a, A) 
(which is defined on {( ei0 , ~); u( ~) =f 0} = T* 8 1 \ Supp( a)) is equal to 

(32) f3(a,A)(ei1J,~) = {-idO, ~f ~ 2:: O,u(~) =f 0 
0, 1f ~::; O,u(~) =f 0. 

We have then proved the following 

Proposition 8. • The relative Chern class Chrel (a) is represented 
(0, f3(a, A)). 

• The Chern class with compact support Chc (a) is represented by the 
differential form -i ho dxl\dO where X E C00 (1R) is compactly supported 
and equal to 1 on [-1, 1], and l;?:o is the characteristic function of the 
interval [0, oo[ 

Note that the differential form -i ho dx 1\ dO is of integral -2irr on 
T* 8 1 (which is oriented by dO 1\ ~). -

5.3.2. The space IR2 • Now we consider the case where N = IR2 ~ C. 
Take £+ = £- the trivial bundles N x C over N. We consider Bott 's 
symbol ab : £+ -t £- which is given by the map ab(z) = z for z E 

N ~C. The support of ab is reduced to the origin {0}, thus ab defines 
an element of K 0 (IR2 ). Recall that the Bott isomorphism tells us that 
K 0 (IR2 ) is a free Z-module with base ab. . 

We choose on £± the trivial connections v+ = v- = d. Let A = 
v+ EB v- be the trivial connection on£+ EB£-. The curvature F( ab, A, t) 
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( d o ) ( o it0-z ) of the super-connection A ub ( t) = 0 d + itz has the 

matrix form (see (31)) 

Thus 

(33) 

When z-:/= 0, we obtain that (J(crb,A)(z) = J0=ry(crb,A,t)dt is equal to 

21!12 (zdZ- zdz) = -i d(argz). Thus we have 

(34) Chrel(crb) = [0, -id(argz)]. 

It is easy to see that Chrel ( crb) is a basis of the vector space H* ( rc, C\ { 0}). 
Take f E c=(:rr~) with compact support and equal to 1 in a neigh­

borhood of 0. Let x(z) := f(lzl 2 ). Then the class Chc(crb) E 7t~(JR;2 ) is 
represented by the differential form c(crb, A, x) = x Ch(A) + dxf3(crb, A). 
Here the differential form Ch(A) is identically equal to 0. We obtain 

d(f(lzl 2 )) 1\ (J(crb, A) 

- f'(lzl 2 )dZ 1\ dz. 

Remark that c( crb, A, x) is compactly supported and of integral equal 
to 2in on JR;2 (with orientation dx 1\ dy). Thus 2i7l"c(crb,A,x) is a repre­
sentative of the Thorn form of JR;2 . 

Remark 3. Fort > 0, the Chern character of the super-connection 
Aub(t) is the degree 2 differential form with "Gaussian look" 

For any t > 0, Ch(crb, A, t) and c(crb, A, x) coincide in the cohomol­
ogy 7tciec-rap(JR;2 ), as follows from Proposition 7. In particular they have 
the same integral. 
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§6. Riemann-Roch formula in relative cohomology 

In this section, we work with differential forms with real coefficients 
until Subsection 6.4. 

6.1. Some notations 

Let V be an Euclidean vector space of dimension d, with oriented 
orthonormal basis e1 , e2 , ... , ed. We identify the Lie algebra so(V) of 
SO(V) with A2V as follows: to an antisymmetric matrix A in so(V), we 
associate the element "Ei<j(Aei, e1 )ei A ej of A2V. This identification 
will be in place throughout this section. 

The Berezin integral T : AV ---t JR. is the JR.-linear map which vanishes 
on AiV fori< d and is such that T(e1 A e2 A··· A ed) = 1. 

6.2. Thorn class in relative cohomology 

Let M be a manifold. Let p : V ---t M be a real oriented Euclidean 
vector bundle over M of rank d. In this section, we give a construction 
for the relative Thorn form, analogous to Quillen's construction of the 
Chern character. Here, we use the Berezin integral which is the "super­
commutative" analog of the super-trace for endomorphisms of a super­
space. 

Recall the sub-space Afi.ber cpt(V) C A*(V) of (real) differential 
forms on V which have a compact support in the fibers of p : V ---t M. 
We have also defined the sub-space Ad.ec-rap(V). The integration over 
the fiber, that we denote by p*, is well defined on the three spaces 
A*(V, V \ M), Afi.ber cpt(V) and A:J.ec-rap(V) and take values in A*(M). 
A Thorn form on V will be a (real) closed element which integrates to 
the constant function 1 on M. 

Let \7 be an Euclidean connection on V. As the structure group of 
V is the Lie group SO(V) with Lie algebra so(V), the curvature F of 
\7 is a two-form with values antisymmetric transformations of V. We 
will identify the curvature to an element FE A2 (M, A2 V) according to 
the isomorphism so(V) "'A2V described above. LetT: f(M,AV) ---t 

c=(M) be the Berezin integral that we extend to a JR.-linear map T : 
A*(M, AV) ---t A*(M). The pfaffian of an element L E A*(M, A2V) is 
defined by: Pf(L) := T(eL). 

Definition 6.1. Let \7 be an Euclidean connection on V, with cur­
vature form F. The Euler form Eul(V, \7) E A*(M) of the bundle 
V ---t M is the closed real differential form on M defined by Eul(V, \7) := 

Pf (- i:r). The class of Eul(V, \7), which does not depend on \7, is de­
noted by Eul(V) E Hd(M). 
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Remark 4. Since the pfaffian vanishes when the rank of V is odd, 
the Euler class Eul(V) E 1id(M) is identically equal to 0 when the rank 
ofV is odd. 

Let us consider the vector bundle p*V-+ V equipped with the pull­
back connection p*\7. Let x be the canonical section of the bundle p*V. 
We consider the Z/271, graded algebra A*(V, Ap*V) which is equipped 
with the Berezin integral T : A* (V, Ap* V) -+ A* (V). 

(35) 

(36) 

(37) 

Let f? E A*(V, Ap*V) be the element defined by the equation 

We consider the real differential forms on V defined by 

·- T (eft"), 

- T ( xeft") . 

Here the exponentials are computed in the super-algebra A*(V; Ap*V). 
To be more concrete, this calculation is performed explicitly for a rank 
two bundle in Example 6.2 at the end of this subsection. 

Lemma 7. The differential form C~ is closed. Furthermore, 

(38) 

Proof. The proof of the first point is given in [7] (Chapter 7, The­
orem 7.41). We recall the proof. We denote by LtJx) the deriva­
tion of the super-algebra A*(V,Ap*V) such that LA(x)s = (x,s) when 
s E A 0 (V, A 1p*V). We extend the connection p*\l to a derivation 'VA of 
A*(V, Ap*V). We consider the derivation 'VA- 2tLA(x) on A*(V, Ap*V). 
It is easy to verify that 

(39) 

Then, the exponential eft" satisfies also ('VA- 2tLA(x))(eft") = 0. The 
Berezin integral is such that T(LA(x)a) = 0 and T(\7/\a) = d(T(a)) for 

any a E A* (V, Ap*V). This shows that d ( T( eft")) = 0. 
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Let us prove the second point. We have d o T (xefi) = 
To (V'"- 2tt"(x))(xef,v ), and since (V'"- 2tt"(x))ef,v = 0, we get 

((Y'"- 2tt"(x)) · x) ef,v 

(Y'"x- 2tllxll 2 ) efi 
d 1v 
dt e ' . 

Q.E.D. 

When t = 0, then C~ is just equal to Pf(~) = (-n)df2Eul(V,V'). 
When t = 1, then C~ = T(efi') = e-llxll 2 Q is a closed form with a 
Gaussian look on V : Q a differential form on V with a polynomial 
growth on the fiber of V ---+ M (we will be more explicit in a short 
while). This differential form was considered by Mathai-Quillen in [17]. 

We have 17~ = e-t2 11xll 2 Q(t) where Q(t) is a differential form on V 
with a polynomial growth on the fiber of V and which depends poly­
nomially on t E JR.. Thus, if x =f. 0, when t goes to infinity, 17~ is an 
exponentially decreasing function oft. We can thus define the following 
differential form on V \ M : 

(40) {3" = 100 17~ dt. 

If we integrate (38) between 0 and oo, we get C~ = d({J") on V \ M. 
Thus the couple (C~,{J") defines a canonical relative class 

(41) 

of degree equal to the rank of V. 
We give the explicit formula for this relative class in the case of a 

rank two Euclidean bundle in Example 6.2. 
Consider now the cohomology with compact support in the fiber 

of V. Let Cv be the image of [Pf(~),fJ"] through the map Pfiber cpt: 

1i* (V, V \ M) ---+ 1ifiber cpt (V) · 

Proposition 9. Let x E coo (V) be a function with compact support 
in the fibers and equal to 1 in a neighborhood of M. The form 

c~ = xPf(~) + dxf3" 

is a closed differential form with compact support in the fibers on V. 
Its cohomology class in 1ifiber cpt (V) coincides with Cv : in particular, 
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it does not depend on the choice of X· We have tP* (C~) = 1, with 
d(d-1) d/2 1 

Ed = ( -1) 2 1r • Thus E;;"C~ is a Thom form in Afiber cpt (V). 

Proof. The first assertions are consequence of the definition of Cv. 
To compute p* (C~), we may choose X = f(llxll 2) where f E C00 (1R.) 
has a compact support and is equal to 1 in a neighborhood of 0. We 
work with a local oriented orthonormal frame (e1 , ... , ed) of V: we have 
x = Li Xiei, and p*\lx = Li dxiei + Xip*\lei. 

The component of maximal degree in the fibers of the differen­
tial form 17~ is ( -1) d(d; 1l td- 1 e-t211xll 2 Lk( -1)kxkdx1 · · · dx;, · · · dxd (see 
Proposition 11). Then, the component of maximal degree in the fibers 
of the differential form dx 1\ 17~ is 

Hence, using the change of variables x ___, ix, 

-2( -1) d(d2-1) 1oo td-1 (ld f'(llxll2)11xll2 e-t211xll2 dx) dt 

( -1) d(d2-1) 1oo (ld f'( ~ )( -2!13xll2) e-llxll2 dx) dt. 

I(t) 

Since for t > 0, I(t) = -ft (JJR.d f( ll~f) e-llxll 2 dx), we have p* (C~) = 
( -1) d(d2-1l JJR.d e-llxll2 dx = ( -1) d(d2-1) 7rd/2. Q.E.D. 

Using the differential form C~, it is possible to construct represen­
tatives of a Thorn form with Gaussian look. 

Proposition 10 (Mathai-Quillen). The differential form C~ is a 
closed form which belongs to Ad.ec-rap(V). We have tP* (C~) = 1, with 

Ed = ( -1) d(d2- 1) 7rd/2 . Thus tc~ is a Thom form in Ad.ec-rap (V) · 

Proof. By Proposition 11, the component of maximal degree in the 
fibers of the differential form c~ is the term 

d(d-1) II 112 (-1) 2 e-x dx1· · ·dxd. Q.E.D. 

We summarize Propositions 9 and 10 in the following theorem. 

Theorem 6.1. Let p : V ___, M be an oriented Euclidean vector 
bundle of rank d equipped with an Euclidean connection \7, with curva­
ture F. Let Ed:= (-1)d(d2- 1)7rd/2 . LetT: A*(V,Ap*V) ___, A*(V) be the 
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Berezin integral. Let 

fi 1 -t211xll2 + tp*'\lx + 2p*F, 

- T (xeftv)' 

100 'f/~dt. 

• Threi(V, '\1) = €: {Pf( ~), !31\) is a Thom form in A*(V, V \ M). It 
defines a Thom class 

Threl (V) E 1t* (V ,V \ M). 

• Thc(V, '\l,x) = tc~ = €: (xPf(~) + dx/3") is a Thom form in 
A~(V). Here X E C00 (V) is a function with compact support in the fibers 
of V and equal to 1 in a neighborhood of M. It defines a Thom class 

Thc(V) E 1t~(V). 

• The Mathai-Quillen form ThMq(V, '\1) = €: C~ = t T ( ef{l) is a 

Thom form in Ad.ec-rap (V). It defines a Thom class 

ThMq(V) E 1td.ec-rap(V). 

Thus the use of the Berezin integral allowed us to give slim for­
mulae for Thorn forms in relative cohomology, as well as in compactly 
supported cohomology or in rapidly decreasing cohomology. 

Example 6.2. Vector bundle of rank 2. 
We write explicitly the formulae of this subsection in the case of an 

Euclidean bundle V -+ M of rank 2 in a local frame. Let (e1 , e2 ) be a 
local oriented orthonormal frame. Let '\1 be an Euclidean connection on 
V, so that '\le1 = rye2, '\le2 = -rye1, where 'f/ is a real valued one form 
on M. Then 

The exponential of ft"'il in the super-algebra A*(V, Ap*V) is 
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Thus we have the formulae: 

t211xll2 dry 2 e- ( 2 - t 'T/1 1\ 'T/2), 

te-t211xii2(Xl'T/2- X2'T/1), 

X!'T/2- X2'T/1 
2llxll 2 

So Thom forms are given by 

283 

where f is a compactly supported function on R, identically equal to 1 
in a neighborhood of 0, 

6.3. Explicit formulae for the Thorn forms of a vector bun­
dle 

Let us give explicit local formulae for a general Euclidean vector 
bundle. 

Given a local oriented orthonormal frame (e1, ... , ed) of the vector 
bundle V, we work with the identification (m,x) f---+ I':ixiei(m) from 
M x Rd into V. The element p*\lx is then equal to I:i 'T/iei with 'T/i = 
dxi + I:k xk(\lek, ei)· 

If I = [it, i2, ... , ip} (with i1 < i2 < · · · < iv) is a subset of 
[1, 2, ... , d], we use the notations e1 = ei1 /\· • ·1\eiv and 'T/J = 'T/i1 /\· • ·1\"liv· 
The curvature F decomposes as F := I:i<i Fijei 1\ ei. For any subset 
I of [1, 2, ... , d], we consider the two form F1 := I:i<j,iEI,jEI Fijei 1\ e3 
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with values in AVI, where VI is the sub-bundle generated by the ei, i E I. 
Let Pf(F I) be its pfaffian. One sees easily that 

(42) ef = LPf(!f)ei in A*(M,AV). 
I 

Only those I with III even will contribute to the sum (42), as otherwise 
the pfaffian of F I vanishes. 

If I and J are two disjoint subsets of {1, 2, ... , d}, we denote by 
E(I, J) the sign such that ei A eJ = E(I, J) elUJ· 

Proposition 11. • We have Threi(V) = t [Pf(~), .BA] with 

(3 - ~ f (!L) Xk'TJJ 
A - L....- 'Y(k,I,J) p 2 llxiiiJI+l' 

k,I,J 

with 

1 IJI(IJI+ll ( IJI+l) 
'Y(k,I,J) = - 2(-1) 2 r 2 E(I,J)E({k},IU J). 

Here for 1 ::=:; k ::=:; d, the sets I, J vary over the subsets of {1, 2, ... , d} 
such that { k} U I U J is a partition of { 1, 2, ... , d}. Only those I with 
III even will contribute to the sum. 

• The class Thc(V) is represented by the closed differential form 

where f is a compactly supported function on ~' identically equal to 1 
in a neighborhood of 0. 

• We have 

Here I runs over the subset of {1, 2, ... , d} with an even number of 
elements, and I' denotes the complement of I. 

Proof. It follows from the explicit description of our forms and from 
the formula J000 e-t2 tadt = ~r(a!l ). 

Q.E.D. 
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6.4. More notations 

We recall notations from [7]. Let V be an Euclidean vector space 
of even dimension d = 2n with oriented orthonormal basis e1, e2, ... , ed. 
Let C(V) be the Clifford algebra of V. Then C(V) is generated by 
elements c.; with relations CiCj + CjCi = 0, fori =f. j, and c~ = -1. We 
denote by :E : C(V) ~ AV the symbol isomorphism. Thus, for 1 ~ i 1 < 
iz < · · · < ik ~ d, we have :E( Ci1 Ci2 • • • Cik) = ei1 1\ ei2 1\ · · · 1\ eik. Let 
C[il(V) = :E-1(AiV). We denote by T: C[2l(V) ~ so(V) the map such 
that r(c)v = cv- vc, forcE C[2l(V) and v E V. Then r(cicj)(ei) = 2ej, 
for i =f. j. We denote by S = s+ EB s- the complex spinor space. We 
denote by c the Clifford action of C(V) on S. If v E V, then c(v) on S 
interchanges s+ and s-and satisfies c(v)2 = -llvii2Ids. The supertrace 
of the action of the even element c1 c2 ... cd on S is (-2i) n. 

Let V = 1Re1 EB 1Re2 be of dimension 2 . We consider the super­
algebra A 0 C(V) where A is a super-commutative algebra. Then for 
a1, az odd elements in A, and b an even element of A, we have 

sin(b) sin(b)- bcos(b) sin(b) 
+-b-(a1c1 + azcz) + b2 a1a2- -b-a1azc1c2. 

This formula can be verified using, for example, the differential equa­
tion ft exp(tX) = X exp(tX) for the exponential (see also [7], proof of 
Proposition 7.43). 

6.5. Riemann-Roch relation 
Let p : V ~ M be an oriented Euclidean vector bundle of even rank 

d = 2n with spin structure, and let S ~ M be the corresponding spin 
super-bundle. Let C(V) ~ M be the Clifford bundle. We denote by 

c: C(V) ~ Endc(S) 

the bundle map defined by the spinor representation. 
The vector bundle S is provided with an Hermitian metric such that 

c(v)* = -c(v) for v E V. Consider the morphism CTv : p*S+ ~ p*S­
defined by 

CTv := -ic(x) 

where x : V ~ p*V is the canonical section. Then the odd linear map 
v,.v : p*S ~ p*S is equal to -ic(x). 

Let '\7 be an Euclidean connection on V. Then as explained in 
Subsection 6.2, the curvature F of '\7 may be identified to an element 



286 P.-E. Paradan and M. Vergne 

of A(M,A2V). Thus :E-1F is an element of A(M,C(V)), where :E : 
C(V) ---. AV is the symbol bundle map. The connection V' induces a 
connection \78 on S with curvature F 8 (see Lemma 8). We work with 
the family of super-connections on p* S: 

Af := p*\78 + tc(x) 

We see that the curvature of the super-connection Af is the even element 
Ft' E A*(V,p*Endc(S)), given by 

Ft' = -t2 llxll 2 + tc(p*V'x) + p*F8 

where F8 E A2 (M, Endc(S)) is the curvature of \78 . 

Lemma 8. • The following relation holds in A 2 (M,Endc(S)): 

F 8 = ~c(:E- 1F). 
2 

• We have Ft' = c(ft), where it E A*(V,p*C(V)) is given by 

it= -t2 llxll 2 + tp*V'x + ~p*:E- 1F. 

• The image of it by the bundle map :E is equal to the map ft" E 
A*(V,p* AV) defined in {35). 

We consider now in parallel the closed differential forms 

In the first case the exponential is computed in the super-algebra 
A*(V,p*Endc(S)), and the forms Ch(av, V'v, t) have complex coeffi­
cients. In the second case, the exponential is computed in the super­
algebra A* (V, p* AV), and the forms C~ have real coefficients. 

In Example 6.4, we will perform the explicit calculation of exp(Ft) 
for a bundle of rank two. 

We also consider in parallel the differential forms 

'1]~ := -Str(c(x)exp(F~)), '1]~ := -T(x·exp/\(f?)). 

Note that the forms '1]~ have complex coefficients, and that the forms '1]~ 
have real coefficients. 

In the next definition, we return to the original definition of the 
curvature. F of the Euclidean connection V', that is we consider F as a 
2-form with values antisymmetric transformations of V. 
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Definition 6.2. We associate to the vector bundle V, equipped with 
the connection '\7, the closed real differential form on M defined by 

A('\7) := det 1/ 2 ( .E F _.E) . 
e2 - e 2 

Its cohomology class A(V) E 1-l* (M) is the A-genus of V. 

Proposition 12. We have the following equalities of differential 
forms on V: 

and 

1]~ = (-2i)n A('\7)- 1 1]~. 

Proof. The proof of the first relation is done in [7], Section 7. The 
same proof works for the second equality. Let us give here a brief idea 
of the proof. Let Strc be the super-trace on A*(V,p*C(V)) such that 
Strc(a) = Str(c(a)) for any element a E A*(V,p*C(V)). We have then 
to show that 

and 

(44) Strc ( x · expc(ft)) = ( -2i)n A(V')- 1 T ( x · exp" ('Eft)). 

If V is an oriented Euclidean vector space of even dimension 2n, 
we have the following fundamental relation between Strc(expc(a)) and 
T(exp"(Ea)) for a E C 2 (V): 

(45) 
e 2 - e 2 ( ~ -~) 

Strc(expc(a)) = ( -2i)n det 1/ 2 T(a) T(expA (Ea)) 

(see [7], Section 3). We see then that (43) is an extension of (45) to the 
case where a E A-Q9C1 (V)+A+Q9C2 (V) (here A is a super-commutative 
super-algebra). This is verified by an explicit computation when Vis of 
dimension 2, using the formula for the exponential that we recalled in 
Subsection 6.4. 

Q.E.D. 

We can now conclude with the 
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(46) 

(47) 

(48) 
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Theorem 6.3. • We have the following equality in ?t*(V, V \ M): 

• We have the following equality in ?t~(V): 

• We have the following equality in ?t:fec-rap (V): 

Remark that these identities holds at the level of the representatives. 

Example 6.4. Vector bundle of rank two. 
We return to Example 6.2, and keep the same notations. Then we 

have 
- 2 2 1 !t = -t llxll + t(171C1 + ry2c2) + 2(dry)c1c2. 

We use the formula for the exponential recalled in Subsection 6.4, 
and we obtain 

1 2 11 11 2 ( dry dry sin(.1!l) 
e t = e-t x COS( 2) +Sin( 2 )c1C2 + t c~) (ry1c1 + ry2c2) 

sin( .1!l) - ( .1!l) cos( .1!l) sin( !!:!1.) ) + t2 2 2 2 'YI 'YI - t2 2 'YI 'YI c c 
(.W)2 •tl-t2 (.W) •tl-t2 1 2 . 

The supertrace of the action of c1c2 on S is -2i. Thus we obtain 

Finally, the relative Chern character form associated to av is 
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We have 

det 112 ( F F F)= .(~} . 
e2- e-2 smU'f) 

Thus we see that we have the relations 

(50) 

(51) 

and 

(52) 

at the level of differential forms. 

§7. Appendix 

We give a proof of the estimate used in this article. It is based on 
Volterra's expansion formula: if Hand Rare elements in a finite dimen­
sional associative algebra, then eCH+R) = eH + 2::~ 1 h(H, R) where 

(53) h(H,R) = r e81 H Re82 H R···ReskH Re 8 k+lH dsl···dsk 
Ji3.k 

Here f!..k is the simplex { Si 2 0; s1 + s2 + · · · + Sk + Sk+l = 1} which 
has the volume -tJ for the measure ds 1 · · · dsk. 

Now, let A = EB~oAi be a complex finite dimensional graded com­
mutative algebra with a norm II · II such that llabll ::; llallllbll· We denote 
by A+ = E9~ 1 Ai. Thus wR+l = 0 for any wE A+. Let E be a finite 
dimensional Hermitian vector space. Then End(E) ®A is an algebra 
with a norm still denoted by II ·II· If HE End(E), we denote also by H 
the element H ® 1 in End( E)® A. 

We denote by Herm(E) C End(E) the subspace formed by the Her­
mitian endomorphisms. When HE Herm(E), we denote by sm(H) E lR 
the smallest eigenvalue of H : we have 

II e-H II = e-sm(H), for all HE Herm(E). 

Lemma 9. Let P(t) = L:~=O t-. Then, for any R E End( E)® A+, 
and HE Herm(E), we have 

II e-(H+R) II ::; e-sm(H) P(IIRII). 
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Proof. Let c = sm(H). Then II e-uH II = e-uc for all u 2: 0. The 
term h(H, R) of the Volterra expansion vanishes for k > R since the 
term e81 H R · · · Re8 k+ 1 H belongs to End( E) ®Ak. The norm of the term 
Ik(H, R) is bounded by -b_ e-c IIRIIk· Summing up in k, we obtain our 
estimate. Q.E.D. 

The preceding estimates hold if we work in the algebra End(E) ®A, 
where Eisa super-vector space and A a super-commutative algebra. 
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