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Abstract. 

Let D be the classifying space of mixed Hodge structures with 
polarized graded quotients. We construct a real analytic manifold with 
corners DBs which contains D as a dense open subset. This is the 
mixed Hodge theoretic version of the Borel-Serre space in the case of 
pure weight constructed by Borel-Ji and Kato-Usui. 

Introduction 

0.1. Let D be the classifying space of mixed Hodge structures whose 
graded quotients of weight filtrations are polarized, with fixed Hodge 
numbers of the graded quotients, defined in [U]. This space is the mixed 
Hodge theoretic version of the Griffiths domain [G] in the pure case. 
In this paper, we construct a real analytic manifold with corners DBs 
which contains D as a dense open subset. This is a generalization of the 
Borel-Serre space in the pure case which was constructed in the work of 
Kato-Usui [KU2]. Note that the Borel-Serre space in the pure case is 
independently obtained as a consequence of the works of Borel-Ji [BJl], 
[BJ2]. 

As in the theorem below, which is proved in §8-§9, our space DBs 
has similar properties to those of the original Borel-Serre space X in the 
work of Borel-Serre [BS], which is a real analytic manifold with corners 
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containing, as a dense open subset, the symmetric space X associated 
to a semi-simple algebraic group over Q. See 1.6 for the definition of 
the arithmetic discrete group Gz acting on D in this theorem. Note 
that in our terminology, "compact" and "locally compact" contain the 
Hausdorff condition as in Bourbaki [Bn]. 

Theorem 0.2. (i) The action of Gz on D extends to a real ana­
lytic action of Gz on DBs. For a subgroup r of Gz' the action of r on 
DBs is proper and the quotient space f\DBs is locally compact. If r is 
a neat subgroup of Gz, the projection DBs --+ f\DBs is a local homeo­
morphism, and f\DBs has a unique structure of a real analytic manifold 
with corners for which DBs --+ f\DBs is locally an isomorphism. 

(ii) If r is a subgroup of Gz of finite index, then f\DBs is compact. 

0.3. We shortly describe our construction of DBs and explain our 
ideas. 

In the definition of the classifying space D, we fix a finitely generated 
free Z-module Ho, a rational increasing filtration Won Ho,R = R®zHo, 
rational non-degenerate bilinear forms gr!;; x gr!;; --+ R for w E Z, which 
is symmetric if w is even and anti-symmetric if w is odd, and non­
negative integers hfJq with h'ff = hfJq and with hfJq = 0 unless p+q = w 
(w,p, q E Z). Then Dis defined to be the set of all decreasing filtrations 
F on Ho,c for which (H0 , W, F) is a mixed Hodge structure such that 
for any wE Z, the Hodge structure ((Ho n Ww)/(H0 n Ww_I), F(gr!;;)) 
of weight w has Hodge numbers (hfJq)p,q and is polarized by (, )w. Let 
GR be the group of all automorphisms g of (Ho,R, W) such that the 
automorphism of gr!;; induced by g preserves ( , )w for all w E Z. 

In the pure case, that is, in the case where there is w E Z such 
that Ww = Ho,R and Ww-1 = 0, the Borel-Serre space DBs is defined 
to be the set of all pairs (P, Z) where P is a Q-parabolic subgroup 
of GR and Z is an orbit in D under the Borel-Serre action of Ap. 
Here Ap is as follows. Let Pu be the unipotent radical of P and let 
Sp be the largest Q-split torus in the center of P/ Pu. Then Ap is the 
connected component of the group of R-rational points of S p containing 
the unity. Hence Ap C:::' R~0 where n is the rank of Sp. A point F 
of D is identified with ( GR_, { F}) E DBs, where GR_ is the connected 
component of GR containing the unity in the Zariski topology, which is 
the largest Q-parabolic subgroup of GR. As a point of the topological 
space DBs, (P, Z) is the limit point of the points in Z which run to a 
special direction conducted by P. In §2, we will review the Borel-Serre 
action and more details in the pure case. This construction is similar to 
that of the original Borel-Serre space X in [BS], which is defined for a 
semi-simple algebraic group G over Q and contains the space X of all 
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maximal compact subgroups of GR as a dense open subset. This X is 
the set of all pairs (P, Z), where Pis a Q-parabolic subgroup of GRand 
Z is an orbit in X for the Borel-Serre action of Ap. 

Now we consider the mixed case. Assume we are not in the pure 
case. Then it seems that both the group GR and the following group 
GR. are equally important. Consider the homomorphism 

(1) 

and let GR. be the algebraic subgroup of AutR(Ho,R, W) generated by 
GRand a one-dimensional subtorus T of AutR(Ho,R, W) whose image 
in IlwEZ AutR(gr~) coincides with the image of the homomorphism (1). 
This algebraic group GR. is independent of the choice ofT, and is defined 
over Q. We have the following maps 

(2) 

where GR(gr~) = AutR(gr~, ( , )w)· The map P' f-7 P' n GR is a 
bijection from the set of all Q-parabolic subgroups of GR. to that of 
GR, whose inverse is given by assigning P to the group generated by 
P and T. Moreover, the set of all Q-parabolic subgroups P of GR 
corresponds bijectively to the set of all families (Pw)wEZ of Q-parabolic 
subgroups Pw of GR(gr~) by P = 7r- 1 (f1w Pw), where 1r is the map in 
(2). We have Ap = Ilw Apw. If P' is a Q-parabolic subgroup of GR. 
and P = P' n GR, then Ap, = R>o x Ap. We will denote Ap, by Bp. 
By a method described below, we define a Borel-Serre action of Bp on 
D. We define Dss in the mixed case as the set of all pairs (P, Z), where 
P is a Q-parabolic subgroup of GR and Z is either an Ap-orbit or a 
Bp-orbit in D for the Borel-Serre action. A point F of D is identified 
with (GR.,{F}) E Dss. Note that for P =GR., Ap = {1} and {F} is 
an Ap-orbit. 

Here, to define the Borel-Serre action of B p on D, we use the canon­
ical splitting of the weight filtration associated to a mixed Hodge struc­
ture, which was defined in [CKS]. This splitting (reviewed in §4 below) 
played important roles in the studies [CKS] and [KNU] of degeneration 
of Hodge structures. (It will play key roles also in Part II, Part III, ... 
of this series of papers.) Forb= (c, a) E Bp with c E R>o and a E Ap, 
we define the Borel-Serre action of b on D by F f-7 cpapF (F E D), 
where cp E AutR(Ho,R, W) is the lifting, by the canonical splitting of 
W associated to F, of the image of c in Ilw AutR(gr~) under the homo­
morphism (1), and ap E AutR(Ho,R, W) is the lifting, by the canonical 
splitting of W associated to F, of the Borel-Serre action of the image 
of a under Ap ~ Ilw Apw · 
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0.4. This paper is the part I of our series of papers in which we will 
construct various enlargements of D, by adding to D points at infinity 
corresponding to degenerations of mixed Hodge structures. In the pure 
case, in [KUl], [KU2] and [KU3], we constructed eight enlargements of 
D, which are related to each other as in the fundamental diagram 

DsL(2),val "----+ Dss,val 

l l 

(*) DE,val +--- ntval ----> DsL(2) Dss. 

l l 

DE +--- Du E 

In [KU3], for arithmetic subgroups r of Aut( D), we also obtained toroidal 
partial compactifications of r\D as the quotients r\DE of DE and 
proved that r\DE are fine moduli spaces of polarized logarithmic Hodge 
structures. In our series of papers, we will obtain the mixed Hodge theo­
retic version of the diagram ( *), and study the fine moduli spaces r\DE 
of logarithmic mixed Hodge structures with polarized graded quotients. 

We are very happy to dedicate this paper to Professor Masaki Kashi­
wara whose study on the degeneration of mixed Hodge structures plays 
essential roles in these series of papers. 

This paper was written while one of the authors (K. Kato) was 
a visitor of University of Cambridge whose hospitality (especially by 
Professor John Coates) is gratefully appreciated. We are thankful to 
Professor Steven Zucker and also to the referee for valuable advice. 

§1. Classifying spaces of mixed Hodge structures with polar­
ized graded quotients 

We review the classifying spaces D of mixed Hodge structures with 
polarized graded quotients and with fixed Hodge numbers, defined in 
[U]. These spaces are the mixed Hodge theoretic versions of Griffiths 
domains. We fix the notation used in this paper. We first review Hodge 
structures, mixed Hodge structures, and polarized Hodge structures fol­
lowing [Dj, 

1.1. A Hodge structure of weight w E Z is a pair H = (Hz, F) where 
Hz is a free Z-module of finite rank and F is a decreasing filtration on 
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He := C 0z Hz satisfying 

H - ffi Hp,q e -wp+q=w F' 

Here pq denotes the image of Fq under the complex conjugation He --+ 

He; z 0 h f-t z 0 h (z E C, h E Hz). 

1.2. A mixed Hodge structure is a triple (Hz, W, F), where Hz is 
a free Z-module of finite rank, W is a rational increasing filtration on 
HR = R0z Hz ("rational" means that all Ww are defined over Q), and 
F is a decreasing filtration on He= C 0z Hz such that Ww = HR for 
w :» 0, Ww = 0 for w «: 0, and ((Hz n Ww)/(Hz n Ww- 1 ), F(gr!;f)) is 
a Hodge structure of weight w for any wE z. Here F(gr!;f) denotes the 
filtration on gr!;;,e = C 0R gr!;f induced by F. 

1.3. Polarization. Let H =(Hz, F) be a Hodge structure of weight 
w. A polarization on His a rational non-degenerate R-bilinear form 

which is symmetric if w is even and anti-symmetric if w is odd, satisfying 
the following two conditions. 

(1) (FP, Fq) = 0 if p + q > w. Here and in (2) below, (, ) denotes 
the C-bilinear form on He x He --+ C induced by (, ). 

(2) Let CF : He --+ He be the C-linear map whose restriction to 
Hf..'q with p + q = w is the multiplication by ip-q (this CF is called the 
Weil operator). Then the Hermitian form 

( , )F : He x He --+ C, (x, y) f-t (CFx, Y) 

is positive definite. 

A Hodge structure endowed with a polarization is called a polarized 
Hodge .structure. The positive definite Hermitian form ( , )F in (2) for 
a polarized Hodge structure is called the Hodge metric. 

1.4. To define the spaceD, we fix a 4-tuple 

where 
H 0 is a finitely generated free Z-module, 
W is a rational increasing filtration on Ho,R, 
( , )w is a rational non-degenerate R-bilinear form gr!f x gr!f --+ R 

given for each w E Z which is symmetric if w is even and anti-symmetric 
if w is odd, and 
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hp,q is a non-negative integer given for p, q E Z such that hp,q = hq,p, 
rankz(Ho) = Lp,q hP,q, and dimR(gr~) = Lp+q=w hp,q for all w. 

1.5. Let D be the set of all decreasing filtrations F on Ho,c for 
which (H0 , W, F) is a mixed Hodge structure such that, for all w E Z, 
(, )ware polarizations on ((Ho n Ww)/(Ho n Ww-1), F(gr~)) and such 
that, for all p, q E Z, the dimension of Hp,q of F(gr~q) coincides with 
hp,q_ 

Let iJ be the set of all decreasing filtrations F on Ho,c satisfying 
the following two conditions. 

(1) dim(FP(gr~q)/ FP+1 (gr~q)) = hp,q for any p, q E Z. 

(2) ( , )w kills FP(gr~) x Fq(grt;) for any p, q, w E Z such that 
p+q > w. 

Then D is an open subset of iJ. 

1.6. We fix notation. 
For A = Z, Q, R, or C, let G A be the group of all A-automorphisms 

g of Ho,A which are compatible with W such that gr~ (g) : grt; ~ grt; 
are compatible with ( , )w for all w. Let G A,u = {g E G A I grt; (g) = 
1 for all wE Z}, the unipotent radical of GA. Then 

where GA(gr~) is "the GA of ((Ho n Ww)/(Ho n Ww-1), (, )w)", and 
GA is a semi-direct product of GA,u and GA(grw). 

The natural action of Gc on iJ is transitive, and iJ is a complex 
homogeneous space under the action of Gc. Hence iJ is a complex 
analytic manifold. Furthermore, D is open in iJ and it is also a complex 
analytic manifold. 

1. 7. For A = Q, R, C, let 9A = Lie( G A)· We identify 9A with the 
set of all A-linear maps N : Ho,A ~ Ho,A which are compatible with W 
such that (gr~ (N)(x), Y)w + (x, gr~ (N)(y))w = 0 for all w and all x, y. 
Let 9A,u be the nilpotent radical { N E 9A I gr~ (N) = 0 for all w E Z} 
of 9A· Then 

9A/9A,u = 9A(grw) := Tiw 9A(gr~), 

where 9A(grt;) denotes "the 9A of ((Ho n Ww)/(Ho n Ww-l), (, )w)". 

1.8. The space D is a natural generalization to the mixed case of a 
Griffiths domain, Le., the classifying space of polarized Hodge structures 
in (G]. 
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Let D(gr~) be the Griffiths domain of gr~, that is, the D for ((H0 n 
Ww)/(Ho n Ww_I), ( , )w, (hp,q)p+q=w)· Let 

D(grw) = TiwEZ D(gr~). 

We have the canonical surjective holomorphic map 

1.9. In the pure case, i.e., in the case where there exists w E Z such 
that Ww = HR and Ww-1 = 0, the action of GR on D is transitive. 
However this transitivity is not true in the mixed case. In Example II 
(resp. Examples I and III) below, the action of GR on Dis (resp. is not) 
transitive. The subgroup GRGc,u of Gc (1.6) acts always transitively 
on D, and the action of Gc,u on each fiber of D----> D(grw) is transitive. 

In 1.10-1.12, we give three examples of D. These are the simplest 
examples for which the set {w E Z I gr~ -=1- 0} is {0, -2}, {0, -1}, 
{0, -3}, respectively. 

1.10. Example I. Let H 0 = Z2 = Ze1 + Ze2 , let W be the increas­
ing filtration on Ho,R defined by 

W_3 = 0 C W-2 = W-1 = Re1 C Wo = Ho,R, 

let (e2, e2)o = 1, (e1, e1)-2 = 1, and let h0 •0 = h-1,-1 = 1, hp,q = 0 for 
all the other (p, q). 

We have 
D=e. 

For z E e, the corresponding F(z) ED is defined as 

The group Gz,u is isomorphic to Z and is generated by "'( E Gz 
which is defined as 

We have 
Gz,u\D ~ex 

where (F(z) mod Gz,u) corresponds to exp(2niz) E ex. 
This space Gz,u \D is the classifying space of extensions of mixed 

Hodge structures of the form 0----> Z(1) ---->?----> Z----> 0. 
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In this case, D(grw) is a one point set. 

1.11. Example II. Let Ho = Z3 = Ze1 + Ze2 + Ze3, let 

W-2 = 0 c W-1 = Re1 + Re2 c Wo = Ho,R, 

let (e3, e3)o = 1, (e2, e1)-1 = 1, and let ho,o = h0,-1 = h-1,0 1, 
hp,q = 0 for all the other (p, q). 

Then 
D = [J x C, D(grw) = [J, 

where [J is the upper half plane. Here ( T, z) E [J x C corresponds to the 
decreasing filtration F given by 

The group Gz,u is isomorphic to Z 2 , where (a, b) E Z 2 corresponds 
to the element of Gz which sends e1 to e1 for j = 1, 2 and sends e3 
to ae1 + be2 + e3. The quotient space Gz,u \D is the "universal elliptic 
curve" over the upper half plane [J. For T E [J, the fiber of Gz,u \D ____, 
D(grw) = [J is identified with the elliptic curve E 7 := Cj(ZT + Z). 
The Hodge structure on Ho n w_1 corresponding to T is isomorphic 
to H 1(E7 )(1). Here H 1(E7 ) denotes the Hodge structure H 1(E70 Z) of 
weight 1 endowed with the Hodge filtration and (1) here denotes the 
Tate twist. The fiber of Gz,u \D ____, [J over T is the classifying space of 
extensions of mixed Hodge structures of the form 

1.12. Example III. Let Ho = Z3 = Ze1 + Ze2 + Ze3, let 

let (e3, e3)o = 1, (e2, e1)-3 = 1, and let ho,o = h-1,-2 = h-2,-1 = 1, 
hp,q = 0 for all the other (p, q). 

Then 

Here (T, z1 , z2 ) E [J x C 2 corresponds to the decreasing filtration F given 
by 

F 1 = 0 c F 0 = C(z1e1 + z2e2 + e3) 

c F-1 = F 0 + C(Te1 + e2) C F-2 = Ho,c-
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The group Gz,u is the same as in Example II. The Hodge struc­
ture on Ho n W-3 corresponding to T E ~ = D(gr~3) is isomorphic to 
H 1(Er )(2). The fiber of Gz,u \D --> D(grw) = ~ over T E ~ is the 
classifying space of extensions of mixed Hodge structures of the form 

These three examples will be retreated in §10 to illustrate our results 
in this paper. 

§2. Review of the pure case 

In this section, we review the Borel-Serre enlargement DBs of D in 
the pure case constructed in [KU2]. In [KU2], Dss in the pure case was 
constructed only as a topological space, but we show that, by refining 
the work [KU2], we can endow Dss with a structure of a real analytic 
manifold with corners. 

The results in this section are contained also in the works of Borel-Ji 
[BJ1], [BJ2] on Borel-Serre enlargements of homogeneous spaces by the 
fact that the space D in the pure case is a homogeneous space over GR. 
Since our generalization to the mixed case has the style similar to that 
of the work [KU2], we follow the formulation in [KU2]. 

Assume that we are in the pure case, that is, Ww = HR and Ww-1 = 
0 for some w E Z. 

2.1. For F E D, we have compact subgroups KF and K~ of GR 
defined as follows. Let K~ = {g E GR \ gF = F}. Let KF be the 
subgroup of GR consisting of all elements which preserve the Hodge 
metric ( , )F (1.3). We have K~ C KF, KF is a maximal compact 
subgroup of GR, and 

(1) 

where CF is the Weil operator ofF (1.3). We have 

(2) D ~ GR/ K~, gF f-+ (g mod K~) for g E GR. 

2.2. As in [BS], a parabolic subgroup of GR is assumed to be 
contained in the connected component GR. of GR containing 1 for the 
Zariski topology. We allow the improper parabolic GR. itself as a para­
bolic subgroup of GR. 
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Let P be a Q-parabolic subgroup of Ga. We identify P with the 
Lie group of R-valued points of P. 

Let Sp be the largest Q-split torus in the center of P/Pu, where Pu 
denotes the unipotent radical of P. Let X(Sp) be the character group 
of Sp, whiCh is isomorphic to zn where n is the rank of Sp. Let 

Ap = Hom(X(Sp),R>o) ~ R;!.0 

c Sp = Hom(X(Sp),Rx) ~ (Rx)n. 

Here R>o = {r E R I r > 0} which we regard as a multiplicative group. 

2.3. Let P be a Q-parabolic subgroup of Ga. We have an action 
of the group Ap on D, which we denote by o and call the Borel-Serre 
action, defined as follows. 

Let F E D. Then there is a unique homomorphism 

Sp ~ P, at--+ ap 

of algebraic groups over R having the following two properties. 

(1) (ap mod Pu) =a for any a E Sp. 

(2) CpapC];.l = aj;1 for any a E Sp, where Cp is the Weil operator 
(1.3) of F. 

From 2.1 (1), we have 

akF = ap for any k E Kp. 

We call ap E P the Borel-Serre lifting of a at F. The Borel-Serre 
action of a E Ap on Dis defined by 

F t--+ a oF := apF. 

For a fixed r E D, all elements of D are expressed as pkr with p E P 
and k E Kr. The action of a E Ap on Dis described as aopkr = parkr. 

2.4. The Borel-Serre space Dss is defined to be the set of all pairs 
(P, Z) where P is a Q-parabolic subgroup of Ga and Z is an Ap-orbit 
in D with respect to the Borel-Serre action. 

2.5 .. We review the notion real analytic manifold with corners ([BS] 
Appendix by A. Douady and L. Herault). 

For m, n 2: 0 and for an open set U of Rm x R:;0 , a function 
f : U ~ R is called a real analytic function if, for each x -E U, there are 
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an open neighborhood U' of x in U, an open set V of R m x R n containing 
U', and a real analytic function g on V such that the restrictions to U' 
of f and g coincide. We thus have the sheaf of real analytic functions 
on U. This sheaf is nothing but the inverse image on U of the sheaf of 
real analytic functions on R m x R n. 

A real analytic manifold with corners is a local ringed space over 
R which has an open covering whose each member is isomorphic to an 
open set of Rm x R~0 with the sheaf of real analytic functions. 

2.6. Let P be a Q-parabolic subgroup of GR. Then a real analytic 
manifold with corners AP is defined as in [BS]. Choose a subtorus 
Sp of P such that the projection P---+ P/Pu induces an isomorphism 
Sp ..=. Sp. Let X(Sp )(i be the Q;:::o-subcone of X(Sp )Q := X(Sp)@ Q 
(i.e., a non-empty subset of X(Sp )Q which is stable under the addition 
and under the multiplication by any element of Q2:0 ) generated by all 
elements of X(Sp) ~ X(Sp) which appear in the adjoint representation 
of S p in Lie( P). Then X ( S p) Q does not depend on the choice of S p 
and X(Sp)(i ~ (Q~<bd)n. Here Q~<bd denotes the set {r E Q I r ~ 0} 
regarded as an additive monoid, and n is the rank of Sp. Let X(Sp )~ 
be the image of X(Sp )(i under X(Sp )Q ..=. X(Sp )Q, x t---+ x- 1 . Let 

AP = Hom(X(Sp )~, R~01t) ~ Map(~(P), R2:o) ~ R~0 , 

where R>01t denotes the set R;:::o = {r E R I r ~ 0} regarded as a 
multiplic;:-tive monoid, and ~(P) C X(Sp)~ is the set of fundamental 
roots as in [BS]. Note 

Ap = Hom(X(Sp ), R>o) = Hom(X(Sp )~, R>o) 

c AP = Hom(X(Sp )~, R~01t). 

The natural action of R>o on R2:0 induces a natural action of Ap on 
Ap. 

2. 7. The space Dss has the following structure of a real analytic 
manifold with corners. 

For a Q-parabolic subgroup P of GR, let 

Dss(P) := {(Q, Z) E Dss I Q:::) P}. 

Then we have a canonical bijection 

(1) A -Dss(P) ~ D x P Ap, 

where Ap acts on D by the Borel-Serre action. The definition of the 
bijection (1) is reviewed in 2.8 below. 
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By (1), we have a canonical surjection 

c := up D X .Ap ___. DBs, 

where P ranges over all Q-parabolic subgroups of Ga, and Cis a real 
analytic manifold with corners. 

We define the topology of DBs as the quotient of the topology of C 
via the above surjection. 

We define the sheaf of rings of real analytic functions on DBs as 
follows. For an open set U of DBs and a function f : U ---> R, f is real 
analytic if and only if the composition U' ---. U L R, where U' denotes 
the inverse image of U in C, is real analytic. 

With this sheaf of rings over R, DBs is a real analytic manifold with 
corners as is shown in 2.10. 

2.8. We recall here the definition of the bijection (1) in 2.7. 
Let P and Q be Q-parabolic subgroups of Ga and assume Q :J P. 

Then Qu C Pu, and the projection Q/Qu ---> Q/ Pu induces an injective 
homomorphism from SQ into Sp. The induced homomorphism AQ ---. 
Ap is compatible with the Borel-Serre actions of AQ and Ap on D. The 
homomorphism X(Sp)---. X(SQ) corresponding to SQ---. Sp induces a 
surjective homomorphism X ( S p )~ ---. X ( SQ )~. 

For a Q-parabolic subgroup P of Ga, there is a bijection v : Q ~-t 
Ker(X(Sp)~---> X(SQ)~) from the set of all Q-parabolic subgroups of 
Ga containing Ponto the set of all faces of the Q;::-:0-cone X(Sp )~. (Re­
call that X(Sp )~ ~ (Q~'bd)n. A face of (Q~'bd)n corresponds bijectively 
to a subset J of {1, 2, ... , n} by associating J to the face of (Q~'bd)n 
consisting of all elements whose j-th components for all j E J are 0.) 

The bijection (1) in 2.7 sends class(F,a) E D xAp .Ap (F E D, 
a E AP) to (Q,Z) E DBs(P), where Q = v-1 (8) with S ={X E 
X(Sp )~ I a(x) # 0}, and 

Z ={a' oF I a' E Ap, a'(x) = a(x) for all xES}. 

Conversely, in the bijection (1) in 2.7, (Q, Z) E D 8 s(P) corresponds to 
class(F, a) ED xAP .Ap, where F is any element of Z and a: X(Sp )~---. 

R;::-:o sends X E X(Sp)~ to 1 if X E v(Q) and to 0 if x ~ v(Q). 

2.9. For 2.10 below, we give some basic facts (i) and (iii), whose 
proofs are easy, and their consequences (ii) and (iv). Let P and Q be 
Q-parabolic subgroups of Ga. Let P * Q be the algebraic subgroup of 
Ga generated by P and Q, which is a Q-parabolic subgroup of Ga. 

(i) The inverse image of DBs(P) in D x AQ under the canonical map 
D x AQ---. DBs (2.7) is the open set D x AQ(P*Q), where AQ(P*Q) is 
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the open set of AQ consisting of all homomorphisms X(SQ)~-+ R:;;0't 
which send Ker(X(SQ)~-+ X(SP*Q)~) into R>O· 

This shows 

(ii) DBs(P) is open in DBs· 

(iii) Let the notation be as in (i). Take a homomorphism X(SP*Q )~ -+ 

X(SQ)~ such that the composition X(Sp*Q)~-+ X(SQ)~-+ X(SP*Q)~ 
is the identity, let AQ -+ AP*Q be the corresponding homomorphism, 
and let H be the kernel of the last homomorphism. Then we have an iso­
morphism of real analytic manifolds with corners H x AP*Q -='. AQ(P * 
Q), (a, a') f---+ aa'. The diagram 

D X AQ(P * Q) -+ 
1 

DBs(P) 

is commutative, where the upper horizontal arrow is the real analytic 
map (F, aa') f---+ (a oF, a') (a E H, a' E AP*Q CAp). (Here the inclusion 
AP*Q CAp is induced from the surjective homomorphism X(Sp)~-+ 

X(SP*Q)~.) 

This shows 

(iv) The bijection DBs(P) ~ D xAP AP in 2.7 (1) is a homeomor­
phism. Here D xAP Ap has the topology as a quotient space of D x Ap. 
For an open set U of DBs(P) and a function f: U-+ R, f is real ana­
lytic if and only if the composition U' -+ U .1, R is real analytic where 
U' is the inverse image of U in D x Ap. 

2.10. We give a proof of the fact that DBs is a real analytic manifold 
with corners. 

Let P be a Q-parabolic subgroup of GR. Then there is a real ana­
lytic map f: D-+ Ap such that f(a oF) = af(F) for any a E Ap and 
F E D. The existence off is shown as follows (see [KU2] (2.16)). Let 
op be the intersection of the kernels of lxl : P-+ R>o for all homomor­
phisms of algebraic groups x : P -+ R x defined over Q. Then Pu C op 
and the composition Ap-+ P/ Pu -+ P;oP is an isomorphism ([BS]1.2). 
Let I I : P-+ Ap be the composition P-+ Pj 0P ~ Ap. Fix r E D. 
Then an example off is defined as pkr f---+ IPI (pEP, k E Kr)· 

Let f be as above and let D(ll ={FED I f(F) = 1}. Then D(ll 
is a closed real analytic submanifold of D (by "closed submanifold", we 
do not mean "compact submanifold" but just mean "submanifold which 
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is closed") and we have an isomorphism of real analytic manifolds 

D(l) xAp~D, (F,a)t--+aoF. 

By the above (iv), this isomorphism extends uniquely to an isomorphism 
of ringed spaces 

D(l) x _Ap ~ Dss(P). 

Since D8 s is covered by open sets Dss(P) when P varies, this shows 
that Dss is a real analytic manifold with corners. 

2.11. It is easy to see that the action of Gz on D extends to a real 
analytic action of Gz on Dss (i.e., an action of Gz as automorphisms 
of the real analytic manifold with corners D8 s). Theorem 0.2 in Intro­
duction in the pure case is proved in [KU2] except the part where the 
structure of real analytic manifold with corners is concerned. This part 
follows from the other part easily. (Theorem 0.2 in the pure case also 
follows from the works [BJl], [BJ2].) 

§3. A rough picture of the mixed case 

3.1. In this introductory section, we describe roughly the shape of 
Dss in the mixed case, comparing it with Dss(grw) := IlwEZ Dss(gr!';;) 
where Dss(gr!';;) is "the Dss of the pure case ((HonWw)/(HonWw-1), 
( , )w)" in §2. The proofs of the statements concerning Dss in this 
section are given later. 

3.2. In this paper, the canonical projection D ~ D(grw) := 

IlwEZ D(gr!';;) (1.8) will be extended to a surjective morphism Dss ~ 
Dss(grw) ofreal analytic manifolds with corners. We describe roughly 
the shape of Dss as a fiber space over Dss(grw). 

3.3. Let spl(W) be the set of all splittings of W. That is, spl(W) 
is the set of all isomorphisms 

s : grw = ffiw gr!';; ~ Ho,R 

of R-vector spaces such that for any w E Z and v E gr!';;, s( v) E W w 

and v = (s(v) mod Ww-d· 
ForgE GR,u and s E spl(W), the isomorphism gs: grw ~ Ho,R 

is also a splitting of W. For this action of GR,u on spl(W), spl(W) 
is a GB-,,;-torsor, that is, for a fixed s E spl(W), we have a bijection 
GR,u ~ spl(W), g t-+ gs. Via this bijection, we endow spl(W) with a 
structure of a real analytic manifold (which is independent of the choice 
of s fixed here). 
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For F = (Fw)w E D(grw) (Fw E D(gr!;;)) and s E spl(W), we have 
s(F) ED defined by s(F)P = s(ffiw F!),) (p E Z). Let Dspl be the subset 
of D consisting of all elements obtained in this way. Then Dspl is a 
closed real analytic submanifold of D. We have an isomorphism of real 
analytic manifolds 

w ~ 

spl(W) x D(gr ) -=....;Dspl, (s,F) f--+ s(F). 

An element of D is said to be R-split if it belongs to Dspl· 

3.4. As is shown in Proposition 8.7, the following two conditions 
are equivalent. 

(1) Dis a GR-homogenious space. 
(2) D = Dspl· 
Example II in §1 satisfies these equivalent conditions, but Examples 

I and III do not. 

In the caseD= Dsp!, we have D = spl(W) x D(grw). We will have 
DBs = spl(W) x DBs(grw) in this case (Proposition 8.7). Thus in this 
case, for F E D(grw), the fiber of DBs --+ DBs(grw) on F is the same 
as the fiber of D--+ D(grw) on F. 

However, in the caseD"/= Dsph for FE D(grw), the fiber of DBs --+ 

DBs(grw) on F is strictly bigger than the fiber of D--+ D(grw) on F. 
For example, in Example I, DBs(grw) = D(grw) and it is a one 

point set, and D = C, Dspl = R. The subgroup r := Gz,u ~ Z of 
Gz is of finite index in Gz, and so r\DBs should be compact as in (ii) 
in Theorem 0.2 in Introduction. Since r\D = Z\ C is not compact, we 
need to add new points to D to obtain our DBs· As is explained in 10.1, 
in this case, 

DBs = {x+iy I x E R,-oo::; y::; oo} ::J D = C = {x+iy I x,y E R}, 

and r\DBs ~ Z\R x [-oo, oo] is compact. 

3.5. In general, as a real analytic manifold, D is an £-bundle over 
spl(W) x D(grw) for some finite-dimensional graded R-vector space L. 
(With the notation in 4.2, L = LR_1'-1 (r) for r E D(grw); all LR_1'- 1(r) 
are non-canonically isomorphic to each other as graded R-vector spaces.) 

We will have a compactification L of L (§7) which is a real analytic 
manifold with corners. As a real analytic manifold with corners, DBs 
is an L-bundle over spl(W) x DBs(grw) (Corollary 8.5). For example, 
in Example I, the map D --+ spl(W) x D(grw) is identified with the 
projection C --+ R, z f--+ Re(z), and L ~ R, L ~ [-oo, oo] ::J R (see 
10.1). 
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3.6. As explained in Introduction, an element of Das has the form 
(P, Z) where P is a Q-parabolic subgroup of Ga and Z is either an 
Ap-orbit or a Bp-orbit in D for the Borel-Serre action. As is shown 
in 7.6, Z is an Ap-orbit if and only if in the above local isomorphism 
between Das and spl(W) x Dss(grw) x L, the component of (P, Z) in 
L belongs to L. 

§4. Canonical splittings of weight filtrations 

4.1. In this section, we review the canonical splitting s = splw(F) E 
spl(W) associated to FED, defined by the theory of Cattani-Kaplan­
Schmid [CKS]. This elements played an important role in our previous 
paper [KNU]. The definition of s was reviewed in detail in section 1 of 
[KNU]. 

4.2. Let F = (Fw)w E D(grw). Regard F as the filtration EBw Fw 
on grw = ffi grw and let Hp,q = Hp,q c grw. Let 

C Ww w,C• F Fp+q C 

L:R_1·-1 (F) = {8 E Enda(grw) I8(Hj;;q) C EBv'<p,q'<q H~·q' 

for all p, q E Z}. 

All elements of L:R_1·-\F) are nilpotent. 
Let F E D. For the canonical splitting s = splw (F) of W associated 

to F, there is a unique pair (8,() of elements of L:R_1·-1 (F(grw)) such 
that 

F = s(exp( -() exp(i8)F(grw)). 

Here, exp( -() exp( i8) is defined as an automorphism of gr~, and exp( -() 
exp( i8)F(grw) is defined as a decreasing filtration on gr~. This filtra­
tion need not be a direct sum of filtrations on gr!:' c for w E Z. 

For FED, we introduce the definition of the' associated element 8 
first, that of the associated element (next, and then give the definition 
of the associated splitting s. 

4.3. For FED, there is a unique pair (s',8) E spl(W) x L:R_1·-1(F 
(grw)) such that 

F = s'(exp(i8)F(grw)). 

This is the definition of 8 = 8(F) associated to F. 
The definition of ( = ((F) is rather complicated. It is given as a 

universal Lie polynomial in the (p, q)-Hodge components of 8 (p, q E Z) 
for F(grw) as is explained below. 
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The maps 

D-+ End(grw), F t---> 8(F), F t---> ((F) 

are real analytic. 

4.4. Let b~,q (p, q, l E Z, p, q, l ~ 0) be the integers determined by 
(1- x)P(1 + x)q = Lz b~,qx1 , so that b~,q = 0 unless p + q ~ l. 

Define non-commutative polynomials Pk = Pk(X2, ... , Xk+l) over 

Q by Po = 1, Pk = -i 2::7=1 Pk-jXi+1 (k ~ 1). (So P1 = -X2, 

P2 =~X~- ~X3, P3 =-~X~+ ~X3X2 + ~X2X3- ~X4, etc.) 
Let A be the ring of non-commutative polynomials in variables 

Lp,-q (p ~ 1,q ~ 1) over Q(i). For p,q ~ 1, let A-p,-q be the part 
of A consisting of linear combinations over Q(i) of products of the form 
Lp1 ,-q1 • • • Lvk.-Qk with p = Lj Pj, q = Lj qj. Then A is the direct 
sum of the A-p,-q and Q(i) as a Q(i)-module. 

In [CKS] (6.60), it is proved that there exists a unique family of 
elements (-p,-q and 'f/-p,-q of A-p,-q (p, q ~ 1) satisfying the following 
two conditions (1) and (2). 

(1) Let A be the formal completion ~k A/ Jk, where Jk denotes 

the sum of A-p,-q such that p + q ~ k. Let ( = Lp,q (-p,-q, rJ = 
Lp,q 'f/-p,-q E A. Then we have an identity in A 

(2) By the unique ring homomorphism A-+ A which sends ito -i 
and 8-p,-q to 8-q,-p, the element (-p,-q is sent to (-q,-p, and 'f/-p,-q 
is sent to 'f/-q,-p· 

For example, we have 

(-1,-1 = 0, 

(-2,-1 = ~8-2,-1, 

(-1,-2 = -~8-1,-2· 

It can be shown that (p,q are Lie polynomials in 8k,l (k,l:::; -1). 

4.5. For F E D(grw) and for 8 E LR.1'-1 (F), let Op,q (p, q E Z) be 
the (p, q)-Hodge component of 8 defined by 

8 = Lp,q Op,q (8p,q E L(/'-1(F) = c 0R LR.1'-1(F)), 
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8 (Hk,l) c Hk+p,l+q for all k l E Z 
p,q F F . ' · 

We define the element ( E LR.1'-1(F) associated to the pair (F,8), 
as the element whose (p, q )-Hodge component (p,q for F for each p, q E Z 
is the Lie polynomial in 8k,l (k,l::; -1) given in 4.4. 

4.6. For F E D, the associated 8, (, s are as follows. The element 
8 is already given in 4.3. The element ( is defined to be the element 
of LR.1'-1(F(grw)) associated to the pair (F(grw), 8) as in 4.5. Finally 
the canonical splitting s = splw(F) of W is defined by 

s = s' exp(() 

where s' is as in 4.3. 

4.7. For F ·ED, the elements s'8(s')-l,s'((s')-1 E QR here are 
denoted in [CKS] and also in [KNU] as 8, (,respectively. Here s'8(s')-1 

is understood as the composition 
(s')- 1 W 8 W s' 

Ho,R ~ gr ~ gr ~ Ho,R· 

For these elements, we have 

F exp(is'8(s')-1)s'(F(grw)) 

= exp(is' 8(s')-1 ) exp( -s' ((s')- 1 )s(F(grw)). 

4.8. For F E D(grw) and 8 E LR.1'-\F), we define a filtration 
O(F, 8) on gr~ by 

O(F, 8) = exp( -() exp(i8)F, 

where (is the element of LR.1'-1(F) associated to the pair (F,8) in 4.5. 
ForsE spl(W), the 8, (, s associated to s(O(F, 8)) are just 8, (, s. 

Proposition 4.9. We have an isomorphism of real analytic mani­
folds 

D ~ {(s,F,8) E spl(W) x D(grw) x EndR(grw) 18 E LR.1'-\F)}, 

F ~ (splw(F), F(grw), 8(F)), s(O(F, 8)) ~ (s, F, 8). 

4.10. For g = (gw)w E GR(grw) = Ilw GR(gr~), we have 

gO(F, 8) = O(gF, Ad(g)8), 

where Ad(g)8 = g8g- 1• 

4.11. For FE D(grw), 8 E LR.1'-1 (F) and s E spl(W), the element 
s(O(F, 8)) of D belongs to Dspl if and only if 8 = 0. 
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§5. Definition of Dss 

5.1. Note that a Q-parabolic subgroup P of GR corresponds in 
one-to-one manner to a family (Pw)wEZ of Q-parabolic subgroups Pw 
of GR(gr~). The correspondence is that P is the inverse image of 
I1wEZ Pw under GR - I1wEZ GR(gr~). We will denote I1wEZ Pw as 
P(grw). 

Let 

Sp := ITwEZ Spw, Ap := ITwEZ Apw ~ R~o' 

_Ap := ITwEZ APw ~ R~o 

where n is the rank of Sp. Here Spw, Apw, and APw are defined as in 
§2 for the pure situation ((Ho n Ww)/(Ho n Ww_l), (, )w, Pw)· 

Let 

B · R X A "' Rn+l B- · R X A- "' Rn+l P ·= >O P - >0 ' P .= 2:0 P - 2:0 · 

We regard 

Ap = {1} X Ap c Bp, Ap = {1} X Ap c Bp. 

5.2. We have the Borel-Serre action o of Bp on D defined as follows. 
This is the mixed Hodge theoretic version of the Borel-Serre action of 
Apw on D(gr~) in §2. 

For F E D and b = (c, a) E Bp (c E R>o, a = (aw)wEZ E Ap with 
aw E Apw), we define b oF= bpF, where bp E Auta(Ho,R, W) is as 
follows. For the canonical splitting 8: grw ~ Ho,R of W associated to 
F (§4), bp acts on the weight w-summand 8(gr~) of Ho,R as cwaw,F(gr~) 
where aw,F(gr~) E Pw is the Borel-Serre lifting (2.3) of aw at F(gr~). 

Forb E Bp and FED, we call bp the Borel-Serre lifting of b at F. 
The map Bp x D-+ D, (b, F) f--+ b oF is actually an action of Bp 

on D, as is reduced easily to the pure case. 
Forb= (c, a) E Bp, 8 E spl(W), F = (Fw)w E D(grw) and 8 E 

LR.1'-1 (F), we have 

(1) b o 8(0(F, 8)) a o 8(0(F, co 8)) 

8((ffiw aw,Fw)B(F, Co 8)) 
8(0(a oF, co Ad(aF )8)). 

Here co 8 = Lw cw8w with 8w the part of weight w of 8, a oF = 
(aw o Fw)w, and Ad(ap) = ffiw Ad(aw,Fw)· 
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The Borel-Serre action of Bp on Dspl factors through the projection 
Bp-> Ap, but not so on the rest of D. 

Via the projection D -> D(grw), the Borel-Serre action of Bp on 
D is compatible with the Borel-Serre action of Ap on D(grw) through 
the projection Bp-> Ap. 

If Q is a Q-parabolic subgroup of GR containing P, the canonical 
homomorphism AQ -> Ap (2.8) and the induced homomorphism BQ -> 

Bp are compatible with the Borel-Serre actions of these groups on D. 

Definition 5.3. We define DBs to be the set of all pairs (P, Z) 
where Pis a Q-parabolic subgroup of GR and Z is either an Ap-orbit 
or a B p-orbit in D for the Borel-Serre action. 

Note that for F E D, the Ap-orbit in D containing F and the 
Bp-orbit in D containing F coincide if and only ifF E Dspl· 

5.4. We have a canonical map 

DBs -" DBs(grw), (P, Z) r---+ (Pw, Zw)w 

where Zw = {F(grJ;;) IF E Z}, which we denote asp r---+ p(grw). 

5.5. We have a canonical map 

splw : DBs -" spl(W) 

sending ( P, Z) E DBs to the canonical splitting of W associated to F E Z 
(§4), which is independent of the choice ofF E Z by 5.2 (1). 

Combining these, we have a canonical map 

DBs-" spl(W) x DBs(grw), p r---+ (splw(P), p(grw)). 

§6. The real analytic structure with corners 

In this section, we define a structure of a ringed space over R on 
DBs and lead to the theorem that DBs is a real analytic manifold with 
corners. 

6.1. For a Q-parabolic subgroup P of GR, let 

DBs(P) := {(Q, Z) E DBs I Q ~ P}. 

Write P(grw) = I1w Pw. Then DBs(P) is the inverse image of DBs(grw) 
(P(grw)) := I1w DBs(grJ;;)(Pw) under the canonical map DBs -> DBs 
(grw). 
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We have a canonical bijection 

Here the union in the right-hand side is taken in D x 8 P Bp, where 
D xAp Ap is embedded in D x 8 P Bp via the identifications Ap = 
{1} x Ap c Bp, Ap = {1} x Ap C Bp. Hence, in the right-hand side, 
the intersection ((D-Dspi) x 8 P Bp )n(D xAp_Ap) is (D-Dspi) xAp Ap. 

The bijection (1) is defined as follows. Let X(Sp) := flwX(Spw) 
and X(Sp)~ := IlwX(Spw)~. For FED and a= (aw)w E Ap (resp. 
FED- Dspl and b = (O,a) E Bp with a= (aw)w E Ap), the corre­
sponding (Q, Z) E DBs(P) is given as follows. For wE Z, let (Qw, Zw) 
be the element of DBs(gr~)(Pw) corresponding to (F(gr~), aw) (2.7). 
Then Q is the parabolic subgroup of GR corresponding to (Qw)w· Z is 
the AQ (resp. BQ)-orbit in D defined by 

Z ={a' oF I a' E Ap,a'(x) = a(x) for all xES} 

(resp. Z = {(c, a') oF I c > 0, a' E Ap, a'(x) = a(x) for all xES}), 

where S = Ker(X(Sp)~-+ X(SQ)~). Conversely, (Q,Z) E DBs(P) 
corresponds to the following element of the right-hand side of (1). As­
sume Z is an AQ-orbit (resp. a BQ-orbit but not an AQ-orbit). Take 
FE Z. Then the corresponding element of the right-hand side of (1) is 
the class of (F, a) (resp. (F, b) with b = (0, a) E Bp ), where a E Ap = 
Hom(X(Sp )~, R~01t) is defined as follows. For X= (Xw)w E X(Sp )~, 
a(x) is 1 if Xw belongs to the face of X(Spw)~ corresponding to Qw 
(2.8) for any w, and is 0 otherwise. 

6.2. We define the topology of DBs and the sheaf of rings of real 
analytic functions on DBs. 

By 6.1 (1), we have a canonical surjection 

c :=up (((D- Dsp!) X Bp) u (D X Ap )) -+ DBs, 

where P ranges over all Q-parabolic subgroups of GR, and C is a real 
analytic manifold with corners. 

We define the topology of DBs as the quotient of the topology of C 
via the above surjection. 

We define the sheaf of rings of real analytic functions on DBs as 
follows. For an open set U of DBs and a function f : U -+ R, f is real 
analytic if and only if the composition U' -+ U -L R, where U' denotes 
the inverse image of U in C, is real analytic. 

The following will be proved in §8. 
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Theorem 6.3. With the sheaf of rings over R defined in 6.2, Dss 
is a real analytic manifold with corners. 

Proposition 6.4. (i) The projection Dss --+ spl(W) x Dss(grw) 
is real analytic, that is, it is a morphism of real analytic manifolds with 
corners. 

(ii) Let P be a Q-pambolic subgroup of GR. Then the action of P 
on D extends uniquely to a real analytic action of P on Dss ( P). 

(iii) Regard the subgroup GqGR,u of GR as a Lie group in which 
GR,u is an open subgroup with the usual topology. Then the action of 
GqGR,u on D extends uniquely to a real analytic action of GqGR,u on 
Dss-

§7. Compactified graded real vector spaces 

This section gives a result needed for §8. 

Let V be a finite-dimensional R-vector space endowed with a direct 
sum decomposition V = ffiwEZ,wS:-l Vw. In this section, we define a 
compactification V of V which is a real analytic manifold with corners. 
(In fact, V is actually a real analytic manifold "with boundary", for the 
boundary of V is smooth. As a differentiable manifold with boundary, 
Vis nothing but the spherical compactification of V.) At the end 7.6 of 
this section, we explain how this compactification is used in this paper. 

7 .1. Consider the action 

R>o XV--+ V, (c, v) 1--+ co v := EwEZ cwvw 

of the group R>o on V where Vw denotes the Vw-component of v. 
Let V be the set of all subsets of V which are either a one point set 

or an R>0-orbit for this action. 

7.2. We have a canonical bijection 

(1) 

where in the right-hand side R>o acts on V- {0} by o as in 7.1. Here the 
union in the right-hand side is taken in V xR>o R>o· So the intersection 
((V- {0}) xR>o R;::-:0) n Vis V- {0}. In (1), the -one point set { v} E V 
for v E V corresponds to v E V in the right-hand side, and the R>o­
orbit containing v E V- {0}, regarded as an element of V, corresponds 
to the class of (v,O) E (V- {0}) x R;::-: 0 in the right-hand side. 
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Via the bijection (1), we will identify V with a subset of V x R>o R>o 
and identify V- {0} with (V- {0}) xR>o R>o· -

7.3. We define a structure of a ringed space over Ron V. By 7.2, 
we have a canonical surjection 

C := ((V- {0}) x R>o) u V---> V, 

and C is a real analytic manifold with corners. 
We define the topology of V as the quotient of the topology of C 

via the above surjection. 
We define the sheaf of real analytic functions on V is as follows. For 

an open set U of V, a function f : U ---> R is real analytic if and only 
if the composition U' ---> U -L R, where U' denotes the inverse image of 
U in C, is real analytic. 

As is easily seen, we have: 

(i) V- {0} and V are open in V. 

(ii) The restriction of the topology of V to V coincides with the 
original topology of V. For an open set U of V, a function f : U ---> R 
is real analytic in the usual sense if and only if it is real analytic in the 
above sense when U is regarded as an open set of V. 

(iii) The topology of V- {0} as a subspace of V coincides with the 
quotient of the topology of (V - {0}) x R>o· For an open set U of 
V- {0} and for a function f : U ---> R, f is real analytic in the above 
sense if and only if the composition U' ---> U -L R is real analytic, where 
U' denotes the inverse image of U in (V- {0}) x R>o· 

Proposition 7.4. The ringed space V over R is a real analytic 
manifold with corners. It is compact. 

Proof. Take a positive definite symmetric R-bilinear form ( , )w : 
Vw x Vw ---> R for each w. Take an integer m < 0 which satisfies m E wZ 
for any w E Z such that Vw -I 0. Consider the real analytic function 

Then f(cov) = cf(v) for any c E R>o and v E V- {0}. 
Let V(l) = {v E VI f(v) = 1}. Then v<l) is a closed real analytic 

submanifold of V- {0}, and we have an isomorphism of real analytic 
manifolds 

(1) v(l) X R>o --=. v- {0}, (v, c) f---tc 0 v. 
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The inverse map is given by v f--7 (f(v)- 1 o v, f(v)). The isomorphism 
(1) extends to an isomorphism of ringed spaces over R 

(2) v(l) X R?:o ~ v- {0} 

which sends (v,O) (v E v(ll) to {cov IcE R>o} E v. Hence v- {0} 
is a real analytic manifold with corners. 

We prove V is compact. Note that V(l) is compact. The map (2) 
extends to a continuous map 

V(l) X [0, ooj ---> V 

which sends (v, oo) (v E V(ll) to 0. Via this map, Vis homeomorphic to 
the quotient of the compact space V(l) X [0, ooj obtained by identifying 
all (v, oo) (v E v<1l). Hence Vis compact. 0 

7.5. Example. Let wE Z, w:::; -1, and consider the simplest case 
V = Vw = R. Then we have a canonical isomorphism of real analytic 
manifolds with corners 

V ~ [-oo, oo], 

which sends the class of(v, c) in V (v E V = R, c E R>o, (v, c)=!= (0, 0)) 
to cwv if c =!= 0, to oo if c = 0 and v > 0, and to -oo if c = 0 and v < 0. 
Here we endow [-oo, oo] with the following structure of a real analytic 
manifold with corners. The topology of [-oo, oo] is the usual topology, 
we regard the open set R of [-oo, oo] as a real analytic manifold in 
the usual way, and we regard (0, oo] (resp. [-oo, 0)) as a real analytic 
manifold with corners via the bijection R>o --=...., (0, oo], r f--7 rw (resp. 
R>o--=...., [-oo,O), r f--7 -rw). -

The compactified vector space of this section is used in this paper 
in the following way. 

Proposition 7.6. Let s E spl(W) and (P, Z) E DBs(grw). Fix 
FE Z and let L be the graded vector space LR_1'-1 (F) of weights :::; -2. 

(i) There is a bijection from the fiber of the map DBs ---> spl(W) x 
DBs(grw) (5.5) over (s, (P, Z)) onto the compactified vector space L 
given in the following way. An element (P, Z) E DBs in this fiber corre­
sponds to the subset { 8 ELI s(B(F, 8)) E Z} of L, which is an element of 
L. Here Pis the inverse image of PC GR(grw) under GR---> GR(grw). 

(ii) We have the following equivalences. Let (P, Z) be an element of 
this fiber and let v E L be the corresponding element. 
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Z is an Ap-orbit ~ v E £. 

Z is a Bp-orbit but not an Ap-orbit ~ vEL- L. 

Z is an Ap-orbit and also a Bp-orbit ~ v = 0. 

Proof. A point of the fiber is a pair (P, Z), where Z is either an 
Ap-orbit or a B p-orbit which contains s(O(F, ch)) for some 81 E £. If it 
is an Ap-orbit, then Z = {s(O(aoF,Ad(ap)81 )) I a E Ap}, and hence 
{8 ELI s(O(F, 8)) E Z} = {81 }. If it is a Bp-orbit, then Z = {s(O(a o 
F,coAd(ap)81 )) I a E Ap,c E R>o}, and hence {8 ELI s(O(F,8)) E 
Z} = {co 81 I c E R>o}. These imply the desired statements. 0 

§8. Descriptions of Dss 

In this section, we prove results which describe how our space Dss 
looks like. 

8.1. We define two open sets D~) and D~~) of Dss such that 

Dss = D~~) U D~~). Let D~~) be the subset of Dss consisting of all 

elements of the form (P, Z) such that Z C D- Dspl· Let D~~) be the 
subset of Dss consisting of all elements of the form (P, Z) such that Z 
is an Ap-orbit. Note that D~~) is not the set of all (P, Z) E Dss such 

that Z is a Bp-orbit, but D~~) contains any (P, Z) E Dss such that 
Z is a Bp-orbit but not an Ap-orbit. In the bijection of 7.6 between 
the fiber of Dss --t spl(W) x Dss(grw) and L, if p E Dss is in the 
fiber and if v E L is the image of p, then p E D~~) if and only if 

v =/= 0, and p E D~~) if and only if v E L C L. For a Q-parabolic 

subgroup P of GR, Dss(P)CB) := Dss(P) n D~~) coincides with the 

image of (D-Dspi) x 8 P Bp --t Dss(P) and Dss(P)(A) := Dss(P)nD~~) 
coincides with the image of D xAP AP --t Dss(P) under the bijection 
(1) in 6.1. Hence under the canonical maps (D- Dspl) x Bp --t Dss 

and D x AP --t Dss (6.2), the inverse image of D~) in (D- Dsp!) x Bp 
is (D- Dsp!) x Bp itself, the inverse image of D~~) in D x .Ap is the 

open set (D- Dsp!) x Ap, the inverse image of D~~) in (D- Dspl) x Bp 
is the open set (D- Dspl) x R>o x .Ap, and the inverse image of D~~) 
in D x .Ap is D x .Ap itself. From these we see that D~~) and D~~) are 
open in Dss-

We give some basic facts (i) and (iii), whose proofs are easy, and 
their consequences (ii) and (iv). These are the mixed versions of the 
corresponding statements in the pure case in 2.9. 
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Let P and Q be Q-parabolic subgroups of GR. Let P * Q be the 
algebraic subgroup of GR generated by P and Q, which is a Q-parabolic 
subgroup of GR. 

(i) Let AQ(P * Q) be the open set of AQ consisting of all homomor­
phisms X(SQ)~-+ R~01t which send Ker(X(SQ)~-+ X(SP*Q)~) into 
R>o· Let BQ(P*Q) be the open subset R::':o x AQ(P*Q) of BQ· Then 
under the canonical maps (D- Dspi) x BQ -+ DBs and D x AQ -+ DBs 
(6.2), the inverse image of DBs(P)(B) in (D- Dspi) x BQ is the open set 
(D- Dspl) x BQ(P * Q), the inverse image of DBs(P)(B) in D x AQ is 
the open set (D- Dspl) x AQ(P * Q), the inverse image of DBs(P)(A) in 
(D- Dspl) x BQ is the open set (D- Dspl) x R>o X AQ(P * Q), and the 
inverse image of DBs(P)(A) in D x AQ is the open set D x AQ(P * Q). 

This shows 

(ii) DBs(P)(B) and DBs(P)(A) are open in DBs· 

In fact, (ii) can also be deduced from the fact that D~~), D~~), and 
DBs(P) are open sets of DBs· (The openness of DBs(P) follows from 
the openness of DBs(grw)(P(grw)) since DBs(P) is the inverse image of 
DBs(grw)(P(grw)) under the canonical map DBs -+ DBs(grw) which 
is continuous.) 

(iii) Let the notation be as in (i). Take a homomorphism X(SP*Q)~ 

-+ X(SQ)~ such that the composition X(SP*Q)~ -+ X(SQ)~ -+ X( 

Sp*Q)~ is the identity, let AQ -+ Ap*Q be the corresponding homo­
morphism, and let H be the kernel of the last homomorphism. Then 
we have an isomorphism of real analytic manifolds with corners H x 
Bp*Q--=-. BQ(P*Q), (a, b) f-+ ab and H x AP*Q ~ AQ(P*Q), (a, a') f-+ 

aa'. The following diagrams are commutative. 

(D- Dspl) X BQ(P * Q) -+ 

l 
DBs(P) 

D X AQ(P * Q) -+ 

l 
DBs(P) 

(D- Dspl) X Bp 

l 
DBs(P), 

where the upper horizontal arrows are the real analytic maps (F, ab) f-+ 

(aoF,b) (a E H,b E BP*Q C Bp) and (F,aa') f-+ (aoF,a') (a E 
H, a' E AP*Q C .Ap ), respectively. (Here the inclusions Bp*Q c Bp and 
AP*Q C .Ap are induced from the surjective homomorphism X(Sp)~-+ 

X(SP*Q)~.) 
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This shows 

(iv) The bijections DBs(P)(B) c.::: (D-Dspl) xBP Bp and DBs(P)(A) c.::: 

D xAp Ap induced by the bijection 6.1 (1) are homeomorphisms. Here 
(D- Dspl) xBp Bp has the topology as a quotient space of (D- Dsp!) x 
Bp, and D xAp AP has the topology as a quotient space of D x Ap. 
For an open set U of DBs(P)(B) and a function f : U ----+ R, f is real 
analytic if and only if the composition U' ----+ U L R is real analytic, 
where U' is the inverse image of U in (D- Dspl) x Bp. For an open set 
U of DBs(P)(A) and a function f: U----+ R, f is real analytic if and only 
if the composition U' ----+ U L R is real analytic where U' is the inverse 
image of U in D x Ap. 

8.2. We prove Theorem 6.3. 
Let P be a Q-parabolic subgroup of GR. 
From 2.10, for each w E Z, there is a closed real analytic subman­

ifold D(gr~)(ll of D(gr~) such that we have an isomorphism of real 
analytic manifolds D(gr~)(ll x Apw --='. D(gr~), (F, a) f-+ a oF. Let 
D(grw)(l) := f1w D(gr~)Cll, and let D(l,A) be the inverse image of 
D(grw)(ll in D. Then D(l,A) is a closed real analytic submanifold of 
D, and we have an isomorphism of real analytic manifolds 

D(l,A) x Ap---=--. D, (F, a) f-+ a oF. 

By 8.1 (iv), this isomorphism extends uniquely to an isomorphism of 
ringed spaces 

(1) 

Fix r E D(grw). For w E Z, let Lw be the weight w part of 
L = LR_1·-\r), and fix a K;w -invariant positive definite symmetric R­
bilinear form ( , )w on Lw. Define f : L- {0} ----+ R>o as in the proof 
of Proposition 7.4, replacing V there by L. For F E D(grw), taking 
g E GR(grw) such that F = gr, let 

fF = f o Ad(g)- 1 : LR_1'-1(F)- {0}----+ R>o· 

Then, by the K;w -invariance of ( , )w, this map fF is independent of 
the choice of g. Let 

nCl,Bl = {s(e(F,o)) 1 FE D(grw)Cll,o =1- o, fp(o) = 1} c D(l,Al. 

Then D(l,B) is a closed real analytic submanifold of D- Dsph and we 
have an isomorphism of real analytic manifolds 

D(l,B) x Bp---=--. D- Dsph (F, b) f-+ b oF. 



214 K. Kato, C. Nakayama and S. Usui 

By 8.1 (iv), this isomorphism extends uniquely to an isomorphism of 
ringed spaces 

(2) 

Since DBs is covered by open sets DBs(P)(A) and DBs(P)(B) when 
P varies, (1) and (2) show that DBs is a real analytic manifold with 
corners. This completes the proof of Theorem 6.3. 0 

Now Proposition 6.4 is straightforward, and we omit the proof. 
In the following theorem, we describe the structure of DBs relative 

to DBs(grw). 

Theorem 8.3. Let P be a Q-parabolic subgroup of GR, and write 
P(grw) = f1w Pw. For each wE Z, take a closed real analytic submani­
fold D(gr,:;;)(ll of D(gr,:;;) such that D(gr,:;;)(ll x Apw _::. D(gr,:;;), (F, a) 
~ aoF (2.10). Let D(grW)(ll := f1w D(gr,:;;)(ll, and let J.l: D(grw)(ll x 
A.p _::. DBs(grw)(P(grw)) := f1w DBs(gr,:;;)(Pw) be the unique iso­
morphism of real analytic manifolds with corners which extends the iso­
morphism D(grW)(l) x Ap _::. D(grw) of real analytic manifolds. Take 
r E D(grW)(ll. 

(i) There is an open neighborhood U' of r in D(grw) and a real 
analytic map v: U' ___. GR(grw) such that F = v(F)r for any FEU'. 

(ii) Let U' and v be as in (i) and let U := J.t( (D(grw)(ll n U') x A.p) 
which is an open set of DBs(grw). Let L = LR_1'- 1(r). Let U be the 
inverse image of U in DBs under the projection DBs ___. DBs(grw). 
Then there is a unique isomorphism 

U ....:::_. spl(W) x U x L 

of real analytic manifolds with corners over spl(W) x U which sends 
a o s(O(F, 8)) ED n U with s E spl(W), a E Ap, FE D(grw)(ll n U', 
and 8 E LR_1·-\F) to (s,aoF,Ad(v(F))- 1 (8)). (For the compactified 
vector space L, see §7.) 

Proof. (i) is clear. We prove (ii). We define a map U ___. Las follows. 
Consider the maps 

(2) 
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where the isomorphisms are obtained as in 8.2 and the last arrows are 
the projections. These maps (1) and (2) induce maps 

(3) UnDss(P)(B) ~ (UnD(l,B))xR~o ~ (L-{O})xR~o ~ L-{0}, 

(4) 

in which the second arrows are given by s(O(F, 8)) ~ Ad(v(F))- 18 and 
the last arrow of (3) is induced by the case V = L of the bijection 7.2 (1). 
The maps (3) and (4) induce the desired map fJ ~ L. As is easily seen, 
the maps (3) and (4) induce isomorphisms of real analytic manifolds 
with corners 

(5) fJ n Dss(P)(B) ~ spl(W) xU x (L- {0} ), 

(6) fJ n D88 (P)(A) ~ spl(W) x U x L. 

These (5) and (6) show that the map fJ ~ spl(W) x U x L is an iso­
morphism of real analytic manifolds with corners. 0 

Corollary 8.4. The isomorphism class of the graded R-vector space 
LR.1'-1 (r) for r E D(grw) is independent of r. Let L = LR.1'-\r) for 
a fixed r. Then Dss(grw) is covered by open subsets U such that the 
inverse image of U in Dss is isomorphic to spl(W) x U x L as a real 
analytic manifold with comers over spl(W) x U. 

Proof. This follows from Theorem 8.3. 

By Corollary 8.4, we have 
D 

Corollary 8.5. The canonical map Dss ~ spl(W) x Dss(grw) is 
an L-bundle. In particular, it is proper and surjective. 

Sometimes, this bundle is canonically trivialized as follows. 

8.6. We will consider the following three cases. 

(a) The case where hp,q = 0 unless p = q. (Example I in 1.10 is 
contained in (a).) 

(b) The case where there is k such that grw = 0 unless wE {k, k-1}. 
(Example II in 1.11 is contained in (b).) 

(c) The case where there is an odd integer k such that gr~ = 0 
unless w E { k - 1, k, k + 1}, and hp,q = 0 if p + q E { k - 1, k + 1} and 
p =f. q. (Example I in 1.10 and Example II in 1.11 are contained in (c). 
Many connected mixed Shimura varieties are Din the case (c).) 
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Proposition 8. 7. (i) The following two conditions are equivalent. 
( 1) D is a GR -homogenious space. 
{2} D = Dspl· 

(ii) In the case (b), the equivalent conditions in (i) are satisfied. 

(iii) If the equivalent conditions in (i) are satisfied, then 

~ w 
Dss--=-+ spl(W) x Dss(gr ). 

Proof. We prove (i) and (iii). Assume that the action of GR on 
D is transitive. We show that D = Dspl· Let F E D. Take any 
element F' of Dspl· Then F = gF' for some g E GR by assumption. 
Hence FE Dspl· Conversely assumeD= Dspl· Then, by Corollary 8.4, 
we have (iii). Hence the transitivity of the action of GR on D follows 
from the transitivity of the action of GR(grw) on D(grw) (2.1) and the 
transitivity of the action of GR,u on spl(W) (3.3). 

Finally it is well known that D = Dspl in the case (b) (see, for 
example, [KNU] 1.5 for the proof). 0 

Proposition 8.8. Assume we are either in the case (a) or in the 
case (c). Fix r E D(grw) and let L = LR.1'-1 (r). Then we have a global 
isomorphism 

Dss c:::' spl(W) x Dss(grw) x L 
of real analytic manifolds with corners. 

Proof. In these cases (a), (c), the adjoint action of GR(grw) on 
EndR(grw) is trivial. Hence the subspace LR.1'-1 (F) of EndR(grw) is 
independent ofF E D(grw) and the isomorphism in Theorem 8.3 (ii), 
which is given locally on Dss(grw), glues together to an isomorphism 
in this proposition. 0 

§9. Arithmetic quotients 

The purpose of this section is to prove the following Theorem 9.1. 

Theorem 9.1. (i) For a subgroup r ofGz, the action ofr on D8 s 
is proper, and the quotient space r\Dss is locally compact {in partic­
ular, it is Hausdorff). If r is neat, the projection Dss -t r\Dss is 
a local homeomorphism, and r\Dss has a unique structure of a real 
analytic manifold with corners for which Dss -t r\Dss is locally an 
isomorphism. 

(ii) Ifr is a subgroup of Gz of finite index, the quotient space r\Dss 
is compact. 



Classifying spaces of degenerating mixed Hodge structures 217 

(iii) If r is a subgroup of Gz such that r u := r n Gz,u is of finite 
index in Gz,u, the projection r\Dss ---+ (r jr u)\Dss(grw) is proper. In 
particular, the map Gz,u \DBs---+ DBs(grw) is proper. 

Here in (i), the meaning of "neat" is as follows. A subgroup r of Gz 
is said to be neat if for any 'Y E r, the subgroup of C x generated by all 
eigenvalues of the action of 'Y on Ho,c is torsion free. If r is neat, then 
r is torsion free. There exists a neat subgroup of Gz of finite index ( cf. 
[B]). 

The proof of Theorem 9.1 is given in 9.2-9.7. 

9.2. Since Dss ---+ spl(W) x Dss(grw) is proper (8.5) and since 
Dss(grw) is Hausdorff (2.11) as well as spl(W) (3.3), Dss is a Hausdorff 
space. 

9.3. We prove that for any subgroup r of Gz, the action ofr on Dss 
is proper. The canonical continuous map Dss ---+ spl(W) x Dss(grw) 
is compatible with the actions of r, where 'Y E r acts on spl(W) as 
s 1--t "(Sgrw('Y)-1 (s E spl(W)), and acts on Dss(grw) through r---+ 
r jr u ---+ Gz(grw) in the natural way. Since spl(W) is a GR,u-torsor 
(3.3), the action of r u on spl(W) is proper. Since the action of r jr u on 
Dss(grw) is proper (2.11) and the action of r u on spl(W) is proper, the 
action of r on spl(W) x Dss(grw) is proper. Since Dss is Hausdorff 
(9.2), this shows that the action of r on Dss is proper. 

9.4. Since the action of r on Dss is proper (9.3), it follows that the 
quotient space r\Dss is Hausdorff. Since Dss is locally compact, this 
quotient space is also locally compact. 

9.5. We prove that if r is a neat subgroup of Gz, then the map 
Dss ---+ r\Dss is a local homeomorphism. This will show that r\Dss 
has a unique structure of a real analytic manifold with corners for which 
Dss ---+ r\Dss is locally an isomorphism. 

By 9.3, it is sufficient to prove that if p E Dss and 'Y E r satisfy 
'YP = p, then 'Y = 1. We have "fp(grw) = p(grw) in Dss(grw). Since 
"fp = p with "( E r jr u and p E Dss(grw) implies "( = 1 (2.11), we 
have 'Y E r u· By applying splw : Dss ---+ spl(W) to 'YP = p, we have 
"fSPlw(P) = splw(p). Since spl(W) is a GR,u-torsor, we have"(= 1. 

Thus we have proved (i) of Theorem 9.1. 

9.6. We prove (iii) of Theorem 9.1. Let r be a subgroup of Gz 
such that r u is of finite index in Gz,u· The quotient space r u \GR,u 
is compact as is easily seen. Since spl(W) is a GR,u-torsor, the quo­
tient spacer u \ spl(W) is also compact. Hence the map r u \(spl(W) x 
Dss(grw)) = (r u \ spl(W)) x Dss(grw) ---+ Dss(grw) is proper. Since 
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DBs ----+ spl(W) X DBs(grW) is proper, the map r u \DBs ----+ r u \(spl(W) X 

DBs(grw)) is also proper. Hence the composition r u \DBs ----+ DBs(grw) 
is proper. Dividing by r ;r U) we have that the map f\DBs ----+ (r ;r u)\DBs 
(grw) is proper. 

9. 7. Theorem 9.1 (ii) follows from (iii) and from the fact that 
f'\DBs(grw) is compact for any subgroup r' of Gz(grw) of finite index 
(2.11). 

§10. Examples 

10.1. Consider Example I in 1.10. The space DBs is described as 
follows. 

10.1.1. We have a commutative diagram of real analytic manifolds 
with corners 

D C 
n n 

DBs X := { x + iy I x E R, -oo ::; y ::; oo} 

which extends the identification D = C in 1.10. Here X is regarded as a 
real analytic manifold with corners via the bijection R x [-oo, oo] ~X, 
(x,y) ~---+ x + iy, where [-oo,oo] has the structure of a real analytic 
manifold with corners defined in 7.5 with w = -2. 

10.1.2. The projection DBs ----+ spl(W) corresponds to X----+ spl(W), 
X+ iy I-+ Sx, where Sx(e2 mod W_l) = xe1 + e2. 

10.1.3. Let P = GR,u· Note that P is the unique parabolic sub­
group of GR, Ap = {1} and Bp = R>o· The Borel-Serre action of 
b E R>o = Bp on D corresponds to the action x + iy 1-+ x + ib- 2 y on 
X. 

10.1.4. The element of DBs corresponding to x + ioo EX (x E R) 
is (P, Z), where Z is the Bp-orbit x + iR>o inC= D, and the element 
of DBs corresponding to x- ioo EX is (P, Z), where Z is the Bp-orbit 
x- iR>o in C = D. 

10.2. Consider Example II in 1.11. In this case, W0 = Ho,R and 
W -2 = 0. Let P be the parabolic subgroup of GR consisting of all 
elements g of GR such that gr l[ (g) = 1 and such that gr ~1 (g) preserves 
Re1. The space DBs(P) is described as follows. 
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10.2.1. We have a commutative diagram of real analytic manifolds 
with corners 

D 
n 

Dss(P) 

~XC R 3 x R:::.o 
n 

R 3 x R~o 

which extends the identification D = ~ x C in 1.11, where the right upper 
horizontal isomorphism~ x C c:::' R3 xR>o sends (s1, s2, x, r) E R3 xR>o 
to (x+ir-2, s1- (x+ir-2)s2) E ~ x C. As an enlargement of D(grw) = 
~' D 8 s(grw)(P(grw)) is identified with {x + iy I x E R, 0 < y ~ 
oo} whose structure as a real analytic manifold with corners is defined 
by the bijection (x, r) f--+ x + ir-2 from R x R>o, and the projection 
Dss(P) -+ Dss(grw)(P(grw)) corresponds to the map R 3 x R~o -+ 
{x + iy I x E R, 0 < y ~ oo} defined by (s1, s2, x, r) f--+ x + ir-2 

(s1, s2, x E R, r E R~o). 

10.2.2. The projection Dss(P)-+ spl(W) corresponds to (s1, s2, x, 
r) f--+ s, where s(e3 mod W-1) = S1e1 + S2e2 + e3. 

10.2.3. We have Ap c:::' R>o and Bp = R>o x Ap = R>o x R>o· 
The Borel-Serre action of ( r1, r2) E B p ( r1, r2 E R>o) on D corresponds 
to R 3 x R>o-+ R 3 x R>o, (s1, s2, x, r) f--+ (s1, s2, x, r2r). 

10.2.4. The element of Dss(P) corresponding to (s1, s2, x, 0) is 
(P, Z), where Z is the Ap-orbit in D (which is also a Bp-orbit) corre­
sponding to (s1, s2, x, R>o). 

10.3. Consider Example III in 1.12. 
Let P be the Q-parabolic subgroup of GR consisting of all elements g 

such that grlf (g)= 1 and such that gr~3 (g) preserves Re1. Let L = R 2. 
The space D 8 s(P) is described as follows. 

10.3.1. We have a commutative diagram of real analytic manifolds 
with corners 

D 
n 

Dss(P) 

R 3 x R>o x L 
n 

R 3 x R~o x L 

which extends the identification D = ~ x C 2 in 1.12. Here the right 
upper horizontal isomorphism sends (s 1 ,s2 ,x,r,d) E R 3 x R>o x L to 

(s1, s2, x E R, r E R>o, d = (dt, d2) E L with d1, d2 E R), and Lis the 
compactification of L in §7 regarding L as being of pure weight -3. 
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The projection DBs(P) ~ R 3 x R2':o x L -4 D8 s(grw)(P(grw)) = 
{x+iy I x E R,O < y ~ oo} is given by (s 1,s2,x,r,d) f-+X+ir- 2 
(s1, s2,x E R,r E R2':o,d E L). 

10.3.2. The projection DBs(P) -4 spl(W) corresponds to (sb s2, x, 
r, d) f-+ S, where s(e3 mod W-1) = S1e1 + S2e2 + e3. 

10.3.3. We have Ap = R>o, Bp == R>o x R>o· The Borel­
Serre action of (r1,r2) E Bp (r~,r2 E R>o) on DBs(P) corresponds to 
(s1,s2,x,r,d) f-+ (sbs2,x,r2r,r! 3d). 

10.3.4. The element of DBs(P) corresponding to (s1, s2, x, 0, d) 
(d E L) is (P, Z), where Z is the Ap-orbit in D corresponding to 
(s1, s2, x, R>o, d). The element of DBs(P) corresponding to (s1, s2, x, r, 
ood) (r E R>o, dE L, d f. 0, ood denotes the limit in L of td E L for 
t E R>o, t -4 oo) is (Q,Z), where Q = {g EGa I grlf(g) = 1} and Z 
is the BQ-orbit in D corresponding to (s1, s2, x, r, R>od). The element 
of DBs(P) corresponding to (s1, s2, x, 0, ood) (d E L, d f. 0) is (P, Z), 
where Z is the Bp-orbit in D corresponding to (s1, s2, x, R>o, R>od). 

We prove these assertions 10.3.1-10.3.4. 
Let r E D(grw) = [J be the point i E [J. We have LR.1'-1(r) ~ 

L = R2 , where (d1,d2) E L (dj E R) corresponds to the element 8 E 
LR.1'-1(r) which sends (e3 mod W_l) to d1e1 + d2e2 and sends e1, e2 to 
0. We will identify L with LR.1'-\r) via this isomorphism. From the 
formula 

( = ~L2,-1 - ~Ll,-2, 

we see that O(r, d) is given by 

O(r, d)1 = 0 c O(r, d)0 = C(id1 e1+id2e2+~(d1 e2-d2e1)+(e3 mod W-1)) 

C O(r, d)-1 = O(r, d)0 + C(ie1 + e2) C O(r, d)-2 = gr~. 

From this we see that the composition of the upper horizontal isomor­
phisms in the diagram in 10.3.1 sends (s1, s2, x, r, d) E R 3 x R>o x L 
to 

s(gxt(r)O(r, d)), 

where sis the splitting of W corresponding to (s1, s2), and 9x, t(r) are 
the elements of P(grw) defined by 

This proves the assertions. 
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In Examples II, III, any Q-parabolic subgroup of GR other than 
{g E GR I grlJI" (g) = 1} is GQ-conjugate to P. Hence the above 10.2 
and 10.3 give local descriptions of DBs at all points of DBs for these 
examples. 

In 10.4 and 10.5, in the cases of Example I and Example II, re­
spectively, we introduce shapes of other enlargements of D or r\D in 
Introduction. 

10.4. Remark. In the rather simple case Example I in 1.10, the 
mixed Hodge theoretic version of the diagram ( *) in Introduction will 
be seen to be just: 

X X 

X X 

Here X is as in 10.1, r = Gz,u, and I: is chosen suitably. The map 
X ----t P 1 (C) sends z E C c X to exp(27riz) E ex c P 1 (C), the point 
x + ioo E X (x E R) to 0 E P 1 (C), and the point x- ioo E X to 
oo E P 1 (C). 

10.5. Remark. In the case of Example II in 1.11, for a torsion 
free subgroup r' of SL(2, Z) which contains the kernel of SL(2, Z) ____, 
SL(2, Z/ NZ) for some N :2: 1, and for the inverse image r c Gz of r' 
under Gz ____, Gz(grw) = SL(2, Z), r\D is the universal elliptic curve 
over the modular curve r'\~, and for a suitable I:, r\D~ is a toroidal 
compactification of r\D. In this case, DsL(2) = DsL(2),val = DBs,val = 
DBs = DBs(grw) x R 2. We do not discuss here the other spaces in the 
diagram ( *) in Introduction in this case. 
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