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3-dimensional i.i.d. binary random vectors governed 
by Jacobian elliptic space curve dynamics 

Tohru Kohda 

Abstract. 

Sufficient conditions have been recently given for a classs of ergodic 
maps of an interval onto itself: I= [0, 1] c R---+ I and its associated bi­
nary function to generate a sequence of independent and identically dis­
tributed (i.i.d.) binary random variables. Jacobian elliptic Chebyshev 
map, its derivative and second derivative induce Jacobian elliptic space 
curve. A mapping of the space curve with its coordinates, e.g., X, Y 
and Z, onto itself is introduced which defines 3 projective onto map­
pings, represented in the form of rational functions of {xn, Yn, Zn}~=O· 
Such mappings with their absolutely continuous invariant measures as 
functions of elliptic integrals and their associated binary function can 
generate a 3-dimensional sequence of i.i.d. binary random vectors. 

§1. Introduction 

Bernoulli shift and its associated binary function can produce a se­
quence of independent and identically distributed (i.i.d.) binary random 
variables (BRVs) [1], [2]. Tent map [3], closely related to the Bernoulli 
map, and its associated binary function can also generate a sequence 
of i.i.d. BRVs. Ulam and von Neumann[4] showed that the logistic 
map is topologically conjugate to the tent map via the homeomorphism 

2 
h-1 (w) = - sin-1 y'W. They also pointed out that the logistic map 

1f 
is a strong candidate for pseudo-random number generation (PRNG) 
even though it has a non-uniform absolutely continuous invariant (ACI) 
measure. A number of analog chaos techniques, which use a chaotic real­
valued trajectory itself, have also been proposed [5],[6]. Binary sequences 
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using chaos, however, play an important role in several applications such 
as spreading spectrum codes [7], [8], [9] , [10], pseudo-random number 
generators [11] and cryptosystems [12], [13]. 

Motivated by this situation, we have shown that a class of ergodic 
maps with its unique ACI measure satisfying equi-distributivity prop­
erty (EDP) can generate a sequence of i.i.d. binary random variables 
if its associated binary function satisfies constant summation property 
(CSP) [14]. Fortunately, many well-known !-dimensional maps, which 
are topologically conjugate to the tent map via homeomorphism [3], sat­
isfy EDP. The Bernoulli map, logistic map and Chebyshev polynomial 
are good examples [15]. These maps are governed by duplication for­
mulae. In other words, a duplication formula gives chaotic dynamics. 
It is well known that elliptic functions satisfy an addition theorem [16]. 
We introduced a Jacobian elliptic Chebyshev rational map as a rational 
function version of Chebyshev polynomial [17]. This map as well as the 
other well known maps mentioned above are mappings from an interval 
onto itself. 

Modern cryptosystems, however, need more and more pseudo-random 
numbers. In fact, to break DES of 64 bits, it takes 243 steps and the 
success rate is 85% if 243 pairs (plaintext, ciphertext) are known [18]. 
Furthermore, the size of new block ciphers such as AES becomes large, 
e.g., 512 bits. 

This situation motivated us to discuss a closed smooth space curve 
defined by an algebraic relation between the Jacobian elliptic function, 
its derivative and second derivative. These duplication formulae give a 
real-valued sequence { Xn, Yn, Zn}~=O generated by 3-dimensional dynam­
ics with Cartesian coordinates, e.g., X, Y and Z. Such 3-dimensional 
dynamics forces us to define a mapping from such a space curve onto it­
self and three projection mappings from an interval onto itself associated 
with coordinates, i.e., Xn+l = rx(xn), Yn+l = ry(Yn) and Zn+l = rz(zn), 
respectively. The former rx(·), being single-valued, is the same as the 
Jacobian elliptic Chebyshev rational map. On the contrary, the latter 
two ry(·) and rz(·), being multi-valued, consist of single-valued map­
pings, each of which is a rational function of Xn, Yn, Zn and have their 
ACI measures with EDP. Hence, every bit of binary expansion of real­
valued vector (xn, Yn, Zn) satisfies CSP. This implies that the mapping 
from the space curve onto itself governed by duplication formulae gives 
a sequence of i.i.d. 3-dimensional binary random vectors. 
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§2. Related theories 

We will begin by describing some of the related theories which play 
an important role in evaluating statistical properties of a sequence of 
binary random variables generated by a real-valued sequence. 

2.1. EDP and CSP 

Perhaps the simplest mathematical object that can display chaotic 
behavior is a class of one-dimensional maps Wn+I = T(wn), where Wn = 
Tn(w0 ) E I= [d, e], n = 0, 1, 2, ... and T(·) :I-+ I. 
Consider a piecewise monotonic (PM) onto ergodic map T(·) that satis­
fies the following properties: 

i): there is a (trvial) partitition d =do < · · · < dN..- = e of I such 
that for each integer i = 1, · · · , Nn (Nr > 2) the restriction 
ofT(·) to the interval Ii = [di-1, di), denoted by Ti(w), is a C2 

function; as well as 
ii): T(Ii) = (d, e), that is, T has Nr monotonic onto maps Ti; 
iii): T has a unique ACI measure, denoted by f*(w)dw. 

The following four definitions are important to evaluate statistical prop­
erties of {wn}~=o· 

Definition 1 (Perron-Frobenius operator [19]). The Perron-Frobenius 
operator Pr acting on function of bounded variation F(w) E L 00 for T(w) 
is defined as 

d 1 N..--1 
PrF(w) = dw _

1 
F(y)dy = L lg~(w)IF(gi(w)), 

r ([d,w]) i=O 

where 9i(w) is the i-th preimage of w and Nr denotes the number of 
preimages. 

The ACI measure f*(w)dw satisfies 

(1) Prf*(w) = f*(w). 

Birchoff Individual Ergodic Theorem [19] tells us that for a stationary 
real-valued sequence {F(wn)}~=0 , the time average of {F(wn)}~=0 , de­
fined by 

T-1 

(2) (F) = lim (1/T) "F(wn) 
T--->oo L....J 

n=O 
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is equal almost everywhere to the expectation of F(w), defined by 

(3) 

From the stationarity of process, we denote Ew[F(Tn)] by Ew[F]. Con­
sider two sequences {G(Tn(w))};;,"=o and {H(Tn(w))};;_"=0 , where G(w), 
H ( w) E L =. The second-order cross-covariance function between these 
sequences from a seed w = w0 is defined by 

(4) p(f, G, H)= t (G(w)- Ew[G]) · (H(Tl(w))- Ew[H])f*(w)dw, 

where f = 0, 1, 2, · · ·. The operator Pr is useful in evaluating correlation 
functions because it has the following important property: 

(5) t G(w)Pr{H(w)}dw = t G(T(w))H(w)dw. 

Using this property, we get 

(6) p(f, G, H)= t P;{(G(w)- Ew[G])f*(w)}(H(w)- Ew[H])dw. 

Bernoulli map with its uniform ACI measure f*(w)dw = dw is defined 
as 

(7) { 
2w 

TB(w) = 2w(mod 1) = 2w _' 1, 
0 < w < ~, 
~~w<l. 

If w is represented by its binary expansion as w = O.d1 (w)d2(w) · · · , then 
the binary expansion of TB(w) is given by TB(w) = O.d2(w)d3(w) · · · . 
This implies that TB(·) shifts the digits one place to the left. The func­
tions dk ( ·), called Rademacher functions, furnish us with a model of 
independent tosses of a fair coin [2]. A sequence {dk(w)}~0 can be re­
garded as a sequence of i.i.d. BRVs in the sense that for almost every 
w, dk(w) can imitate coin tossing. 

Another map and its associated binary function are as follows. Con­
sider piecewise linear map ofp branches with f*(w)dw = dw, given by [3] 
(Nr =p), 

(8) Nv(w) = ( -1)lPwJpw(mod p), wE [0, 1]. 

In particular, N2(w) is referred to as the tent map. Introduce its asso­
ciated BRV defined as 

(9) ak = { 
0, 
1, 

for N~(w) ~ t, 
for N~(w) > 2. 
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Then for w = O.d1(w)d2(w) · · · , we get ao(w) = d1(w), ak(w) = dk(w) EB 
dk+l(w), k ~ 1, where EB denotes a modulo 2 addition (or exclusiveor) 
operation. Hence N2 ( w) and its associated binary functions ak ( ·) can 
generate a sequence of i.i.d. BRVs. 

Naturally, the important question arises, that can any other map 
and its associated binary function generate a sequence of i.i.d. BRVs? 
We have got an affirmative answer to this question [14], [15], which is 
firstly, the map should satisfy EDP and secondly, the binary function 
should satisfy CSP. 

Definition 2 (EDP [14]). If a piecewise-monotonic onto map T(w) 
satisfies 

(10) 
1 

Jg~(w)Jj*(gi(w)) = NT j*(w), 0:::; i:::; NT- 1, 

then the map is said to satisfy equi-distributivity property (EDP). 

Definition 3 (CSP [14],[15]). For a class of maps with EDP, if its 
associated function G(-) satisfies 

1 NT-1 

N L G(gi(w)) = Ew[G] or PT{G(w)j*(w)} = Ew[G]j*(w) 
T i=O 

(11) 

then G(·) is said to satisfy constant summation property (CSP). 

CSP guarantees no-correlation between two functions G(·) and v H(·), 
i.e., p(£, G, H) = 0, £ > 0 [15]. Fortunately, EDP is satisfied by many 
well-known maps and is invariant under topological conjugation. 

Definition 4 (topological conjugation [19]). Two transformations f : 

I ---+ I and T : I ---+ I on intervals I and I are called topological conjugate 

if there is a homeomorphism h: I 0~0 I as T(w) = h of o h-1 (w). 

Suppose T(·) and f(-) have their ACI measures f*(w)dw and f*(w)dw 
respectively. Then, under the topological conjugation, these ACI mea­
sures have the relation 

(12) 

The relation between T( ·) and f( ·) via h is represented diagrammatically 
as follows : 

(13) 
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Remark 1. If we take N2 (w) as 'f(w), then f*(w) is simply represented 
by the derivative of h- 1(w). Hence, if h(w) can be given in an inverse 
function form, then its integrand gives an ACI measure within normal­
ization factor. Most famous example of inverse functions is sin function, 
. rsinw du 
z.e., w = Jo v'l-u2. 

This remark provides a starting point for discussion. In fact, Ulam and 
von Neumann [4] gave the logistic map 

(14) L2 (w) = 4w(1- w), wE [0, 1] 
with f*(w)dw = ~ which is topologically conjugate to N 2 (w) 

1r w(l-w) 

using h-1 (w) = ~ sin-1 ..jW. 
1f 

2.2. Binary function 

In our previous study [14], we proposed methods to obtain binary 
sequences from chaotic real-valued sequences {Tn(w)};;::'=o· We define 
a (non-trivial) partition d = t0 < t 1 < · · · < t2M = e of [d, e] and T 
denotes the set of thresholds { tr };~0 . Then the following binary function 
is obtained 

2M 

(15) Cr(w) = 2:) -1Y8dw), 
r=O 

where 8t(w) is the threshold function such that 

(16) 8t(w) = { 0' 
1, 

for w < t 
for w;:::: t. 

§3. Duplication formula gives chaos 

The example mentioned above shows that duplication formula gives 
chaos. To observe it, several examples are listed as follows. 
( 1) logistic map: Transformation x = sin2 0 gives ( ~~) 2 = 4x( 1 - x). 
Let Xn = sin2 On, Bn+l = 2Bn. Then we get 2-dimensional sequences 
{(xn, Yn)};;::'=0 , given by 

Xn+l = L2(xn) = 4xn(1- Xn), 
(17) 

Y~+l = ( ~ . d Llo~n) r = 4L2(xn)(l - L2(Xn)). 

(2) Chebyshev map of degree 2: Grossmann and Thomae [3] observed 
that Chebyshev polynomial maps of degree p (p = 2, 3, · · ·) [20] with its 
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di.JJ 
ACI measure f*(w)di.JJ = ~'defined by 

1r 1- w2 

(18) Tp(w) = cos(pcos- 1 w), wE [-1, 1] 

101 

is topologically conjugate to Np(w) via h(w) = cos1rw. Transformation 

x =cos(} gives (~~) 2 = 1- x2 . Let Xn = cosBn, Bn+1 = 2Bn. Then we 
get 2-dimensional sequences {(xn, Yn)};;"=0 , given by 
(19) 

() 2 2 (1 dT2(xn)) 2 ( )2 Xn+I = T2 Xn = 2xn- 1, Yn+1 = 2 · d(}n = 1- (T2 Xn ) . 

(3) Schroder and Bottcher map: 1 Schroder [22] and Bottcher [23] gave 
a rational function version of L2(·) with parameter k, defined as 

(20) Rsn2( k) = 4w(1- w)(1- k2w) [O 1] 
2 w, (1 - k2w2)2 ' w E ' 

with its ACI measure 

(21) ! * (w k)dw = -=:-::-::-~t=;=di.JJ=~====~ 
' 2K(k)Jw(1- w)(1- k2w) 

1 
via h-1 (w) = K(k) sn-1(y'W, k), where sn(w, k) is the inverse function of 

the elliptic integral with modulus k (lkl < 1) and K(k) is the complete 
elliptic integral, each of which is given respectively as 

(22) 1sn(u,k) dv 1-;: d(} 
u = , K ( k) = --;===::::;::= 

o J(1 - v2)(1- k2v2) o ,/1- k2 sin2 (} 

Transformation x = sn2 u·gives (~~) 2 = 4x(1- x)(1- k 2x). Let Xn = 
sn2 Un, Un+I = 2un. Then we get 2-dimensional sequences { (xn, Yn) };;::'=0 , 

given by 

(23) 

(~. dR~n2 (Xn,k)) 2 

2 dun 

4R~n2 (xn, k)(1- R~n2 (xn, k))(1- k2 R~n\xn, k)). 

1see [21] for a historical review of rational maps. 
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§4. Jacobian elliptic space curve and 3-dimensional dynamics 

We know that the Jacobian elliptic function cn(u,k) 2 is an inverse 
function of an elliptic integral of the first kind in the Legendre-Jacobi 
normal form [16] 

(25) 

Kohda and Fujisaki [17] introduced the Jacobian elliptic Chebyshev ra­
tional map with positive integer p 

(26) R~n(w, k) = cn(pcn-1 (w, k), k), wE [-1, 1] 

which is topologically conjugate to the tent map Np( u) via homeomor­

phism h-1 (w, k) = cn2-~~~)k) and has its ACI measure 

(27) j*(w k)dw- dw 
' - 2K(k)J(1- w2)(1- k2 + k2w2) 

This map is a rational function version of the Chebyshev polynomial 

(28) Tp(w) = cos(pcos- 1 w), wE [-1, 1]. 

We know that R~n(w, k) satisfies the semi-group property 

(29) 

for integers r, sand when p = 2, 

(30) 

Let us concentrate on the Jacobian real elliptic function withp = 2 [16]. 
As shown in Fig. 1, the Jacobian elliptic function X = cn(u, k), its 
derivative Y = d: en u = - sn u dn u and the second derivative Z = 
d2 

du2 en u give the Jacobian elliptic space curve, given by 

2cn( u, 0) simply reduces to cos u. 
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z z 

0 
0 ~ -1 

-1 
1 

1 -1 0 y 
1 -1 Oy xo 1 -1 

(a) k = 0.1 (b) k = 0.9 

Fig. 1. Two Jacobian elliptic space curves (X, Y, Z). 

L t - 2 - C - dxn and Z - d2Xn e Un+l - Un, Xn - nUn, Yn - -d n - d 2 • Un un 
Then we get 

a 3-dimensional dynamics, given by 
(32) 

Yn+l 

Zn+l 
!X;+l 

This gives a mapping from such a space curve onto itself which induces 
three projective onto mappings associated with coordinates,e.g.,X, Y, Z, 
denoted by Tx(·),Ty(·),Tz(·). The first one is shown in Fig.2(a), which 
has a symmetric ACI measure, defined by 

f* ( k)d dx 
X x, x = 2K(k)J(1- x2)(1- k 2 + k 2x 2 ) 

in Fig.3(a). 
In addition, it has been shown [24] that the projective onto map Ty 

is symmetric and has a symmetric ACI measure as shown in Figs.2(b) 
and 3(b ), respectively. (see Appendix A for theoretical expression of 
Ty) Its associated symmetric binary function, e.g., binary expansion of 
real-valued orbit {xn}~=O or {Yn}~=O can generate a sequence of i.i.d. 
binary random variables [24]. 

Here we consider the map Tz and examine whether it has its sym­
metric ACI measure [25]. Squaring the second expression of Eq.(31) 
with k -=1- 0 gives the relation 

(33) 6 1 2 4 1 2 2 2 z2 
X - k 2 ( -1 + 2k )X + 4k4 ( -1 + 2k ) X - 4k4 = 0 
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which implies that for a given Z, X 2 has the following three real-valued 
solutions at most. 

(31) X'(Z) ~ { 

~i(Z), fork::::; Vlfi (R(Z, k) > 0) 
~i(Z), fork> Vlfi and R(Z, k) > 0 

~T(Z), 2::::; i::::; 4, fork> Vlfi and R(Z, k) < 0, 

where R(Z,k) = b2 (~,k) +a~~), a(k) = - 1A4 (-1 + 2k2 ) 2 ,b(Z,k) = 
_1_{(-I+2k2 ) 3 _ 27 z2} 
4·27 k6 k4 ° 

On the space curve, 3-dimensional dynamics has a unique ACI mea-
sure with respect to each coordinate. Fig. 3( c) shows comparison be­
tween the marginal distribution taken from experiments and theoretical 
calculations, where the theoretical distributions of Tz is given as follows 

(35) 

{ 
z1(k) fz(6(Z), k)dz, for 0 < k::::; Vlfi 

f~(z, k)dz = z1(k) fz(6(Z), k)dz, fork> Vlfi, r(k)::::; lzl < 1 

where 

(36) 

zK\k) :Li=z fz(~c(Z), k)dz fork> Vlfi, lzl ::::; r(k) 

r(k) = ~ ;7 (-1 + 2k2)3, 

fz(~c(Z), k)dz 
dz 

Finally, we notice that theoretical distribution f~dx is also given by 
integrand of elliptic integral for inverse function cn- 1 ( u, k) (see Eq.(25) ). 

The same is true for jydy. In fact, inverse function ( dc~<;:,k)) -1 = 

(- sn( u, k) dn( u, k))- 1 is defined by Eq.( 45) and Eq.(46) (see Appen­
dix B). Similarly f~dz is expressed in the inverse function form, as given 
by Eq.(49) and Eq.(50) (see Appendix C). 

§5. I.I.D. binary random vectors 

We shall now look into the relation between (zn, Zn+d· Eqs.(33) 
and (34) tell us that the relation Zn+1 = Tz(6(zn)) is one-to-one when 
k < Vlfi but the graph of Zn versus Zn+l is one-to-many when k > 
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Fig. 3. Three marginal distributions when k = 0.9 
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Vlf2. Namely, the latter case gives a closed curve as shown in Fig. 2(c). 
Suppose that k > Vlf2 and that X 1 (x) is the first bit of normalized x 
in binary representation, such as 

x+1 
- 2- =O.X1(x)X2(x)···Xi(x)··· ,Xi(x) E {0,1}. 

We denote X1(x) by X1 and 1- X1(x) by X1. Similarly Z1(z) 
and 1 - Z 1(z) are denoted by Z1 and Z1 respectively. In addition, 
D(~~) and 1- D(~~) are represented by Dz and Dz respectively, where 
D(~~) = O(or 1) when~~ < 0 (or when~~ ~ 0). 

Then, we can obtain a piecewise-monotonic onto map Tz defined by 

(37) Tz 

where T~- = Tz(-~i(z)),r~+ = Tz(~i(z)), 1:::; i:::; 4 and where ~f(z) is 
defined by Eq.(34). 

It can be shown that for uniform ACI measure ff](u)du = du, 

(38) 

P,..,{Cr.,(x)f.X(x)} = Eu[Cr.,]f.X(x), 
P,.Y {Cry (y)f.Y(y)} = Eu[Crvlf.Y(y), 

P,.z{Crz(z)fZ(z)} = Eu[Cr.]f.Z(z), 

x = cnu } 
y = -snudnu 

d(-snudnu) z= .......:.... ___ _..:.. 
du 

holds, where {Cr.,(xn)}~=0 , {Crv(Yn)}~=O and {Cr.(zn)}~=O are sym­
metric binary sequences with their sets of symmetric thresholds Tx, Ty 
and Tz associated with real-valued sequences {xn}~=O' {Yn}~=D and 
{zn}~=O· 
This implies that p(£,Cr.,,Cr.,) = p(£,Crv,CTy) = p(£,Crz,Cr.) 
0, for£ ~ 0. [14] 
It should be noted that Cr.,(x), Crv(r;(y)), Cr.(r;'(z)) are not always 
independent each other for £ = m = 0, that is, e.g., Eu[Cr.,Cry] i= 
Eu[Cr.,lEu[Cry] even if each of them is a sequence ofi.i.d. BRVs. This 
is inevitable as long as these sequences are generated from a single seed 
u = uo. However, we can design appropriate sets of thresholds Tx, Ty, Tz 
satisfying Eu[Cr.,Cry] == Eu[Cr.,]Eu[Cry] (see [14] for details). 

§6. Conclusion 

We discussed a real-valued dynamics on the Jacobian elliptic space 
curve between Jacobian elliptic function, its derivative and second deriv­
ative, governed by their duplication formulae. Furthermore, we showed 
that a mapping of the space curve onto itself: R 3 --+ R 3 which defines 3 
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projective onto mappings with their ACI measures satisfying EDP and 
can generate sequences of 3-dimensional i.i.d. binary random vectors 
when using their associated symmetric binary functions, e.g., bits of 
binary expansions of these real-valued Xn, Yn, Zn as shown in Fig. 4. 

X y z 

xo Yo zo 0~1 I 0~0 0 I 0~ 0 X1 Y1 Zl 1 0 0 ... 1 1 0 1::: 1 1 0 1::: 1 
X2 Y2 Z2 ¢>1o1:::o 1 0 1 ... 0 1 0 0 ... 0 
X3 Y3 Z3 1 1 1 ... 0 1 1 1 ... 0 1 1 0 ... 1 

. . . . . ..... 0 •••• 

Fig. 4. Method of generating multidimensional i.i.d. binary 
vectors 
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§Appendix A. Derivation of the theoretical expression of Ty 

The first expression in Eq.(31) gives 

(39) 

Solving Eq.(39), we get for k -=f. 0 

(40) 
2 2k2 - 1 ± J1 - 4k2y~ 

Xn = 2k2 . 

Eq.(30) and Eq.(32) give 

(41) Rcn( k) = 1 - 2(1- x;;J + k2(1 - x;,? 
2 Xn, 1- k2(1 - x~)2 

and 

(42) Yn+l = v(l- (R~n(xn, k)) 2 ) (1- k2 + k2 (R~n(xn, k))2). 

Substituting Eq.(40) and Eq.(41) into Eq.(42), we have 

(43) Yn+l 

X 

2vf2kyJ2k2 - 1 ± v1 _ 4k2y2 

(2k2 - 1 + 2k2y2 ± J1- 4k2y2)2 

{ 1- 2k2y2 ± (2k2 - 1)yl1- 4k2y2}. 
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where three± signs on R.H.S. are either+ or -. Denote two maps by 
Tt'P(y) and T{;fN(y) when+ and- are chosen on the R.H.S. ofEq.(43), 
respectively. Then 

(44) Ty(Y) X1(D EB YI)T:P (y) + X1(D EB Y1)( -T:P (y)) 

+ X1(D EB Y1)T/)1N (y) + X1(D EB YI)( -T:N (y)) 
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§Appendix B. Inverse function Y [24] 

(45) 

(46) 

y 1.--~--,---.---.--.-----.----r-----, 

-y1 -K(k) 0 

u 

(a) when k :":: Vlf2 

K(k) 

(b) when k > Vlf2 

Fig. 5. y = - sn u dn u (y1 = v'f=k2 and y2 = 1/2k, k =f 0). 

When 0 < k :s; Jl72, 

u = 1° f~(y)dy. 
- snudnu 

When k > Jl72, 

j_osnudnu J~(y)dy, for lui :s; cn-1 N 

U= 

~~ J~(y)dy- j_~nudnu J;;(y)dy, 
2k 

for -K(k) < u < -cn-1 ~ - V2k2 

where[24] 

where the ± sign on R.H.S is either + or - and is to be decided on the 
basis whether there is f~ or J;; on the L.H.S. 
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§Appendix C. Inverse function Z [25] 

N 

2 3 4 

u u 

(a) k :S ..jlf2 (b) k > ..jlf2 

When k ::S: JI72 (see Fig.6(a)), simple differential calculation gives 

(47) 
d(cn u( -1 + 2k2 - 2k2cn2u)) 

du 

Integrating each side of Eq. ( 4 7) over u, we have 

(48) 

where X 2 (Z) is given by Eq.(34). ACI measure of the map Tz is defined 

in the form of inverse of elliptic functions, i.e., elliptic integral. 

(49) u(z) = [z
1 
fz(6(Z))dZ, for - 1 ::S: z::::; 1, k ::S: Ji72. 

The same discussion applies to k > JI72 case with care to constants 
of integration (see Fig.6(b)). 
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(50) 

u1(z) = j_z
1 

fz(6(Z))dZ, for -1::; z < -r(k) 

u2(z) = u1(-r(k)) + Jz fz(6(Z))dZ, for- r(k)::; z < 0 
-r(k) 

u3(z) = u2(0) + t fz(~4(Z))dZ, for 0::; z < r(k) 
lo z 

u4(z) = u3(r(k)) -1 fz(6(Z))dZ, for r(k) ~ z > -r(k) 
r(k) 

u5(z) = u4( -r(k)) + Jz fz(~4(Z))dZ, for - r(k) ::; z < 0 
-r(k) 

u6(z) = U5(0) + r fz(6(Z))dZ, for 0::; z < r(k) 
lo z 

u7(z) = u5(r(k)) + 1 fz(6(Z))dZ, r(k)::; z::; 1 
r(k) 

where fz(Xi(Z)) is given by Eq.(35) and 

r(k) = V 227(-1 + 2k2)3. 
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