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3-dimensional i.i.d. binary random vectors governed
by Jacobian elliptic space curve dynamics

Tohru Kohda

Abstract.

Sufficient conditions have been recently given for a classs of ergodic
maps of an interval onto itself: [ = [0,1] C R — I and its associated bi-
nary function to generate a sequence of independent and identically dis-
tributed (i.i.d.) binary random variables. Jacobian elliptic Chebyshev
map, its derivative and second derivative induce Jacobian elliptic space
curve. A mapping of the space curve with its coordinates, e.g., X,Y
and Z, onto itself is introduced which defines 3 projective onto map-
pings, represented in the form of rational functions of {Zn, Yn, 2n}5 -
Such mappings with their absolutely continuous invariant measures as
functions of elliptic integrals and their associated binary function can
generate a 3-dimensional sequence of i.i.d. binary random vectors.

§1. Introduction

Bernoulli shift and its associated binary function can produce a se-
quence of independent and identically distributed (i.i.d.) binary random
variables (BRVs) 1], [2]. Tent map [3], closely related to the Bernoulli
map, and its associated binary function can also generate a sequence
of iid. BRVs. Ulam and von Neumann[4] showed that the logistic
map is topologically conjugate to the tent map via the homeomorphism

2
h~'(w) = Zsin™y/w. They also pointed out that the logistic map
T

is a strong candidate for pseudo-random number generation (PRNG)
even though it has a non-uniform absolutely continuous invariant (ACI)
measure. A number of analog chaos techniques, which use a chaotic real-
valued trajectory itself, have also been proposed [5],[6]. Binary sequences
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using chaos, however, play an important role in several applications such
as spreading spectrum codes [7], [8], [9] , [10], pseudo-random number
generators [11] and cryptosystems [12], [13].

Motivated by this situation, we have shown that a class of ergodic
maps with its unique ACI measure satisfying equi-distributivity prop-
erty (EDP) can generate a sequence of i.i.d. binary random variables
if its associated binary function satisfies constant summation property
(CSP) [14]. Fortunately, many well-known 1-dimensional maps, which
are topologically conjugate to the tent map via homeomorphism [3], sat-
isfy EDP. The Bernoulli map, logistic map and Chebyshev polynomial
are good examples [15]. These maps are governed by duplication for-
mulae. In other words, a duplication formula gives chaotic dynamics.
It is well known that elliptic functions satisfy an addition theorem [16].
We introduced a Jacobian elliptic Chebyshev rational map as a rational
function version of Chebyshev polynomial [17]. This map as well as the
other well known maps mentioned above are mappings from an interval
onto itself.

Modern cryptosystems, however, need more and more pseudo-random
numbers. In fact, to break DES of 64 bits, it takes 243 steps and the
success rate is 85% if 2%% pairs (plaintext, ciphertext) are known [18].
Furthermore, the size of new block ciphers such as AES becomes large,
e.g., 512 bits.

This situation motivated us to discuss a closed smooth space curve
defined by an algebraic relation between the Jacobian elliptic function,
its derivative and second derivative. These duplication formulae give a
real-valued sequence {Zn,, Yn, 2} generated by 3-dimensional dynam-
ics with Cartesian coordinates, e.g., X, Y and Z. Such 3-dimensional
dynamics forces us to define a mapping from such a space curve onto it-
self and three projection mappings from an interval onto itself associated
with coordinates, i.e., Tni1 = Ta{Zn), Yn+1 = Ty (Yn) and zny1 = 72(2n),
respectively. The former 7,(-), being single-valued, is the same as the
Jacobian elliptic Chebyshev rational map. On the contrary, the latter
two 7,(-) and 7,(-), being multi-valued, consist of single-valued map-
pings, each of which is a rational function of z,, ¥n, 2z, and have their
ACI measures with EDP. Hence, every bit of binary expansion of real-
valued vector (zy,Yn, 2n) satisfies CSP. This implies that the mapping
from the space curve onto itself governed by duplication formulae gives
a sequence of i.i.d. 3-dimensional binary random vectors.
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§2. Related theories

We will begin by describing some of the related theories which play
an important role in evaluating statistical properties of a sequence of
binary random variables generated by a real-valued sequence.

2.1. EDP and CSP

Perhaps the simplest mathematical object that can display chaotic
behavior is a class of one-dimensional maps w41 = 7(wy), where wy, =
T™(wo) € I =[d,e],n=0,1,2,... and 7(-) : I — I.

Consider a piecewise monotonic {(PM) onto ergodic map 7(-) that satis-
fies the following properties:

i): there is a (trvial) partitition d = dy < --- < dn, = e of I such
that for each integer ¢ = 1,--- | N, (N; > 2) the restriction
of 7(-) to the interval I; = [d;_1, d;), denoted by 7;(w), is a C?
function; as well as
ii): 7(I;) = (d,e), that is, 7 has N, monotonic onto maps 7;;
iii): 7 has a unique ACI measure, denoted by f*(w)dw.
The following four definitions are important to evaluate statistical prop-
erties of {wn}S2,.

Definition 1 (Perron-Frobenius operator [19]). The Perron-Frobenius
operator P, acting on function of bounded variation F(w) € L™ for (w)
is defined as

N,—1

d , (o
Pr@ = [ = 3 ),

w
d =0

where g;(w) is the i-th preimage of w and N, denotes the number of
preimages.

The ACI measure f*(w)dw satisfies
(1) Prf*(w) = [ (w).

Birchoff Individual Ergodic Theorem [19] tells us that for a stationary
real-valued sequence {F(wy,)}2,, the time average of {F'(wy)}5%,, de-
fined by

(2) (F) = lim (1/T) > F(wn)

T—o0
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is equal almost everywhere to the expectation of F(w), defined by

® ELF(™) = [ P @)f @)

From the stationarity of process, we denote E,[F(7")] by E,[F]. Con-
sider two sequences {G(7™(w))}52, and {H (7™(w))}5%g, where G(w),

H(w) € L. The second-order cross-covariance function between these
sequences from a seed w = wyq is defined by

(4) p(f,G,H)Z/I(G(W)—Ew[G])'(H(Tl(w))—Ew[H])f*(w)dw,

where £ =0,1,2,---. The operator P, is useful in evaluating correlation
functions because it has the following important property:
(5) /G(w)Pf{H(w)}dw = /G(T(w))H(w)dw.

I I

Using this property, we get
6) p(t.G.H) = [ PH(G) ~ Bu(G)F (@)} (H(w) ~ EulH]de:

Bernoulli map with its uniform ACI measure f*(w)dw = dw is defined
as

. . 2w, 0<w< %,
(M) 78(w) = 2w(mod 1) = { %w—1, L<w<l.
If w is represented by its binary expansion as w = 0.d; (w)dz(w) - - -, then

the binary expansion of rp(w) is given by 75(w) = 0.d2(w)ds(w)--- .
This implies that 75(-) shifts the digits one place to the left. The func-
tions dg(-), called Rademacher functions, furnish us with a model of
independent tosses of a fair coin [2]. A sequence {dx(w)};2, can be re-
garded as a sequence of i.i.d. BRVs in the sense that for almost every
w, di{w) can imitate coin tossing.

Another map and its associated binary function are as follows. Con-
sider piecewise linear map of p branches with f*(w)dw = dw, given by [3]

(NT = p)7
(8) Ny(w) = (=) pwy(mod p), w € [0,1].

In particular, Na(w) is referred to as the tent map. Introduce its asso-
ciated BRV defined as

[0, forNFw)<4,
©) Ok = { 1, for N¥(w) > %
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Then for w = 0.dy(w)da(w) - - - , we get apg(w) = d1(w), ax(w) = di(w) &
di+1(w), k = 1, where & denotes a modulo 2 addition (or exclusiveor)
operation. Hence Nz(w) and its associated binary functions ax(-) can
generate a sequence of i.i.d. BRVs.

Naturally, the important question arises, that can any other map
and its associated binary function generate a sequence of i.i.d. BRVs?
We have got an affirmative answer to this question [14], [15], which is
firstly, the map should satisfy EDP and secondly, the binary function
should satisfy CSP.

Definition 2 (EDP [14]). If a piecewise-monotonic onto map 7(w)
satisfies

* 1 * .
(10) i @)f*(9iw)) = =" (w), 0<i<N-—1,
then the map is said to satisfy equi-distributivity property (EDP).

Definition 3 (CSP [14],[15]). For a class of maps with EDP, if its
associated function G(-) satisfies

N, —1
(11) 3 3 Gla) = BelG] or P{G)[" ()} = BulG1f* ()
T =0

then G(-) is said to satisfy constant summation property (CSP).

CSP guarantees no-correlation between two functions G(-) and YH(-),
i.e., p(¢,G,H) = 0, £ > 0 [15]. Fortunately, EDP is satisfied by many
well-known maps and is invariant under topological conjugation.

_Definition 4 (topological conjugation [19]). Two transformations 7 :
I —Tandt:I— I onintervals I and I are called topological conjugate

if there is a homeomorphism b+ I 2 I as 7(w) = ho7 o h™}(w).

Suppose 7(-) and 7(-) have their ACI measures f*(w)dw and f*(@)dw
respectively. Then, under the topological conjugation, these ACI mea-
sures have the relation

(12) ) = jih——(‘”—)

dw

The relation between 7(-) and 7(-) via h is represented diagrammatically
as follows :

Fr (R ).

-
-—

(13) =t

~
o>

~ e ~

lﬂ.
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Remark 1. If we take No(w) as 7(@), then f*(w) is simply represented
by the derivative of h~1(w). Hence, if h(w) can be given in an inverse
function form, then its integrand gives an ACI measure within normal-

ization factor. Most famous example of inverse functions is sin function,
sinw gy

z',e., w = 0 —\/-l_zuz
This remark provides a starting point for discussion. In fact, Ulam and

von Neumann [4] gave the logistic map

(14) La(w) = 4w(l —w), w €0, 1]
with f*(w)dw = —%—— which is topologically conjugate to Na(@)

T/ w(l—w)

using h~}(w) = %sin_1 V.

2.2. Binary function

In our previous study [14], we proposed methods to obtain binary
sequences from chaotic real-valued sequences {7"(w)}52,. We define
a (non-trivial) partition d =ty < t1 < --- < tay = e of [d,e] and T
denotes the set of thresholds {¢, }2). Then the following binary function
is obtained

2M

(15) Or(w) = > (-1)76,, (@),

r=0

where O;(w) is the threshold function such that

0, forw<t
16 (C] ="
(16) () {1, for w > t¢.

§3. Duplication formula gives chaos

The example mentioned above shows that duplication formula gives
chaos. To observe it, several examples are listed as follows.
(1) logistic map: Transformation z = sin?@ gives (%)2 = 4z(1 — z).
Let z,, = sin® 0n,0n+1 = 20,. Then we get 2-dimensional sequences
{(zn,yn) 520, given by

Tpt+1 = Lz(ﬂﬁn) = 4wn(1 - xn)a

(17) 21\ 2
vi = (3 25)) " = dLa(@a)(1 - Lo(@n)).

(2) Chebyshev map of degree 2: Grossmann and Thomae [3] observed
that Chebyshev polynomial maps of degree p (p = 2,3,---) [20] with its
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dw
ACI “(W)dw = — 2 defined b
measure f*(w) T ned by
(18) T,(w) = cos(pcos™ ! w), w € [~1,1]

is topologically conjugate to Np(w) via h(@) = cos7w. Transformation

z = cosf gives (‘—;—3)2 =1-—22. Let z,, = cosO,, Ony1 = 20,. Then we
get 2-dimensional sequences {(z,, yYn)}S2, given by

(19)
1 dT5(z, 2
Tpy1 = Tz(xn) = 2:0% -1, .%214-1 = ("2‘ ) %) =1- (TZ(xn))z-

(3) Schréder and Bottcher map: * Schroder [22] and Béttcher [23] gave
a rational function version of Lo(-) with parameter k, defined as

4w(l — w)(1 — K*w)

(20) R (w7k) - (1 — k2w2)2 y W€ [Oa 1]
with its ACI measure
(21) F (w0, k) dw = dw
2K (k)y/w(1 — w)(1 — k2w)
1
via k=1 (w) = 0 sn~!(\/w, k), where sn(w, k) is the inverse function of

the elliptic integral with modulus &k (|k| < 1) and K (k) is the complete
elliptic integral, each of which is given respectively as

Sn(u,k) dv

o V/O=v))[1 - k%2’ Kk = /0 1 k2sin?0

(22) wu=

Transformation z = sn”u gives (3—5)2 = 4z(1 — z)(1 — k2z). Let z, =

SN2 Uy, Un+1 = 2u,. Then we get 2-dimensional sequences {(Zn, ¥n)} 520,
given by

o2 4z, (1 — zp) (1 — k2zy)
(23) Tnt1 = RS (Tn, k) = (1 — k222)?

2
1 dR (%, k)
2 . =, 2 )y

= AR (Tn, k)(1 — RS (20, k))(1 — k2R (2, k).

!see [21] for a historical review of rational maps.
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§4. Jacobian elliptic space curve and 3-dimensional dynamics

We know that the Jacobian elliptic function cn(u, k) 2 is an inverse
function of an elliptic integral of the first kind in the Legendre-Jacobi
normal form [16]

! dt
(25) u= / .
en(uk) v/ (1~ 12)(1 — k% + k2t%)
Kohda and Fujisaki [17] introduced the Jacobian elliptic Chebyshev ra-
tional map with positive integer p

(26) R™w,k) = en(pen™Y(w, k), k), we[-1,1]

which is topologically conjugate to the tent map N,(u) via homeomor-

phism A=Y (w, k) = %(l—((—,‘:)—k)— and has its ACI measure

dw
2K (k)/(1 — w?)(1 — k2 + k2w?)

(27) fH(w, k)dw =

This map is a rational function version of the Chebyshev polynomial
(28) T,(w) = cos(pcos™tw), we[-1,1].

We know that R;“(w, k) satisfies the semi-group property

(29) R (R (w, k), k) = RS (w, k)

for integers r, s and when p = 2,

1—2(1—w?) + k(1 — w?)?
1—k2(1 —w?)2

(30) R (w, k) =

Let us concentrate on the Jacobian real elliptic function with p = 2 [16].

As shown in Fig. 1, the Jacobian elliptic function X = cn(u, k), its
derivative Y = Edﬁ cnu = —snudnu and the second derivative Z =
2

a‘i—z cnu give the Jacobian elliptic space curve, given by

(31) Y?=(1-X*(1-k*+E*X?), Z = X(—1+2K*(1 - X?)).

2cn(u, 0) simply reduces to coswu.
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11 Y Y | X 17
(a) k=0.1 (b) k=0.9
Fig. 1. Two Jacobian elliptic space curves (X,Y, Z).

2
Let upy1 = 2Un, Tn, = CO Uy, Yp = gﬁ" and z, = %u—%&. Then we get
n

a 3-dimensional dynamics, given by

(32)
Tnt1 = R§H(Tn, k) = 72(Tn, k),
%2;+1 = (é d;z:l) =01- $%z+1)(1 -k + k2$%+1) = Ty2(yna k),
1 =1L L = 7 (20 (@), k) = 72 (Tn, )

k2 —142(1— k)22 4 k25 1-k2+k%ah
= i Sc?(l 2:2)2 {1 = 2(==arye ®2(1— 1:2)2)2}

This gives a mapping from such a space curve onto itself which induces
three projective onto mappings associated with coordinates,e.g.,X,Y, Z,
denoted by 7,(-), 7y(-), 72(-). The first one is shown in Fig.2(a), which
has a symmetric ACI measure, defined by

dzr
2K(k)\/(1 —z2)(1 — k2 + k222)

Fo(z, k)dz =

in Fig.3(a).

In addition, it has been shown [24] that the projective onto map 7,
is symmetric and has a symmetric ACI measure as shown in Figs.2(b)
and 3(b), respectively. (see Appendix A for theoretical expression of
Ty) Its associated symmetric binary function, e.g., binary expansion of
real-valued orbit {z,}32 4 or {yn}o2, can generate a sequence of i.i.d.
binary random variables [24].

Here we consider the map 7, and examine whether it has its sym-
metric ACI measure [25]." Squaring the second expression of Eq.(31)
with k # 0 gives the relation
1 72

- 3= 1+2k2)X4+—( 14+ 2k%)2Xx2% — =0

6
(33) X 4k 4k4
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which implies that for a given Z, X? has the following three real-valued
solutions at most.

€2(2), fork < \/1/2 (R(Z,k) > 0)
(34) X%2)=< €X2), fork>/1/2 and R(Z,k) >0
£2(2),2<i<4,fork>+/1/2 and R(Z,k) <0

Where R(Z k) = ZER 4 &0 o) = _ L (—1 4 2k2)2,b(Z, k) =
. {(__1_+_2£2)_3 27 ZQ}.

On the space curve, 3-dimensional dynamics has a unique ACI mea-
sure with respect to each coordinate. Fig. 3(c) shows comparison be-
tween the marginal distribution taken from experiments and theoretical
calculations, where the theoretical distributions of 7, is given as follows

(35)

2(&1(2), k)dz, for0 < k < +/1/2

fz(z, k)dz = 1(k) fz(gl( ), k)dz, fork > /1/2, r(k) < |zl <1
_2 Fz(&(2), k)dz for k > +/1/2,|z] < r(k)
where

(k) = 1 (-1 + 282)%,

fz(@ (Z), k)dz

(36)
dz
VA=E2) A~ k2 + k26 (2))| — 6k263(Z) + 2k — 1|

Finally, we notice that theoretical distribution f%dx is also given by
integrand of elliptic integral for inverse function cn™*(u, k) (see Eq.(25)).

1
The same is true for fydy. In fact, inverse function (dcz;"k)) =

(—sn(u, k) dn(u, k)" is defined by Eq.(45) and Eq.(46) (see Appen-
dix B). Similarly f}dz is expressed in the inverse function form, as given
by Eq.(49) and Eq.(50) (see Appendix C).

§5. LLD. binary random vectors

We shall now look into the relation between (zp, zn+1). Egs.(33)
and (34) tell us that the relation z,41 = 7,(£1(2,)) is one-to-one when
k < 4/1/2 but the graph of z, versus z,,1 is one-to-many when k >
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1 Tz

-1 0
Xn
(a) Tnt1 = Twlzn)
1 .
E ot
N
- .
-1 0
Zy

() yn+1 = 1y(yn)

- 14
Tz 1Tz
Tz

Tz

L

2+
Ty
4
Tz
- A4
Tz

e

(¢) Znt1 = 72(2n)

Fig. 2. Three projection mappings when k = 0.9.

exper

nental -~

experimental -
theoretical

experimental

theoretical -+

(a) fx(z)dx

(b) fy(y)dy

(c) f7(2)dz

Fig. 3. Three marginal distributions when k¥ = 0.9
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v/1/2. Namely, the latter case gives a closed curve as shown in Fig. 2(c).
Suppose that k > 1/1/2 and that X;(z) is the first bit of normalized z
in binary representation, such as

z+1
2
We denote X;(z) by X1 and 1 — Xi(z) by X:. Similarly Z;(2)
and 1 — Z3(z) are denoted by Z; and Z; respectively. In addition,
D(g—;) and 1.— D(é‘%) are represented by D, and D, respectively, where
D(42) = 0(or 1) when 42 < 0 (or when 4z > 0).
Then, we can obtain a piecewise-monotonic onto map 7, defined by

=0.X1(2)Xa2(z) - - Xi(z)-- - , Xi(z) € {0,1}.

3) 1, = XZDri  +XZDrMt + XZ D2 + X 2Dt
z z z z
+ XZDr3 + XZDr2t + X Z D1y + XZDrtt

where 787 = 7,(=§;(2)), 7it = 7,(&(2)), 1 < i < 4 and where £2(2) is
defined by Eq.(34).
It can be shown that for uniform ACI measure ff;(u)du = du,

Pr{Cr,(2)fx(2)} = E,[Cr,|f%(z), z=cnu

g8 PolOnWRW) =BCnlfG), v=-smudnu
x d(—snudnu)
P ACr.()f3(2)} =EBulCrlf3(s), 2= =0

holds, where {Cr, (%) }5l0, {CT, (Un) }52o and {Cr,(zn)}52o are sym-
metric binary sequences with their sets of symmetric thresholds T3, T},
and T, associated with real-valued sequences {z,}22,, {yn}52, and
{zn}no-

This implies that p(¢,Cr,,Cr,) = p(¢,Cr,,Cr,) = p(¢,Cr,,Cr,) =
0, for € > 0. [14]

It should be noted that Cr, (z), Cr, (t£(y)), Cr, (T1*(2)) are not always
independent each other for £ = m = 0, that is, e.g., E,[Cr,Cr,] #
E.[Cr,|E.[Cr,] even if each of them is a sequence of i.i.d. BRVs. This
is inevitable as long as these sequences are generated from a single seed
u = ug. However, we can design appropriate sets of thresholds 17, T}, T,
satisfying E,[Cr, Cr,] = Ey[Cr1, |Eu[Cr,] (see [14] for details).

§6. Conclusion

We discussed a real-valued dynamics on the Jacobian elliptic space
curve between Jacobian elliptic function, its derivative and second deriv-
ative, governed by their duplication formulae. Furthermore, we showed
that a mapping of the space curve onto itself: R — R3 which defines 3
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projective onto mappings with their ACI measures satisfying EDP and
can generate sequences of 3-dimensional i.i.d. binary random vectors
when using their associated symmetric binary functions, e.g., bits of
binary expansions of these real-valued z,,, Y., z, as shown in Fig. 4.

z y z

20 Y0 2 ool 1 oo o 101 o
T Yoz 10jo 1 loj1c1 1o/t 1
T2 Y2 7 l_;>101 o 1lol1s0 1000
11120 11ji0 1o 1

r3 Ys z3

Fig. 4. Method of generating multidimensional i.i.d. binary
vectors
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§Appendix A. Derivation of the theoretical expression of 7,
The first expression in Eq.(31) gives

(39) y2 = (1)1 - k? + k%),

Solving Eq.(39), we get for k £ 0

2k2 — 14 /1 — 4k%y2
2k2 '

(40) z; =

Eq.(30) and Eq.(32) give
C1-2(1—22) + k(1 — 22)?

41) B b) = —— a2y
and
(42) Ynt1 = V(1 — (B (@, k))?) (1 — k2 + K2 (RS" (zn, k))?).-

Substituting Eq.(40) and Eq.(41) into Eq.(42), we have

. 2v/3kyy/2k% — 1+ /T 4k%2
(43) It T R S 11 2k £ 1 - ARegR)?
x {1—~2k2yzi(2k2—1)\/1—4k2y2}.

where three &+ signs on R.H.S. are either -+ or —. Denote two maps by

PP (y) and 7N (y) when + and — are chosen on the R.H.S. of Eq.(43),

respectively. Then

44) m(y) = Xi@eY)r, Ty +Xi(Devi)(-7 ()
+ X DoY) () + XD e Y1) (-7 (y))
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§Appendix B. Inverse function Y [24]

yl T T T T T yz----'-—-J-- T T T T T
L 4 y,LET/ 4
3 i 1 = - b
'g | i
i | ';1'_% """""""""""""" '_
" x® o X(k) K(k) 0 K%
u u
(a) when k < 4/1/2 (b) when k > 1/1/2

Fig. 5. y = —snudnu (y1 = v1 — k? and yo = 1/2k, k # 0).

When 0 < k < 4/1/2,
0
(45) u= [ R
When k > 4/1/2,
( 0
_ 2k%2 —1
[ B0 ol ey Z

—snudnu

/_z i ()dy — / * fr (v)dy,

(46) u= for —K (k) <u < —cn~1, /231
0 T2k
L, 55 (y)dy — /_ W,
k , forcn‘l\/%<u§K(k)
where[24]
FFy)dy = vak

dy
V(@R — 1T 207 (1 - 4k%?)

where the 4+ sign on R.H.S is either + or — and is to be decided on the
basis whether there is f;* or f;; on the L.H.S.
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§Appendix C. Inverse function Z [25]

N o Z4
N o
_Z1
1 — -1
0 1 2 3 o 1 2 3 4
u u
(a) k < /1/2 (b) k> /1/2

Fig. 6. z = cnu(-1+ 2k% — 2k* cn? u), (21 = r(k))

When k& < 4/1/2 (see Fig.6(a)), simple differential calculation gives

d(cnu(—1+ 2k? — 2k%cn?u))
du
= /(1 — en2u)(1 — k2 + k2cn2u) x {6k%cn’u — 2k2 + 1}.

(47)

Integrating each side of Eq.(47) over u, we have

cou(—142k2 —2k%cenu)
dz

V(1-X2(2))(1-k2+k2X2(Z)){6k2X2(Z)~2k2+1} ’

(48) u=

where X?%(Z) is given by Eq.(34). ACI measure of the map 7, is defined

in the form of inverse of elliptic functions, i.e., elliptic integral.

(49)  u(z) = /_'zlfz@l(zndz, for —1<2<1,k< i3,

The same discussion applies to k > 4/1/2 case with care to constants
of integration (see Fig.6(b)).
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(50) Z
wn(z) = [ 620z, for —1<z <k

z

uz(z) = ug(—r(k)) +/ fz(&2(2))dz, for —r(k) <z <0

—r(k)

us(2) = us(0) + /0 F2(€x(2))dZ, for 0<z<r(k)
ug(z) = ug(r(k)) — /z fz(&(2))dz, for r(k) > z> —r(k)
r(k)z

us(2) = ug(—r(k)) + /_ o fz(E(Z))dZ, for —rk)<z<0

(

ug(2z) = us(0) +/ fz(&(2))dZ, for 0<z<r(k)

ur(z) = ug(r(k)) + /;) fz(&(Z2)dzZ, rk)<z<1

\

where fz(X;(7)) is given by Eq.(35) and
r(k) = ,/3(—1 + 2k2)°
27 ’
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