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Preface 

This is an introduction to the program which we call "towards a 
categorical construction of Lie Algebras". That is, from the data of a 
system of 4 integers W :=(a, b, c; h), called a regular system of weights, 
satisfying an arithmetic condition, we want to construct a certain gen­
eralization gw of a simple Lie algebra. Precisely, to a weight system, we 
first associate a surface with a singular point. Then, using the geometry 
of the singularity, a triangulated category is attached. Finally, we want 
to read Lie theoretic data from the category and to construct the algebra 
gw. 1 The program is still in its early stages, and, in the present paper, 
we are mainly concerned with some categorical aspects of the program, 
and then ask questions on the possible constructions of Lie algebras. 

The organization of the paper is as follows. In §1-9, we start by 
recalling the classical relations of simple or simply elliptic singularities 
with simple or elliptic Lie algebras, respectively, as the prototype of 
relations between singularities and Lie algebras. This part is rather 
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1This is a part of the long program "a categorical construction of primitive 
forms" (see [Mat][Od1][Sa7] and Footnote 11 for a definition of a primitive form, 
and consult the overview articles [Sa15]and [Sa19]). We expect that a good 
class of primitive forms are constructed from the Lie algebra 9w associated 
with regular systems of weights W (see §4 and 12). In the present paper, we 
are concerned with the part of the program before the construction of the Lie 
algebra, and most parts are readable without a knowledge of a primitive form. 
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sketchy and we suggest the reader either look at the references or skip 
details. In §10-15, we start anew by introducing the concept of a regu­
lar system of weights and by associating a singularity to it. We discuss 
about two geometric (algebraic and topological) aspects of the singu­
larity and about the possibly associated Lie algebra. We discuss also 
about the *-duality on the set of regular weight systems. This part may 
look somehow loose and involved without a clear focus. However, these 
considerations seem to get converged to a clearer forcus by introducing 
a categorical approach in §16-18. In §16, we descripbe the triangulated 
category HMF:rw(fw) associated with the singularity. Then we determine 
the generating structure of the category for two basic cases in §17 and 
18, which are the goal of the present paper. 

Let us explain the contents in more details. One key observation in 
§1-9 is that the Lie algebra side data: the Coxeter transformation c on 
the root lattice is identified with the singularity side data: the Milnor 
monodromy action con the lattice of vanishing cycles (see §5). As in the 
classical Lie theory [Bou], we consider exponents mi EZ~o of eigenvalues 
of c (see §8), and then, inspired by the theory of primitive forms (see 
Footnotes 23, 24), we look at the generating function of the exponents: 

(A) 

Then, we observe that, for any of the simple or elliptic Lie algebras (cor­
responding to simple or simply elliptic singularities), x(T) decomposes as: 

(B) 

for some integers a, b, c and h :=order of c with 

(C) 0 < a,b,c < h and gcd(a,b,c) = 1. 

In §10, we reverse our view point; we call a system of 4 integers W = 
(a, b, c; h) satisfying (C) a regular system of weights (or, a regular weight 
system), if the rational function in the RHS of (B) becomes a Laurent 
polynomial. Then, we use the regular weight system as the starting 
point for all of the later constructions. Actually, the Laurent polynomial 
becomes a finite sum of monomials as in (A), where the exponents mi of 
the monomials are allowed to be negative in general. 

The regular weight systems are concisely classified by the smallest 
exponent ( = a + b + c - h), denoted by ewE Z. In fact, we see ew :::; 1 
in general, and that regular weight systems with ew = 1 or 0 correspond 
to simple or simply elliptic singularities, respectively. As for the next 
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class, Ew = -1, we obtain 14+8+9 regular weight systems, which are the 
objects of our main interest in the present paper. 

In §11-15, associated with a regular weight system W, we introduce 
and study a surface X w,o which has an isolated singular point at the 
origin 0. Namely, let fw be a generic weighted homogeneous polynomial 
in coordinates x, y, z of weights a, b, c with the total degree h. Then, 
the regularity of W is equivalent to the equation fw = 0 defining a 
hypersurface X w,o which has an isolated singular point at the origin 
0. This is also equivalent to say that Cw := (Xw,o \ {0} )/Gm being a 
smooth orbifold curve, where the orbifold data (i.e. signature, see §11, 
a)) is arithmetically determined from W, In other words, the curve Cw 
is equipped with a fractional { = E~) power of the canonical bundle, and 
the blowing down of its zero-section is the surface X w,o with an isolated 
singular point which we want to study (see §11). 

As described in §3-7, in order to get the Lie algebra gw from the sim­
ple or simply elliptic singularity, historically, there were two approaches: 
the algebraic one, using a resolution of the singularity, and the topologi­
cal one, using the set of vanishing cycles (see §5) in a smoothing (Milnor 
fiber) of the singularity. Let us see below how these two approaches 
work for each of the cases c:w=1 and 0. 

Case ew=1 (the simple singularity): in the first approach, the res­
olution diagram of the simple singularity is identified with the Dynkin 
diagram of a simple Lie algebra (DuVal, see §3), and defines its Cartan 
matrix. Then, as is standard in Lie theory, by the use of Chevalley gen­
erators and Serre relations associated to the Cartan matrix, we obtain a 
simple Lie algebra gw. On the other hand, in the second approach, the 
set of vanishing cycles in the middle homology group of a smoothing ( = 
Milnor fiber) of the singularity is identified with the set of roots of a fi­
nite root system in its root lattice of a simple Lie algebra (see §7). Then, 
inside the lattice vertex algebra [Bo1] of the root lattice, we consider 
the Lie-algebra 9w generated by the vertex operators e"' of the roots a 
([S-Y]§1). The Lie algebras gw and 9w constructed by these two ap­
proaches are canonically isomorphic, due to the fact that the vertices of 
the Dynkin diagram obtained by the first approach gives arise a simple 
basis of the root system obtained by the second approach, because of 
the existence of the simultaneous resolution of the simple singularity due 
to Brieskorn (§4 [Br1]). Further, Brieskorn's description of the universal 
family of the simple singularity enables us to describe a primitive form 
by the Kostant-Kirillov forms on co-adjoint orbits of a simple Lie group. 

Case c:w = 0 (the simply elliptic singularity): the first approach to 
use the exceptional set of the resolution of the singularity gives merely a 
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single elliptic curve, and Lie theoretic data is not apparent (see Footnote 
3). On the other hand, the data of the second approach, i.e. the set of 
vanishing cycles of a simply elliptic singularity, is characterized as the set 
of roots of an elliptic root system ([Sa 14] I, see §7 and Footnote 17). As 
in the case of c-w = 1, we get the Lie algebra flw generated by the vertex 
operators of elliptic roots inside the lattice vertex algebra of the elliptic 
root lattice. On the other hand, we construct arithmetically a certain 
root basis for the elliptic root system, called the elliptic diagram (Table 
7). Then, as in the first approach for the case of c-w = 1, we can construct 
a Lie algebra gw by generalizing the Serre relations associated to the 
Cartan matrix of the elliptic diagram. Actually, these two Lie algebras 
gw and flw are shown to be naturally isomorphic; we call this algebra 
the elliptic Lie algebm (see §6 and [S-Y]).2 

At this stage, we remark that there is a third approach for the 
construction of Lie algebras flw by use of the representation theory of 
finite dimensional algebras, which is sometimes called the Ringel-Hall 
construction. Namely, Ringel [Ri 2,3,4] has determined the structure 
constant among the Chevalley basis of a simple Lie algebra by using 
the data of representations of a hereditary algebm (c.f. [Ga]). The idea 
was further extended to the representation theory of tubular algebms by 
Lin-Peng [L-P 1,2], and they obtained the elliptic Lie algebras of types 
D(l,l) E(l,l) E(l,l) and E(l,l) (which are exactly the cases when the 

4 ' 6 ' 7 8 
elliptic Lie algebras are expected to admit primitive forms, [Sa14]II). 
In fact, those hereditary algebras and tubular algebras are obtained as 
the path algebras (see §16 6.(32)) of quivers associated to the classical 
Dynkin diagrams or to the elliptic diagrams, respectively. Since the Lie 
algebra depends only on the derived category of the abelian category of 
modules over the path algebra, some generalizations of the method in 
terms of triangulated category are in progress. The reader is referred to 
[P-X], [Toe], [D-X] and [X-X-Z] for details. 

We examine, in the present paper, the "Lie theoretic· data" of the 
above mentioned three approaches for the case c-w = -1. 

The singularities associated with the 14 weight systems with cw = -1 
are called exceptional uni-modular singularities by Arnold [Ar3]. 1. 
Topological approach: certain distinguished bases of the lattices of van­
ishing cycles for them have been obtained by Gabrielov ([Gab2], see 

2 As in simple Lie algebra case, the symplectic structures on the co-adjoint 
orbits of the elliptic Lie group are expected to form a primitive form. See (Sa14] 
VI (Integrable Highest Weight Modules), VII (Elliptic Groups and their Invari­
ants), in preparation, and (Ya3]). 
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Table 12), where the triplet (p,q,r) of lengths of the three branches of 
the diagram is called the Gabrielov number. 2. Algebraic approach: the 
exceptional set of the minimal resolution of the 14 singularities is given 
by a star-shape configuration of 4 rational curves (see Table 11), where 
the triplet (p,q,r) of the minus of the self-intersection numbers of the 
three branching curves is called the Dolgachev number. Then Arnold 
observed that there is an involutive one to one correspondence from the 
set of 14 exceptional uni-modular singularities to itself, which exchange 
the Gabrielov number and the Dolgachev number. The involution is 
called the Strange duality ([Ar3],§13). In the other words, the "Lie theo­
retic data" of the two approaches are exchanged by the strange duality. 

The strange duality, which is nowadays understood as an appear­
ance of mirror symmetry 3 , admitted several interpretations and expla­
nations. Among these, in §14, we introduce *-duality on regular systems 
of weights, which is an involution * on a set of regular systems of weights 
characterized as follows: let us introduce the characteristic polynomial 
of the weight system W by rpw(.A):=ITr= 1 (.A-exp(21fA~')) E Z[.A]. As 
a cyclotomic polynomial, we decompose it as rpw(.A)=ITilh(.Ai-l)ew(i). 
Then, another regular weight system W* is the *-dual of W if and only 
if h = h* and ew(i) + ew• (h/i) = 0 for all i E Z>o with minor additional 
conditions. 4 Then, we prove that any weight system with sw = 1 is 
selfdual; W = W*, and that the *-duality induces the strange duality 
on the set of 14 weight systems with sw = -1. Therefore, we expect in 
general that the *-duality exchanges the algebraic approach for a weight 
system W with the topological approach for the dual system W*. Then, 
instead of the naive study of resolution diagrams of the singularity X w,o 
in the algebraic side of W, what stands for the lattice and the basis of 
vanishing cycles of X w• ,o in the topological side of W*? 

Inspired by the recent studies of D-branes on mirror symmetry in 
mathematical physics ([K-1 1,2], [H-W], [Wal] and [Or1], see §15), we 
study the homotopy category HMFrw (Jw) of matrix factorizations of 

3The reader is referred to [Kon],[Yau] for mirror symmetry in general and 
to [K-Y][Tal] for the Landau-Ginzburg orbifold case. Already in case of EW = 0, 
the algebraic data, i.e. the elliptic curve in the exceptional set in the resolution 
of the singularity, is not "mirror dual" to the elliptic root system of vanishing 
cycles obtained topologically. In order to get mirror symmetry here, one should 
think of the elliptic curve with a group action [Tal]. A more comprehensive 
description is obtained by considering the pairs of a regular weight system and 
a group action. However, in the present paper, we do not get into such details. 

4The *-dual of W may not exist for all W, but is unique if it exists and 
is denoted by W* with W** = W [Sa17]. It seems interesting to extend the 
concept of regular systems of weights (by considering group actions (Footnote 
3) and non-hypersurface singularities), which is closed under the *-duality. 
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the polynomial fw as the algebraic approach. 5 We devote §16 to the 
descriptions. of three different definitions of this category and its basic 
properties. We expect that the advantage of this approach is that this 
category carries a "universality" such that it can recover all the three 
approaches to the Lie algebra, which we have discussed above.6 

In §17 and 18, we observe and explain this fact in the case of the 
category for simple singularities with · cw = 1 and for the exceptional 
singularities with cw = -1. 

We show that the category HMF:4w (fw) for cw=1 is generated by 
a strongly exceptional collection£ (see §16 4.), whose associated quiver 
is a Dynkin quiver .& of type W, and that the path-algebra C.& (see 
§16 6.) is isomorphic to the algebra End(£) consisting of all morphisms 
among the objects of the exceptional collection. Therefore, we have the 
equivalence HMFrw (fw) ~ Db(mod-Cl) due to a theorem of Bondal­
Kaplanov (see §16 4). Hence, using the classical result by Gabriel [Ga], 
the K-group Ko(HMF:4w(fw)) and the image set in the K-group of 
indecomposable objects of the category are isomorphic to the root lat­
tice and the set of roots of a finite root system, respectively. That is, 
HMFrwifw) recovers all three data for the Lie algebra discussed above, 
inducing the natural isomorphisms gw ~g~ ~g~ among them. 

In the case cw=-1, the category HMF:4wifw) is generated again by 
a strongly exceptional collection £ whose associated quiver ~A is given 
in Table 14, where A is the signature set (13) of W (see Footnote 32). 
We show again an isomorphism End(£)~ C(~A, R) and an equivalence 
HMFrwUw)~Db(mod-C(~A, R)) of the categories, where C(~A, R) is 
the quotient of the path~algebra c~A by the relations R (see (32)and §18 
Theorem). Hence, in the 14 uni-modular exceptional cases, comparing 
Table 12 with 14 and in view of the strange duality, we conclude that 
the K-group Ko(HMF:4w (fw )) is isomorphic to the lattice of vanishing 
cycles for the *-dual weight system W*; this is what we expected. 

We conjecture that the image set in the K-group of exceptional in­
decomposable objects of the category coincides with the set of vanishing 
cycles for the singularity Xw•,o, and, hence, the three approaches to 
the Lie algebra are available from the category HMFrw (fw ). Whether 
the three Lie algebras gw, g~ and g~ for them are isomorphic to each 
other or not is an interesting and important open problem. 

5This was proposed by Takahashi [Ta2] (c.f. Orlov [Orll]) answering a prob­
lem posed by the author [Sa15] (5.3) Problem. The sections §16, 17 and 18 are 
based on the joint works [K-S-T 1-2]. 

6It is also remarkable that the stability condition space [Br1][H-M-S] on this 
category seems to have a close relationship with the period domain for period 
maps of primitive forms [Sa22]. 
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§1. Simple polynomials 

There are a finite number of regular polyhedra, namely, the icosa­
hedron, dodecahedron, octahedron, hexahedron and the tetrahedron, 
known at the time of Platon. The regular dihedron, which has only 
two faces of the n-gon (n ~ 3), is nowadays included in the list of 
regular polyhedra. The subgroup G of 80(3) consisting of rotations 
of three dimensional Euclidean space, which moves a regular polyhe­
dron (centered at the origin) to itself, is called the regular polyhedral 
group. The binary extension G of the regular polyhedral group G is 
obtained by taking the inverse image of G through the surjective ho­
momorphism 8U(2) ~ 80(3). It is well-known that the binary regu­
lar polyhedral groups (including binary dihedral groups) and the cyclic 

/(exp~ 0 )\ subgroups Zn := \ 0 n exp (- 2"7) I for n E Z>o together form 

a complete list of finite subgroups of 8U(2) up to conjugacy. As an 
abstract group, all of the groups have a presentation: 

(p,q,r) := ( x,y,z I xP = yq = zr = xyz) 

for suitable integers p, q, r E Z>o, given in the next Table 1 (here, x, y 
and z induces the rotation of the polyhedron centered at the barycentre 
of an edge, a face and a vertex). 

(1, b, c) Zn cyclic group of order n = b + c 

(2, 2, n) D2n binary dihedral group of n-gon n 2:: 2 

(2,3,3) A4 binary regular tetrahedral group 

(2, 3, 4) 84 binary regular octahedral group 

(2,3,5) A5 binary regular icosahedral group 

Table 1. 

In fact, these are the only cases when the group (p, q, r) is finite (see 
[C-M]). The group is sometimes called the Kleinean group because of 
the following result due to A. Schwarz [Sc] and F. Klein [Kll]. 

Theorem. Let G c 8U(2) be a Kleinean group. Let it act linearly 
on C2 , and, hence, on the ring C[u, v] of polynomial functions on C2 

(where u, v ares coordinates of C2 ). Then the subring C[u, v]0 := {P E 

C[u,v]l gP=P 'v'gEG} of invariants is generated by 3-homogeneous ele­
ments, say x, y and z, which satisfy a single relation, say f 0 = f ( x, y, z). 
That is: 

C[u,v]0 ~ C[x,y,z]/(!0 ). 
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The polynomial fa is called a simple polynomial, which is listed in 
the following table. 

fa 
x1+1 + yz 
x2y + yl-1 + z2 

x4 + y3 + z2 

x4 + xy3 + z2 

xs + y3 + z2 

Kleinean group 
Zn 

(2, 2, n) 
(2, 3, 3) 
(2, 3, 4) 
(2, 3, 5) 

The Types in the left-side shall be explained in §3. 

Table 2. 

Note. From the polynomial fa, one can recover G. See Appendix 3. 

F. Klein, in the introduction to his lecture notes on the icosahedron 
[Kll], described the time when he and Lie studied together in Berlin 
and Paris during the years 1869-70: "At that time we jointly conceived 
the scheme of investigating geometric or analytic forms susceptible of 
transformation by means of groups of changes. This purpose has been 
of directing influence in our subsequent labors, though these may have 
appeared to lie far asunder. Whilst I primary directed my attention to 
groups of discrete operations, and was thus led to the investigation of 
regular solids and their relations to the theory of equations, Professor 
Lie attacked the more recondite theory of continued groups of transfor­
mations, and therewith of differential equations". 

§2. Simple Lie algebras and root systems 

Let us explain another stream of mathematics started from Lie and 
Killing-Cartan. 

The Lie algebras describe "the infinitesimal structure of continuous 
groups". The series of works [Ki] by Killing starting from the year 1888, 
determining the structure of simple Lie algebras (which was completed 
by E. Cartan [Ca]) has introduced a new mathematical structure (see 
[Ha]) which goes far beyond the class of simple Lie algebras, and is 
strongly influential on the present program. 

Killing looked at the adjoint action of the maximal abelian (Cart an) 
subalgebra of a simple Lie algebra and decomposed the Lie algebra into 
a direct sum of equi-eigenspaces of the action. Since an equi-eigenvalue 
(as an element of the dual space of the Cartan subalgebra) is a root 
of the characteristic eigen-equation, he called it a root (Wurzel), and 
showed that the system of roots for a simple Lie algebra satisfies some 
properties, which are nowadays known as the axioms for a finite root 
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system (see ([Bou]§6n°1)). The classification of simple Lie algebras is 
reduced to the classification of finite root systems. In fact, it is achieved 
by determining the matrix (2I(a,f3)/I(a,a))o.,{3Er (called the Cartan 
matrix), where I is Killing form on the root lattice and r is a simple 
basis of the root system 7. 

§3. Du Val diagrams and Coxeter diagrams 

Let us see how the two streams of mathematics, one starting with 
Klein and the other with Lie-Killing, meet again in the year 1934, when 
Du Val and Coxeter were together at Trinity college in Cambridge. At 
that time, the concept of the Weyl group, generated by reflections so. 
for all roots a of the Lie algebra, was established in connection with 
the representation theory of simple Lie algebras (Weyl [We] (1925-6) 
and Cartan [Ca]). The classification of root systems is reduced to the 
classification of the Weyl group [Wae]. Then Coxeter, by use of the 
fundamental domain ( = Weyl chamber) of the Weyl group, classified all 
finite reflection groups acting on Euclidean space. Namely, he gave an 
explicit presentation of the Weyl group in terms of generators and re­
lations, known as the Coxeter relations [Co1].8 For the classification, 
he introduced a diagram (tree) r, where the vertices correspond to the 
generators and an edge is drawn between two vertices which are non­
commutative (see [Bou] for more details on reflection groups). In Table 
3, the Coxeter's diagram for the Weyl groups of types A1, D1, or E1 are 
given by removing i) the vertex Po of the diagram and ii) the "tilde - " 

7Recall [Bou](chap.6 §1 5.) that a simple basis of a (finite) root system 
is characterized as a system of linear forms on the Cartan algebra, whose ze­
ros define the system of walls (oriented to the inside) of a Weyl chamber. It 
is admirable that, even at such an early stage (1888) of the study of simple 
Lie algebras, Killing (see [Ki]S12,13) began to study root basis r, the product 
IT"'er s"' of the reflections s"' associated to the basis (presently known as the 
Coxeter-Killing transformation) and its eigenvalues (which presently defines the 
exponents). However, for their geometric significance in terms of the Weyl group 
and chambers, one must wait until Weyl's work [We]. As we shall see, finding 
generalizations of the simple root basis, Coxeter- Killing transformations and 
the exponents are central problem in the present paper. 

8The generators are given by the reflections attached to the walls of the 
chamber (which is bijective to the set r of simple basis of Killing) and the 
relations are given by the dihedral group relations for every pair of generators 
along 2-codimensional facets of the chamber. The higher codimensional facets 
of the chamber do not play a role in determining the group. 
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from the types in RHS of table (see Appendix for more details on the 
table). 

Kleinean group Diagram Type 
,P. 

Zn p<:~---=> An-1 
..... 

(2, 2, n) p~------< Dn+2 

(2,3,3) p~ E6 

(2,3,4) p~ E1 

(2, 3, 5) p~ Es 

Table 3. 

The complex hypersurface Xo in C3 defined by the zero-loci of a 
simple polynomial in the list of Klein (Table 2) has an isolated singular 
point at the origin 0 (cf. §11 Fact4.), called a simple singularity [Dur]. In 
the year 1934, DuVal [Du] studied the (minimal) resolution 1r: X0 -+ X 0 

of the simple singularity. He associated a diagram r to the resolution: 
decompose the exceptional set E := 1r-1(0) into irreducible components 
U~=l Ei, then, vertices Xi of the diagram are in one to one correspondence 
with irreducible components Ei and an edge is drawn between Xi and 
Xj if and only if Ei n Ej i= 0. He observed that for each Kleinean 
group on the LHS of Table 3, the diagram he obtained is exactly the 
one given in the middle of the Table 3, deleting the vertex po. In the 
introduction of [Du], he wrote "It may be noted that the "trees" of curves 
which we have had to consider bear a strict formal resemblance to the 
spherical simplices whose submultiple of 1r, considered by Coxeter". In 
the same volume of the London Journal, Coxeter [Co1]listed diagrams 
for reflection groups, answering to a request of DuVal (for the definitions 
of diagrams for a basis of a lattice, see Footnote 41, and for a quiver, 
see §16, 6). 
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§4. Universal unfolding of simple singularities by Brieskorn 

We observed in §3 that there is a one to one correspondence be­
tween the diagrams of Du Val associated to simple polynomials and those 
of Coxeter in the classification of simple Lie algebras (recall Table 3). 
However, at this stage, their relation remained a "strict resemblance", 
as Du Val wrote. A more direct and decisive relationship was found 
40years later in the work of Brieskorn and Grothendieck. In ICM Nice 
1970, Brieskorn [Br4] reported the following result. 

Theorem. (Brieskorn [Br4]) Let X -4 S be the universal unfolding 9 

of a simple singularity, and let g be the corresponding simple Lie algebra. 
Then, one has a commutative diagram: 

X c g 

l ! 
S gtfAd(g) ~#W 

where i} the vertical arrow in right side of the diagram is the adjoint 
quotient morphism due to Chevalley's theorem, and ii} X C g is an 
embedding of X onto a transversal slice to the nilpotent subvariety of g 
at a subregular element. 

Brieskorn further described the simultaneous resolution (c.f. [Br1,2]) 
of the universal family. 10 He wrote "Maybe the two theories do not lie 
so far asunder" . 

Remark 1. The Brieskorn's description of the universal unfolding 
X -4 S of a simple singularity by tise of a simple Lie algebra has the ad­
vantage in determining certain global differential geometric structures on 
the family X -4 S, since, in the Lie algebra g, the integrability conditions 
are already built in. For instance, the primitive form of the family X -4 S 
11 , which is defined by an infinite system of non-linear equations, for the 
simple singularity is described by the Kostant-Kirirov symplectic form 

9The concept of an unfolding of a singularity of a function f is due to R. 
Thorn [Th]. We shall give in §5 and in Footnote 12. a brief description of them. 
From an algebraic geometric view point, it is essentially the same concept as 
a semi-universal deformation of the hypersurface defined by f = 0 near at the 
singular point (see [Sch] and [Tu]). 

10This was reproven by a use of representation of quivers [Kr] (see the works 
by H. Nakajima for further studies on the relationship between Lie algebras and 
representations of quivers). 

11For a primitive form, see [Mat][Od1][Sa7][Sa19]. It is a relative de-Rham 
cohomology class ( E HvR(X/S) which 1) generates all the other de-Rham 
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[Sa7] [Yah] [Yal] [Yo]. The flat structure (Frobenius mfd structure) on 
the deformation parameter spaceS is described by the Coxeter-Killing 
transformation of the Weyl group [Sa16] [He] [Sab]. 

These facts motivated the author to convince the following: for 
a further class of singularities, using suitable Lie algebras, construct 
primitive forms and flat structures globally. However, the list of regular 
polyhedral groups and that of the simple Lie algebras have already been 
used up. Are these the only cases where singularity theory and Lie 
theory come happily together? 

§5. Universal unfolding of a hypersurface singularity 

Before we go further, we prepare some terminologies on vanishing 
cycles of a hypersurface isolated singular point studied by authors [Br3] 
[Lel] [Gabl] [Ebl]. 

Let f(;I;_) with [f := (xo,· · ·, Xn) (n ~ 0) be a holomorphic function 
defined in a neighborhood u of the origin 0 of cn+ 1 with the coordinate 
;f. Assume that the hypersurface X 0 :={(;I;_) E U I f(;I;_) = 0} has an 
isolated singular point at the origin 0 E X 0 • This is equivalent to that 
Jf :=Ch}/(8££!>, ... , 8/,;!>) is of finite rank over C, where C{;I;_} is the 
local ring of all convergent series in ;f. 

Theorem. (Milnor [Mi]) Consider a map f : Xo,e -+ D£ where 
Xo,£ :={;I;_ E U I l;fl < 8} n f- 1(De) and D£ := {t E C I ltl ~ c-} for 
positive real numbers 8, c such that 0 < c << 8 << 1. Then, fiX\J-l(O) : 
X\ f- 1 (0) -+ D10 \ {0} is a locally trivial topological fibration such that 
the general fiber is homotopic to a bouquet of J.L f -copies of n-sphere sn' 
where J.LJ :=dime Jf is called the Milnor number. 

The fibration is called the Milnor fibration, whose general fiber over 
a base point 1 E D10 , denoted by X1. is called the Milnor fiber. Iff 
is globally defined weighted homogeneous polynomial of positive weights, 
then we may choose 8 = c = oo. 

As a consequence of this result, the (reduced) homology group of the 
Milnor fiber is non-trivial only in dimension n, and we have Hn(X1, Z) ~ 
ZJLw . Let us introduce particular elements of Hn (X 1, Z), called vanishing 

cohomology classes as a Vs-module, and 2) satisfies an infinite system of bi­
linear differential equation (by means of residue pairings). Its local existence on 
S is known by (Sai]. Global existence on S is known only for simple or simply 
elliptic singularities. It is believable that g is the Cartan prolongation of X with 
respect to the primitive form. Such global construction of primitive forms by 
means of globally defined integrable systems (such as Lie algebras) is the basic 
motivation in the present paper. However, we shall not discuss the primitive 
form itself in any further detail. 
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cycles: let us consider a universal unfolding off (Thorn [Th]), which is 
a function F (;!2, !) in ;!2 E en+ 1 and ! = ( t 1. · · · , t ~-' 1 ) E C~'! defined in a 
neighborhood of the origin (Q, Q.) E cn+1 x C~-'t satisfying i) F(;!2, Q) = 
/(;!2), and ii) 8F8~~,o) (i=1, · · · ,J..LJ) span the «:::-vector space J,. 

For a small value oft, again by choosing 8 and c suitably for ft(;J2) = 

F(;!2, !) , we consider the map ft: Xli,e -+ De; such that, excluding finite 
number of its fivers over the critical values, it gives a locally trivial 
fibration, whose general fiber is homeomorphic to the Milnor fiber. If! 
is general, then ftlx has exactly J..Lrnumber of non-degenerate critical 
points and the (critical) values are distinct (that is, f.t. is a Morsification 
of f). We may choose the "base point" 1 whose fiber ft- 1(1) is the 
Milnor fiber x1 on the boundary of the disc DE. Let g : [0, 1]-+ De; be 
any continuous path starting at the base point 1 E De; and ending at a 
critical value c, without passing any critical points on [0, 1). Then the 
pull-back X[o,1] of the fibration X-+ De over the interval [0, 1] retracts 
to Xc. Thus, the natural inclusion X1 CX[o,1] induces a homomorphism 
t:Hn(XI.Z)-+Hn(Xc,Z) whose kernel ker(t) is rank 1 module Z (since 
the Hessian of ft at the critical point is non-degenerate). 

Definition Let the setting be as above. A base e (up to sign) of the 
kernel ker(t) in Hn(X1,Z) is called a vanishing cycle along the path g. 
We denote by R1 the set of all vanishing cycles running all possible paths 
g and the critical values c. 

Let "Y be a path in De; which starts at the base point 1 and move 
along g close to the critical value c and then turns once around c counter­
clockwisely, and then return to 1 along g. This path induces the mon­
odromy p("Y) E Aut(Hn(XI. Z)), whose action on u E Hn(XI. Z) is de­
scribed by the following Picard-Lefschetz formula: 

p("Y)(u) = u- ( -1) n(n2-l) (u, e)e 

where (·, ·): Hn(XI. Z) x Hn(XI. Z)-+ Z is the intersection form on the 
middle homology group (see Footnote 35). If n is even, it is symmetric 
and ( e, e) = ( -1 )n/22 so that p("Y) is a reflection action with respect to 
the vector e, denoted by We. 

Table 4. 

Now, we describe the distinguished basis 
of the middle homology group Hn(X1, Z), de­
pending on two choices: i) to give a number­
ing of the critical values, say c1, · · · , cl-'!, of ft, 
ii) to choose f-LJ paths g1, · · · , gl-' in De; such 
that a) each gi is a path connecting 1 with 
ci as above, which is not self-intersecting, b) 
distinct paths gi and gj are intersecting only 
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at 1, and c) the passes gll · · · , g ~-' are starting at the point 1 in the linear 
order 1, ... , J.L 1 counter-clock wisely (see Table 4). 

Fact-Definition. Under the above the setting, the set e1,· · ·, ep,1 of 
vanishing cycles (up to choices of sign) associated to the paths g1,· · ·, gp,1 

form an ordered basis of Hn(Xll Z), called a distinguished basis (see 
[Br3], [Le1], [Gab1], [Ebl]) 
Monodromy; Let 'Y be the path starting at 1 turning once around 
the boundary of De counter-clock wisely and comes back to 1. The 
monodromy of this path c:=p('Y) EAuto(Hn(Xll Z)) is called the Milnor 
monodromy. Since 'Y is homotopic to the product 'Y1 · · · "(p,1 of paths 'Yi 
(see Table 4), we express the monodromy c: 

C = We1 • · ·We,.1 

as a product ofreflections associated to a distinguished basis ell··· , e~-'r 

Table 5. 

Braid group Bp,1 action on distinguished 
basis: First, we remark that the homo­
topy classes of the paths 'Yll · · · , "(p,1 give a 
free generator system of the group 1r1 (De \ 
{cll .. ·,cp,1 },1). Thus the choice of the 
paths gll· · ·, gp,1 , up to homotopy, corre­
sponds to a choice of a free generator sys­
tem of the free group. On the other hand, 
the braid group Bp,1 acts on the set of 
free generator systems, as usual as follows: 
for 1 ::; i < J.LJ, define an action ai : 

"(1,··· ,"(p,1 ~ "(1,··· ,"fi-1,"fi'Yi+1'Yi-1,"(i,"fi+2,··· ,"fP.r This causes 
an action of ai on paths g1, · · · , gp,1 to those given in Table 5. 
and on the distinguished basis ell··· , ep,1 to the distinguished basis 
e1, · · · , ei-1, w7 ; (ei+t), ei, ei+2, · · · , eP.r One can immediately verify 
that ai (1 ::;i<J.Lt-1) satisfy Artin braid relations (see [Ar]) so that we 
obtain a braid group action on the set of distinguished basis. 

Remark 2. Even if we start with a globally defined weighted ho­
mogeneous polynomial f of positive weights, in order to construct the 
fibration ft.. : X ---+ De above, we need to shrink the domain of ft.. suit­
ably by a use of 8 and e as above. In fact, if one of the coordinate ti 
has negative weight (c.f. §ll,b),4)), the embedding of a Milnor fiber Xt 
into the global affine surface Xt_ := {;r E cn+l I F(;r,t) = 0} induces a 
non-trivial extension Hn(Xt_, Z) C Hn(Xt_, Z). The extension is achieved 
by adding the lattice of the vanishing cycles "coming from oo" and is ex­
pected to play key role in analytic theory of primitive forms (see [Sa19] §6 
Conjecture and Problem I'). 
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Remark 3. In mathematical physics, hypersurface singularity is stud­
ied under the name of Landau-Ginzburg model. 

§6. Simply elliptic singularities 

We return to the main stream of our considerations in the present 
paper: to seek for a connection of primitive forms with Lie theory. 

In the year 197 4, the author [Sa2] came up with a new class of normal 
surface singularities, which are "located on the boundary" of the defor­
mation space of simple singularities. They are called the simply elliptic 
singularities, which include the following three types of hypersurfaces: 

Type equation fw E·E (J.L+, J.Lo, J.L-) 

E6 or E(l,l) 
6 x3 + y3 + z3 + >..xyz -3 0, 2, 6 

E1 or E(l,l) 
7 x4 + y4 + z2 + >..xyz -2 0, 2, 7 

Es or E(l,l) 
8 x6 + y3 + z2 + >..xyz -1 0, 2, 8 

Table 6. 

The simple elliptic singularities X 0 are characterized from two dif­
ferent view points: a) by the resolution of the singularity Xo: a normal 
singular point 0 of a surface Xo is simply elliptic if and only if, by defini­
tion, the exceptional set E=7r-1(0) of the minimal resolution 1r: X0 ->Xo 
of the singularity contains only a single elliptic curve, and b) by defor­
mation of the singularity: a singular point 0 of a hypersurface surface 
Xo is either simple or simply elliptic if and only if any singularity in a 
local deformation of Xo admits a weighted homogeneous structure. 12 

12Let us explain what do we mean by 1. "singularity in a local deformation 
of X 0 ", and 2. "weighted hQmogeneous structure" on a singularity X 0 • 

IC3 1. Recall §5 the universal unfolding F(!!i_, :t.) 
-r-:D~i?-_, defined in a neighborhood U of the origin of 

cn+l X ([:1'!. Then, it defines a local analytic flat 
family of analytic varieties r.p : Xcp ---+ Scp where 
Xcp := {(;!;.,~) E U I F(;!;.,t.) = 0}, Scp is a neigh­
borhood of the origin of C~-'!, and r.p is the projec­
tion to the second factor. The fiber r.p- 1 (0) over 0 
is nothing but the original singular surface Xo so 
that the family {X:t := r.p- 1 (~)h.es.., is called the 
semi-universal deformation of the singularity X 0 

([K-S], [Sch]). One can show that the critical set 
Local deformation of Xo Ccp of the map r.p is (locally near at the origin 0) 

a smooth subvariety of dimension J-tt - 1, which is finite over Scp so that the 
image Dcp := r.p(Ccp) is (locally near at 0) is a hypersurface in Scp, called the 
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Here in the case of simply elliptic singularity, a) the resolution di­
agram in the sense of Du Val consists only of a single elliptic curve E 
and Lie theoretic data are hardly seen, in contrast with the case of the 
simple singularity. However, b) they show a new relation (in a symboli­
cal level) with Lie theory through deformation theory as follows: in the 
local deformation (see 1. of Footnote 12) of an elliptic singularity of type 
:f E {E6 , E7 , E8 } 13, only an elliptic singularity of the same type :f or a 
simple singularity can appear. The simple singularity of type r can ap­
pear if and only if r is a subdiagram of :f. This fact was explained soon 
after its finding by use of the lattice (H2 (X 1. .Z), I) (here, I= -{, ·), see 
Footnote 35).14 Thus, for a simply elliptic singularity X 0 , a relationship 
with Lie theory begun to appear from the lattice of the smoothing X 1. 

instead of the resolution X0 . Do we need to change our view point? 
15 We shall come back to this question of "change of view-points" later 
when we discuss *-duality in §14 and 15. 

discriminant of r.p. Then, for any point X E c"', the variety x<p(x) = r.p- 1 (r.p(x)) 
is singular at the point x. This is a singularity in a local deformation of X 0 • 

As we saw already, for a generic point X E c"', (X<p(x),x) is an ordinary double 
point (i.e. Morse singularity). 

2. Let X 0 be a hypersurface in a neighborhood of the ongm 0 of cn+l 
defined by an analytic equation f(:£) = 0 with an isolated singular point 
at 0. We say that X 0 admits a weighted homogeneous structure at 0 if 
there is a local analytic coordinate change at 0 such that the defining equa­
tion !(:£) is transformed to a weighted homogeneous polynomial P(:£) (i.e. 
P( ) _ "' io i c ·t· · t :£ - L..aoio+···a,..i,..=h Cio···inXO · · · Xn"' 10r SOme pOSl lVe Ill egers ao, · · · , an 

and h). Then, the following i), ii) and iii) are equivalent [Sal]: i) X 0 admits an 

weighted homogeneous structure, ii) The sequence: 0-> c-> Oxo,O ~ ni-o,O-> 

· · · ~ !1';:~~0 -> 0 is exact, where (!1:X0 ,0 , d) is the Poincare complex over X 0 at 

0, and iii) f belongs to the ideal (a~~~), .. · , aJj;;)) in the local ring C{:£}. 
13The names Ei are taken from that of the affine Coxeter diagrams (Table 

3) for the reason explained in this section. They are nowadays called also EP' 1) 

for the reason explained in the next §7. 
14This is shown by using the fact that the lattice (H2 (X~>Z),I) is isomor­

phic to Qf EB Z (see [Ga], [Eb1,2]) where Qf is the affine root lattice of a type 
Es, E6 and E8 • See next §7. 

15This question is supported by the fact that the period domain for the 
period map J ( of the primitive form is determined from the lattice H2 (X 1 , Z) 
[Sa7], [Sa14]11. 
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§7. Vanishing cycles for simple and simply elliptic singularities 

In order to sharpen the new view point, i.e. to study the lattice 
(H2(X1,Z),J) of the middle homology group of the smoothing X 1 of 
singular surface Xo, we consider a particular subset R c H2(X1, Z), 
the set of vanishing cycles introduced in §5 (c.f. [Sa15](5.2),(5.3)). From 
this view point, let us state some consequences of Brieskorn's description 
[Br4] on simple singularities: 

1) The minimal resolution X0 and the smoothing X 1 of a simple singular­
ity Xo of type r are homeomorphic. Hence one obtains an isomorphism 
of lattices: 

*) H2(X1,Z) H2(Xo,Z). 

Here, the homotopy type of the homeomoprhims, and hence the isomor­
phism of lattices *) depend on the Weyl group of type r. In fact, the 
ambiguity of the isomorphism can be resolved (up to an outer automor­
phism of the Weyl group) by choosing the base point 1 in the totally 
real region of the deformation parameter space Scp (see Footnote 16). 

2) The set of vanishing cycles R in H2(X1, Z) (see §5} forms a finite 
root system of type r, and H2(X1, Z) is identified with the root lattice 
Qr of the root system. 

3) The homology classes [Ei]EH2(Xo,Z) (i=1, .. ·,l} ofthe exceptional 
curves Ei in the resolution Xo are mapped by the homomorphism *) to 
a simple root basis r of the root system R, which are also distinguished 
basis in the sense in § 5.16 

If Xo is a simply elliptic singularity, none of 1), 2) or 3) holds. 
However, 2) suggests to regard the set of vanishing cycles in H2(X1, Z) 
for a Milnor fiber X1 of an elliptic singularity as a generalization of 
root systems. In fact, we can generalize the root systems17 by removing 

16The paths g1,· · ·,g~' 1 inS"' (Footnote 12), with whom associated distin­
guished basis e1,· · ·, el'1 is the simple root basis, is given in [Sa20] §4.3 Figure 
6. and Theorems 4.1 and 4.2, using semi-algebraic geometry of the real discrim­
inant D<p,R of the universal deformation of the simple singularity. Furthermore, 
the associated paths /i i = 1,· · ·, J.L (Table 4) generate the fundamental group 
1r1 (S"' \D"', 1) and satisfy Artin braid relations of type r so that the fundamen­
tal group becomes an Artin group ([Br5] [B-S]). Then, the intersection matrix 
(I(ei,ei))ij=l,. .. ,p. is shown to become the Cartan matrix of type r by solving the 
braid relations where rb · · ·, /p. are substituted by Picard-Lefschetz formula for 
p(/1),· · ·, p(rl') in §5. 

17 A subset R of a real vector space equipped with a symmetric form I is 
called a (generalized) root system if ZR is a full lattice, 2I(a,{3)/I({3,{3)EZ 
and a-2I(a,f3)/I((3,{3){3ER for Va,{JER, and irreducible in a suitable sense 
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the finiteness axiom from the classical one for a finite root system [Bou] 
Chap. VI §1 so that the set of vanishing cycles for any even dimensional 
hypersurface isolated singularity becomes a generalized root system. In 
particular, the set of vanishing cycles for a simply elliptic singularity is 
characterized as an elliptic root system, that is, a root system belonging 
in a semipositive lattice with radical of rank 2 (see [Sa14] I). 

However, by the lack of 1) and 3) for the case of simple singularity, 
we cannot find a generalization of "the simple root basis" of the ellip­
tic root system naively from the resolution of X 0 . Also, no geometric 
method to choose one particular distinguished basis (see §5) is knowm. 18 

However, we choose some root basis arithmetically19 such that the el­
liptic Coxeter-Killing transformation defined as a product of reflections 
associated with the basis is of finite order. As in the case of classical 
finite root systems, we associate a diagram, called an elliptic diagram, to 
the basis (see Footnote 41). Some of the simply-laced elliptict diagrams 
are given in following Table 7. 

([Sa14]I). A root system is finite or affine if I is positive definite or semidefinite 
and rank(radical)=l, respectively. A root system is called elliptic if I is positive 
semidefinite and rank(radical)=2. The set of vanishing cycles for a simply elliptic 
singularity of type E6, E7 or E8 is the elliptic root system of type E~l,l), E+1' 1) 

E (l,l) or 8 . 

18Gabrielov [Gab2] (Fig. 10 and 11.) obtained the diagrams in Table 7. 
for certain distinguished basis as one of the possible choices after the braid 
group action under the guiding principle to find the diagrams containing small 
number of triangles. On the other hand, in the simple singularity case, the 
semialgebraic geometry of the discriminant ([Sa20]) can yield the distinguished 
basis which corresponds to the simple root basis of the finite root system (see 
also A'Campo's [AC]). There seems a gap between topology and semi-algebraic 
geometry. 

19There does not exist elliptic Weyl chambers and, hence, there seemed 
no a priori definition of a simple basis for an elliptic root system (see [Klu]). 
However, the elliptic diagram in Table 7. is defined by duplicating the vertex 
of the affine diagram at the largest exponent (see [Sa14]I(8.6)). We define the 
elliptic Coxeter-Killing transformation Ce as the product ofreflections (acting on 
H2 (X1 , Z)) attached to the vertices of the elliptic diagram (in a suitable order). 
Then one has: i) ce is of finite order h, and the eigenvalues of ce determine the 
exponents of the elliptic root system (see §8 and Table 9), ii) the eigenvector of 
Ce belonging to the eigenvalue 1 is regular in the elliptic Cartan algebra ~e with 
respect to the elliptic Weyl group We and iii) the universal central extension 
We of We is generated by a lift cZ. Using i), ii) and iii), a flat structure on the 
quotient space ~e//We is constructed ([Sa15]II, [Sat,1,2]). 
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Table 7. Simply laced Elliptic diagrams ofCodim=l ([Sa14] I, Table 
1). 

1 
0 

The numbers attached at vertices are the exponents of the root system (see §7). 

The diagrams plays basic role, as in the finite root system case, in 
describing the elliptic root systems [Sa14]I, elliptic Weyl groups [ibid] III, 
elliptic Lie algebras [S-Y]. The construction of the primitive forms from 
the elliptic Lie algebras is a work in progress. 20 

§8. Exponents and weight systems 

In this section, we first introduce the exponents for a finite or elliptic 
root system, which play important role in the classical and elliptic Lie 
theory21• Then, we try to extend the definition of exponents for a gen­
eralized root system, and meet with a problem of "choice of the phases" 

20In [S-Y] the following three algebras are shown to be isomorphic: a) an 
algebra generated by vertex operators [Bol] for all elliptic real roots, b) an 
algebra generated by the Chevalley triplets attached to the elliptic diagram 
(Table 7) satisfying certain generalized Serre relations, and c) an amalgamation 
of an affine algebra and a Heisenberg algebra. An algebra isomorphic to any 
one of them is called an elliptic algebra. It is also a universal central extension 
of a 2-toroidal algebra. We remark that the elliptic root systems and the Lie 
algebras are found also from the representation theory of tubular algebras (see 
Y. Lin and L. Peng [L-P,1&2]). Works on highest weight representations and 
Chevalley type invariant theory for an elliptic algebra and group are in progress 
(see Footnote 2). Due to the existence of the regular element (see Footnote 19), 
several properties similar to classical algebraic groups and its invariant theory 
hold for the elliptic Lie algebras and its adjoint groups. These facts supports 
the program that the elliptic primitive forms are constructed on the elliptic Lie 
algebras (see references in Footnote 2). 

21The exponents are equal to the degrees of basic g- or W -invariants and 
play basic roles in Lie theory (see [Ko],[Sp],[Stl]), and also in the study of the 
fiat structures ([Sa16], [Sa14]11, [Sa7]). 
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of the exponents. In order to solve the problem, we are lead to introduce 
a new concept: the regular system of weights. 

First, we recall a definition of exponents for a finite or elliptic root 
system. In both cases, we define a Coxeter-Killing transformation as 
a product c, in a suitable order, of reflection actions on the lattice 
H2 (X1, Z) attached to a simple root basis (recall §5). The c is of fi­
nite order h (called the Coxeter number, see §19 Remark) 22. Then the 
exponents m 1 , · · ·, mp. are integers such that exp(21rv'-I!!j;i) (i = 1, · · ·, J-L) 

are the eigenvalues of c (see [Bou]Ch.v,n°6.2 and [Sa14] I (9. 7) Lemma 
A.iii)). However, this determines the exponents only up to modulo h. 
In case of finite root systems and elliptic root systems, one poses fur­
ther the constraint on the range 0 ::; mi ::; h and on the symmetricity 
mi +mp.-i+l = h for i = 1, · · ·, JL. Under these constraints, we determine 
uniquely the exponents as in the next tables. 

Type (a,b,c;h) exponents 

Az(l2:1) (1,b,c;l+1) 1, 2, ... , l (b+c=l+1) 
Dz (l 2: 3) (2, l-2, 1-1; 2(l-1)) 1, 3, 5, ... '2l- 3, l- 1 
E6 (3,4,6;12) 1,4,5, 7,8,11 
E1 (4,6,9;18) 1,5,7,9,11,13,17 
Es (6,10,15;30) 1,7,11,13,17,19,23,29 

Table 8. 

Type (a,b,c:h) exponents 
E(l,l) 

6 (1,1,1:3) 0,1,1,1,2,2,2,3 
E(l,l) 

7 (1, 1, 2 : 4) 0, 1, 1, 2, 2, 2, 3, 3, 4 
E(l,l) 

8 (1,2,3: 6) 0,1,2,2,3,3,4,4,5,6 

Table 9. 

We try further to introduce the exponents through Coxeter-Killing 
transf. (Milnor Monodromy) for root systems of singularities (since they 
are necessary data for primitive forms; see discussions below). In fact, 

22The Coxeter-Killing transformation has distinguished properties: i) c is 
of finite order h, ii) the primitive hth roots of unity (or, 1 for the case of an 
elliptic root system) are eigenvalues of c, and iii) the eigenvectors of c belonging 
to them are regular (i.e. they are not fixed by the Weyl group and the adjoint 
group of the Lie algebra, [Col], [Bou] chap.V§6 n°2, [Sa14]11 §10 Lemma B). This 
existence of regular eigenvectors is basic for the construction of the adjoint quo­
tient morphism g-> g.fAd(g) :::: ~.fW ([Ko],[Sp],[St1]) and of the flat structure 
on ~.fW ([Sa16], [Sa14]11). 
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we shall obtain in §18 quite interesting class of generalized root systems 
of Witt index 2 together with some distinguished root basis. However, 
we meet here at present a subtle problem: phase of exponents, which 
lead the author to introduce the concept of the weight system below. To 
explain the problem concretely, we cite some results from later sections 
as follows. 

1. Consider a polynomial in LHS of Table 10 in §13. The zero loci of 
the polynomial in C3 defines a hypersurface X 0 with an isolated singular 
point at the origin. 

2. The generalized root system ( = the set of vanishing cycles) in 
H2 (X1 , Z) in the middle homology group of a Milnor fiber X 1 of X 0 has 
a root basis whose associated diagram is given in Table 12 (where p, q, r, 
called the Gabrielov#, are given in Table 13). 

3. Define the Coxeter-Killing transformation c as the product of re­
flection actions on H2 (X 1 , Z) associated with the vertices of the diagram 
in a suitable order. Then, c is of finite order h and the characteristic 
polynomial of cis given in the form (15) for a suitable choice of a system 
of integers mi called exponents given in Table 10. 

4. Observes that m/s in Table 10 is exceeding the interval [0, h]. 
Thus, the Coxeter-Killing transformation is unable to determine their 
phases (: = [ mi/ h]) for these new class of root systems. On the other 
hand, these mi/h without the ambiguity "modulo 1" are well defined 
directly from a choice of a primitive form. 23 

Concern: The root system with basis may not have sufficient data to 
determine the phases of exponents and to construct the primitive forms. 

We shall discuss again on this issue (see §14 Remark 7). This fact, 
due to the important role of exponents [Sa7][Sai], leads the author to 
handle them directly (but not through eigenvalues of Coxeter-Killing 
transformation) as follows. 

Consider the generating function (called a characteristic function) 
24 for each type of exponents in Tables 8 and 9. 

(1) 

23The proportions m;/ h are eigenvalues of an operator N in the flat struc­
ture associated to a primitive form, and are called exponents of the flat structure 
([Sa4] and [Sa7] (3.3) Definition). Therefore, we should have stated more ex­
actly that, conjecturally, there exist a primitive form (constructed from the Lie 
algebra which we shall study) such that the associated flat structure determines 
the set of exponents m;/ h. 

24It is introduced as the Fourier transform of the distribution of the expo­
nents (see [Sa4] (3.1.1) and [Sa7] (3.3.14)) in order to study the zero-loci of X· 
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Then, these generating functions for the finite and elliptic root systems of 
types Az, Dz, E6, E1, Es and E2'1), E?' 1), E~l,l) have a decomposition25 

of the form: 

(2) 

where a, b, c, called weights, are integers and h, called the Coxeter num­
ber, is the order of the Coxeter element c such that 

(3) 0 < a,b,c < h and gcd(a,b,c) = 1. 

Note that the set of weights a, b, c are uniquely determined from the 
characteristic function x(T), except for the type Ah-l· 26 See Tables 
8 and 9 for explicit lists of (a, b, c; h). The generating function (1) of 
exponents for a finite or an elliptic root system are characterized by the 
factorization (2) without a pole as follows. Consider abstractly a system: 

(4) W := (a,b,c;h) 

of 4 integers satisfying (3) (and additionally, a=1 if b+c=h called type 
Ah-d, and call it a weight system, where a, b, c are called the weights 
and h is called the Coxeter number. 

Fact 1. ([Sall]Theorem 2) If the function xw (2) for W has no poles, 
then it is equal to a generating function (1) of exponents either for a 
finite root system of type Az, Dz, E6, E 7 , Es or for an elliptic root system 
1 t E (l,l) E(l,l) E(l,l) 
oype6 ,7 '8 · 

Let us call the rational function xw := x in (2) the characteristic 
function associated to W, and call a weight system W is simple (resp. 
elliptic) if its characteristic function xw is equal to a generating function 
(1) for a finite root system (resp. elliptic root system) (explicitly, see 
Table 8 and 9). 27 

25In the present paper, we are interested in only the cases when all roots of 
x(T) = 0 are on the unit circle. But, this is not the case in general for a general 
primitive form (see [Sa4]). 

26The characteristic function for the type Ah- 1 is expressed as XAh-l (T) = 
r h-1 T"-T -h (Th-T)(Th-Tb)(Th-Tc) 

T + · · · + T = T- 1 = T (T- 1)(Tb_ 1)(Tc_ 1) for a= 1 and for any 

integer b, c with b + c = h. 
27To be exact, one should add the diagram for Di1' 1) (recall Table 7.) in the 

list. A diagram is called simply-laced if it does not contain a multiple edges. Any 
other diagrams for simple (or, elliptic) root system is obtained by the foldings 
of these simply-laced diagrams. 
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Before analyzing the characteristic function xw further, we state 
another fact, which gives a geometric meaning to the weights a, b, c and 
to the Coxeter number h in case of a simple and elliptic weight system 
(see Table 2 and 4 for a proof): 

Fact 2. A simple polynomial f 0 (x,y,z) in Table 2 (resp. an equation 
for an elliptic singularity in Table 6) is a weighted homogeneous poly­
nomial of degree h with the weights a, b, c on the variables x, y, z for a 
simple (resp. elliptic) weight system (a, b, c; h). The simple weight sys­
tem determines the simple polynomial, up to a homogeneous coordinate 
change, uniquely. The elliptic weight system determines the equation up 
to one parameter (=the modulus parameter of elliptic curves). 

§9. Triangle ~ of weight system, geometry and algebra 

Summarizing the results of previous sections, we obtain the following 
triangle among three mathematical objects: weight system, geometry 
and algebra: 

{ Simple weight systems } 

(5) (i ~ 

. } { Simple Lie algebras 
{ Klemean groups =} .th . 1 t b . w1 simp e roo as1s }· 

Here, the three arrows are constructed as follows. 
1) The correspondence (i (denoted by <I> (i ) is given by the pair of the 

fundamental group 1rl(X0 \ {0}) for the hypersurface Xo defined by the 
polynomial in Table 2 and its action to the covering space X0 (use §1 
Theorem, Fact 2 and a theorem due to Mumford [Mu1], see Appendix). 

2) The correspondence =} (denoted by <I>'*) is given in three different 
ways (depending on the view points), all of which give the same result: 

a) Use the DuVal diagram for the simple singularity (§1 and 2) and 
obtain the diagram of the simple root basis of the simple Lie algebra, 

b) Use the set of vanishing cycles for the singularity (§5) and obtain 
the set of real roots of the simple Lie algebra, 

c) Use the McKay correspondence ([Me], see Appendix) and obtain 
the Dynkin graph for the simple Lie algebra. 

Here, the first two approaches a) and b) are equivalent due to Brieskorn's 
theorem (recall §7 1),2) and 3)). The third approach c) gives the dual 
basis of the basis given by a) with respect to the Killing form (see Ap­
pendix), but is more direct algebraic construction. 
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3) The correspondence ~ (denoted by <I>~) is given by the decomposi­

tion (2) of the generating function (1) of the exponents (Table 7) of the 
root system of the simple Lie algebra. 

By a direct inspection of the cases, we see that a composition of the 
three arrows <I> l1, <I>=> and <I>~ starting at any corner of the triangle (5) 

is an identity. 28 Here we stress that the key step among the three arrows 
is the horizontal correspondence <I>=>. The others are rather straight 
forward. As a consequence of this observation, we conclude that 

The datum of the set of exponents for a finite root system, which, 
a priori, is a very small part of the information of the root system, is 
sufficient to recover the whole root system and the simple Lie algebra. 
In the same way, the datum of a system W of weights ( 4) is sufficient 
to reconstruct the simple Lie algebra. 

A similar triangle as (5) holds for the triple of elliptic weight sys­
tems, Heisenberg groups of rank 2 ([Sa14] II, Appendix) and elliptic Lie 
algebras ([Sa14] IV). This supports the construction of the elliptic prim­
itive forms and the flat structures from the elliptic Lie algebras. This 
motivates the author to generalize the triangle by starting with a wider 
class of weight systems and search for corresponding Lie algebras. 

We propose to use the top corner of the triangle (5) as the key to 
uncover a new class of objects: consider any system W ( 4) of 4 integers, 
relaxing the condition on xw(T) (2) to be a polynomial to to be a Laurent 
polynomial. Then, associated to the new weight system, we look for new 
geometric objects in the left corner and new algebras in the right corner, 
respectively. That is: we try to recover the triangle: 

{ Weight system W } 

(6) 11 ~ 
{Geometry of X w} ===? {Algebra gw} 

with the goal to construct primitive forms and their associated period 
mappings and automorphic forms (see [Sa19] for the details on the goal). 
Actually, without this setting of the goal, the objects and the correspon­
dences in the triangle (6) are ambiguous (see §12). Note that each corner 
of the triangle is not a category and the correspondences =}-, 11 and ~ 

28 A similar triangle is obtained by replacing the three corners by {elliptic 
weight systems}, {Heisenberg groups of rank 2 with the extension classes -3,-
2,-1} and {Elliptic Lie algebras of type E~l,l) ,E~l,l), E~l,l) with their simple 
basis}, where we choose the correspondence b) as for the arrow=?. 
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are not functors. However, we expect a sort of "functoriarity" (yet to be 
defined) due to the deformation relations among Xw 's. 

§10. Top corner of the triangle: regular systems of weights 

We start anew by introducing the concept of a regular system of 
weights. 29 

Definition. A weight system W = (a,b,c;h) (4) satisfying (3) is 
. . -h (Th-Ta)(Th-Tb)(Th-Tc) 

called regular 1f the functiOn xw(T) := T (ra-l)(Tb-l)(Tc-l) is a 

Laurent polynomial in Z[T, r-1]. 

We give two basic properties of a regular system of weights in the 
following Fact 3. and in Fact 4. in the next section. The two properties 
are equivalent to the definition of the regular systems of weights, and 
they already attribute to the properties in the right and left corners of 
the triangle ( 6), respectively. 

We first discuss about the new definition of exponents. 

Fact 3.([Sall]Theorem 1) A weight system W (4) is regular, if and only 
if there exist integers m1, · · · , mJ-L with J.L = J.Lw = (h-a)(:~cb)(h-c) called 
the rank of W, such that xw (2) is developed into the sum of monomials 
of the form (1). 

We call m 1, · · · , mJ-L the exponents of W 30 , which we order: m 1 ::; 
· · · ::; ml-' linearly. By use of the functional equality Thxw(T- 1 ) = 
xw(T), one has the duality of exponents: 

(7) (i = 1,··· ,J.L). 

A fact which is not used in the present paper but shall be of basic 
importance (see Footnote 22, ii)), is that there exists always an exponent 
prime to h [Sa,13,18]. 

The advantage to start from a weight system is that the exponents 
are a priori defined without an ambiguity of their phases (i.e. [mi/h] E 

29This is slightly modified ([Yas]) from the original definition [Sall]: xw (T) 
has a pole at most only at T=O. Using a relation: Thxw(T- 1 ) = xw(T), the 
two definitions are equivalent. 

30In order to agree with the classical convention in Lie theory (e.g. [Bou]), 
we have called the integers mi exponents. However, from a view point of the flat 
structure on S'P (recall Footnote 23), one should better call the rational numbers 
mdh exponents. This view point becomes important again, when we consider 
the category of graded matrix factorizations §16. 
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Z). The smallest exponent min{m1 ,· · ·, mJ.t} is given and denoted by 

(8) c:w := a+ b + c- h. 

Actually, §8 Fact 1. implies that if c:w> 0 (resp. =0), then automatically 
one has c:w = 1 (resp. = 0) and W is a simple (resp. elliptic) weight sys­
tem, whose exponents coincide with the exponents of the corresponding 
finite or elliptic root system. 

For each negative integer c: < 0, there always exist a finite number 
of regular systems of weights having c: as the smallest exponent (see 
[Sa12, Sa17] Appendix 1,2. for many interesting examples of W with 
c:w < 0). In particular, there exist 14+8 regular systems of weights for 
the case c:w = -1 having no 0 exponents (see Table 10), on which we 
shall discuss more in details in the present paper. 

We are now to analyze the other corners of the triangle (6). Recall 
that the finite or elliptic root system cannot be directly constructed 
from the weight system, but we needed to turn the triangle (5) counter­
clockwisely. Similarly, we start with analyzing the left corner of (6) in 
the next section. 

§11. Left corner of the triangle: a geometry of Xw 

Finding the objects in the left corner of the triangle (6) and 11? if 
follows from the following characterization Fact 4. of the regularity of a 
weight system W. 

For any given weight system W = (a, b, c; h), consider a weighted 
homogeneous polynomial 

(9) 

Fact 4. ([Sall]Theorem 3) The weight system W (4) is regular, if and 
only if there exists a polynomial fw of the form (9) such that the quotient 
ring: 

(10) Jw := C[x y z]/ (atw 8fw 8fw) 
' ' ax ' 8y ' 8z ' 

called the Jacobi ring of fw, is of finite rank J.Lw over C. 
"If" part of the statement is trivial. Actually, any polynomial (9) 

with generic coefficients carries this property. 

In fact, Fact 4. is trivially equivalent to that the hypersurface 

(11) Xw,o := {(x,y,z) E C3 l fw(x,y,z) = 0} 

has an isolated singular point at the origin, i.e. X w,o is smooth except 
at the origin 0 E Xw,o, due to the Nullstellensatz of Hilbert. 
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Let us call fw in Fact 4. a polynomial of type W. We employ 
the hypersurface Xw,o (ll) with an isolated singular point at 0 and 
admitting a ex-action31: 

A E ex : (x, y, z) f---+ (>.ax, >.by, ).Cz) 
as for the object in the left corner of the triangle (6). Following the 
history in §2-7, we analyze X w,o from two a) algebraic and b) topological 
view points. 

1 

a) Orbi-bundle K(;";, over the curve Cw. 
There are many studies on surface singularities with a good ex­

action (e.g. [Do11,2,3,4], [Pin4,5], [Sall,12,16], [Wa,1,2]). We recall a few 
results of them, which are necessary in our purpose. First, we remark 
that the smoothness of X 0 \ {0} implies that the quotient variety 

(12) Cw := (Xw,o\{O})jex = Proj(C[x,y,z]/(fw(x,y,z)) 
ex 

is a smooth curve. However, the ex-bundle Xw,o \ {0} _, Cw has 
some finite number of singular fibers (i.e. fixed by some non-trivial finite 
subgroups, called isotropy groups, of ex). In this sense, Cw carries also 
a structure of an orbifold curve (to be precise, an algebraic stack). The 
pair (g : p 1 , · · · , Pr) of the genus g of the curve Cw and the set, called 
the signature set, of the orders of the isotropy groups: 

(13) 

is called the signature of the orbifold ([F-K]pp.182-190). In fact, we have 

Fact 5. ([Sall]Theo.6) The genus g of the curve Cw is equal to the 
multiplicity ao := #{1 ::; i ::; Jl I mi = 0} of exponents equal to 0. 

The signature set A(W), up to some Pi = 1, is explicitly determined 
from the weights W arithmetically. 32 

The orbifold Euler number: 2- 2g + 2::(1/Pi- 1) is positive, 0 or 
negative according to whether Ew is positive, 0 or negative. Accordingly, 
the orbifold universal covering of Cw is either lP\, the complex plane e 

31The action is said good since the the exponents of the action a, b, c are 
positive (or, equivalently, the coordinate ring Rw := IC[x, y, z]/(fw) is non­
negatively graded. 

32The genus and the signature set of the orbi-curve Cw is explicitly give as 
follows. 

ao := #{(i,j, k) E Z~0 I ai + bj + ck = h} = #{1 ~ i ~ J-LI m; = 0}, 

A(W) :={a; I a; Jh, 1 ~ i ~ 3} II { gcd(a;, aj) * (m(a;, aj; h)- 1), 1 ~ i < j ~ 3} 

where {a1 , a 2 , a3 } ={a, b, c} and m(a, b; h)= #{(u, v) E Z~0 I au+ bv = h}. 
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or the complex upper half plane 5) := { z E e I Im( z) > 0}. Then, for a 
weight system w with cw=i 0, we have the description of the ex-bundle: 
Xw,o \ {0}---+Cw ([Dol3]Prop.1, [Sa11](5.5)Lemma) 

Fact 6. Let W be a regular system of weights. According as cw > 0 or 
< 0, one has the following natural commutative diagrams, respectively. 

1 _L 

K;1w \ 0-section ---::->Xw,o\ {0} K ~w \ 0-section ----::--> Xw,o \ {0} 
I rw I rw 

(14) 11 ex l! ex and l! ex 11 ex 

JP>l 
I fw 

Cw 5) 
I fw 

Cw. 

_L __1_ 

Here, 1) K;1w and K~w is a Ewth root of the canonical bundle oflP'1 or 

5), respectively, and 2) f'w is a co-compact discrete subgroup of SU(2) or 
PSL(2,!R.), whose actions onlP'1 or5) are liftable to the bundles (Footnote 
33}, respectively. 

The action of f'w on lP'1 or 5) may have fixed points such that the 
quotient map /f'w gives the orbifold universal covering of Cw. That is: 
the signature of the group f'w ([Ma]) coincides with that (ao: A(W)) of 
the orbifold curve Cw. 33 

These imply that Cw in a Deligne-Mumford stack. They give the 
"algebraic data" of the geometry of X w,o for cw-!=- 0. 34 

Example. Case cw >0 (i.e. W is a simple weight system in Table 
1 

8). Then, we naturally have K;;v \ {0} ~ e 2 \ {0}, and the f'w action 

in LHS is identified with the Kleinean group G-action in RHS (recall 
§1). I.e. the liftablity condition in Fact 6. is automatically satisfied). 
The induced action of f'w on lP'1 = (e2 \{0})jex is identified with the 

33We have a similar geometry for Ew =0. Namely, the three simply elliptic 
singularities of types E6 , E7 and E8 are quotients of the trivial ex bundle over 
C by an action of a Heisenberg group of rank 2 of characteristic class -3,-2 and 
-1, respectively ([Sa2],[Sa14]11 Appendix). 

34To be exact, there remains still the problem to characterize (or, to list up) 
the pair (f' w, E) of a number E E Z<o and a co-compact Fuchsian group f' w c 
PSL(2, R) such that the action of f'w on S) is liftable to that on Kif'. This 
condition on (f'w,c-) (in order to obtain a Gorenstein normal surface singularity 

Kif' //f'w) is equivalent to finding a splitting factor f'w in f' d of the central 
extension 1 ~ Z/c-Z ~ f' d ~ f'w ~ 1 (see [Sa12] (5.2)(5.3) and (5.4)). To list 

the cases when Kif' //f'w is a hypersurface requires further works (e.g. [Dol2] 
[Wall) which is generally unsolved yet. To remain in the category of Gorenstein 
singularities seems theoretically easier and natural. 
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regular polyhedral group G-action on S2 . So, there are three singular 
orbits {centers of faces of the polyhedron}, {centers of edges of the 
polyhedron} and {vertices of the polyhedron} of fixed points on lP\. 
Therefore, the signature set A(W) (13) consists of the three numbers 
p, q, r in Table 1. 

Similarly, in case cw < 0, the Fuchsian group f'w has elliptic fixed 
points in Sj, whose orbits correspond in 1:1 to the elements of A(W). 

b) Generalized root system and Coxeter-Killing transfor­
mation. 

We discuss about some of the topological data obtained from the 
semi-universal deformation (also, called universal unfolding) of Xw,o. 

1) Generalized root system 
Let us denote by Qw the lattice (H2 (Xw, 1 ,Z),J=-{,·)) ofvanishing 

cycles35 and by Rw the set of vanishing cycles for fw (which depend 
only on W but not on a choice of fw). As is explained already, it is easy 
to see that Rw satisfies the axiom of generalized root system having Qw 
as its root lattice in the sense [Sa14] I. The following 2) and 3) describe 
some strong properties carried by Rw. However, we do not know a 
characterization of a root system which arises as the set of vanishing 
cycles associated to a singular point. 

2) Coxeter-Killing transformation 
The Milnor monodromy induces an automorphism coffinite order h 

of the lattice Qw, which we shall call also the Coxeter-Killing transfor­
mation of the root system Rw. Using the weighted homogeneity of the 
defining equation fw, it is easy to see that the characteristic polynomial 
det(>. · idQ- c) is given by 

(15) 'Pw(>.) = nr=l (>.- exp(2nA~i )) E Z[>.]. 

35The middle homology group H2 (Xw, 1,Z) admits the symmetric bilinear 
form, called the intersection form, (u, v) := (u, P(v)) obtained from the Poincare 
duality P: H2 (Xw,Io Z) ->H2 (Xw, 1 , Z). In the above definiton of the lattice Qw, 
we put the minus sign factor in order to adjust with the classical convention 
in the Killing form that I(e, e) = 2 for any vanishing cycle e. The signature 
(J1-,J1o,J1+) of I is given by 11- =#{l:S i:S11I m;<O or h<m;}, J1o=#{1:S 
i::; J1 I m; = 0 or h} = 2a0 , 11+ = #{1::; i::; J1 I 0 < m; < h}, ([Sai]). Then the 
Witt index (=the maximal rank of totally isotropic subspace) of H2 (Xw, 1 ,Z)= 
11o+J1- =#{exponents exceeding the interval (0, h)} is always even. This fact 
supports the existence of the Coxeter-Killing transformation of finite order and 
to ask for Chevalley type invariant theory to the algebra gw in §12 iv). 
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The set { exp( 2n yCI md h) I i = 1, · · · , JL} is closed under the action of 
the Galois group over Q. 36 Recall that: 

Fact 7. ([Sa, 13(Theorem 1), 18(Theorem 5.1)]) Let us denote by 
ew(h) the multiplicity of the hth primitive roots of unity in the roots of 
the equation 'Pw(>..) = 0. Then, for any regular system of weights W, 
one has ew(h) > 0. 

Remark 4. In the classical simple Lie algebra case, the eigenvector 
of the Coxeter-Killing transformation belonging in to the hth primitive 
root of unity (in the Cartan subalgebra of gw) is regular with respect to 
the adjoint action of the simple Lie group and that of the Weyl group. 
This gives a key role to the vector in the invariant theory by Kostant 
[Ko], Springer [Sp], Steinberg [St1] as well as in the construction of the 
primitive form and the flat structure [Sa18]. 

3) Root basis 
Any distinguished basis (e1, · · · , eJLw) (recall §5) gives a root basis 

of the root system Rw in the sense: i) Rw = ur:;_ (we,' 0 0 0 'We,,w) 0 

ei, and ii) the Coxeter-Killing transformation is given by the product 
We1 • • • , We,w. This implies: iii) Qw = EBt:i. Zei and iv) (we,,··· , We,w) 

coincides with the group generated by reflections for all e E Rw (=the 
Weyl group of the root system Rw ). 

As we saw already in §5, the braid group of JLw-strings acts on the 
set of distinguished basis. It is desirable to find some "simple" basis for 
the root system Rw by the use of the action. There are several works in 
the direction by Gabrielov [Gab 1,2], Ebeling [Eb 1,2], Kluitman [Klu] 
and others. However, purely topological data of the braid group action 
alone seems insufficient to choose some distinguished ones. On the other 
hand, one may still have a hope to choose some particular basis, either 
by a use of semi-algebraic geometry of the discriminant of the family 
X'~' ---+ S'~' (see Footnote 12 and [Sa20]), or by the algebraic approach a) 
by a use of the orbifold structure on Cw given in the first half of the 
present §. The study of this subject belongs still to a future work. 

4) Cycles from oo. 
We already discussed about the cycles from infinity in §5 Remark2. 

Under the setting of a regular system of weights W, let us discuss again 
about it. 

Let us define explicitely a universal unfolding of fw by 

F(;r.,!) := fw(;r.) + cp 1 (;r.). tt + cp2 (;r.). t 2 + ... + 1. tJLw 

36This is shown as follows. Substitute any power of exp(2nH/h) in (1). 
(2) implies that it is a rational number. 
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where 'PI. cp2, · · · , cpl-' = 1 are weighted homogeneous polynomials in 
C[x, y, z] (with respect to the weights (a, b, c)) such that their images 
in the Jacobi ring Jw (10) gives its C-basis. Clearly, the function in 
a neighborhood of origin gives the universal unfolding in the sense ex­
plained in §5. However, we remark that F(;K,f) is affine globally defined, 
where, by putting deg(ti) := h- deg(cpi) = mi + c:w (1 ~ i ~ tLw), 
it is a weighted homogeneous polynomial. The lowest degree coordi­
nate is h and its degree is equal to 2c:w. That is, the unfolding pa­
rameter t gets negative weights if (and only if) c:w < 0. Consider 
the affine global family of affine surfaces: rf'w : Xw ~ Sw, where 
Xw := {(;K,f) E C3 x ([:1-'w I F(;K,f) = 0}, Sw := ([:1-'w and rp is the 
projection to the second factor. The discriminants of rf'w is a divisor 
of Sw and decomposes into a union of Dw,+, Dw,o and Dw,- accord­
ing as the behavior of the vanishing cycles vanishing at the components 
(see [Sa19]II §6). Then, as was shown in §5, the lattice Qw of middle 
homology group of the Milnor fiber is generated by the vanishing cycles 
which are degenerating to the discriminant Dw,+· Then, the extension 
Qw := (H2(Xw,1,Z), -I) for a generic parameter value 1 such that the 
coordinate component t1 =f. 0 is a orthogonal direct sum of the lattice 
Qw with the lattice Qw generated by the vanishing cycles which are 
degenerating to the discriminant Dw,-· It is expected that the periods 
of the cycles in Qw give the denominators for primitive forms ([Sa19]II 
§6 Conjecture and Problem). 

Remark 5. The concept of the generalized root system of vanishing 
cycles and the braid group action on its basis may better be lifted to a 
categorical level due to the recent developments of the study of Floer ho­
mology groups of Lagrangean subvarieties in symplectic varieties [Sei].37 

Remark 6. As we shall see in §16, for weight systems W having 
its *-dual, the lattices Qw and Qw are expected to have a categorical 
construction as the K-groups of the category of the graded and un-graded 
matrix factorizations, respectively, where the Coxeter-Killing transf. is 
defined as the A-R translation. 

§12. Right corner of the triangle: an algebra gw 

We now come to the main question of the present paper: 

37 A comprehensive treatment of this subject shall appear in: K. Fukaya, 
Y.-G. Oh, H. Ohta, K. Ono: Lagrangian intersection Floer theory - anomaly 
and obstruction, in preparation. 
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Question. For any regular system of weights W, define the correspon­
dences~=> and~~ which make the triangle (6) commutative. Precisely, 

construct the algebra gw from the data of the geometry of X w, satisfying 
the following conditions i) -vi). 

Then, we automatically have ~ ~ and commutativity of the triangle. 

We impose some working hypothetical conditions i)-vi) on the alge­
bra gw; otherwise the question is ambiguous. Under these constraints, 
we expect a sort of functoriality and uniqueness for the correspondence 
~=> (recall §9).38 

i) The algebra gw should be a simple Lie algebra for the case 
.sw > 0 and a elliptic Lie algebra for the case cw = 0. 

ii) The algebra gw should carry an integrability structure, gener­
alizing the Jacobi identity for Lie algebras (i.e. gw should be the pro­
longation of X w with respect to the equations for a primitive form; see 
the last paragraph in §4). 

iii) gw should contain an abelian subalgebra ~w isomorphic to 
Hom( Qw, C) (which we may call the Cartan-Killing subalgebra of gw ). 
The adjoint action of ~w on gw induces the root space decomposition 
of gw so that Rw should be the set of real roots (i.e. a root a E Qw 
such that J(a, a)> 0), whose multiplicities are equal to 1. The real root 
spaces gw,a for a E Rw generate the algebra gw. 

iv) Depending on a choice (Note 3. below), one should have a family 
of Chevalley type invariant theories for the adjoint group Gw action 
on gw and the adjoint quotient morphism with the identification of the 
quotient varieties gw II Ad(gw) '::::' ~w IIWw. Here, gw, ~w and Ww are 
suitable hyperbolic extensions of gw, ~w and Ww, if the Killing form I 
has a degeneration . 39 

38Beside the classical construction of semi-simple Lie algebras, there are 
several new approaches, e.g. using vertex operators [Bol), or using Ringel-Hall 
algebras [P-X], as was discussed in Preface. However, in connection with our 
final goal (the construction of primitive forms), we would like to be cautious in 
choosing the type of construction. 

390ne supporting reason for this condition is the following fact ([Sa13)(2.2) 
Theorem!, [Sa17] Theorem5.1 and (5.6)): for any regular system of weights, 
there always exists an exponent which is prime to the Coxeter number h. This 
generalizes the existence of an eigenvalue of a primitive hth root of unity of the 
Coxeter-Killing transformation c in the classical case [Col] [Bou]Ch.v§6 Theorem 
1. This is a key fact for the construction of the adjoint quotient morphism and 
for the global construction of the flat structure (see Footnotes 18,19). 
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v) The universal unfolding Xw---> Sw of the singularity X w,o should 
be embedded into the adjoint quotient map gw ---> ~w IIWw (c.f. §4 
when cw > 0). The relative (with respect to the adjoint quotient map) 
symplectic form on gw (Kostant-Kirirov form when cw > 0) induced 
from the involutive structure given in ii) should (up to a unit factor) 
induce a primitive form on the family Xw ---> Sw, whose exponents 
(recall Footnote 23) coincide with the exponents of the weight system 
W (up to the factor h). 

vi) The flat structure on the quotient variety ~w IIWw (c.f. [Sa16], 
[Sa14] II) and the flat structure on Sw defined from the theory of prim­
itive forms [Sa7] should be identified by the isomorphism in iv). This, in 
particular, requires that the set of exponents for the primitive form on 
X w,o should coincides with the set of exponents associated to the flat 
structure of the algebra gw. 

The last condition vi) implies that the generating function (1) ([Sa7] 
(3.3.14)) of the exponents for the flat structures of the algebra gw de­
composes as in (2), and defines the weight system W =(a, b, c; h), which 
we had at the beginning. That is, the correspondence <P ~ of the triangle 

(6) is defined by the use of the decomposition of the generating function 
(1) of the exponents of the algebra. Then, the composition <P ~ o<P'*o<P If 
is the identity on the top of the triangle (6). Thus, we shall obtain a 
family of primitive forms having the exponents given at the beginning 
by a regular system of weights, when the problem is solved. 

Obviously, the simple Lie algebra gw of type W for a simple weight 
system W satisfies all conditions i)-vi). The elliptic algebra gw for an 
elliptic weight system W satisfies i), ii) and iii), and the flat structure on 
~w IIWw has been constructed. However, the construction of the adjoint 
quotient space 9w II Ad(gw) is still a work in progress (see Footnote 20). 

For general weight system W, we introduce in §16 a category HMF~w 
Uw ), which is expected to give three constructions of Lie algebras. We 
ask to clarify the relationship among the constructions, and whether 
they satisfy i)-vi) (up to the *-duality which we shall introduce in §14) 
(see Problem at the end of §18). 

On the other hand, elliptic root systems have a radical of rank 2. Then, 
depending on the choice of its rank 1 subspace, called a marking, one defines the 
extensionsgw, ~wand Ww (see [S-Y),[Sa14]I,II,[S-T]). These extensions, called 
hyperbolic, are necessary for the construction of the fiat structure [Sa14]11 as 
well as in the representation theory and invariant theory of the elliptic algebra. 
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Note. 1. If the Killing form I on the root lattice Qw = H2(Xw,1>Z) 
degenerates ( {=} the genus a0 of the curve Cw is positive, see Fact 5, 
Footnotes 32 and 35), then the algebra gw may have a "radical" (cor­
responding to the moduli parameter of the curve Cw ). In that case, as 
for gw, we assign the universal algebra (i.e. the one having the largest 
radicals) for the unicity of the notation gw. 

2. The other problem in answering Question is, which view-point 
a) or b) in §9 do we generalize? It seems likely that, in the above iii), 
the two view points a) and b) give two different root systems and two 
different algebras. Let us tentatively denote by ell~ the correspondence 
using the algebraic geometric data of the singularity X w,o and by ell~ 
the correspondence using the topological data of the deformations of 
Xw, 0 • In fact, these two different view points are, nowadays, called 
mirror symmetric to each other (see [Kon1], [Yau] for mirror symmetry 
in general). There is a duality operation on the set of weight systems, 
called the *-duality, which conjecturally exchanges the two approaches 
(see §14 Addition to Question). Then, the conditions iv) and v) on 
the period map seem to choose ell~ for the correspondence X w * gw. 

3. The denominator of an elliptic primitive form depends on a choice 
of a primitive element in the radical of the root lattice ([Sa7] (3.1) Exam­
ple), which determines the polarization (marking [Sa14] I) of the elliptic 
root system. Similarly, the primitive form for the 14 exceptional uni­
modular singularities is conjectured to be a proportion of a form with its 
integral over the cycle coming from infinity (see [Sa19]II 6. Conjecture, 
§llb) 4) and Footnote 49). 

§13. Strange duality of Arnold 

In order to get an insight to the Question in §12 and also to sharpen 
it by Addition to Question in the next §14, we look closely at the case 
c-w = -1 in this section where the singularities are called exceptional 
unimodular singularties. We recall the strange duality among the 14 
cases due to Arnold [Ar4]. 

There are 14+8+9 regular systems of weights of cw = -1, where the 
first 14+8 cases are genus a0 =0 and the remaining 9 cases are positive 
genus ao > 0. The multiplicity ew(h) of the first 14 weight systems is 
equal to 1 and that of the next 8 weight systems are either equal to 2 
or 3. Accordingly, the signature set A(W) (Footnote 32) consists of 3 
elements for the first 14 cases, and of 4 or 5 elements for the 8 cases 
(where fw depends on parameter(s)). (see [Sall, Tables 3,4 and 5] for 
details on the geometry of them in the sense of § 11). In the present 
paper, we study only the 14+8 cases where genus a0 1s zero. 
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Table 10. 14+8 regular systems of weights of genus a0 = 0 and cw = -1 

Polynomial fw 
x1 +y3 +z2: 
yx5 + y3 + z2: 
x4z + y3 + z2: 
x5 + xy3 + z2: 
yx4 + xy3 + z2 : 

x 3 z + xy3 + z2 : 

x5 + y2z + z2: 
yx4 + y2 z + z2 : 
x4 + y3 + xz2: 
x3y + y3 + xz2 : 

x 3 z + y3 + xz2 : 
x4 + y2z + z2x: 
x 3y+y2z+z2x: 
x 4 + yz(y- z) : 

(a,b,c;h) 
(6,14,21;42) 
( 4, 10, 15; 30) 
(3, 8, 12; 24) 
(6,8,15;30) 
(4, 6, 11; 22) 
(3, 5, 9; 18) 
(4, 5, 10; 20) 
(3, 4, 8; 16) 
(6,8,9;24) 
(4,6, 7; 18) 
(3,5,6;15) 
(4,5,6;16) 
(3,4,5;13) 
(3,4,4;12) 

exponents 
-1,5,11,13,17,19,23,25,29,31,37,43 
-1,3,7,9,11,13,15,17,19,21,23,27,31 
-1,2,5,7,8,10,11,13,14,16,17,19,22,25 
-1,5,7,11,13,15,17,19,23,25,31 
-1,3,5,7,9,11,11,13,15,17,19,23 
-1,2,4,5,7,8,9,10,11,13,14,16,19 
-1,3,4,7,8,9,11,12,13~16,17,21 

-1,2,3,5,6,7,8,9,10,11,13,14,17 
-1,5,7,8,11,13,16,17,19,25 
-1,3,5,6,7,9,11,12,13,15,19 
-1,2,4,5,5,7,8,10,10,11,13,16 
-1,3,4,5,7,8,9,11,12,13,17 
-1, 2.3.4.5.6.7.8.9.10.11.14 
-1,2,3,3,5,6,6,7,9,9,10,13 

y(y- x3)(y- >.x3) : 
xy(y- x 2)(y- >.x2) + z2 : 

y(y- x2)(y- >.x2) + xz2 : 
(y2 _ x3)(y2 _ >.x3) + z2 : 
x(z- x 2)(z- >.x2) + y2 z : 
x 3y + z(z- y)(z- >.y) : 
xy(x- y)(y- >.1x)(y- >.2x) + z2 : 

y(y- x)(y- >.1x)(y- >.2x) + xz2 : 

(2,6,9;18) 
(2,4,7;14) 
(2,4,5;12) 
(2,3,6;12) 
(2, 3, 4; 10) 
(2,3,3;9) 
(2, 2, 5; 10) 
(2,2,3;8) 

-1,1,3,5,5, 7, 7,9,9, 11,11,13,15, 17,19 
-1,1,3,3,5,5,7, 7, 7,9,9,11,11,13,15 
-1,1,3,3,4,5,5,7,7,8,9,9,11,13 
-1,1,2,3,4,5,5,6, 7, 7,8,9,10,11, 13 
-1,1,2,3,3,4,55,6,7,7,8,9,11 
-1,1,2,2,3,4,4,5,5,6,7,7,8,10 
-1,1,1,3,3,3,5,5,5,5,7,7,7,9,9,11 
- L 1, L 2, 3, 3, 3, 4, 5, 5, 5, 6, 7, 7, 9 

Here A, A1 and A2 are parameters-=/- 0,1 and A1 -=/- A2. 

In order to construct <I>=h remember a) and b) of §9, 1) for the case 
cw = 1. An immediate analogy of <I>~ is to study the resolution of 
the singularity Xw,o- The minimal resolution 1r : Xw,o --+ Xw,o of 
the singularity is determined by [Doll] as follows: the exceptional set 
rr- 1 (0) C Xo of the minimal resolution is a union of 4-rational curves 
Eo, E1, E2 and E3, which intersect transversely as illustrated in Table 
11 and are self-intersecting as 

-1 = E5, -p = E?, -q = E~, -r = E~ 
where p, q, r are positive integers such that (0: p, q, r) is the signature 
of the orbifold curve Cw (§11 Fact 5., [Dol1,2,3,4], [Pin4,5],[Sa 11,12]). 
The signature set A(W) = {p, q, r} (13), in this particular case, was 
called the Dolgachev numbers [Ar3] [Doll], which are listed in Table 13. 
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Table 11. Exceptional set Resolution diagram 

On the other hand, as for the correspondence cf>~, one should know 
the set of vanishing cycles in the lattice H2(Xw,1,Z), whose signature 
is (2, 0, *) (Footnote 35.). The distinguished basis of the lattices were 
studied by the authors A.M. Gabrielov [Gab1,2] and W. Ebeling [Eb1,2]. 
In particular, they found certain "simple" 40 distinguished basis for each 
of the 14 exceptional singularities, which is expressed by the following 
diagram41 : 

Table 12. Distinguished basis for the exceptional unimodular singular­
ities. 

o------o - - o------Q-({ 

~=====~ --------::::9 
p q 

where the length p, q, r of the three branches is called the Gabrielov 
numbers [Ar3].42 

40Here, we mean by "simple" the following: 1) the vertices of the diagram is 
a Z-basis of the lattice H2 (X, Z), 2) a product in suitable order of the reflections 
on the lattice attached to the vertices of the diagram (i.e. a Coxeter-Killing 
transformation) is of finite order hand its eigenvalues are exp(21rAmdh) for 
the exponents m;, 3) consider the group W acting on the lattice generated by the 
reflections attached to the vertices of the diagram_ Then the set of the vanishing 
cycles is equal to the union of the W-orbits of the vertices of the diagram. 

41Let e1 , · · · , ep. be a basis of a lattice Qw such that I(e;, e;) = 2 for i = 
1,· · ·, 1-l· Then, we associate a diagram to the basis as follows: to each basis 
element e; fori= 1,· · ·, /.l, we associate ith vertex of the diagram. Between ith 
and jth vertices of the diagram, we draw -I(e;, ei) edges if I(e;, ei) < 0, I(e;, ei) 
dotted edges if I(e;,ei)>O and no edges if I(e;,ej)=O. 

42Th ere is a strong reason to suspect that the diagram should be (a part 
of) the correspondence <I>~ for the 14 weight systems, since it partially answers 
to the questions iv) and v) in §12 as follows. Let ~.~be the eigenvectors of the 
Coxeter-Killing transformation belonging to the eigenvalues exp(±27rH/h). 
Then each belongs to the two connected component of the cone { x E Qw ®z C I 
I(x,x) < O,I(x,x) = 0} over a symmetric domain of type IV and is regular 
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Then, Arnold [Ar3] observed the following duality and called it the 
strange duality: there exists an involutive bijection u on the set of 
14 exceptional singularities, by which Dolgachev numbers and Gabrielov 
numbers interchange. 

In the next table, we indicate the involution u by the two-sided 
arrows <-+ between the weight systems corresponding to the singularities. 

Weights A(W)=Dolgachev# Gabrielov# cpw(.>.) 
<>-' 2 -1HA4 -1) <: (3, 4, 4; 12) 4, 4, 4 4, 4, 4 (A3 1)(A 1) 

<: (3, 4, 5; 13) 3, 4, 5 3, 4, 5 <(~~"iF 
( ) 

(A16_1)(A4 -1) 
4, 5, 6; 16 2, 5, 6 3, 4, 4 (A8_1)(A-1) 

( ) 
(A15_1)(A3-1) 

3, 5, 6; 15 3, 3, 6 3, 3, 6 (A5-1)(A-1) 

( 
(A18_1)(A3-1) 

4, 6, 7; 18) 2, 4, 7 3, 3, 5 (AY-1)(A-1) 

(6 8 9 24) (A24_1)(A4-1)(A3-1) 
, , j 2, 3, 9 3, 3, 4 (Al2 1)(A8 1)(A 1) 

(3 4 8 16) 2 5 6 (A16_1)(A2-1) 
l l j 3, 4, 4 , l (A4 1)(A 1) 

(4 5 10 20) 2 5 5 2 5 5 (A20_1)(A5-1)(A2-1) 
l l j l l l l (Al0-1)(A4-1)(A-1) 

(3 5 9 18) (A18_ 1)(A2-1) 
l l j 3, 3, 5 2, 4, 7 (A6-1)(A-1) 

(4 6 11 22) (A22_1)(A2-1) 
, , j 2, 4, 6 2, 4, 6 (A11_1)(A-1) 

(6 8 15 30) 2 3 8 2 4 5 (A3°-1)(A5-1)(A2-1) 
l l j l l l l (A15-1)(Al0-1)(A-1) 

(3 8 12 24) 3 3 4 2 3 9 (A 24 -1)(A3 -1)(A 2 -1) 
l l j l l l l (AS 1)(A6 1)(A 1) 

(4 10 15 30) 2 4 5 2 3 8 (A30 -1)(A3 -1)(A2 -1) 
l l j l l l l (Al5 1)(A6 1)(A 1) 

r (6 14 21 42) 2 3 7 2 3 7 (A42_1)(A7-1)(A3-1)(A2-1) 
... l l j l l ' l (A21_1)(Al4 1)(A6-1)(A 1) 

Table 13. The strange duality and the *-duality. 

The strange duality captured the attention of many authors and was 
interpreted by Dolgachev, Nikulin and Pikham in terms of duality be­
tween algebraic cycles and transcendental cycles on certain K3 surfaces 
[Pin1,2]. Further generalizations of the duality were studied by several 
authors [N-G] [Pin4,5] [Lo4] [E-W]. 

In §14, we induce the strange duality from the *-duality of weight 
systems [Sa17], which is interpreted as a mirror symmetry [Tal]. 

§14. *-duality of regular systems of weights 

We introduce one key operation * of the present paper: the *-duality 
on regular systems of weights [Sa17]. It induces the strange duality in the 
arithmetical level, and induces, a much wider class of dualities among 
weight systems beyond the strange duality. 

w.r.t. the Weyl group (i.e. does not belong to any reflection hyperplane ([Sa15] 
(5.6) Lemma 2). We remark also that the diagram defines a splitting hyperbolic 
plane of the lattice Qw. 
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Recall the characteristic polynomial cpw(>.) (15) of a regular system 
of weights W. Since 'Pw E Z[>.] (recall §11 b) and Footnote 36) and is a 
cyclotomic polynomial, there exists a unique expression: 

(16) 
ilh 

for some integer ew(i) E Z for all i E Z>o with ilh, where h is the 
Coxeter number of W. 

Definition. A regular system of weights W' is called *-dual toW 
if 1) its Coxeter number h' coincides with that h of W, and 2) one has 
the duality relation: 

(17) ew(i) + ew,(h/i) = 0 

Here, we put ew ( i) = ew' ( i) = 0 for an integer i with i Jh. 

Example. 1. The characteristic polynomial for the type E8 decom­
poses as 

(>.30- 1)(>.5 -1)(>.3- 1)(>.2 -1) 
'PEs(>.) = (>. -1)(>.6 -1)().10 -1)(>.15 -1) · 

Then eE8 (30)+eE8 (1) = eE8 (5)+eE8 (6) = eE8 (3)+eE8 (10) = eE8 (2)+ 
eE8 (15) = 0. This implies Es is selfdual. This is a special case of the 
next 2. 

2. All regular weight systems W with cw > 1 (i.e. simple weight 
systems) are selfdual ([Sa17] Theo. 7.10.1). This fact resemble the result 
of Brieskorn in §7, 1). However, the *-duality, in general, implies neither 
of the the homeomorphisms Xw,o ~ Xw•,l nor Xw•,o ~ Xw,l (see the 
examples below). Therefore, it seems interesting to ask what the natural 
generalization of [0-0] is for the *-dual pair? 

3. Any regular system of weights W of rank J.Lw equal to 24 is 
selfdual. It is curious to observe that there are 11 such weight systems 
with t:w < 0, and the set of their characteristic polynomials is exactly 
equal to the set of all selfdual characteristic polynomials of the conjugacy 
classes of the Conway group ·0 ([Sa17] Appendix 1) except for the four 
6A, lOA, 15D and 18A. 

We have the following uniqueness of the *-dual weight system. 

Theorem. ([Sa17] The.7.8) 1. For a regular system of weights W if 
there exists a *-dual weight system, then it is uniquely determined from 
W, which we denote by W*. By definition, we have (W*)* = W. 

2. The smallest exponent of W* is equal to that of W, t:w = cw•. 
3. The multiplicities ew (h) and ew• (h) are equal to 1. 
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In general, there does not exist a dual weight system W* for a given 
regular system of weights W (eg. if the multiplicity ew(h) is larger or 
equal than 2, then W cannot have the dual weight system), but if the 
*-dual for W exists, then it is purely arithmetically determined from W. 
In fact, we have a complete list of dual pair of regular systems of weights 
( [Sa17] The. 7. 9). As a consequence, we can prove the following. 

Fact 7. ([Sa17] Theo.7.10.2 & §12) Any of the 14 regular systems of 
weights W in Table 10 (i.e. cw = -1, ao = 0 and ew(h) = 1} is *-dual 
to a weight system in the same Table. Further, if W and W* are dual, 
then J.Lw + J.Lw• =2443 and 

Dolgachev # of W = Gabrielov # of W* 

Dolgachev # of W* = Gabrielov # of W 

That is: the strange duality of Arnold is induced from the *-duality. 

Remark 7. Whether W* is dual to W or not is determined only by 
the characteristic polynomials <pw• and <pw, and hence, in view of (15), 
it is determined only by the exponential: exp(2rrv'=Imi/h) (i=1,· · ·,J.L) 
and exp(2rrv'=Imi /h) (i = 1,· · ·, J.L*). That is, the information of the 
phases [mi/h], [mi/h] of the exponents are unnecessary to determine 
the *-duality. 

This brings us to a puzzle: we had mentioned (§8 Concern) that 
the eigenvalues exp(2rrAmi/h) of a Coxeter-Killing transformation 
may not be sufficient to recover the phases of the exponents. This was 
the main reason why we introduced the concept of regular systems of 
weights in §10 (but not a root system with a simple basis) as our starting 
point, since a regular system of weights carries the full data of the set 
of exponents. From this starting point, we arrive at a result that the 
phase is unnecessary for the definition of duality among them. 

The author does not have a good answer to this puzzle. The only 
fact, we can mention here is that a regular system of weights W, which 
admits the dual W*, has a peculiarity such that the datum of the set 
of exponentials {exp(2rrAmi/h) I i=1, .. ·,J.L} is sufficient to recover 
{mi I i= 1, .. ·, J.L} (see the proof of [Sa17] The.7.9). 

Namely, the uniqueness of the dual weight system can be shown 
briefly as follows: if a weight system W admits a dual weight system, 
then the characteristic polynomial <pw(.X) is reduced (i.e. ew(i) E {0, ±1} 
for i E Z>o). This is equivalent to ew(h) = 1 and we call such W 
simple. On the other hand, a simple weight system W is arithmetically 

43In the original proof [Sa17] Theorem 7.10, 2., the rank relation was not 
stated explicitly. 
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reconstructed from its characteristic polynomial 'PW ([ibid] The.6.3). 
This proves the uniqueness of W (and W*). 

Perhaps, the above puzzle is closely related to another puzzle: the 
*-duality is described purely in terms of arithmetic whereas the strange 
duality in general exchanges the algebraic and the transcendental struc­
tures in geometry. 

Remark 8. It seems an interesting and important problem to find a 
reasonable extension of regular systems of weights, which is closed under 
the *-duality. For instance, the end remark of Footnote 34 suggests 
that Gorenstein surface singularities with good G x Ax -action should 
be included (see [Tal]). However, in the present paper, we do not go 
into any details of the question. Instead, we proceed here as if we were 
already in the extended category which is closed under the *-duality, 
and ask the following follow-up to the question in §12. 

For two decades, inspired from mathematical physics, one observes 
"symmetry relations" called mirror symmetry between some symplec­
tic topological varieties, called the A-model side and some algebraic (or 
complex analytic) varieties, called the B-model side. Mirror symmetry 
is formulated at different levels: from identities of numerical invariants 
of the varieties to the equivalence of categories associated to the vari­
eties. In the present paper, we do not go into any details of the sub­
ject but just refer the reader to some of the literature (see for instance 
[Konl],[Yau],[H-V]). It is expected that the models on both sides fi­
nally should induce an isomorphic flat structures (recall the condition 
vi) in §12). Mirror symmetry on topological Landau-Ginzburg orbifold 
model (which corresponds to the singularity theory in mathematics) is 
described by Kawai-Yang [K-Y] in terms of the duality of orbifoldized 
Poincare polynomials. Therefore, it is natural to ask whether (and this 
was actually proven by A. Takahashi [Tal]) the *-duality of weight sys­
tems is equivalent to mirmr symmetry in the Landau- Ginzburg orbifold 
model in mathematical physics.44 

Having these background, we ask the following mathematical ques­
tion. 

Addition to §12 Question. Does there exist an involutive correspon­
dence g >--> g* on the set of algebras in the right corner of the triangle 
(6) so that one has the isomorphism: 9w• c:::' (gw )* ? That is: does 

44Accordingly, the definition of the *-duality for the weight systems of type 
V in the classification of [Sa17] §5 is modified. 
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there exist a *-duality in the right corner of the triangle (6) making the 
following diagram commutative? 
(18) 

{Regular systems of weights W} {=> {Algebras gw} 

~ * ~ * 
{Regular systems of weights W*} {=> {Algebras 9w• c::: (gw )*} · 

This means that we seek duality operations in each corner of the triangle 
(6) (i.e. the *-duality on the top, the mirror symmetry in the left and the 
new conjectural *-duality in the right) so that the arrows are compatible 
with them. Likewise, the domain of the definition of the *-duality in the 
top is restricted, so a similar constraint on the domain of the definition 
in the RHS might exist. Note also that the *-duality in the RHS does 
not keep the rank J.Lw (of the Killing-subalgebra ~w, recall §12 iii)), but 
is rather complementary in the sense that J.Lw + J.lw• = 24 in case of 
Ew = -1. 

What seems remarkable here is the fact that the *-duality in the 
RHS exchanges the algebras which are constructed from algebraic data 
with that from transcendental data, whereas the *-duality in the LHS 
is purely arithmetically defined. In §15, we shall discuss the duality at 
a categorical level. 

7)-product. In the rest of this section, we give a digression on the 
reformulation of the *-duality in terms of eta products ([Sa17] §13). 

1. Let 17( T) := q1124 TI~=l (1 - qn) (where qa := exp(2nJ=laT) be 
Dedekind eta function. To the product (16), we associate a product 

(19) 1JW(T) := IT 1)(iT)ew(i). 

ilh 

Assertion ([Sa17](13.3)) Two weight systems W and W* are dual to 
each other if and only if one of the following (equivalent) relations holds: 

1Jw(-1jhT) ·7Jw·(T) 

1)w• ( -1/hT) ·7Jw(T) 

(TjJ=I)aoj~, 

( H/T)ao j v;i;, 

where dw is the discriminant defined by nilh iew(i). 

2. We observe the following behavior of the coefficients of the ex­
pansion of 7Jw ( T) in the powers of q (called the Fourier coefficients of 
1Jw(T) at oo). 

i) Fourier coefficients of the eta-products of type A1 (l 2: 1), D1 (l 2: 
4) and E1 (l = 6, 7, 8) are positive and are exponentially growing. 
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ii) Fourier coefficients of the eta-products of type n2·1), E~l,l), E+1•1) 

or E~l,l) are non-negative and are polynomially growing. For example: 

Here, i) is trivially checked but ii) requires some work [Sa14]V, where 
the Melin transform Lw(s) of TJw is expressed by the L-functions of 
the cyclotomic field <Q( A), <Q( H), <Q( A, N) or <Q( A, H) with 
abelian Galois group according to W is of type Di1'1), E~l,l), E?'1) or 

E~l,l). Then, their L-functions have quadratic expressions by Dirich­
let L-functions. For example: using some Dirichlet characters c, x on 
Z/12Z, the L-function of type E~l,l) is expressed as 

A direct inspection on this Euler product shows the non-negativity of 
all Dirichlet coefficients of them. 

For each elliptic root system, we associate the eta-product (19) using 
the decomposition (16) of the characteristic polynomial of its Coxeter­
Killing transformation. Then, 

Fact 8. The Fourier coefficients are non-negative i1 and only if the 
root system is o1 type D(l,l) E(l,l) E(l,l) or E(l,l) which are exactly the 

4 ' 6 ' 7 8 ' 
types of simply-laced elliptic root systems admitting the flat structure 
(compare [Sa14]V, Theorem with [Sa14]II, §11 Theorem.) 

Finally, we remark that a stronger form45 of the following statement 
was conjectured in [Sa17](Conjecture 13.5) and is proven by S. Yasuda 
[Yas]. 

Fact 9. Let us define the dual rank vw of W by vw :=- I:ilh ew(h/i)i 
(vw = J.lw• if the *-dual of W exists). Then, all Fourier coefficients of 
TJw(T) at oo are non-negative integers if and only if vw 2: 0. 

In particular, if a weight system W admits the *-dual, then all 
Fourier coefficients of TJw are non-negative. 

Question: Interpret the Fourier series of TJw as the generating function 
of counting of some objects either from the geometry of Xw or from the 
algebra flw. 

45An eta product ry(hT)"TJw(T) has non-negative Fourier coefficients if and 
only if vw 2: v. 
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§15. Towards algebraic construction of the correspondence <1>:;. 

We return to the question of constructing the correspondence <1>:;. 
posed in §12. According the program §12 iii), the algebra gw should 
have the root space decomposition with respect to the adjoint action of 
the Cartan-Killing subalgebra 1J ~ H2(X11 <C) with the generalized root 
system Rw of the vanishing cycles in H2(X1 , Z) (§5,7). So, our first task 
should be to give a good description of the set of vanishing cycles Rw 
and to find a good basis for it. 

For the 14 cases of Ew=-1, we explained already that the diagram in 
Table 12. due to Gabrielov is a good candidate for the simple root basis 
for the generalized root system (recall Footnotes 40 and 42). However, 
the diagrams were obtained after several braid actions on the basis of 
the lattice of vanishing cycles ([Gab2], see also [Ebl]). It seems as if the 
diagrams are obtainded ad hoc, and hard to find an explanation on their 
naturarity and necessity from purely topological machinery alone. 

On the other hand, once we introduce the use of *-duality in §14, 
the situation changes drastically. Namely, owing to §14 Fact 7., the 
Gabrielov numbers of the diagram of the 14 weight systems W with 
Ew = -1 are given by the signature set A(W*) ((13) and Footnote 32) of 
the *-dual weight system W*. That is, the Gabrielov number for W is 
determined "intrinsically" by two arithmetic steps: step 1. calculate the 
*-dual weight system W* from W ([Sa17] The.7.9) and step 2. calculate 
the signature set A(W*) of W* ([Sall] The.6), which can be done with­
out any ambiguity. That is: the diagram in Table 12. for W is, at least 
in its numerical level, determined from the algebraic approach through 
the *-dual W*. Actually, the same phenomenon occurred already for 
the simple singularities, where Ew > 0 and the weight system W is self­
dual (§14 Example 2) and then the signature set A(W*) (=A(W)) gives 
the branch lengths of the diagram of the simple basis of the finite root 
system Rw (recall §7, 3), §11 a) Example and Table 3). 

These facts led the author to ask the following question: 46 

Problem: Construct the root system Rw and its basis through the alge­
braic approach <P~ (X w•) instead of the topological approach <P~ (X w). 

46Problem ([Sa15], in English translation p.124). Construct directly from 
the system of weights (a, b, c; h), without pathing through the homology group of 
the Milnor fiber, arithmetically or combinatorially, the generalized root system 
(Q,I, R, c) given above. That is to say, give a basis a1, · · · , a" and their inner 
products I(ai, ai) (1::; i ::;j::; J.L) directly from the data (a, b, c; h). 
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The numerical data A(W*) alone are not sufficient, and we need to 
find a structural approach to reconstruct the root system Rw and its ba­
sis. Based on recent developments in mathematical physics47, A. Taka­
hashi [Ta2] gave an answer to the first part of the problem (i.e. the 
construction of the root system Rw ). He conjectured that the K-group 
of the category of graded matrix factorizations for fw• should be iso­
morphic to the lattice of vanishing cycles (H2 (X1 , Z), I). He has shown 
that the category for the case of the polynomial fA, = xl+1 of type Az 
is derived equivalent to the category of modules over the path algebra 
for the Dynkin quiver of type A1, so that the set of indecomposable ob­
jects in the K-group gives the set of roots of type Az, and he further 
conjectured that this should hold for all the other simple polynomials. 

In the following three sections 16, 17 and 18, we report the results of 
some joint works of H. Kajiura, A. Takahashi and the author along these 
line and on its further development. We introduce in §16 the homotopy 
category HMF~w (fw) of graded matrix factorizations for fw, in three 
different formulations. 

In §17, we study the category for a simple weight system W for 
c:w = 1, and show that it is generated by a strongly exceptional collection 
(see §16, 4. for a definition) whose associated quiver is a classical Dynkin 
quiver of the type W = W* [K-S-T 1]. Then, due to a classical result 
by Gabriel [Ga], the set of indecomposable objects in the category form 
the classical finite root system in the associated Grothendieck group ( = 
K-group), as was expected. 

In §18, we study [K-S-T 2] the category for a weight system W of 
14 + 8 weight systems of c:w = -1 with ao = 0. We show that it is 
generated by a strongly exceptional collection whose associated quiver 
is of the form Table 14, where the set of lengths of branches of the 
quiver is given by the signature set A(W) (13) of the weight system 
W. We show further that the path algebra for the quiver with relations 
is isomorphic to the finite dimensional algebra consisting of morphisms 
among the objects of the exceptional collection. Then, owing to a result 
of Bondal-Kapranov [B-K], the category is equivalent to the bounded 

47 A hint was given by the Gonzalez-Verdier interpretation of c) ([G-V], 
see Appendix), where the dual basis of the simple root basis was constructed 
by certain vector bundles on Xw,o- Then, the derived category of the abelian 
category of coherent sheaves was acknowledged in the recent development in 
mirror symmetry of D-branes due to Kapustin-Li [K-L 1,2], Hori-Walcher [H-W] 
and Walcher [Wal]. 

The category of graded D-branes of type B in Landau-Ginzburg models was 
formulated by D. Orlov [Orl2] as the triangulated category of the singularity X. 
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derived category of that of modules over the path algebra of wild type 
with two relations. In particular, in the 14 exceptional modular cases, 
in view of the *-duality (§14, Fact 7.) and by the comparison of Table 
12 with 14, the Grothendieck group Ko(HMF~w(fw)) is isomorphic to 
the lattice of vanishing cycles H2(Xw· ,1> .Z) for the *-dual weight system 
W* of W. "Whether the generalized root system Rw· in H2 (X w•, 1, .Z) 
(i.e. the set of vanishing cycles, see §ll,b), 1) ) is exactly the image of 
the set of exceptional indecomposable objects in HMF~w (fw) or nof' is 
an open and interesting question. 48 

The above results on the category of graded matrix factorization for 
cw=±l seem to suggest that the category HMF~w(fw) for W with ao= 
0 may possibly have certain canonical strongly exceptional collections, 
which are liftings, at the categorical level, of an answer to the latter half 
of Problem in Footnote 46. 

§16. The category of graded matrix factorizations 

In this section1 we introduce the triangulated category Tw associ­
ated with a regular system of weights W in three equivalent forms: by 
the homotopy category of the graded matrix factorizations, 49 by the sta­
ble category of maximal Cohen-Macaulay modules, and by the category 
of singularities ([Bu],[Orll],[Ta2]). We discuss some basic properties 
of the category such as Serre duality, the generation of the category, 

480ne should lift the question into. the categorical level as follows: since 
Rw· is a union of the Weyl group orbits of a distinguished basis due to the 
irreducibility of the discriminant D"' (Footnote 12), and a distinguished basis 
is the image of the objects of an exceptional collection, we ask "whether any 
exceptional indecompsable object in HMF:;;w (fw) is obtained by a successive 
application of mutations on the objects of the exceptional collection or not?". 

49The concept of a matrix factorization is introduced by D. Eisenbud [Ei) 
in order to describe the two periodic resolutions of maximal Cohen-Macaulay 
modules. It was applied in the study of hypersurface. isolated singularities 
([Kn1,2],[Gr),[Sch)). It obtained a new impetus through mathematical physics 
([K-L), [H-W)) and found new application to the categorification of link invari­
ants ([K-R)). From a graded matrix factorization, forgetting about its grading 
one obtains a ungraded Marx factorization. This induces a comparison of the 
categories of graded and ungraded Matrix factorizations. This forgetful functor 
induces the embedding of the corresponding K-groups, which should conjec­
turally mirror dual to the embedding of the lattice of vanishing cycles to that of 
cycles coming from infinity. However, in the present paper, we shall not discuss 
this subject further (see §11 b) 4) and §12 Note 3.). 
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exceptional collections and Auslander-Reiten translation. For basic ter­
minology and concepts in category theory, one is referred to [Ke]. 

Let W = (a, b, c; h) be a regular system of weights. We regard the poly­
nomialring 

Aw := <C[x,y,z] 

to be graded by the weight deg(x) = 2ajh, deg(y) = 2b/h,deg(z) = 2c/h.50 

Fix a polynomial fw E Aw of type W (9), which is of degree 2. Put 51 

Rw := Aw/(fw) = <C[x,y,z]/(fw). 

Obvious remarks are that Aw is a regular ring and Rw is a Gorenstein 
ring. By definition, both Aw and Rw are graded rings graded by ~Z:;::o. 
In the present paper, by a graded module Mover Aw or Rw, we always 
mean a module which is graded by ~Z, i.e. M = !fJdE1-zMd. A graded 

" homomorphism f : M --+ N of degree a between graded modules is 
defined as usual a homomorphism with f(Md) C Nd+a for any dE ~z. 
We denote by gr-Aw or gr-Rw the category of finitely generated graded 
Aw or Rw-modules, respectively, whose morphisms are homogeneous 
of degree 0. We denote by T the degree shift operator on the set of 
graded modules to itself defined by (TM)d=Md+f>· For a morphism J, 
we associate the same morphism T(j) :TM -+TN. 

ForM, N Egr-Aw, the module HomAw(M, N) of all Aw-homomor­
phisms naturally belongs to gr-Aw by letting HomAw (M, N) 2n :=Hom 

h 

gr-Aw (M, Tn N). The same statement replacing Aw by Rw holds also. 

1. The homotopy category of graded matrix factorizations for 
fw. 

Definition. i) A graded matrix factorization for fw is a system 

Pl 

where P1, P2 are graded free Aw-modules of finite rank and po, Pl are 
graded Aw-homomorphisms such that PDPl = fw · idp0 , PlPO = fw · idp1 

and deg(po) =0, deg(pl) =2. The set of all graded matrix factorizations 
for fw is denoted by 

MFrw (fw) := {graded matrix factorizations for fw }. 

50In order to compare with the conventions of matrix factorizations, we 
have to duplicate the grading compared with that for the flat structure. Hence, 
one should note that deg(fw) =2. 

51The reader is notified with the fact that there is an unfortunate coinci­
dence of this notation with that for the set of vanishing cycles in §11 b) 1). 
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f 
PO Po 

ii) A graded homomorphism from M =(Po ~ P1 ) to M' = (P~ ~ P{) is 
Pl Pi 

a pair <I>= (c/Jo, cj;I) : (Po, P1) ----+ (P6, P{) of graded Aw-homomorphisms 
homogeneous of degree 0 making the following diagram commutative. 

Pl Po 
PO pl Pl Po PO 

---> ---> ---> ---> 

1 ¢o 1¢1 1 ¢o 
f f f 

Po P1 P.' Po P' P1 P.' ---> 0 ---> 1 ---> 0 ---> 

The set of all graded homomorphisms is denoted by HomMF;;w Uw) ( M, 

M'). 

iii) We denote also by MF~w Uw) the additive category of all matrix 
factorizations with respect to above defined homomorphisms. 

Definition. We denote by HMF~w (fw) the homotopy category 
of MF~w Uw ). That is, the objects of HMF~w (fw) are the same as 
MF~w Uw ). The module of homomorphisms is defined as the quotient 
space by the homotopy equivalence 

HomHMF;;rw(fw)(M,M') := HomMF;;wUw)(M,M')/ "-' 

where a morphism <I>= ( c/Jo, cj;I) is homotopic to zero, denoted by <I> ""'0, 
if there exists Aw-homomorphisms ho : Po ----+ P{ and h1 : P1 ----+ P6 
with deg(ho) = -2 and deg(h1) = 0 such that c/Jo = p~ho + h1Po and 
c/J1 =p~h1 +hoP1· 

Pl Po 
PO pl Pl 

Po 
PO 

---> ---> ---> ---> 

./ ¢1 ,)(, ¢1 ./ ho ¢1 ./ 
f f f f P1 P.' Po P' P1 P.' Po 

---> 0 ---> 1 ---> 0 ---> 

1 f 
Example. The Aw ;::2 Aw and Aw ;::2 ThAw are matrix fac-

f 1 
torizations which are homotopic to 0, since we have the following com-
mutative diagram: 

Aw f Aw 
1 Aw f 

-> -> -> -> 

./1 11 ./0 11 ./1 11 ./o 

Aw f Aw 1 Aw -> -> -> -> 

Any 0-object M (i.e. 1M ""'0) in the category HMF~w (fw) is a direct 
1 f 

sum of copies of some T-powers shifts of (Aw ;::2 Aw) and (Aw ;::2 Aw ). 
f 1 
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Definition. (Shift functors) We introduce two auto-equivalence 
functors: 

Po rpo 
T(Po <== P1) := (TPo <== TPI), T(¢>o,(h) = (T¢>o,T¢>I), 

Pl TPl 

PO -PI 
T(Po <== P1) := (P1 <== ThPo), T(¢>o,¢>1) = (-¢>1>-Th</>o). 

Pl -ThPO 

By definition, they satisfy an obvious but basic relation: 

(20) 

Here are some elementary properties of the category HMF:4" (fw). 

i) HMF:4" Uw) is a Krull-Schmidt category: i.e. if e E EndHMF'j((f) 
(M) for an object M is idempotent e2 = e, then there exist an object M' 
and morphisms <I>' : M'---+ M and <I> : M---+ M' such that <I>' o <I> = e and 
<I> 0 <I>'= idM'. 

ii) HMF:4" (fw) is of Ext-finite type: i.e. EElnEzHom(M, yn N) is fi­
nite dimensional vector space for all objects M and N of the category. 

Sketch of proof. The direct sum EElnEzHomHMF;((fw) (M, Tn M') is a 
finitely generated Aw-module. Since the sum is annihilated by mul­
tiplications by Bxfw,oyfw,ozfw, it is a finite module over Jw := 

Aw/(oxfw,oyfw,ozfw). Since fw is of type Wand in view of §11 
Fact 4., it is of finite rank over C. D 

Definition. (Mapping cone) For any morphism <I> = (¢0 , ¢1) E 
HomMF'j((f)(M,M'), we introduce the mapping cone C(<I>) E MFj;"(f) 
as follows. 

(: 
P.' 0 

d bt · ) M .P M' inclusion C("') -projection an o ams a sequence: * ----+ '~' 

T M. Then, we have the following general fact ( c.f. [G-M], [K-S], [B-K2], 
[Ta2]). 

Theorem. The additive category HMF:4'"w (fw) endowed with the 
shift function T and distinguished triangles isomorphic to *) for all mor­
phisms <I> forms an enhanced triangulated category of Ext-finite type. 

See [B-K2] for a definition of the enhanced triangulated category. 

2. The stable category of maximal Cohen-Macaulay modules 
over Rw. 
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Definition. A graded module M E gr-Rw is a maximal Cohen­
Macaulay module over Rw if depth(M) = dim(Rw) ( =: d = 2) ( <=} 

Extk(Rw j(x, y, z), M) = 0 for i < d = 2). The full subcategory of 
gr-Rw consisting of all graded maximal Cohen-Macaulay modules over 
Rw is denoted by CMgr (Rw ). 

For an element M of gr-Rw and n ::::0: d, the n-th syzygy syzn(M) 
(:=nth kernel of a graded free resolution of M) up to a free module factor 
becomes a maximal Cohen-Macaulay module and doubly periodic inn. 
Hence, one sees CMgr(Rw) is a Frobenius category (i.e. it has enough 
injective and projective objects which coincide to each other). Then, 
the stable category CMgr ( Rw), defined below, becomes a triangulated 
category (c.f. [Ke]): the objects of the stable category CMgr(Rw) is the 
same as CMgr (Rw) and the space of morphisms is given by 

Homgr-Rw(M,N) := Homgr-Rw(M,N)/P(M,N), 

where P(M, N) is the subspace of Homgr-Rw (M, N) consisting of mor­
phisms which factor through projective modules. 

Fact 10. For a graded matrix factorization M E MF~ w (fw), we asso­

ciate a maximal Cohen-Macaulay module coker(P1 ~Po) E CMgr(Rw) 
over Rw. This correspondence induces an equivalence of the triangulated 
categories: 

(21) HMF~w(fw) 

The advantage of the category CMgr ( Rw) is that it easily admits 
the concepts: Auslander-Reiten triangles and Serre duality, which we 
explain below. For details on the subject, the reader is referred to text­
books, e.g. [Hap], [Yos]. 

We first define the Auslander transpose tr(M) (up to free module 

factor) of M Egr-Rw by putting tr(M) := Coker(t f) where F1 L F0 ___, 

M ___, 0 is a finite presentation of M and t f is the contragradient homo­
morphism of f. Let us denote by syzd(tr(M)) the reduced dth syzygy of 
tr(M) obtained by avoiding all graded free summands from a dth syzygy 
of tr(M). Then, the Auslander-Reiten translation, or A-R translation, 
TAR(M) E gr-Rw is defined by 

A-R translation : 

where KRw =Resxw,o [Aw ::dydz] = T-E:w Rw is the canonical mod­

ule of Rw = Aw/(fw). If M is a maximal Cohen-Macaulay module 
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without a free direct summand, then we easily see that syz2 ( tr( M)) ~ 
HomRw (M, Rw ), and, hence, 

(22) 

The auto-equivalence of the category CMgr (Rw) induced by TAR is de­
noted again by TAR. In view of the relation ( 20), we have the following 
relation: 

TlR = (T2)-t:w. 

The following duality was shown by Auslander and Reiten [A-R3]: 

Ext~r-Rw(HomRw(M,N),KRw) ~ Ext~r-Rw(N,TAR(M)) 

for M, N E CMgr ( Rw). This, in particular, implies the following 

Serre duality: Homc(Homgr-Rw(M,N),C) ~ Homgr-Rw(N,SM) 

as a hi-functorial isomorphism of vector spaces for M, N E CMgr (Rw ), 
where S is an auto-equivalence of the category CMgr ( Rw), called Serre 
functor [B-Kl], defined by 

(23) s := TT AR· 
As a consequence of Serre duality, one can show that, for any in­

decomposable object Z of CMgr(Rw), there exists the AR-triangle of 
Z in the following sense: let Z ~ TTAR(Z) be the morphism, which, 
by Serre duality, corresponds to the dual of the identity element in 
Home (Homgr-Rw ( Z, Z), C). Then, there exists an object AR( Z) and 
the triangle, called A-R triangle, in CMgr(Rw ): 

A-R triangle : TAR(Z) ~ AR(Z) _::. z ~ TTAR(Z) 

such that, for any morphism g : W---+ Z in CMgr(Rw) which is not a 
split epimorphism, there exists h: W---+ AR(Z) with vh =g. 

3. The category of the singularity Xw,o := Spec(Rw ). 

Definition. ([Orll]) The triangulated category of the singularity 
Xw,o is 

D~~(Rw) := Db(gr-Rw )/ Db(gr proj-Rw) 

where Db(gr-Rw) is the bounded derived category of the abelian cate­
gory gr-Rw with the natural triangulated structure and Db(gr proj-Rw) 
is its full triangulated subcategory consisting of objects which are iso­
morphic to the bounded complexes of projectives. Actually, the subcat­
egory is the derived category of the exact category of graded projective 
modules [Ke], and is called the subcategory of perfect complexes. 
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Since Rw defines the hypersurface X w,o and is Gorenstein, we have 

Theorem. (Buchweitz [Bu], Orlov [Orl2]§1.3) The natural inclu­
sion map CMgr(Rw) ~ gr-Rw induces the equivalence of triangulated 
categories: 

(24) 

Orlov [Orl2] gave further a comparison Theorem of D~~(Rw)with the 
quotient abelian category qgr-Rw := gr-Rw/tors-Rw where tors-Rw is 
the full subcategory of gr-Rw consisting of all finite dimensional Rw­
modules. Actually, in case when Cw is a rational curve, we may regard 
it as a weighted projective line in the sense of Geigle and Lenzing [G-L 
1]. Then qgr-Rw is derived equivalent to thecategoryofcoherentsheaves 
on the weighted projective line [G-1 2]. 52 

4. The triangulated category Tw associated with a regular 
system of weights W. 

Owing to (21) and (24), we introduce an enhanced triangulated category 

associated to a regular system of weights W up to equivalences. The 
advantage of the third expression is that we have the following generation 
theorem ([K-S-T 2]), which we shall use in the proof of our main theorem 
in §18. 

Theorem. Let T be a right-admissible full triangulated subcategory 
of Tw satisfying: 

i) The shift functor T induces an auto-equivalence ofT. 
ii) There is an object ofT which is isomorphic to the pure complex 

of the torsion (sky-scraper) module Rw /(x, y, z) in Tw. 
Then the natural inclusion T c Tw induces the triangulated equivalence. 

Here, a subcategory T' of a triangulated category T is called right­
admissible if, for any object X ofT, there exist NET', ME T'j_ := {ME 
T I Hom7(N, M) =0 'tiN ET'} and a triangle: N ~X~ M ~TN in 
T. 

For a later use, we recall some terminologies and results from [Bon]. 

52[G-L 2] treats the case corresponding to the regular weight systems with 
cw = 1. A general proof which covers the case for any regular weight system 
of genus 0 shall appear in: H. Kajiura, K. Saito and A. Takahashi: Weighted 
projective lines associated to regular systems of weights, in preparation. 
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Definition. i) An object E in a triangulated category T over Cis 
called exceptional if Hom7(E, TP E) ~ C if p = 0 and 0 if p =/: 0. 

ii) An exceptional collection is a sequence (Et, · · · , EJ.L) of excep­
tional objects satisfying HomT(Ei, TP Ei) = 0 for Vp E .Z and 0 ::; j < 
i ::; f.l· 

iii) An exceptional collection (E17 • • • , EJ.L) is called strongly excep­
tional if HomT(Ei, TP Ej) = 0 for alll ::; i,j::; p, and p =/: 0. 

iv) For an exceptional collection £ := (Et, · · · , EJ.L), we denote by 
(£) := (E1, · · · , EJ.L) the smallest triangulated full subcategory containing 
E 17 • • • , Ew We say that £ generates T if (£) is equivalent to T. 

v} For a strongly exceptional collection £ := (E1, · · · , EJ.L), let us 
introduce a finite dimensional agebra 

Hom(£,£) := EBo~i,i~J.LHomT(Ei,Ei) 

and call it the hom-algebra of the collection £. 

Theorem. ([Bon],[B-K2]) LetT be an enhanced triangulated cat­
egory of Ext-finite type, and let £ be a strongly exceptional collection. 
Then, (£) is right admissible and is, as an enhanced triangulated cate­
gory, equivalent to the bounded derived category 

(26) Db(mod-Hom(£, £)). 

5. K-group and Auslander-Reiten translation of Tw. 
In this paragraph, we show that the Auslander-Reiten translation 

induces an automorphism of the K-group of the category, which is ex­
pressed as the product of reflections. This expression is presumably the 
mirror dual of the expresion given in §5 of the Milnor monodromy c by 
the product of reflections. 

For a triangulated category T, let K0 (T) be its Grothendieck group 
(or K-group), i.e. the quotient group of the free abelian group generated 
by the equivalence classes [X] of objects X ofT divided by the submod­
ule generated by [X]+[Z]-[Y] for all triangles X---> Y---> Z---> T X. We de­
note by [X] the image element in Ko of X. If a set E 17 • • • , EJ.L of objects 
generates the triangulated category, then their images [E1], · · · , [EJ.L] 
generates the K-group over .Z. 

The shift functor Ton T induces an action [T] = -idKo(T) on Ko(T), 

since [X]+ [T X]= 0 for any object X because of the triangle X .2. X---. 0---. 
TX. In particular T 2 induces identity on the K-group 

The Auslander-Reiten translation TAR is an auto-equivalence of the 
triangulated category, so that it induces an automorphism of the group 
Ko(T), denoted by [TAR]· For the category Tw associated to a regular 
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weight system W, it is of finite order h, since, using the expression (22) 
and the fact (20), we calculate as 

[TAR]h = [T-2"w] = ( -idKo(Tw))-2"w = idKo(Tw)· 

If Tis of Ext-finite type over C, the Euler pairing is defined by 

for any two objects X and Y of T. Because of the (co-)homological 
property of hom7, it induces a bilinear form on K0 (T), which we denote 
again by X· We equip the K-group with the symmetric bilinear form 
(e.g. see [Ri1] 2.4) 53 : 

(27) I(e, f) := x(e, f) + x(f, e). 

fore, f E Ko(T). We remark that if e = [E] where E is an exceptional 
object ofT, then x(e, e) = 1 and, hence, I(e, e) = 2. Then, similarly 
to Picard-Lefschetz formula in §5, we can define the reflection We E 

O(Ko(T), I) by letting 

we(u) := u- I(u, e)e for u E Ko(T). 

The [TAR] preserves the bilinear form x, i.e. [TAR] E O(Ko(T),J). 
Let us express now [TAR] as a product of reflections on Ko(T). 

Let £ := (E~, · · · , EM) be a strongly exceptional collection of T. 
Assume that E1, · · · , EM generate T and, hence [E1], · · · , [EM] is a basis 
ofK0 (T). Associated to [E1], • · · , [EM], we consider two basis: ft, · · · , f/1-
and g~, · · · , 911- of K 0 (T) defined by the following relations: 

Here, we remark that the matrix X£:= (x(Ei, Ej))ij=1, .... 11- is an upper 
triangular matrix with 1 at each diagonal entry so that x is invertible. 
Let us denote by Ce = (Ce,ij)ij=l, .... 11- the inverse matrix x£1 (which 
is also an upper triangular integral matrix). In fact, using the mapping 
cone constructions, one can find objects Fi and Gi in T such that fi = [Fi] 
and 9i = [Gi] fori= 1, · · · , J.L. 54 The intersection matrix of them are given 

53For the purpose of the period map for odd dimensional Milnor fiber, we 
need to study the skew symmetric bilnear form: Iodd(e, f) := x(e,J) - x(f, e) 
(see [Sa18]§6 (6.2.2)), [Sa19]latter half of §4). However, we shall not treat them 
in the present paper. 

54Actually, these objects Fi and Gi are constructed by use of mutations 
and are shown to be exceptional objects ([Bon]). 
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by Ct: as follows: 
(29) 
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for i,j = 1,··· ,J.L. 

Since J([Fi], [Fi]) = J([Gi], [Gi]) = 2 for 1 :::; i :::; J.L, we define reflections 
W[F1], · • · , W[F'"] and W[G1], • • • , W[G'"]· Then, one can easily verify the 
formula: 

Fact 11. Let (E1. · · · , ElL) be a strongly exceptional collection, then the 
transformation [r AR] is expressed as the product of reflections associated 
to the basis: 

(30) 

6. Quiver and path algebra associated with£. 
In this paragraph, associated with a strongly exceptional collection, 

we consider a slight generalization of a quiver, and then, associated to the 
(generalized) quiver, we introduce a path algebra with relations, which 
we shall use in §17 and 18 (see [Ril] for quivers and path algebras). 

Let £ = (E1. · · · , ElL) be a strongly exceptional collection of a tri­
angulated category T. Then, we associated a quiver !:l..t: given by a 
pair 

(31) 

where !:l..o { v1. · · · , vi-L} is a set of J.L elements, called the vertices, 
and 6..1, called the set of allows, is a multi-set of triplet (vi, Vj, t:) E 
!:l..o x!:l..o x {±}where (vi, Vj, +)appears in 6..1 only when i=/=j, Ct:,ii <0 
and -Ct:,wtimes, and (vi, vi,-) appears in 6..1 only when i=/=j, Ct:,ii >0 
and Ct:,wtimes. We regard (vi, Vj, +) E 6..1 as an arrow (with positive 
sign) from the vertex Vi to the vertex Vj, and similarly (vi, Vj,-) E 6..1 
as a dotted arrow from Vi to Vj· 

Remark 16.1. If one forgets the directions of the arrows from the 
quiver !:l..t: and leaves only lines or dotted lines together with the ver­
tices, then one obtains automatically the intersection diagram r of the 
symmetric bilinear form I with respect to the basis [F1], · · · , [FIL] or 
[G1], · · · , [GIL] of Ko(T), i.e. r is the intersection diagram for the sym­
metrization of the matrix (29)) (for instance, [Sa14]1 (8.2)). 

Associated with the above given quiver !:l..t: (31), the path algebra 

(32) 

with relations R is defined as follows. Let 6..1 = !:l..t II 6..1 be the decom­
position of the set of arrows into those of positive and negative signs. 
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We regard Lli := (tl.o, Llt) as the quiver in the classical sense (e.g. 
[Ril] 2.1), then by concatenating arrows, one defines paths and the path 
algebra Ctl. + as usual ([ibid]). Let 

R : Ll1 ~ Ctl.t 
be a map such that the image of an arrow (Vi, Vj, -) belongs in the 
subspace (vj I Vj) · Ctl.t ·(vi I vi) spanned by all paths from Vi to Vj 
(here, we denote by (v I v) the path of length 0 at a vertex v). Then, 
we put 

where Ctl.i · R(tl.l) · Ctl.t is the both-sided ideal of the path algebra 
Ctl.t generated by the image set R( Ll1). We call C( Llc, R) the path­
algebm with relations R. 

Remark 16.2. Assigning to each arrow (vi, Vji +) E Llt a mor­
phism fij E HomT(Ei, Ej), we can define a ring homomorphism: 

for a suitable choice of relations R. In general, the homomorphism can 
neither be isomorphic nor induce derived equivalence for any choices of 
fii and R. 

Example. Let us consider a strongly exceptional collection£ = (Et, E2, 

E3) such that Xe = [~ ~ !] and C £ = [~ ~ 1 ~ 1]. Then the associ-
o 0 1 0 0 1 

ated quiver is a Dynkin quiver Ll.e = o-o- o of type A2 and Ctl..e is a 
path algebra of type A2. On the other hand, there are two cases of the 
structure of the hom-algebra Hom(£,£) := EB1::s;i::s;j9Hom(Ei, Ei) de­
pending on whether the product Hom(Eb E2) xHom(E2, E3) - Hom(Eb 
E3) is a) non-zero or b) zero. Then the homomorphism Ctl.c- Hom(£,£) 
assigning the two arrows in Ll.e to the base of Hom( E1 , E2) and Hom( E 2, 
E 3), respectively, is isomorphic in the case a), but neither isomorphic 
nor derived equivalent in the case b). 

§17. The category of matrix factorizations: the case cw = 1. 

In this section, we study the category Tw = HMF~w (fw) associated 
with a weight system W with ew = 1. Recall that, in this case, the weight 
systems are classified into types A1 (l 2:: 1), D1 (l 2:: 4), E6, E1 and Es 
(see Table 8), and that the associated polynomials fw of type W are 
called the simple polynomials (see Table 2). 
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Then the following theorem is proven in [K-8-T 1] (c.f. also [Ue]). 

Theorem. Let W be a regular system of weights of type ADE. For 
any Dynkin quiver l of type W {see Note below), there exists a unique 
strongly exceptional collection Ezs. of the category Tw (25) such that 

i) the Ezs. generate the triangulated category Tw, 
ii) the quiver associated with the collection Ezs. is isomorphic to l, 

iii) the path algebra Cl is isomorphic to the hom-algebra HomTw (£zs., 
£ zs.). 

Note. By a Dynkin quiver, we mean an oriented Dynkin diagram of type 
ADE. 

Sketch of proof. According to the works [Ei], [A-R1] and [Au], the 
Auslander-Reiten quiver for the triangulated category HMF 6 (fw) of un­
graded matrix factorizations over the local rings 0 and 6 are well-known 

+-+ 

to be isomorphic to the both side oriented Dynkin quiver ~ of type W. 
We consider the natural forgetful functor: HMF~ w (fw) ---+ HMF 6 (fw) 
forgetting the gradings on matrix factorizations. Then, by "lifting" the 
results on HMF 6 (fw) back to the graded category together with the 
knowledge of the Serre duality, in [K-8-T 1], we determine the list of all 
indecomposable objects and all irreducible morphisms in HMF~w (fw ). 
Using these data, we can verify directly the existence (up to T-shift) of 
a strongly exceptional collection £ zs. of HMF~ w (fw), ·and of the natural 

isomorphism: c.& ~ Hom(£zs., Ezs.) (i.e. the non-vanishing of composi­
tions of morphisms corresponding to concatenations of arrows in Li).D 

Applying a theorem of Bondal-Kaplanov to the enhanced category 
HMF~w (fw ), we see the equivalence among the triangulated categories: 

(33) Db(mod-Cl) ~ Db(mod-Hom(£zs.,Ezs.)) ~ HMF~w(fw). 

Combining with the well known results on the representations of the 
hereditary algebra c.& (c.f. [Ga], [Ril], [Hap]), we obtain the following 
expected results. 

Corollary. Let the setting be as in Theorem. Then, i) the K-group 
Ko(Tw) of Tw is isomorphic to the root lattice of type W = W*, ii) 
the image set in Ko(Tw) of indecomposable objects form the root system 
Rw· of type W*, and iii) the image in Ko(Tw) of a strongly exceptional 
collection £ zs. forms a simple root basis of the root system Rw· . 

Remark. As in the A1 case [Ta2], a stability condition (Bridgeland 
[Bri 1]) can be naturally given by the grading of matrix factorizations. 
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The abelian category associated to the stability condition (as a full sub­
category of HMF~w (fw)) is equivalent to the category mod- c.& of fi­

nite modules over the path algebra of a Dynkin quiver K of the principal 
orientation introduced in [Sa21]. 

§18. The category of matrix factorizations: the case cw = -1 

In this section, we describe the category Tw = HMF~w (fw) associ­
ated with a regular system of weights W with cw=-1 and ao= 0. Recall 
that the orbifold curve Cw (12) is of genus ao so that we are considering 
the case of rational orbifold curves. There are 14+8 such weight systems, 
which are listed in Table 10. The associated polynomials fw of type W 
are also listed in Table 10, where we remark that, in the first 14 weight 
systems, there are 3 orbifold points on the curve Cw so that the polyno­
mial fw contains no moduli parameter, whereas, in the latter 8 weight 
systems case, there are either 4 or 5 orbifold points on the curve Cw so 
that the polynomial fw contains either one or two rrioduli parameters 
>. or >.1, >.2, respectively. 

In order to recall Theorem in [K-S-T 2] 5.4, we introduce some par­
ticular quiver AA(W) depending only on the signature set A(W) (13) (see 
Footnote 32) for the orbifold structure on Cw. Slightly more generally, 
let us define 

Definition. Let A = { a1, · · · , llr} 
be a multi-set of r positive integers for some r E Z::::-: 0 . Then the quiver 
AA of type A is defined by the following figure and data. 

Table 14. 

' 

/ 
' ' ' ' ' 

' 
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where the set of vertices and the set of arrows are given as follows: 

EA {(v1,vo;+), (v1,v1;-)i, (v1,v1;-)2} 
II llj=1 {(vi,2,v1;+), ··· ,(vi,ai,vi,ai-1;+), (v1,vi,2;+)}. 

Remark 9. We have only two negatively signed arrows between the 
vertices ih and v1. They are distinguished by the subscripts 1 and 2 
as (v1, v1;-h and (v1, v1;-)2. They shall later turn to relations in the 
path algebra. 

Before we state the main theorem, we introduce one more numerical 
invariant: the dual rank vw for any regular weight system W. It is 
defined by using exponents ew(i) defined at Preface of the paper, as 

(34) vw := - L:jlh j · ew(hfj). 

It is introduced [Sa17] (7.2) as the rank of W* (if it exists). Actually, 
we prove the formula (whose proof will appear elsewhere): 

vw = 2:::~= 1 (o:i- 1) + 2(1- ao)- c:w 

where A(W) = { o:1 ,· · ·, O:r} is the signature set of W (see Footnote 31). 

Remark 10. In this section, we have c:w = -1 and a0 = 0. So the 
formula reduces to 

Then, one observes that the first term of this formula coincides with the 
number of vertices on the r branches of the diagram ~A and the last 
term 3 coincides with the number of vertices on the central axis of the 
diagram ~A· 

The same interpretation is possible for the case of the previous sec­
tion §17, where one has c:w = 1 and ao = 0 so that one has vw = 
2:::~= 1 ( O:i - 1) + 1. Then this formula again describes the number of 
vertices in a Dynkin diagram. However, in the case when the weight 
systems are selfdual, rank and dual rank coincide with each other, and 
it is unnecessary to introduce such dual rank. 

Theorem. Let W be a regular system of weights with c:w = -1 and 
ao = 0. We fix a polynomial fw of type W. Let Tw (25) be triangulated 
category associated to fw. Then, there exists a strongly exceptional col­
lection Ec,.A = (E1, · · · , Evw) of the category Tw satisfying the following 
properties. 
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i) The £AA generate the triangulated category Tw . 
ii)) The quiver associated with the collection [AA is equal to ~A 

(Table 14), where A is equal to the signature set A(W) of W. 
iii) lfthe (vi,Vji+) is a real arrow of~A, thenHomTw(Ei,Ej) is a 

vector space of rank -Ce,ij(= 1). If, further, the arrow (vi,Vji +)is on 
the branches of ~A, then HomTw (Ei, Ej) is spanned by an irreducible 
homomorphism. 

iv) The assignments 

of a base Iii ofHomTw(Ei,Ej) to each arrow (vi,Vji +)of ~i together 
with suitable choices, depending on fw and Iii, of the relations 

(35) R((1h, VIi-h) 
R(('ih,VIi -)2) 

.L:~=I AI,i ('ih, Vi,2i +) o (vi,2, VIi+), 
= L~=IA2,i ('ih,Vi,2i+)o(vi,2,VIi+), 

induce an isomorphism: 

(36) 

between the path algebra (32) and the hom-algebra (recall §16 4. Theo­
rem). 

Combining the isomorphism (36) with the theorem of Bondal-Kapla­
nov (see §16 4.) on the enhanced category HMF~w(fw), we obtain: 

Corollary. We have the equivalence between the triangulated cate­
gories: 

Db(mod-C(~A(W),R)) ~ HMF~w(fw). 

Recall that the signature set A(W) for the 14 weight systems coin­
cides with the set of Dolgachev numbers (§13), and that it is equal to 
the set of Gabrielov numbers (recall Table 12, 13) for the *-dual weight 
system W* (§14, Fact 7.). 

Recall the basis fi (or gi) defined by the formula (28) of the K­
group of the category Db(mod-C(~A(W),R)). In view of the definition 
(27) of the bilinear form on the K-group and the intesection number 
(29) among the basis elements, we see that the K-group, as a lattice, 
coincides with the lattice associated with the Gabrielov diagram (Table 
12) for the dual weight system W*. That is, we have the isomorphism 
of lattices equipped with symmetric bilinear forms: 

(37) 
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of the K-group of the category for the weight system W and the middle 
homology group of the Milnor fiber (see Footnote 35) of the dual weight 
system W*. In this sense, mirror symmetry at the homology group 
level is confirmed. However, the characterization of the subset in the 
LHS corresponding to the set of vanishing cycles Rw· in the RHS is 
unknown. We ask whether it is the set of images of indecomposable 
exceptional objects in Tw or not (see Footnote 48). 

As was discussed in the Preface, there are three Lie algebras associ­
ated to the 14 regular weight systems W (which admit a *-dual weight 
system W*): 

i) the algebra 9w• defined by the Chevalley generators and gener­
alized Serre relations [S-Y] (4.1.1) for the Cartan matrix associated to 
the diagram ~A(W), 

ii) the algebra g~* generated by the vertex operators e<> for roots 
a E Rw· in the Lie algebra VKo(Tw)/DVKo(Tw) ([Bo1], [S-Y](3.2.1)) for 
the lattice Ko(Tw ), 

iii) the algebra g\.V. constructed by Ringel-Hall construction ([To], 
[P-X], [X-X-Z]) for the derived category Db(mod-C(~A(W)' R)) of the 
path algebra q~A(W), R). 

The following question is the last question of the present paper. 

Problem. Clarify the relationship among these three Lie algebras. Are 
they isomorphic to each other? Do any of (or the covering of) these 
algebras satisfies the requirements posed by Question in §12 and by 
Addition to Question in §14? 

Remark. For the 14 exceptional weight systems W, the (conjectural) 
period domain for the period map for the primitive form of type W is 
introduced [Lo6], [Sa22] (c.f. [Ao]) as 

Bv := { r.p E HomR(V, C) I ker(r.p) < 0} 

where V := (Qw ®JR., I) is the real vector space equipped with a qua­
dratic form I of the signature (l + 2, 0, 2), and ker( r.p) < 0 means that the 
restriction of I to the subspace ker( r.p) is negative definite. It is interest­
ing to clarify the relationship of the period domain Bv for W with the 
space of stability conditions (Bridgeland [Bri 1,2,3],[H-M-S]) for the cat­
egory Tw· through the identification Ko(Tw·) ~ (Qw, -I) due to the 
above Theorem. The ring of "automorphic forms" (in suitable sense, c.f. 
[Ao]) on Bv with respect to the group Ww is expected to carry the flat 
structure (c.f. §12 Question vi)). For some recent developments on the 
geometry of the modular varieties for the orthogonal groups 0(2, n), we 
refer to [Bo1, Bo2, Bo3], [G-H-8 1, G-H-8 2, G-H-8 3] and [Gr]. 
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§19. Appendix. McKay correspondence and its Inverse. 

1. McKay correspondence (1979) [Me]. 

We recall McKay correspondence in its original form [Me]. For its 
further understanding from a categorical view point, see [B-K-R]. 

Let p be the faithful representation of the Kleinean group G into 
SU(2). Let {Po= 1, p2, ... , Pn} be the set of isomorphism classes of all 
irreducible representations of G. Consider the decomposition 

p®pj (j=O, ... ,n) 

for some nonnegative integers nij E Z::::o. Then, one has: 

0) nij E {0, 1} 
i) nii = 0 (i = 0, ... , n) 

ii) nij = nji 

iii) 6 := 2In+l-(nij)i,j=O is negative semi-definite with !-dimen-
sional kernel. 

Actually, from these properties, it is not hard see that 6 is an affine 
Cartan matrix of one of types Az, Dz or E6 , E7 or E8 , and that the matrix 
C obtained by deleting column and low for the trivial representation is 
a Cartan matrix of one of types Az, Dz, E6, E7 orEs (see Table 3.). The 
correspondence: 

(MC): a f-----+ r := the graph associated to c 
induces the bijecti?n, called the McKay correspondence: 

{Kleinean groups} ---t {Simply laced Coxeter-Dynkin graphs of 
finite type} 

McKay wrote [Me] "Would not the Greeks appreciate the result that 
the simple Lie algebras may be derived from Platonic solids?". 

2. Gonzalez-Verdier interpretation of McKay correspondence 

The work by Gonzalez-Verdier [G-V] says that the representations 
Pi are interpreted as vector bundles Vi on the resolution X0 of the sin­
gularity Xo. Then, the 1-st Chern classes c1 (Vi) of the vector bundles 
form the dual basis to the homology classes of the exceptional curves 
[Ei] in Xo. That is: ct(tii) form the fundamental weight for the simple 
root system. 

Let Pi : G ---+ GL(Vi) be an irred. repr. of G. So G acts on C2 x Vi 
diagonally. Then the diagram (not precise) 

(C2 X Vi)/G +- Vi 
! ! 

C2/G ~ Xo +- Xo 
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defines an irreducible vector bundle Vi on Xo 

Theorem (Gonzalez-Verdier 1984). The first Chern class c1(l/i) of 
Vi defines a divisor {a smooth curve) in Xo, which is transversal to 
exactly one irreducible component, say Ei, of E = rr- 1 {0). That is: 
c1(VI), · · · , c1(Vt) E H2{Xo, C) forms the dual basis of [E1], ... , [El] E 

- l 
H2(Xo, Z) ~ Q := EB Zpf. 

i=l 

Table 15. The first Chern classes of irreducible vector bundles over 
XA4,0· 

3. The inverse of McKay correspondence: r ~---+ Wr ~---+ (A(Wr )). 

Let us construct conceptually the inverse of the McKay correspon­
dence (MC) {through regular systems of weights) without using the clas­
sification. 

Let a simply-laced Dynkin diagram r (or, equivalently a Cartan 
matrix C of finite type) be given. The data determine the Coxeter­
Killing transformation c and using its eigenvalues, as we did in §8, we 
obtain the system of exponents m 1 , · · · , mil-. Then, as was discussed in 
§8, the generating function {1) of the exponents decomposes as {2) so 
that we obtain a simple weight system W = Wr. 

How to recover the Kleinean group G from a simple weight system 
W? 

Let W be a simple weight system (i.e. c-w > 0, see §8 Fact 1). Let 
fw be the simple polynomial of the type W {9), and let us consider 
the associated hypersurface Xw,o {11) {the simple singularity). Due to 
Fact 2 in §8 and Theorem in §1, the fundamental group of Xw,o \ {0} is 
nothing but the isomorphic to the Kleinean group to define the simple 
singularity. on the other hand, we can determine the fundamental group 
purely arithmetically as follows. 

Fact 12. Let W be either a simple weight system or one of the 14 non­
degenerate weight systems with cw = -1 and ao =0. Then, we have the 
following isomorphism: 

(A(W)), 
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where we recall that A(W) is the signature set ofW (see §11 a) Fact 5.) 
and that ({p,q,r}) := (p,q,r) denotes the group defined in §1. 

Proof. Combining a result of Mumford, which we quote below, and 
the description of the singularity Xw,o in §11 a) Fact 6. (see also its 
following Example), we get the result. D 

Theorem (Mumford 1961). Let Xo be a two dimensional normal 
singularity, and let Xo -t Xo be a resolution of the singularity such that 
the exceptional set E := 71"- 1 (0) is a union ofl¥'1 such that the intersec­
tion diagram is a tree. Then, by the use of the data of the tree (details 
are omitted), one can write down 1r1 (X o \ { 0}, *) by suitable generators 
and relations, explicitly. 
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