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§ Introduction 

In 1929, 0. Zariski published a paper entitled "On the Problem of 
Existence of Algebraic Functions of Two Variables Possessing a Given 
Branch Curve" [130] where the following question was considered: 

Does an algebraic function z of x and y exist, possessing a preas­
signed curve f as branch curve? 

As Zariski pointed out in the Introduction of [130], this question was 
first considered by Enriques and the problem is reduced to finding the 
fundamental group of the complement of the given curve (the word com­
plement is understood and often omitted for short). Zariski considered 
some explicit cases and proved important results. Here we detail some 
of the most relevant: 

(Z1) If two curves lie in a connected family of equisingular curves, 
then they have isomorphic fundamental groups. 

(Z2) If a continuous family {CthE[O,l] is equisingular fort E (0, 1] 
and Co is reduced, then there is a natural epimorphism 1r1 (JP>2 \ 

Co, Po) -» 1r1(lP'2 \ Ct,Pt), where the base point Pt (t E [0, 1]) 
depends on t continuously. 

(Z3) The fundamental group of an irreducible curve of order n, pos­
sessing ordinary double points only, is cyclic of order n ([130, 
Theorem 7]), see Remark 1. 
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(1) 

(Z4) Consider the projection from the general cubic surface in JP>3 
onto JP>2, centered at a general point outside the surface. Its 
branch locus is a sextic c6 with six cusps whose fundamental 
group is isomorphic to Z/2Z * Z/3Z. 

(Z5) He noted that the six cusps of any sextic described in (Z4) sat­
isfy the extra condition of lying on a conic -without decreasing 
the dimension of their family. Moreover, if C6 is a sextic with 
six cusps and its fundamental group has a representation onto 
the symmetric group of three letters, then c6 is the branch 
curve of a cubic surface and its six cusps lie on a conic. In 
particular if a sextic C6 with six cusps not on a conic exists, 
then 1r1(JP>2 \ C6,Po) ~ 1r1(JP>2 \ C6,p~). 

(Z6) If Q is a three-cuspidal quartic, then 11"1 (JP>2\Q, p0 ) is isomorphic 
to the binary 3-dihedral group, which is a non-abelian finite 
group of order 12 presented by 

(a, b I aba = bab, a2b2 = 1). 

Remark 1. Zariski's proof of (Z3) depended on the following claim 
of Severi: The family of irreducible curves of degree n possessing a given 
number of ordinary double points is irreducible [104]. Severi's proof was 
not correct, and the first rigorous proof of his claim was given in 1986 by 
J. Harris [54]. In the meantime (Z3) was known as the Zariski conjecture 
until the 70's, when it was proved by Deligne and Fulton in [40] and [48]. 

Zariski proved the commutativity of the fundamental group for cer­
tain smooth curves and then he used (Z1) for general smooth curves. 
He was also able to prove the commutativity for nodal arrangements of 
lines. He found degenerations of nodal curves into nodal arrangements 
of lines, thus proving the commutativity of the fundamental group for 
certain nodal curves. A combination of (Z1) with Severi's claim allowed 
him to complete a proof of (Z3). 

In [131], Zariski proved another result regarding (Z5): in modern 
language, the Alexander polynomial of C6 equals t 2 - t + 1 and the 
Alexander polynomial of C6 is 1 (provided C6 exists); the key point for 
both claims is the position of the cusps. The story (almost) ends in [132] 
where Zariski shows the existence of curves C6 using deformation argu­
ments that allow him to prove that their fundamental group is abelian; 
explicit examples were found much later [2, 90]. He also claims that 
there are only two irreducible families of sextics with six cusps. It is not 
hard to prove that the family of sextics with six cusps on a conic is irre­
ducible, and an analogue for the other family is announced by Degtyarev 
in [39, Theorem 5.3.2]. 
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Another important result of [130] is (Z6); for a long time the three­
cuspidal quartic (the only quartic with a non-abelian fundamental group) 
was the only example of a curve whose complement has a non-abelian 
finite fundamental group. In the early nineties, several such examples 
have been found by A. Degtyarev [38], M. Oka [91] and I. Shimada [106]. 

Fundamental groups of curves up to degree five are well known 
(see [36, 38]), but for now little is known about their structure in the 
general case. In this sense, questions like the one raised by Zariski ([134, 
Chapter VIII, § 1]) on the residual finiteness of such groups are still open. 

These results and open questions motivated many mathematicians 
to study the topology of the complements of plane curves. One of the 
most surprising phenomena in this field was the one found by Zariski and 
stated in (Z5), where two irreducible curves with the same singularities 
have non-isomorphic fundamental groups. This leads us to the definition 
of Zariski pairs which are, roughly speaking, two curves that have the 
same local topology but do not have the same embedded topology. Let 
us give a more precise definition of a Zariski pair. 

Definition 2 ([2]). A pair (CI. C2) of reduced plane curves in JID2 is 
called a Zariski pair if it satisfies the following conditions: 

(1) There exist tubular neighborhoods T(Ci) (i = 1, 2) and a home­
omorphism h: T(Ci)-+ T(C2) such that h(Ci) = C2. 

(2) There exists no homeomorphism f : JID2 -+ JID2 with f(Ci) = C2. 
Analogously (C1 , ... , Ck) is a Zariski k-plet if (Ci, Cj) is a Zariski pair for 
any i =f. j. 

Remark 3. The first condition in Definition 2 is replaced by the 
one about the combinatorial data on Ci (i = 1, 2). More precisely, the 
combinatorial type of a curve C is given by a 7-tuple 

(Irr(C), deg, Sing( C), Etop(C), O"top, {C(P)}PESing(C)• {,Bp }PESing(C)), 

where: 
• Irr( C) is the set of irreducible components of C and deg : 

Irr( C) -+ Z assigns to each irreducible component its degree. 
• Sing( C) is the set of singular points of C, Etop(C) is the set 

of topological types of Sing( C), and O"top : Sing( C) -+ Etop(C) 
assigns to each singular point its topological type. 

• C(P) is the set of local branches of C at P E Sing( C), (a local 
branch can be seen as an arrow in the dual graph of the minimal 
resolution of C at P, see [42, Chapter II.8] for details) and 
.BP : C(P) -+ Irr(C) assigns to each local branch the global 
irreducible component containing it. 
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We say that two curves C1 and C2 have the same combinatorial 
data (or simply the same combinatorics) if their combinatorial data 
are equivalent, that is, if Etop(CI) = Etop(Cz), and there exist bijec­
tions tpsing : Sing(CI) ---> Sing(Cz), rpp : C1(P) ---> Cz(rpsing(P)) (restric­
tion of a bijection of dual graphs) for each P E Sing(C1), and rprrr : 
Irr(CI)---> Irr(Cz) such that deg2 orprrr = deg1, O"topz orpsing = O"top 1, and 
f3z,<psing(P) 0 rp P = lpirr 0 f3I,P· 

In the irreducible case, two curves have the same local topology 
if they have the same degree and the same topological types for local 
singularities. On the other extreme, for line arrangements, combinatorial 
type is just the set of incidence relations. 

The fact that two curves have the same combinatorial data if and 
only if they satisfy Definition 2(1) is a consequence of Waldhausen graph 
manifold theory [125, 126]. The dual graph of the minimal resolution of 
the singularities of C is a plumbing graph. Waldhausen theory was de­
veloped in terms of plumbing graphs by Neumann [89]. His main result 
states that minimal normalized graphs are determined by the manifold. 
It is not hard to see that the topological type of (lP'2 , C) determines the 
combinatorial data. Since the graph coming from the minimal reso­
lution may be not minimal, it is possible to find curves C1, C2 whose 
complements lP'2 \ ci, i = 1, 2 are homeomorphic but such that they do 
not have the same combinatorics using, for example, Cremona trans­
formations. Jiang and Yau [60] proved that the homeomorphism type 
of the complement of a line arrangement determines its combinatorics. 
The connection between homeomorphism type of complements to curves 
and combinatorics was studied by Di Pasquale in [100], but not much is 
known about it. 

Also, curves with the same combinatorics form a quasi-projective 
variety in a certain projective space lP' d of dimension d(di 3), where d is 
the total degree of the curves. We will refer to such a variety as the 
combinatorial stratum of curves. A rigid isotopy between curves is a 
smooth path in a combinatorial stratum. 

A connected family of equisingular curves is contained in the con­
nected component of the combinatorial stratum of curves determined by 
any curve of that family. Therefore, the topology of the pair (lP'2 , C) is 
an invariant of such a component. In particular 1r1 (lP'2 \ C, Po) is also an 
invariant and hence (Z5) provides the first example of a Zariski pair. In 
the early nineties, some new examples were found ([2, 37]). Since then, 
the variety of such examples has been very broad and subtle. 

In what follows we will give an insight on the different nature of each 
of these phenomena, the techniques used, and some open questions on 
the general study. The study of Zariski pairs may consist of two parts: 
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(I) To locate curves Ct. C2 in different irreducible components of a 
combinatorial stratum, that is, two non rigidly-isotopic curves. 

(II) To find an effective invariant P of the topology of the embed­
ding, so that, if P(Ct) =/:- P(C2) then (JP>2,C1 ) -;ft (JP>2,C2), that 
is, there is no homeomorphism J : JP>2 ~ JP>2 with f(C1) = C2. 

As for (I), different strategies have been used, for instance: 

(Il) Certain geometrical properties such as position of singularities 
(e.g. sextics whose six cusps belong to a conic), or in more 
generality the existence of non-zero global sections for an ideal 
sheaf I on JP>2 twisted by a certain CJ(d). The expected di­
mension of such vector space of global sections is 0 (like the 
six cusps on a sextic, which in principle are not supposed to 
belong to a conic). This method is often used in combination 
with birational transformations in order to lower the degrees 
of the curves. In that case, the geometrical properties have 
to be translated into new properties on the transformation 
([12, 91]). Also geometrical properties of flex points play an 
important role in finding irreducible components of the combi­
natorial strata ([95, 96]). 

(I2) Arithmetical properties of the components. Such is the typical 
case with line arrangements, when built up by pasting together 
smaller arrangements whose combinatorial strata are discon­
nected ([102, 11, 10]). Also, in the special case of sextics, many 
of these arithmetical properties come from the existence of a 
double covering ramified along the curve. Classification of K3-
surfaces with a given Picard group and some computer work 
finish the task in the case of simple singularities ([127]). Hi­
rational transformations of the covering and appropriate blow­
downs can be used to produce equations ([6]). 

(I3) Direct computation of strata. This can be used either in the 
negative sense (proving the irreducibility of a stratum) which 
tells us where there are no Zariski pairs ([61, 109]), or actually 
finding equations of the strata. This method often requires big 
Milnor numbers, so that the dimension of the strata is small 
and the problem becomes computationally feasible ([9, 98]). 

As for (II), several methods have been developed: 

(Ill) Zariski-van Kampen Theorem. This is the classical method to 
find the fundamental group of the complement to a given curve 
from its braid monodromy ([130, 59, 28]). This technique will 
be treated in detail in §1. Though a very rich invariant, the fun­
damental group of a curve contains the topological information 
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of the embedding in· an intricate manner. The undecidability 
of the isomorphism problem in group theory justifies the need 
to construct new invariants that are effectively computable, 
simple to compare, and fine enough to keep the essential data. 

(II2) Alexander invariants such as the Alexander module, Alexander 
polynomials, and characteristic varieties. This type of invari­
ant shows the connection between algebraic curves and knot 
theory, since many of these invariants have been adopted from 
knot theory. Conversely, much of the original interest and tech­
niques of knot theory had the study of algebraic curves at their 
root. This technique will be developed in §2. 

(II3) Braid monodromy equivalence, also referred to as braid mon­
odromy factorization. It is a much stronger invariant of the 
topology of the embedding than the monodromy group. Braid 
monodromy factorization was only recently proved to be an 
invariant of the (not-necessarily-rigid) isotopy class ([70] for 
cuspidal curves and [25] for any plane curve). This technique 
has been proved to be specially useful to study conjugated 
curves [9, 10], branch curves of surfaces of general type and the 
Chisini conjecture ([85, 70, 69]), as well as symplectic isotopies 
of curves and the realization problem ([99, 62, 64]). Definition 
and more details will be given in § 1. 

(II4) Branched Galois coverings. Based on geometric versions of 
the inverse Galois problem for certain elementary non-abelian 
groups. This technique will be treated in detail in §3. 

(II5) Nikulin theory of integral lattices. Recently developed by Degt­
yarev [39] and Shimada [107, 108]. Let C be a sextic curve 
with at worst simple singularities (see [20] for simple singular­
ities). Let X be the double covering of IP'2 ramified along C, 
and X its minimal resolution. Degtyarev obtains a quadru­
ple Q := (L, h, a, w) where L = H2(X), which is isomorphic 
to the integral lattice of the singularities of C, h C L is the 
pull-back of the hyperplane section class [IP'1] E H 2 (1P'2 ), a C L 
is the set of classes of exceptional divisors appearing in the 
resolution X ~ X, and w C L ® lR denotes the oriented 2-
subspace spanned by the real and imaginary parts of the class 
of a holomorphic 2-form on X. He proves that Qc1 ~ Qc2 if 
and only if cl and c2 are rigidly isotopy and the pairs (IP'2, cl), 
(IP'2, C2) are regularly diffeomorphic, that is, there is a diffeo­
morphism between (IP'2, Cl) and (IP'2, C2) that can be extended 
to a homeomorphism between the K3-surfaces X1 and X2 . Shi­
mada proves that the isomorphism class of L is an invariant 
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of the r -equivalence of the pair (IP'2 , C). This implies that L 
is an invariant of the homeomorphism class of (IP'2 , C) (for a 
discussion on r -equivalence see below). 

In light of the previous list of strategies, one can also describe more 
precisely different examples of Zariski pairs according to which invariants 
are equal and which are different for each curve. 

• Alexander polynomial. It is associated with a group and 
a homomorphism onto Z and with cyclic coverings ramified 
along each component with the same ramification index. A 
Zariski pair that can be distinguished using this invariant is a 
classical Zariski pair, otherwise it will be called an Alexander­
equivalent Zariski pair. Examples of classical Zariski pairs are 
abundant in the literature ([131, 37, 2, 95] among many others). 
Alexander-equivalent Zariski pairs can be found in ([5, 92, 93]). 

• Characteristic varieties and Oka polynomials. The first 
ones (introduced by A. Lib gober in [75] for curves) are asso­
ciated with a group and its abelianization morphism whereas 
the second ones (introduced by Oka in [94]) are associated with 
a group and any homomorphism onto Z. They are both asso­
ciated with Alexander modules and abelian coverings ramified 
(or not) along each component with any ramification index and 
basically provide the same information. The existence of cer­
tain irreducible components of characteristic varieties can be 
described in terms of algebraic conditions of the singular locus. 
Analogously we have Libgober-Oka-equivalent Zariski pairs. 

• Non-abelian coverings and twisted Alexander polyno­
mials. The first one is given by the existence or not of certain 
non-abelian coverings ramified along components. Algebraic 
conditions can be given for the existence of such coverings. 
Twisted Alexander polynomials are associated with a group 
and a representation. Zariski pairs whose algebraic fundamen­
tal groups are isomorphic are called algebraically-equivalent 
Zariski pairs. The main source of examples of algebraically­
equivalent Zariski pairs is found among conjugated curves ([9, 
10, 107, 108]) in a number field; we will call them arithmetic 
Zariski pairs. There are still open questions whether or not 
some pairs of conjugate, non rigidly-isotopic curves are Zariski 
pairs ([44]). Also, a famous example of a Zariski pair of line 
arrangements was produced by G. Rybnikov [102]. A proof 
was published in [11] using arguments of homological rigidity 
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(see Definition 2.30), and a final argument of Alexander mod­
ules. Such Zariski pair is distinguished by the fundamental 
group of the complement, and it is an Alexander-equivalent, 
but it is not known whether it is a Libgober-Oka-equivalent or 
algebraically-equivalent Zariski pair. 

• Fundamental group of the complement n1(1P'2 \ C,p0 ). A 
presentation of it can be obtained via the Zariski-van Kampen 
Theorem from the action of generic (and sometimes even non­
generic) braid monodromy groups of the curve C. Sometimes 
groups can be compared directly ([45, 92, 93]), but oftentimes 
this is too hard of a task. Zariski pairs whose fundamental 
groups are isomorphic will be called 1r1 -equivalent Zariski pairs. 
Note that fundamental groups of algebraic-equivalent Zariski 
pairs have the same profinite completion. Finitely presented 
groups of infinite order with the same profinite completion are 
hard to distinguish. In fact, it is not known whether or not any 
of the algebraic-equivalent Zariski pairs is also a 1r1-equivalent 
Zariski pair. Examples of 1r1 -equivalent Zariski pairs can be 
obtained from the list of arithmetic Zariski pairs given by Shi­
mada [108]. For example, sextics with singularities A18 + A1, 
A16 + A3, and Al6 + A2 + A1 have abelian fundamental groups 
isomorphic to 7L.j67L. (see [6, Remark 5.9]). 

• The homotopy type of the complement IP'2 \C. It can 
be described as the homotopy type of the CW-complex asso­
ciated with a presentation of n1 (IP'2 \ C, Po) obtained from a 
very particular braid monodromy of C that will be referred to 
as the Puiseux-braid monodromy of C (see [73]). Analogously 
we have homotopy type-equivalent Zariski pairs. Known ex­
amples of homotopy type-equivalent Zariski pairs are related 
to Cremona transformations and conjugated curves. In fact, 
it would be very interesting to see whether or not any of the 
non-regular-diffeomorphic examples mentioned above are ho­
motopy type-equivalent. 

• The topology of the complement IP'2 \ C. Any example 
of this sort will be called complement-equivalent Zariski pairs. 
The main information lost between the embedding and the 
complement is the peripheral information, that is the informa­
tion on the location of meridians of the irreducible components. 
A complement-equivalent Zariski pair can be obtained from the 
problem proposed by Eyral-Oka in [44]. Also, in Example 1.39 
we show in detail a complement-equivalent Zariski pair. 
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• r -equivalence. This equivalence relation, introduced by Shi­
mada [107], has to do with the peripheral information men­
tioned above. Two curves C1 and C2 with the same combina­
torics and homeomorphic complements are called r -equivalent, 
if the homeomorphism induces an isomorphism of fundamen­
tal groups preserving meridians. Examples of this sort will be 
called r -equivalent Zariski pairs. 

• The topology of (JP>2, C). Since it is determined by any generic 
braid monodromy factorization of C (as mentioned above), the 
ultimate tool to check for a Zariski pair is its generic braid 
monodromy. These techniques have been used in ([9, 10]). 

The main purpose of this article is to review these different methods 
and to explain how they are used in the study of Zariski pairs. 
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§1. Fundamental group and braid monodromy 

As indicated in the Introduction, the main goal of Zariski's founda­
tional paper [130] is to study the fundamental group of the complement 
of a projective plane curve. A method for its computation is outlined 
in [130]. In [59], E.R. van Kampen gave a more rigorous presentation 
of this method which is now known as the Zariski-van Kampen method. 
Roughly speaking, Zariski showed that such a group is generated by 
meridians of a generic line and then described some relations by mov­
ing this generic line around non-generic lines in a pencil; van Kam­
pen stated and proved his well-known theorem on fundamental groups 
(now known as the Seifert-vanKampen Theorem) and used it to prove 
that Zariski's relations define a system of relations for the fundamental 
group. D. CMniot gave a modern approach to this method in [28]. In 
[29], 0. Chisini realized that this method contains a finer invariant of the 
curve if one interprets the motions of the generic line in terms of a repre­
sentation of a free group in a braid group. Much later, B. Moishezon [84] 
called this invariant braid monodromy and used it to study projective 
complex surfaces via ramification curves of projections. 

1.1. Preliminaries 
Before explaining the Zariski-van Kampen method and the braid 

monodromy invariant, let us introduce some settings and notations. 
Let G be a group. Let a, b E G. For simplicity, we introduce the 

following notations: 

[a,b] 
ab = 

We denote the free group with n generators X1, •.• , Xn by IFn and 
the braid group on n strings by En given by the following presentation: 

(3) 

En naturally acts on IF n on the right as follows: 

if i = j 
ifi=j+1 

ifi=tfj+l. 
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for i = 1, ... , n- 1, and j = 1, ... , n. 
We call the above right action of lan on IF n the Hurwitz action .. In 

particular, the actions of the generators ai (i = 1, ... , n-1) on xi, ... , Xn 

are called Hurwitz moves. Clearly <I> induces an antihomomorphism 
lan ---t Aut(IFn), a Elan ~ <I>( •, a). This homomorphism is injective and 
its image, identified with lan, is characterized by the following result: 

Proposition 1.1 ([22, Theorem 1.9.]). Let T E Aut(IFn)· Then 
T E lan if and only if 

T(Xn ·.·.·xi) = Xn · ... ·XI 

and there exists a permutation a of n-letters such that 

r(xi) = YiXu(i)Yii, Yi E 1Fn, i = 1, ... , n. 

We will now present a geometric interpretation of lan and its action 
1Fn. For details in the following, we refer to [7] and [22]. 

Let us fix a subset, Y = { h, ... , tn}, of C consisting of n distinct 
elements. Let b. C C be a sufficiently big closed disk, i.e., {z E C llzl ~ 
R} R :» 0, such that Y is contained in its interior. Choose a point* on 
ab. = {z E b. llzl = R}. 

Definition 1.2. We define some special elements of the fundamen­
tal group 7i"I(C \ Y,*), called meridians. Meridians are obtained as 
follows: 

• Take a small disk S centered at t E Y containing no other 
elements of Y and choose a point* E as. 

• Consider a path a inC\ Y joining* and *• and denote by rJ;,,s 
the closed path based at* that runs counterclockwise along as. 

• The homotopy class of the loop a-I·'fl;,,s·a is called a meridian 
of t in 7i"I ( C \ Y, *). If the base point is understood, then we 
will simply speak of a meridian of t in C \ Y. 

• It is easily checked that the set of meridians of t E Y coincides 
with a conjugacy class in 7i"I(C \ Y,*) completely determined 
byt. 

• It is also well known that suitable collections of n meridians in 
C \ Y (one for each point of Y) define bases of 7i"I ( C \ Y, *). 

• This construction of meridians also applies to the fundamental 
group of the complement of a divisor in a surface, see Figure 1. 

Definition 1.3. Let b. and * be as above. A geometric basis of 
7i"I ( C \ Y, *) is an ordered basis ('"y1, ... , 'Yn) of 7i"I ( C \ Y, *) consisting of 
meridians such that 'Yn · ... · 'YI is homotopic to the loop ')'*, the closed 
path based at* that runs counterclockwise along ab.. 
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Fig. 1. A meridian 

Definition 1.4. A pseudo-geometric basis of 1r1 ( C \ Y, *) is an or­
dered basis ( ')'1, ... , 'Yn) of meridians such that 'Yn · ... · 1'1 is homotopic 
to the inverse of a meridian of { oo} in C \ D.. The product 'Yn · ... · 1'1 
is called the pseudo- Coxeter element of the basis. 

Note that a geometric basis r := {1'~, ... , 'Yn} is a free basis of 
1r1(C \ Y,*) ~ IFn. Given any element u E IB\n, the Hurwitz action of u 
on r produces another geometric basis. By Proposition 1.1, one has the 
following: 

Proposition 1.5 (Artin). The Hurwitz action of the group IB\n on 
the set of all geometric bases of 1r1 ( C \ Y, *) is free and transitive. 

Definition 1.6. A Y -special homeomorphism is an orientation­
preserving homeomorphism f : C -+ C such that 

(i) Y is fixed as a set, not necessarily pointwise, and 
(ii) f is the identity on C \ D.. 

A Y-special isotopy is an isotopy H: C x [0, 1]-+ C such that H(•,t) 
is a Y-special homeomorphism for all t E [0, 1]. We denote the set of 
classes of Y -special homeomorphisms up to Y -special isotopy by By. 

Let !I and h be Y -special homeomorphisms. We denote their 
classes in By by [/i] (i = 1, 2), respectively. The product [!I][h] := 
[!I o h] endows By with a group structure that acts on 1r1(C \Y, *)on 
the left. 

Let Mn := the set of ordered n-distinct points in en. The symmetric 
group of n letters acts on Mn freely via permutation of coordinates. Let 
Sn(M) be the quotient space of Mn with respect to this action. One can 
regard Sn(M) as the set of unordered n-distinct points; andY E Sn(M). 
Consider By := 1r1(Sn(M), Y), and note that any 'Y E By is the ho-
motopy class, relative to {0, 1}, of a set of n-paths {'Y1(t), ... ,')'n(t)}, 
'Yi: [0,1]-+ C such that Y = {'Y1(0), ... ,')'n(O)} = {'Y1(1), ... ,')'n(1)}, 
'Y1(t), ... ,')'n(t) are all distinct fortE [0, 1]. An element of By is called 
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a braid based at Y. It is known that By S:! l!lln (see [22] for details). For 
technical purposes, it is oftentimes convenient to consider open braids 
starting at Y1 and ending at Y2, where Y 1, Y2 E Sn(M) as the homo­
topy class, relative to {0,1}, as before where Y1 = {"n(O), ... ,/'n(O)}, 
and Y 2 = {1'1(1), ... ,/'n(1)}. The obvious composition operations en­
dow the class of open braids with a groupoid structure (see [7] for de­
tails). 

Our purpose next is to describe natural identifications between By 
and By. 

Lemma 1. 7. By and By are naturally anti-isomorphic. 

Proof. Note that any orientation-preserving homeomorphism of C 
is isotopic to the identity (for a proof, see [53, Lemma 5.6.]). Also, let 
[h] E By be an arbitrary element of By and let H : C x [0, 1] ---> 

C be an isotopy such that H(•,O) = h and H(•, 1) = ide. Then, 
H(t1, t), ... , H(tn, t), t E [0, 1], are paths such that: 

(i) {H(t1. 0), ... , H(tn, 0)} = {H(h, 1), ... , H(tn, 1)} = Y, and 
(ii) {H(t1 , t), ... , H(tn, t)} (t E [0, 1]) is a set of n distinct points for 

all t E [0, 1], i.e., /'h := {H(tl> t), ... , H(tn, t)} gives an element of By. 
This correspondence [h] f---> /'h gives the announced anti-isomorphism 

(for more details, see [53, Theorem 5.4.]). Q.E.D. 

Lemma 1.7 assures the existence of a right action of By on 7r1 (C \ 
Y, *), which coincides with the Hurwitz action for a proper choice of the 
base point and the geometric basis (see for instance [7, Example 1.8]). 
In particular, any homomorphism from a group G to l!lln induces a right 
action of G on 11"1(C \ Y,*). 

1.2. Zariski-van Kampen method and braid monodromy 

Let C c IP'2 be a reduced projective plane curve of degree d. Choose 
a line L rh C and a point PEL\ C, and consider the projection centered 
at P. Let us take homogeneous coordinates [X : Y : Z] in IP'2 such 
that L : Z = 0 and P = [0 : 1 : 0]. In what follows we will focus 
on C2 := IP'2 \ L with affine coordinates x := f, y := ~' and whose 
projection may be written as II: C2 ---> C, II(x, y) := x. The affine curve 
caff := C n C2 = C \ L can be defined by a reduced monic polynomial 
f(x, y) in the variable y such that degy f = deg f =d. 

Let Vf := {x E C I discy f(x) = 0} and let L be the union of the 
lines Lt : X = t, t E vf. The main point of the Zariski-van Kampen 
method is the following: 
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Lemma 1.8. The restriction 1f := rrfiC2\(CaffuL) : <C2 \ (caff u L) ____, 
<C \ D f is a locally trivial fibration whose fiber is isomorphic to <C with d 
punctures. 

This follows from Ehresmann's Fibration Theorem (see [41, p.15]), 
since the vertical lines having less than d distinct intersection points 
with caff have been removed. 

Since 1r is a locally trivial fibration whose fiber is diffeomorphic to 
<C with d punctures, the polynomial f induces an algebraic mapping 
J: <C \ Dt ____, Sn(M) given by xo f---t {y E <C I f(xo, y) = 0} E Sn(M). 
In order to define braid monodromy we need to consider * E <C \ D f a 
regular value on the boundary of a disk b..t containing Dt in its interior 
and denote by Y* the set of roots of the polynomial f(*,Y) = 0. 

Definition 1.9. 

{i) The homomorphism \7 *: n 1 (<C\DJ, *)____,By:= nl(Sn(M), Y*) 
induced by f is called a braid monodromy. 

{ii) Fix an isomorphism Ly• : BY* ~ lBd (Note that the isomor­
phism depends on the choice of Y*, i.e. *) and define \7 *,Y• := 

Ly• o \7 *. Given any geometric basis /'1, ... , f'r of 1r1 ( <C \ D f, *), 
where r := #(DJ), the r-tuple (V'*,Y•bl), ... ,V'*,Y*br)) E 
(JBdt is called a factorization of the braid monodromy of (C, L, P) 
or simply a braid monodromy factorization of (C, L, P). 

{iii) The image by \7 *,Y• of a pseudo-Coxeter element (Definition 1.4) 
will be referred to as a pseudo-Coxeter braid. 

Note that a braid monodromy factorization depends on the choice 
of the geometric basis of n 1 (<C \ DJ, *) and Ly. By Proposition 1.5, any 
change of geometric basis is given by a Hurwitz move. We will expound 
upon this in section §1.3. 

Now we are in the position to state the results obtained by Zariski­
van Kampen in [130, 59] with the purpose of describing a presentation 
of the fundamental group of an affine curve. In order to do so consider 
b..J as above and b..y a closed disc such that caff n rr- 1(b..J) C /j.f X b..y, 
and caff n (ab..J) X (ab..y) = 0. Let r := {1'1, ... 'l'r} be a geometric 
basis of nl(<C \ Df, *) and choose a base point (*, *) (* E ab..y)· Since 
n- 1 (D..1) n (D..1 x b..y) ____, D..1 has a section, there exists a lifting at for 
each l't· Note that 1r1 (<C \ Df, *) ~ n 1 (b..J \ Dt, *) and at is a meridian 
of Lt. Under these conditions, and using the long exact sequence of 
homotopy, one has the following: 

Proposition 1.10. Let (p1, ... ,pr) E (JBdt be a braid monodromy 
factorization of (C, L, P) and let {g1 , ... , gd} be a geometric basis of 
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1r1(<C \ Y*, *). Then 1r1(<C2 \ (Caff U L), (*,*))has the following presen­
tation: 

(4) (gi, ... ,gd,ai, ... ,ar I g1j' =g't, i = 1, ... ,r, j = 1, ... ,d). 

As a corollary to Proposition 1.10, one obtains the celebrated Zariski­
van Kampen Theorem: 

Corollary 1.11 (Zariski-van Kampen Theorem). Under the 
previous hypotheses, 11"1 (<C2 \ caff) has the following presentation: 

(5) (gb···,gdlgji=gj, i=1, ... ,r, j=1, ... ,d). 

A presentation of 1r1 (IP'2 \ C) is given by 

(6) (gb···,gd 1Yd· ... ·g1=1, gj;=g3, i=1, ... ,r, j=1, ... ,d). 

The main tool of the proof of Corollary 1.11 is in [47, Lemma 4.18]. 

Lemma 1.12 ([47]). Let A C X be a divisor in a smooth quasi­
projective variety X, and let B C X be an irreducible divisor not con­
tained in A. Then, the inclusion induces an epimorphism 1r1 (X \ (AU 
B)) ...... 1r1(X \A) whose kernel is generated by the meridians of B. 

Proof of Corollary 1.11. It is an iterated application of Lemma 1.12. 
For ( 5), we use that the loops a 1, ... , ar in ( 4) are meridians of the lines 
Lt, t E ~- For (6), note that (gd · ... · gl)-1 is a meridian of the pro-
jection point P in L* = L* U { P} C IP'2 , i.e. a meridian of the line at 
infinity L in IP'2 • Q.E.D. 

Since we are mostly interested in the isomorphism class of the fun­
damental group, and since the spaces studied are connected, unless nec­
essary for technical reasons, the base point of the fundamental group of 
a curve complement will be omitted. 

Remark 1.13. We can decrease the number of relations in (4), (5) 
and (6). 

(a) 

(b) 

Since the Hurwitz action fixes the product gd · ... · g1, it is 
enough to consider j = 1, ... , d - 1. 
Since Lis transversal to Cit is well known that Pr·· . . ·p1 = ~~, 
that is the full twist, where~~= (ad-1 · ... · a1)d, which is a 
generator of the center of lffid. Thus its Hurwitz action coincides 
with the conjugation by 9d·· . . ·g1. Therefore, in (5) it is enough 
to consider i = 1, ... , r -1, j = 1, ... , d -1, and add relations 
to make gd · ... · g1 into a central element. Analogously, in (6) 
it is enough to consider i = 1, ... , r- 1, j = 1, ... , d- 1, and 
gd ..... 91 = 1. 
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(7) 

(c) There is another possible reduction in the number of relations 
which was already indicated in [130]. Let us explain it in mod­
ern terms. 

One can identify rr1(Sd(M), d) (where d := { -1, ... , -d}) 
and IBid as follows: each generator ai ( i = 1, ... , d-1) represents 
a positive half-twist interchanging -i and -(i + 1). Note that 
any open braid T starting at Y* and ending at d defines an 
isomorphism from rr1 (Sd(M), Y*) onto IBid by conjugation. 

Any meridian 'Y oft E ~can be decomposed as a- 1 ·ru,,s·a 
as in Definition 1.2. On the other hand, any open braid T 1 

starting at the set of roots off(*, y) and ending at d, can be 
decomposed as 'V('Y) = p-1 · f3 · p, where p, f3 E IBid satisfying: 
• pis obtained by the juxtaposition of T 1- 1 , j*(a) and T; 

• f3 is obtained by the juxtaposition of T1- 1, j* ( "l*,S) and T1 • 

The braid f3 reflects the local structure of the singularities of 
the projection TI with respect to C at t. Let us use the following 
notation: 

• Lt n C := {Pt, ... ,ps}, 
• (Lt · C)Pi = fi + 1. 

Note that s + E:=l fi =d. Moreover, for generic projections 
one can assume that fi > 0 <=? i = 1, also if p 1 is smooth then 
£1 = 1, and finally if p 1 is singular then £1 + 1 is the multiplicity 
of Cat Pl· 

The braid f3 is obtained as the unlinked union of s braids 
f3i E IBiti+l, i = 1, ... , s. Note that each f3i is the local algebraic 
braid obtained via the Puiseux expansion of the branches of C 
at Pi with respect to the variable x. Also note that each f3i is 
a positive braid (i.e., represented as a word in positive powers 
of ai's). A braid f3 obtained as an unlinked union of local 
algebraic braids is called a Puiseux braid. In this scenario, the 
following relations suffice: 

g~;~k = g~i+k' k = 1, ... ,fi, i = 1, ... ' s, 

where ni := E~~~(fi + 1). Each point Pi produces fi relations 
which are transported via p. Regular points for the projection 
give no relations. 

Example 1.14. Examples of braids f3 for several arrangements of 
{pt, ... , Ps} are presented below: 

(a) (C,p1) has a local equation y2 - x = 0 and C rhPi Lt, i = 
2, ... , d- 1. This means that Lt is a simple tangent to C. 
Thus f3 = a1. 
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(b) (C,pi) has local equations y2 - x = 0, i = 1, 2, and C rhp; Lt, 
i = 3, ... , d - 2. This means that Lt is a simple bitangent to 
C. Thus {3 = a1a3. 

(c) (C,pl) has a local equation y3 - x = 0 and C rhp, Lt, i = 
2, ... , d - 2. This means that Lt is a tangent at an ordinary 
inflection point of C. Thus {3 = a 2a 1. 

(d) (C,p1) has local a equation yk - x = 0 and C rhp, Lt, i = 
2, ... , d- k + 1. This means that Lt is a tangent at a higher 
order flex of C. Thus {3 = O"k-1 • ••• • a1. 

(e) (C,p1) has a local equation y 2 - xk+l = 0 and C rhp, Lt, i = 
2, ... , d- 1. This means that Lt intersects C transversally at 
an Ak-point. Thus {3 = a~+l. 

(f) (C,p1) has a local equation y3 - x 2 = 0 and C rhp, Lt, i = 
2, ... , d- 2. This means that Lt is tangent to C at an ordinary 
cusp. Thus {3 = ( a 2a1) 2 . 

(g) (C,p1) has a local equation y3 - x 4 = 0 and C rhp, Lt, i = 
2, ... , d - 2. This means that Lt is transversal to C at an E6 -

point. Thus {3 = (a2a1)4 . One can check that local equation 
y3 + x 4 = 0 provides a different braid, namely, {3 = (a1a 2 ) 4 • 

(h) (C,p1) has a local equation yk- xk = 0 and C rhp, Lt, i = 
2, ... , d- k + 1. This means that Lt intersects C transversally 
at a k-fold ordinary point. Thus {3 = (ak_ 1 · ... · a 1)k = ~~­

A general algorithm to obtain a positive braid from Puiseux factoriza­
tions has been developed by S. Martinez Juste. 

In general, the computation of a braid monodromy factorization is 
a hard numerical task. Computer-based algorithms have been produced 
by D. Bessis and J. Michel [21], and J. Carmona [25]. There are some 
particular cases where a more or less direct computation is possible: 

(C1) Arrangements of lines by Arvola [18] via wiring diagrams. 
(C2) Strongly real curves [3, 4, 5, 123, 12, 9, 88], i.e., curves with a 

real equation such that the real picture and the topological type 
of the singular points contain all the topological information of 
the embedding of the curve. 

(C3) A combination of (C1) and (C2) was considered by M. Salvetti 
in [103]. Explicit constructions can be found in [10]. 

The computation of the fundamental group allows us to compute 
the first homology group. 

Proposition 1.15. Let d1, ... , dr be the degrees of the irreducible 
components ojC, d := degC = L:;;=1 di, and do:= gcd(d1. ... , dr)· Then 

(8) H1 (1P'2 \C, Z) = (xi. ... ' Xr I d1X1 + ... +d~Xr = 0) ~ zr-1 X Z/doZ. 
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There is a natural mapping Mer : n1 (lP'2 \C) ---> Z/ d7L sending any merid­
ian to 1 mod d. 

Proof. It is enough to abelianize (6) and recall that two meridians 
are in the same conjugacy class if and only if they are meridians of the 
same irreducible component (Definition 1.2). Q.E.D. 

In some sense n1 (lP'2 \C) and n1 ( C2 \ caff) determine each other (it 
is important to recall that we assume in this subsection that L rh C). 

Proposition 1.16. The fundamental group n1 (C2 \ caff) is the pull­
back of 

(9) 

where the horizontal arrow is the homomorphism Mer in Proposition 1.15 
and the vertical one is the standard projection. In particular, if a presen­
tation of n 1 (lP'2 \C) is given whose generators g1, ... , 915 are meridians of 
C h l t . 1 t Wi (g) d Tid Zj (g) 1 h , w ose re a zons are o ype 9£, = 9m;, an )=1 9nj = , w ere 
Ri, mi, n1 E {1, ... , 15}, and wi(g), Zj(g) are words in 91, ... , 915, then 
(10) 

~k (C'\C"") ~ (h, ... , h, I h~'(h) ~ hm,. lr! h:i, (h), hk] ~ 1, 1 $ k $ J) , 
where wi(h) and Zj(h) are words in h1, ... , h15 obtained from wi(g), Zj(g) 
replacing 9i 's by hi's, respectively. 

Proof. The pull-back of (9) is given by 

G := {(9, n) E n1(1P'2 \C) x 7L I Mer(9) = n mod d}. 

Note that n1(C2 \ caff) induces a commutative diagram in (9) using as 
a vertical arrow the mapping coming from inclusion and as a horizontal 
arrow the mapping that sends any meridian to 1 E 7L. Hence there is a 
natural mapping n1 (C2 \ caff) ~ G. Using Reidemeister-Schreier, it is 
easily seen that (10) is a presentation of G. 

For the first part, one may assume that the presentations of n1 (lP'2 \ 

C) and n1(C2 \ caff) are those of (6) and (5), respectively. Since Lis 
transversal to C, Remark 1.13(b) implies that presentation (5) can also 
be obtained from (6). For convenience, the generators of n1(1P'2 \C) 
will be denoted by 9i· Note that 'I/J(9i) = (jji, 1) and 'I/J(9d · ... · 91) = 
(1, d). Since G and n1(C2 \ caff) have the same presentations, '1/J is an 
isomorphism. Q.E.D. 
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Presentations of fundamental groups of affine plane curves rr1(C2 \ 

caff) have special properties. For instance, rr1 (C2 \ caff) can be generated 
by meridians and any two meridians of the same irreducible component 
are in the same conjugacy class (Definition 1.2). A useful type of pre­
sentations of rr1 (C2 \ caff) is the following: 

Let C1, ... , Cr be the irreducible components of caff and let us fix a 
meridian xi of Ci. Note that, as mentioned above, any other meridian 
xi of Ci is in the conjugacy class of xi, in particular, it can be written as 
Xi. y, y E 11"1 (C2 \ caff)'' 11"1 (C2 \ caff)' being the commutator subgroup of 
rr1 ( C2 \ caff). We call a presentation of a group satisfying these properties 
a Zariski presentation, whose precise definition is as follows: 

Definition 1.17. Let G be group. We denote its commutator 
group by G'. A presentation (xt, ... , Xn Y1, ... , Yu I wi(x, y) = 1), 
x := (xt, ... , Xr ), y := (yt, ... , Yu), of a group G is called a Zariski 
presentation if 

The Abelian group G/G' ~ 'llqffi'll/p1Zffi· · ·ffi'll/p8 7l (q+s = r) 
is generated by the classes of x1, ... , Xn where x~+i E G' for 
i = 1, ... ,s. 
The classes of Y1, ... , Yu in G / G' vanish. 
The words wi(x, I) are products of commutators in x and x~+i· 

To be more precise, we have just proved the following. 

Proposition 1.18. Under the conditions above, rr1 (C2 \Caff) admits 
a Zariski presentation, where s ~ d- r, and d := degCaff. 

1.3. Braid monodromy and topology 

In this section we want to examine in more detail the type of objects 
presented in Definition 1.9 in the previous subsection. They have been 
used to obtain presentations of fundamental groups, but they actually 
contain much more information. 

Consider ( T1, •.. , Tr) E (.Iadt a braid monodromy factorization of the 
triple (C, L, P) obtained from the geometric basis /'1, ... , l'r· As men­
tioned after Definition 1.9, any change of geometric basis produces a new 
braid monodromy factorization, which is given by a Hurwitz move. Since 
the family of possible geometric bases is parametrized by .lar (Proposi­
tion 1.5), the braid group induces a Hurwitz action on (Tt, ... , Tr ). Also, 
a change of the base point ty• produces a new braid monodromy factor­
ization, which is given by conjugation ( Tf, ... , Tj!), where f3 is a certain 
braid in .lad. 
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The different factorizations derived from all the different choices 
can be described as naturallBr and JBd actions on (1Br r on the right as 
follows: 

1Br: Let ( 7I. ... , 7r) E (JBd)T and let O'i ( i = 1, ... , r -1) be canonical 
generators. Then the action is given by 

(11) 

if i = j 
ifi=j+1 

ifi~j+l. 

fori= 1, ... , n- 1,j = 1, ... , n. 
lBd: Let ( 71, ... , 7r) E (JBdY and let (3 E JBd. Then the action is given 

by 

(71 1 ... ,7r),6 := (7f, ... ,7~) 

These actions of 1Br and JBd commute; and hence they define a 1Br x JBd 
action on (JBdY. 

For more details, see [7]. Summing up, we have the following: 

Proposition 1.19. Let (71, ... , 7r) be a braid monodromy factoriza­
tion of(C,L,P). Then (1\, ... ,fr) E (lBdY is another braid monodromy 
factorization of (C,L,P) if and only if (f1, ... ,Tr) is in the orbit of 
( 71, ... , 7r) with respect to the 1Br x JBd action as above. 

Remarks 1.20. 

(1) The definitions and results in §3.1 and §1.2 where geomet­
ric bases are required can be substituted by pseudo-geometric 
bases. In particular, the concept of braid monodromy factor­
ization can also be obtained from a pseudo-geometric basis and 
Proposition 1.10, and Corollary 1.11 remain true. 

(2) Note that a continuous change of the generic line L and the pro­
jection P produces a situation similar to the change of the base 
point in the following sense. A continuous change of the generic 
line L and fixing P (that is, in the pencil of lines through P) 
only produces a new pseudo-geometric basis, whose associated 
factorization is the same as the original one. On the other 
hand, a continuous change of P on L also defines a new pseudo­
geometric basis, whose associated factorization is conjugated of 
the original one by the braid defined by the motion of P on the 
generic fiber. Combinations of these two motions allow one to 
move from (C, L, P) to any other triple (C, L', P'). 

This motivates the following: 
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Definition 1.21. Two triplets (C, L, P) and (C, L', P') as above are 
said to have equivalent braid monodromies if their braid monodromy fac­
torizations are in the same orbit. We will refer to the class of equivalent 
braid monodromies as the braid monodromy of the curve C. 

A special -and very useful- type of braid monodromy factoriza­
tion can be obtained as follows. Let us fix a pseudo-geometric basis 
(/'I, ... , l'r) of 7ri ( C \ ~; *) and decompose each /'i in the form of a con­
jugation as in Definition 1.2. Following the ideas in Remark 1.13(c), one 
obtains a braid monodromy factorization of the form (PI· /3I · P!I, ... , Pr · 
/3r · p; I), where /3I, ... , /3r are Puiseux braids. These are not difficult to 
obtain from a Puiseux expansion of each local singularity. The difficult 
numerical part comes from the computation of the braids Pi· 

Definition 1.22. We say that ((PI, /31), ... , (Pn /3r )) is a Puiseux­
braid monodromy factorization of C if (p1I · /3I · PI, ... , p; I · /3r · Pr) is 
a braid monodromy factorization of C and the braids Pi, /3i are obtained 
from the decomposition of a meridian (in a pseudo-geometric basis) as 
in Remark 1.13(c). 

Remark 1.23. Note that if ((PI, f3I), ... , (Pn /3r)) is a Puiseux-braid 
monodromy factorization of C, then in particular f3I, ... , f3r are Puiseux 
braids. Also, if (CI,C2 ) is a Zariski pair one can obtain Puiseux-braid 
monodromy factorizations ( (p}, /3i)) i= I and ( (PT, /3i)) i= I such that the 
Puiseux braids coincide. 

Remark 1.24. Note that Definition 1.22 is very restrictive. Let 
((PI, /31), ... , (Pn /3r)) be a r-tuple of pairs of braids such that (P1I · f3I · 
PI, ... , p; I. /3r · Pr) is a braid monodromy factorization of C and /3I, ... , /3r 
are Puiseux braids. This is a necessary condition for ((PI, /3I), ... , (Pr, /3r)) 
to be a Puiseux-braid monodromy. Since Definition 1.22 imposes that 
the factorization Pi I. /3r ·Pi must come from a very particular geometrical 
decomposition of a meridian, one cannot ensure that ((pi, /31), ... , (Pr, /3r)) 
is a Puiseux-braid monodromy factorization of C. 

The construction leading to the Zariski-van Kampen method is closer 
to Puiseux-braid than to general braid monodromy, but it is not easy 
to define good equivalence relations between Puiseux-braid monodromy 
factorizations. From Corollary 1.11 one deduces that braid monodromy 
factorizations determine 7ri (IP'2 \C) and 7ri (C2 \ caff). 

In [73], Libgober showed the relationship between Puiseux-braid 
monodromy factorizations and homotopy type as follows. 

Theorem 1.25 (Libgober [73]). The CW-complex associated with 
the finite presentation of 7ri(C2 \ caff) obtained from (5), with the re­
duction in the number of relations described in Remark 1.13(c), has the 
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homotopy type of C2 \ caff. In particular, a Puiseux-braid monodromy 
factorization of c determines the homotopy type of C2 \ caff_ 

The following results show the strength of Theorem 1.25 and are 
evidence of the importance of braid monodromy. 

Theorem 1.26 (Kulikov-Teicher [70]). lfC has only ordinary nodes 
and cusps, then a braid monodromy factorization of C determines the 
diffeomorphism type of (IP'2 , C). 

Theorem 1.27 (Carmona [25]). A braid monodromy factorization 
of c determines the oriented homeomorphism types of the pairs ( C2 , caff) 
and (IP'2 , C). 

Carmona uses the local results of M. Namba and M. Takai [87] to 
prove that one can produce a topological model of the pairs (C2 , caff) 
and (IP'2 , C) from any decomposition as in Remark 1.24. With this model 
one can apply Libgober's techniques in [73] to prove that C2 \ caff has the 
homotopy type of the CW-complex associated with a presentation ob­
tained from a Puiseux-braid factorization, after the reduction explained 
in Remark 1.13(c). 

1.4. Generic and non-generic braid monodromies 

Up to now, all the statements in §1 assume a generic projection, i.e., 
P '{. C and L rh C. We also assume that the lines Lt, t E ~, satisfy the 
following: 

• Either Lt passes through a singular point of C and Lt does not 
belong to its tangent cone, or 

• Lt is an ordinary tangent to a smooth point of C (i.e., not a 
flex). 

Also, all other intersections of Lt are transversal, i.e., in the notation 
of Remark 1.13(c), one has £i = 0 if i > 1. The braid monodromy ob­
tained under these hypotheses does not depend on the particular choice 
of Land P, PEL (Remark 1.20(2)). Moreover, it is an invariant of the 
connected components of the combinatorial strata of curves. 

Oftentimes, non-generic braid monodromies arise in a natural way, 
and in general they are very useful. Let us explain different situations 
where a braid monodromy is non-generic. 

(NG1) We can choose a non-generic line L and P generic in L; in 
particular, P '{. C and L 1/1 C. In this case Proposition 1.10 
and Corollary 1.11 are still true, because Libgober's proof of 
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Theorem 1.25 also applies here and so does Carmona's The­
orem 1.27. One can eliminate relations for the fundamental 
group using Remark 1.13(c), but not (b). 

(NG2) The line Lis generic but Pis non-generic and P tj. C, i.e., for 
some t E Ll either we have several non-transversal intersections 
or Lt is tangent to C at a flex. All the results of §1.2 and §1.3 are 
true word-for-word. In general, this braid monodromy is not 
an invariant of connected components of combinatorial strata 
of curves. 

(NG3) P is a smooth (non-flex) point of C and L is the tangent line. 
In this case the affine parts of §1.2 and §1.3 remain true. This 
is due to the fact that caff admits an equation f(x, y) = 0, 
where f is monic in y. In general we cannot eliminate the 
relations as in Remark 1.13(b ). This braid monodromy defines 
an invariant of connected components of combinatorial strata 
of curves. 

(NG4) The point P E C is either a flex or a singularity whose tangent 
cone is irreducible. In either case we choose L to be the tangent 
line. The braid monodromy in this case behaves as in (NG3) 
(because C admits a monic equation in y) though in general it 
will not be an invariant of the connected component of com­
binatorial strata of curves. In this case, as well as in (NG3), 
one can also compute ;r1 (J!D2 \C), but some additional informa­
tion about the behavior of the strings of the braid at infinity 
is needed, see [5, 9, 12] for examples. 

(NG5) Choose P, L in order to have vertical asymptotes, i.e., P E C 
and at least one tangent line to C at P is not L. This case 
has been deeply studied in [25]. Braid monodromy and some 
additional data allow one to apply a modified version of the 
Zariski-van Kampen Theorem and to codify the embedding of 
C in J!D2 . 

Why are non-generic braid monodromies interesting? There are at 
least two reasons. The first one comes from effectiveness of computation. 
For a curve C, generic braid monodromy factorizations are orbits in 
(lllld t, where r is the sum of the degree of the dual curve and the number 
of singular points of C. This number could be reduced significantly by 
considering non-generic projections. Also, under certain circumstances, 
a generic braid monodromy factorization can be recovered from a non­
generic one. The second reason has to do with a partial converse of 
Theorem 1.27 and will be developed in page 26. 
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Proposition 1.28. Let us assume that Lt, t E ~' is as in (NG2). 
LetT be the braid associated with Lt. If Lt, t E ~' hash non-transversal 
intersections, then T is the product of h pairwise commuting braids. 

Let us assume now that any Lt has only one non-transversal inter­
section P1 E Lt n C. Then: 

(1) If Lt is tangent to C at a smooth point P1 with (C · Lt)p1 = n, 
then r decreases by n- 2. Moreover, T decomposes into n- 1 
braids conjugated to 0"1 when P is slightly moved in L. 

(2) If Lt, t E ~' passes through P1 E Sing( C) of multiplicity m and 
(C · Lt)p1 = n, then r decreases by n- m and T decomposes 
into n- m + 1 braids, n - m of them conjugated to a 1 when P 
is slightly moved in L. 

Proof The situation becomes generic by slightly moving the point 
P in L, which implies a change in the projection direction. In this case, 
if Lt intersects non-transversally at h points, then after changing the 
projection direction, Lt splits into h non-transversal lines in a small 
neighborhood of Lt, which correspond to disjoint and unlinked strings. 
Thus the first statement follows. For instance, in the case of a bitangent 
(Figure 2) as in Example 1.14(b), T = p · (a3 · a 1 ) · p-1 decomposes into 
the commuting braids p · a3 · p-1 and p. a 1 . p-1 . 

' 
' 

' 
' ' ' ' ' 

Fig. 2. Bitangent 

Let us prove (1). Note that, in this situation T = p·(an_ 1 • •.. ·at)·p- 1 

as in Example 1.14(d), and hence T decomposes into n-1 braids p·ai·p- 1 , 

i = 1, ... ,n -1 -see Figure 3. 
If P1 is a singular point of multiplicity m and (C · Lt)p1 = n, then a 

perturbation of the projection produces m- n + 1 non-transversal lines 
close to Lt: one of them passing through P1 (not in the tangent cone) 
and the other ones ordinary tangents. This gives the statement of (2). 
Let us see what happens if P1 is a cusp as in Example 1.14(f), where 
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Fig. 3. Flex 

r = p · ( a 2 · a1 ) 2 • p- 1. The decomposition is given by p · a~ · p- 1 and 
-1 -1 QED p 0 0"2 0 0"1 0 0"2 0 p 0 0 0 0 

Fig. 4. Cusp 

Also, for projections.as in (NG1) one can prove the following. 

Proposition 1.29. For each non-transversal point p E C n £, with 
multp C = m and ( C · L )p = n, the decreasing of r is given by: 

(1) n - 1 if L is tangent to C at a smooth point p. 
(2) n- m + 1 if L passes through p E Sing( C). 
In this case the line at infinity can be deformed into a generic line 

through P. The new braid factorization is of type (NG2) and has an 
extra term, which is obtained as the product of~~ by the inverse of the 
product of the original braid factorization. 

Therefore a combination of Propositions 1.28 and 1.29 allows one to 
obtain a generic braid monodromy factorization. 
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Remark 1.30. If P E C and multp C = m, then not only r decreases 
but also its braid monodromy takes values in lBld-m· As for the funda­
mental group, one needs additional data in order to recover the generic 
braid monodromy but the complete description of these additional data 
and the recovering process has not been developed yet. 

The second reason stands on this partial converse of Theorem 1.27. 
Let us introduce some notation. Let L cJ. C be a line and P E L. Let 
us also assume that the tangent cone of C at P is contained in L (the 
tangent cone is empty if P tJ. C). In other words, keeping the notations 
of §1.2, we are assuming that f is monic in y. For t E ~ let Lt be the 
projective closure of Lt (recall that P E Lt)· 

Definition 1.31. A triple (C, L, P) as above is called a horizontal 
triple. The braid monodromy obtained choosing P as projection point 
and L as line at infinity is called the braid monodromy of the horizontal 
triple. The fibered curve C'P associated with the horizontal triple is C U 

L u UtE6. Lt. 
We recall the following results by the first two authors and Carmona. 

Theorem 1.32 ([7]). Let (C1 , L, P) and (C2 , L, P) be two horizontal 
triples. Let F : IP'2 --> IP'2 be an orientation-preserving homeomorphism 
such that: 

(i) F(P) = P, i.e, F respects the base point of the fibration. 
(ii) F(L) = L preserving orientations. 

(iii) F(Ci) = Cf preserving orientations. 

Then (C1, L, P) and (C2, L, P) have the same braid monodromy. 

For the special case of line arrangements this result has an ordered 
version. 

Definition 1.33. An ordered arrangement of lines .C is an ordered 
list of lines in IP'2 • A triple (£, L, P) is called a horizontal triple arrange­
ment if it defines a horizontal triple and the lines { Lt}tE6. are ordered. 
The fibered arrangement £'P associated with the horizontal triple ar­
rangement is the ordered arrangement .C + ( L) + ( Lt )tEl>.. 

Let us consider a braid monodromy factorization of(£, L, P). Since 
.Cis an arrangement of lines, this representative belongs to (IP'lBldt, where 
IP'lBld is the pure braid group. Moreover, by the choice of an order in .C 
only conjugations by elements of IP'lBld are allowed (otherwise meridians 
of different components are interchanged). Moreover, since { Lt}tE6. is 
also ordered by the incidence relations, only pure Hurwitz moves are 
allowed. 
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Definition 1.34. A pure braid monodromy is an orbit of (IP'lffidt by 
the action of IP'lffid x IP'lffir· A horizontal triple arrangement (£, L, P) has 
associated with it a pure braid monodromy. 

Theorem 1.35 ([10]). Let (£1, L, P) and (£2, L, P) be two horizon­
tal triple arrangements. Let F : IP'2 ---+ IP'2 be an orientation-preserving 
homeomorphism such that: 

(i) F(P) = P. 
(ii) F(L) = L preserving orientations. 

(iii) F(£j') = £~ preserving orientations and orders. 

Then (£~, L, P) and (£2, L, P) have the same pure braid monodromy. 

1.5. Fundamental group, braid monodromy and Zariski 
pairs 

Fundamental groups are a primary tool in the problem of finding 
Zariski pairs. In the example mentioned in the Introduction (Z5), Zariski 
proved that the combinatorially-equivalent curves had different funda­
mental groups (Z/2Z * Z/3Z and Z/2Z x Z/3Z). In fact, before com­
pleting all the computations, Zariski had found other weaker invariants 
that also served to distinguish the members of the pair. The first one is 
the study of branched Galois coverings ramified along the curve: in only 
one case do D6-coverings exist -a proof in modern terms can be found 
in §3.3. In §3, we present how the algebraic study of Galois coverings is a 
powerful tool to study Zariski pairs, obtaining information about funda­
mental groups without having to compute them. The second invariant 
is the Alexander polynomial which, along with some generalizations, is 
studied in §2. 

These two kinds of invariants are useful for several reasons. As we 
have seen in this section, computation of fundamental groups can be a 
very tricky task. On one hand, some algebraic properties of the curves 
can give rise to invariants of the fundamental group, and thus a difference 
in such invariants means a difference in fundamental groups. On the 
other hand, even if the fundamental group is computed, what one obtains 
is a finite presentation of it. The undecidability of the isomorphism 
problem makes this task feasible only in the simplest examples. 

As explained in the Introduction note that, even though 1r1 (IP'2 \C) 
is an invariant of the embedded topology of a curve C, any homeomor­
phism of pairs (IP'2, C) should send meridians to meridians. Therefore, 
1r1 (IP'2 \ C) with a peripheral structure given by the conjugacy class of 
meridians of the irreducible components of C is sometimes a more useful 
invariant. For example, if we are counting the number of irreducible 
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representations of 1r1 (JPl2 \ C) onto a given finite group, the peripheral 
structure introduces some restrictions on the images of the meridians. 
Analogously, if we are considering Betti numbers of abelian coverings, 
the peripheral structure allows us to describe such coverings canonically 
and thus point out possible differences. In general they will not be 
invariants of the sole fundamental group, but they will be useful for de­
tecting Zariski pairs. These techniques fail when we look for arithmetic 
Zariski pairs, since in this case most invariants of finite coverings are of 
an arithmetic nature. 

We end up this section with referring examples for various kinds of 
Zariski pairs. For details, see the cited references 

Example 1.36. Once one has an example of a Zariski pair which 
is distinguished by the fundamental group, it is possible to give infinite 
families of Zariski pairs using Cremona transformations and covering 
maps. These techniques have been used by Oka [91], Shimada [105, 106] 
and A.M. Uludag [123]. 

Example 1.37 ([62]). In their paper Kharlamov-Kulikov use braid 
monodromy factorizations to find a special kind of Zariski pair, called 
oriented Zariski pair. An oriented Zariski pair is characterized by the 
non-existence of orientation-preserving homeomorphisms. Note that 
complex conjugation preserves the orientation of JPl2 , but reverses the 
orientations of the curves. In [63], they also find examples of complex­
conjugated surfaces such that the complex conjugation does not pre­
serve canonical divisors, thus they do not admit orientation-preserving 
homeomorphisms. If we apply Chisini's conjecture, the branch curves of 
generic coverings give oriented Zariski pairs. For each m the produced 
Zariski pair involves curves of degree 333m2 . 

Example 1.38 ([9]). Let us consider the combinatorial stratum of 
curves with the following combinatorics: sextics with two irreducible 
components of degrees 5 and 1. The quintic curve has three singular 
points of types JE6, A3 and A2 and the line intersects the quintic at two 
smooth points with intersection multiplicities 4 and 1. 

It is not hard to prove that this space has two connected components 
(each one is isomorphic to PGL(3; C)). For one component there is a 
representative C+ with equation in Q( J2)[X, Y, Z]. Its conjugate C_ be­
longs to the other connected component. Let us denote by (C±, L±, P±) 
the horizontal triples, where P± is the JE6 point of C± and L± is the 
tangent line. 
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Using techniques for strongly real curves one can compute a non­
generic braid monodromy factorization of type (NG4) of (C+, L+, P+): 

( 8 4 2 -4 3 3 -3 4 -1 -3 3) 
a2,a2a1a2 ,a2a1a2 ,a2a1a2 ,a1 0"20"1' 

and one of (C_,L_,P_): 

( 3 ( -1 ) ( -1 )-1 8 -1 -2 4 2 -3 2 3) 
a2, a2a1 a2 a1 a2a1 a2 ,a2a1a2 ,a1 a2a1,a1 a2a1 • 

In fact, these are Puiseux-braid monodromy factorizations. Since the 
additional data at infinity are easy to obtain, one can compute rr1 (JP>2 \ 

C±)· It turns out that both groups are isomorphic to Z x GL(2; IF7 ). 

The main point is that these two braid monodromy factorizations 
are non-equivalent. Taking representations of the braid group onto 
GL(2, Z/32/£), the image of the braid monodromies becomes a finite 
set. One can simply check using GAP [49] that both images are dis­
joint. By Theorem 1.32, (C~, C~) is an arithmetic Zariski pair. Similar 
examples in [9] also provide examples of oriented Zariski pairs. 

Example 1.39. Let us consider the combinatorial stratum of sextic 
curves with 4 singular points of types IE7, IE6, A4, and A2. As in the 
previous example, this space consists of two irreducible components, 
each one isomorphic to PGL(3; C). Representatives can be taken in 
each component with equations in Q( v's)[x, y, z] as follows: 

j 8 (x, y, z) :=- (200 +90s) x 6 - (1575 + 705 s) x 5y- (552 + 254 s) zx5 

- (3963 + 1779 s) zx4y - ( 456 + 222 s) z 2x 4 

- (63 + 27 s) zx3y2 - (2817 + 1251 s) z 2x 3y 

-(56+ 21 s) z3x3 + (666 +324 s) z2x2y2 

+ ( -45 + 15 s) z 3x 2y + (48 + 16 s) z 4x 2 + (1737 + 783 s) z 3xy2 

+ (384 + 192 s) z 4xy + 54z3y3 + (1008 + 432 s) z 4y2 , 

where s2 = 5. Let us consider the triples associated with the IE7-point 
P = [0 : 1 : OJ and the tangent line L = {z = 0} at P. First we will 
compute their braid monodromy factorization based on the real picture, 
since both curves are strongly real (see ( C2)). 

Figure 5 shows the real picture of C v'5 : = {! v'5 = 0}, the choice 
of the generic line L*, and the choice of the generators of the braid 
group based on L* \ Cvg. We recall that the way the ai are chosen in 
general corresponds to the lexicographic order in C where a1 + b1 A < 
a2 + b2H if and only if a1 < a2, or a1 = a2 and b1 < b2. 
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Fig. 5. Real graph of Cv15. 

The only singular fibers occur at x = - 3l (where the A2-point 
(- 3l, - 15r -144v'5) lies), at x = -1 (where the JE6-point ( -1, 0) lies), 
and at x = 0 (where the A4-point (0, 0) lies). This can be checked by 
factorizing the discriminant of f V5 with respect to y. 

The dotted curve in Figure 5 represents the real parts of the complex 
conjugated branches. When at most two branches are complex conju­
gated per fiber of the projection (as is our case) this picture plus the 
local braids contain all the necessary information to compute the braid 
monodromy factorization. 

In our case, the local braids around the A4 and the A2 are obvious 
because the branches involved are real. Therefore the first factor of the 
factorization should be o-f and the last one should be a conjugated of 
o-~ (Example 1.14(e)). In this case note that half a turn around the A4 
point corresponds to o-r. Therefore the factorization this far looks like 
(o-f, o-f* {3, (o-r fJ1 a)* o-~), where {3 is the local braid around the JE6-point, 
{31 is half the braid around the lE6-point, and a is the braid from JE6 to A2. 

To obtain a it is enough to note that a local crossing of type Q as 
in Figure 5 corresponds to o-2 1o-1 (always according to our lexicographic 
order in C) as shown in Figure 6. Since there are no more crossings 
between lE6 and A2 one has that a= o-2 1o-1. 

For the lE6-point one has to work a little bit more. One first considers 
a parametrization for the local branches of fs at this point: something 
of the form y = w1x + w2~kxt, k = 0, 1, 2, where ~2 + ~ + 1 = 1. 
Basically the sign of the real part of w2 determines the local braid as 
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Fig. 6. Description of the crossing at Q. 

shown in Example 1.14(g). In our case one obtains f3 = (a1a2)4 and 
hence /31 = (a1a2)2. 

Therefore the braid monodromy factorization in this example is 

(ar,a~ * (a1a2)4, (a~(a1a2) 2 (a; 1al)) *a~). 

Using the relation a1 *a~ = a21 *at and the obvious a[* af = af, 
the last term can be reduced to a 1 * a~, obtaining Table 1. 

I ar I a~ * ( al a2)4 I al * a~ I 
Table 1. 

Claim 1.40. The {non-generic) braid monodromy factorizations of 
(C,;g, L, P) and (C_,;g, L, P) coincide. 

Proof For C_,;g one has an analogous situation as shown in Fig-
ure 7, which has the same local and global information of the strongly 
real picture. Therefore, their braid monodromy factorizations coin­
cide. Q.E.D. 

Moreover, note that, even though the combinatorial stratum consists 
of two irreducible components, the associated affine curves are isomor­
phic. In particular 

j ,;g(w(x, y)) = ( 51841 + 23184v'5) f_,;g(f(x, y)), 
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Fig. 7. Real graph of C_y-g. 

where is, denote the affine equation of fs, 

w(x, y) := ( x, -y + ( 1620 + 648v's) x- ( 2; + 35;) x2) 

is a Jung automorphism, and 

is a linear automorphism of C2 • Note that this does not give another 
proof of Claim 1.40 via Theorem 1.27 since the latter can only be applied 
in principle to generic projections. But it does tell us that the generic 
braid monodromies of Cv'fi u Land C_v'fi u L are equivalent. 

A geometrical interpretation of the J ung automorphism can be given 
as follows. In Figure 8, we show the dual graph of the total transform 
of L after an embedded resolution of the lE7-point. The successive ex­
ceptional divisors are denoted by Ei, i = 1, 2, 3. The branch B 1 denotes 
the strict transform of the cusp of JE7 , the branch B2 denotes the strict 
transform of the smooth branch of the lE7 and the branch B 3 denotes 
the branch at the smooth point of Con L n C8 • 



A survey on Zariski pairs 33 

B1 B2 B3 

-3 -1 -2 1 -11 • 
E1 E3 E2 L 

Fig. 8. 

Note that, contracting the strict transform of L one achieves a 
combinatorially-symmetric situation where B 2 and B 3 cannot be dis­
tinguished. Note that, by the Jung automorphism, B 2 and B 3 are in­
terchanged. 

We can still recuperate valuable information to add to equivalent 
braid monodromies that can distinguish the different behavior at infinity. 
The idea is to color the different branches at infinity. This idea will be 
developed in what follows. 

Remark 1.41. Let (C, L, P) be a horizontal triple of degree d and let 
us choose L*, a generic member of1lp, as the base line of the pencil. Let 
us also fix a continuous uniparametric family of lines Lt ( t E [0, 1]) in the 
pencil such that Lo = L* and L1 = L. The continuity of Lt allows us to 
associate a branch of C at L to each point of C n L*. The combinatorics of 
C at L defines a partition on the set of such branches and hence induces 
a partition 9* on C n L* (which turns out to be independent of the 
chosen path Lt). Ordering the points of C n L* induces a partition 9 in 
{ -1, ... , -d}. Let E.g;> be the subgroup of Ed preserving the partition 
and let lB,g;> be the preimage of E.g;> in JBd. By restriction to lB,g;> one 
can define the 9-braid monodromy of (C, L, P). The same proof of 
Theorem 1.32 can be applied to this particular scenario to obtain the 
following. 

Theorem 1.42. The statement of Theorem 1.32 also holds if we 
replace braid monodromy by 9-braid monodromy, where 9 has the same 
combinatorial meaning at infinity for both triples. 

Now we can show that ( JPl2 , CJs U L) and ( JPl2 , C~ V5 U L) form an 
arithmetic-Zariski pair. 
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Proposition 1.43. Let us consider the curves C¥5 and C_¥5 in 
Example 1.39. There is no homeomorphism between the pairs (1P'2,C~U 

L) and (1P'2 , C~ V5 U L), but their complements are homeomorphic, that 

is JP>2 \ ( c~ u L) ~ JP>2 \ ( c~¥5 u L). 
Proof Let us prove the last statement first. Note that the home­

omorphism between lP'2 \ ( C V5 U L) and lP'2 \ ( C _ V5 U L) preserves the 
pencil of lines through P, therefore, it induces a homeomorphism be-

tween lP'2 \ ( C~ U L) and lP'2 \ ( C~ V5 U L) . 
Let us prove now that the pairs are not homeomorphic. In order 

to do so we will consider the partitions of Remark 1.41. We order the 
points of C n L* as in Figure 6. One has the following situation: 

for C¥5: (1, 2, 3) f-+ (B1. B2, B3). 
for C_¥5: (1, 2, 3) f-+ (B1. B3, B2). 

Hence, the group B9 is simply the pure braid group. Let us de­
note by n¥5 the braid monodromy in Table 1. It defines a &'-braid 
monodromy for C¥5. In order to have a representative of the &'-braid 
monodromy for C~¥5 we have to permute the second and third strings, 
for instance n_¥5 := a2 * n¥5. 

Let H 8 , s2 = 5, be the monodromy groups in B3. If these curves 
have the same &'-braid monodromy, then H¥5 and H_¥5 are conjugated 
by an element in B9. Using GAP4 [49], it is easily seen that this is the 
case and that H¥5 # H_¥5· 

Let c8 be the pseudo-Coxeter braid of n 8 , s2 = 5, (see Defini­
tion 1.9{iii)). Note that 

where ~~ = (a1a2)3 = (a1a2a1)2 is the generator of the center of B3 
(see Remark 1.13(b)). 

If n_¥5 and n¥5 are &'-equivalent, there exists a pure braid T such 
that T * H¥5 = H_¥5 and [c, r] = 1. It can be easily computed (for 
innstance, via the standard representation in the special linear group 
SL(2, Z)) that the intersection of the pure braid group and the commu­
tator of cis the subgroup generated by c and~~. This group is contained 
in the normalizer of H¥5 and hence, such a r cannot exist. Q.E.D. 

Example 1.44 ([10]). This is the first example of arithmetic Zariski 
pairs of lines. It consists of two arrangements .4± of eleven lines having 
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conjugate equations in with coefficients in Ql( J2). In particular, their 
fundamental groups have isomorphic profinite completions. 

The real pictures of .4'± are shown in Figure 9 (lines at infinity 
included). In order to prove that they provide an arithmetic Zariski 
pair, one can proceed by contradiction as follows. 

+ 

Fig. 9. Zariski pair of real line arrangements L_ 

Let us assume that a homeomorphism 'lj; : (IP'2 , .4'+) ----> (IP'2 , ,4'_) 
exists. This homeomorphism must preserve the orientation of!P'2 . Using 
standard intersection theory, one can assume that it either preserves 
the orientations of all the lines in .4'± or it reverses them. Taking 
complex conjugation into account, one can assume that 'lj; preserves the 
orientations of the lines in .4'±. For combinatorial reasons 'lj;(L+) = L_ 
in Figure 9. Let us consider the arrangements Y± obtained by removing 
both the vertical lines and L± from .4'±. Since .4'± has a unique point 
of multiplicity five, it is easy to see that 'lj;(Y+) = Y_. Thus, one can 
order these arrangements in such a way that the ith line of Y+ and 
Y_ are conjugate in Ql( J2). The choice of the lines L± implies that 'lj; 
preserves the order. Moreover, the vertical lines can be ordered so as to 
fulfill the same property. 

Let P be the point of intersection of the vertical lines and let £ 00 be 
the line at infinity. Then (Y±, £ 00 , P) are horizontal triple arrangements 
such that Y'f_ = .4'± \{£±}·By Theorem 1.35, (Y±,L00 ,P) have the 
same pure braid monodromy, but this contradicts [10, Theorem 4.19]. 

Note that no ordered homeomorphism exists from Y+ to Y'!., but 
it is not hard to prove that there exists a projective transformation in 
PGL(3, q sending Y+ toY'!. (thus not respecting orders). 

Whether or not this is an example of a 1r1-equivalent Zariski pair 
(that is, if the groups are actually isomorphic) or a complement-equivalent 
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Zariski pair (that is, if the complements are homeomorphic) remains an 
open problem. 

Example 1.45. [88] Example 1.44 and Rybnikov's example are 
particularly interesting cases of Zariski pairs, since they come from line 
arrangements. What happens with conic arrangements? A nice example 
of a Zariski pair of conic arrangements has been provided by N amba 
and Tsuchihashi [88]. An elementary and exhaustive approach to it 
occupies §4. 

§2. Alexander invariants 

2.1. Alexander polynomials 

Alexander polynomials have been largely used for knots and links in 
connection with cyclic branched coverings of their complement (see [50] 
for a survey on the matter). The first application of cyclic coverings 
to complements of plane curves was already proposed by Zariski (as 
mentioned in the Introduction), and later formalized by Libgober [71]. 
Since then the bibliography on the subject has become extensive. In 
what follows, we will give the basic definitions and present the main 
results on this invariant. 

Consider Xc := lP'2 \ C, where C = Co u C1 u · · · u Cr, Ci is an 
irreducible curve of degree di with equation { ci = 0}, and do = 1 (this 
last condition is purely technical to simplify notation). Note that, under 
these conditions, 

where '/i is the homology class of a meridian of Ci. Let c : H 1 ( Xc; Z) ----> Z 
be an epimorphism. This epimorphism is defined by ( Cl' ... 'Cr) E zr' 
where ci := c("fi)· 

The kernel Kc: of the composition G := n1 (Xc)~H1 (Xc;Z)-=-.z de­
fines a covering of Xc, say 11'6 : Xc,c: ----> Xc, whose group of deck trans­
formations is G / K 6 = Z. 

Remark 2.1. Given n EN the composition of co ab with the natu­
ral quotient Z ----> Z/nZ produces an n-fold cyclic finite covering 1fc:,n : 
Xc,c: ----> Xc whose group of deck transformations is Z/nZ. Note that 
if n divides Ei then 1fc:,n could be extended above Ci \ U#i Cj as an 
unramified covering. 
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The group G/K" = Z acts on K"/K~ = H1(Xc,e; Z) by conjugation 
as follows 

*: GjKE: X KE:/K~ 
(c:(g), k) 

Note that if g' = gh1 (h1 E K") and k' = kh2 (h2 E K~), then 

(g'. k'. g'-1) (g. k-1. g-1) = ((ghl). (kh2). (h11g-1)) (g. k-1. g-1) 

=g. (h1kh2h1 1k- 1). g-1 

=g. ((h1k). h2. (h1k)- 1 h1kh1 1k- 1) g-1 

E K~. 

Hence "*" does not depend on the choice of g mod K" or k mod K~. 
This action endows M~,e := HI(Xc,e; Z) with a Ae-module struc­

ture, where A" := Z[G / K"] :::::: Z[t±1]. One can tensor such a module 
by a field lK = Q, C,lFP, ... to obtain a module M'%'," over A~= JK[t± 1]. 

Since G is finitely presented, M'%'," is finitely generated as a A~-module 
(by as many 1-cells as generators of G). The rings A~ are principal ideal 
domains and hence one can define ~~'"(t) as the order of M'%',". We 
recall that, if R is a principal ideal domain, the order of an R-module 
M, is defined as 

(12) 

if M has a free summand, 

if M = 0, 
"fM R R 1 :::::: (X";) EB · · · EB (>-m). 

Such a polynomial can be assumed to be unique by adding the extra 
condition >.i(O) = 1. This is known as the Alexander polynomial of C 
associated with c:. In general, if lK = Q or C, then the reference to the 
field will be omitted. 

The classical Alexander polynomial (denoted ~c ( t)) corresponds to 
the special case when lK = Q, Co is transversal to Ci for any i = 1, ... , r, 
and c: is the epimorphism that sends any meridian '"Yi around Ci to 1, 
except for i = 0, where c:('"Y0 ) = -d, where d := 2:::~= 1 di. We will 
refer to this morphism as the trivial morphism. If c:('"Yi) =/:: ±1 for any 
i = 0, 1, ... , r we will call c: a non-coordinate epimorphism. The Oka 
polynomials (denoted ~C,e ( t)) correspond to lK = Q, and a transversal 
Co ([94]). 
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Remark 2.2. 

(1) 

(2) 

(3) 

Note that M~,e is not necessarily a torsion module in general. 
For example, if C is a union of r + 1 lines passing through a 
common point and c is the trivial morphism, then 7rl(Xc) = 
Z * · · · * Z a free product of rank r, and it is easy to see that 
M~e = {A~)r-1. 
Also note that M~ e depends only on G = 7rl(Xc) and c. Hence 
one can associate' an Alexander polynomial ~G,e(t) to any 
finitely presented group G and epimorphism c : GIG' ~ Z. 
In fact, such a polynomial corresponds to the Alexander poly­
nomial of the CW-complex Xc associated with any finite pre­
sentation of G, and c: H 1(Xc; Z) ~ Z. 
Assume that 

is a free resolution of M~,e' where A is ann x m matrix with 
coefficients in A~. Then ~c,e(t) can also be defined as 0 if 
m < n, or as the greatest common divisor of all the minors 
of maximal order of A if n :::; m. From (2) above, n can be 
considered as the number of generators in a presentation of G. 

A very useful remark on Alexander polynomials is the following: 

Lemma 2.3. [71, Proposition 2.1] Let G ~ H be an epimor­
phism of finitely presented groups and consider c H : HI H' --+-+ Z an­
other epimorphism. Then ~~,eH divides ~~,ea' where cc = €H o 'l/J1 
and 'l/J1: GIG'~ HIH' is induced by 1/J. 

Proof A presentation of H can be given from one of G just by 
adding a finite number of relations. Therefore from Remark 2.2(3), a 
presentation matrix for M~,eH is the result of adding a finite number 
of columns to the presentation matrix of M~,ea. Therefore the ideal 

generated by the minors of maximal order of M~,ea is contained in the 

one of M~,eH. Q.E.D. 

This situation appears in a natural way when an equisingular family 
of curves { Ct}tE(O,oJ degenerates into a reduced curve Co. 

Proposition 2.4. Under the above conditions there is an epimor­
phism of fundamental groups 

7rl(Xca) ~ 7rl(Xc6 ). 

Hence ~Kc ~ divides ~cK ~ , where c2 = c1 o J.l as in Lemma 2.3. 
6,~1 Q,c;;.2 
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Proof A proof of the first part can be found in [41, Corollary §3 
(3.2)]. The second part is an immediate consequence of Lemma 2.3. 

(13) 

(14) 

Q.E.D. 

Example 2.5. 

(1) Consider a family of r + 1 lines Ct := Ct,o U · · · U Ct,n t E (0, 1] in 
general position degenerating into r + 1 lines Co := C0 U · · · U Cr 
passing through a common point. If c is the trivial morphism 
c('yi) = 1, i = 1, ... , r and c('y0 ) = -r, then one has the 
following 

(2) Consider the three-cuspidal quartic C1 presented in (Z6) and 
a generic line C0 . In order to give a presentation for the fun­
damental group of C := Co u C1 one can simply apply Proposi­
tion 1.16 to the presentation (1) and obtain 

(a, b I aba = bab, [a, a2b2 ] = [b, a2b2 ] = 1). 

Note that there is basically only one possible morphism c, the 
abelianization morphism, which we will omit in the notation. 
An easy computation produces 

and hence 

if char(IK) = 3 

otherwise. 

Since the three-cuspidal quartic is dual to a nodal cubic, we 
know it has a bitangent, say C0 . The fundamental group of 
C' := Co u C1 has the following presentation (see [97, Example 
4.5(3)]) 

which produces 

IK IK[t±1] IK[t±1] 

Me, = ( t2 - t + 1) EEl ( t2 - t + 1) 
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and hence 
~~~(t) = (t2 - t + 1)2 . 

Note that if char(OC) = 3, then (t2 - t + 1) = ( t + 1 )2 , and hence 
~~~(t) = (t + 1)4 . 

All computations in Example 2.5 above have been performed directly 
from a presentation of the fundamental group. We refer the reader to 
Section §2.5 for more details on this. 

Remark 2.6. Very often the Alexander polynomial is defined as the 
torsion of H1(Xc,e:, 'll'; 1 (p); Q) for some p E Xc. This definition comes 
handy for computational purposes, since it can be obtained as the de­
terminantal variety of corank 1 of the Fox derivative matrix associated 
with the group G, as in the case of knots ([35]). 

The geometrical interpretation of the classical Alexander polynomial 
is given as follows (see [101]). The polynomial C1 · ... · Cr defines a non­
isolated singularity at the origin of C3 . The monodromy of the Milnor 
fiber defines an automorphism on the H 1 and the classical Alexander 
polynomial is the characteristic polynomial of the monodromy of the 
Milnor fiber. 

Theorem 2.7. [94, Theorem 43] The Alexander polynomial of C 
with respect to the epimorphism c: H1(Xc)--+-* Z (ci :::=: 0, i = 1, ... , r) 
is equal to the characteristic polynomial of the monodromy h* : H 1 (F) --t 

H1 (F) where F is the Milnor fiber of the polynomial Cf1 • ••• • c;.r. 
Since the monodromy has a finite order, this implies the following. 

Corollary 2.8. All the zeroes of the Alexander polynomial ~c,e(t) 
of a curve C with respect to an epimorphism c are roots of unity. 

Alexander polynomials depend on the local type of singularities of 
C. To describe this dependency we will consider L~, ... , L 8 the local 
links of the singularities of the affine part calf := C1 u · · · u Cr and Loo 
the link at infinity, that is, the intersection of calf with the boundary 
of a tubular neighborhood of the line at infinity C0• The inclusion § 3 \ 

Lk '---" Xc induces a map 'll'l (§3 \ Lk) --t 'll'1 (Xc). Therefore c also induces 
epimorphisms 'll'l (§3 \ Lk)--+-* Z. The Alexander polynomials associated 
with such maps will be called local Alexander polynomials and denoted 
by ~Lk,e: for simplicity. 

This dependency can be described for classical Alexander polyno­
mials. 

Theorem 2.9 ([71]). The classical Alexander polynomial of C di­
vides both the product of the local Alexander polynomials fl~=l ~Lk (t) 
and ~Loc (t). 
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This dependency also has an expression for general Alexander poly­
nomials. 

Theorem 2.10. Under the above conditions 

r 

(II (1 - tt:; )s;-x(C;)) II ~Lk,t:(t) = ~2,t:(t) · det tl(C), 
i=l k=l, ... ,s,oo 

where si := # Sing(Caff) n Ci, X is the Euler characteristic and tpt(C) is 
an intersection form on H2(Xc,t:, Ql[t±l]) with twisted coefficients. 

Proof It is an immediate consequence of [31, Theorem 5.6] and 
the fact that ~~,t:(r 1 ) = ~~,t:(t) (by Corollary 2.8). Q.E.D. 

The fact that Alexander polynomials are not combinatorial invari­
ants was already known (with a different language) by Zariski as men­
tioned in the Introduction with the first example of a classical Zariski 
pair. 

A topological interpretation of classical Alexander polynomials can 
be given as follows: an n-th root of unity ( n > 1) is a root of the classical 
Alexander polynomial of a curve C if and only if the cyclic covering of the 
complement Xc ramified along each irreducible component of caff with 
order n has a bigger first Betti number than h1(Xc; q ([71, Corollary 
3.2]). Moreover the difference between the two Betti numbers is exactly 
the sum of the multiplicities of such roots. The reason for this is that 
the Alexander invariant Me is semisimple in this case, that is, it is a 
direct sum of modules with no proper submodules (also called simple 
modules). 

Analogously, for general Alexander polynomials one has the follow-
ing: 

Theorem 2.11. Let C be a curve and c: H1(Xc;Z)--> Zan epi­
morphism. If an n-th primitive root of unity {n > 1} is a root of the 
Alexander polynomial ~c,t:(t) then the covering Xc,t: has a bigger first 
Betti number than h1(Xc; q. 

Moreover, 

m 

(16) hl(X'C,t:;C) = h1(Xc;C) + I:C~i, 
i=l 

where ai is the number of common roots between t;~11 and Ai(t) from (12). 
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Remark 2.12. 
(1) A similar formula for homology with coefficients in other fields 

exists [83, Theorem 4.6]. The field needs to contain all the n-th 
roots of unity. 

(2) Note that in general one cannot just count multiplicities in or­
der to compute the first Betti number of cyclic (or abelian) 
coverings since the Alexander invariant need not be semisim­
ple. For instance, consider the Example 2.5(2) of the three cus­
pidal quartic and the bitangent line C'. According to Matei­
Suciu [83] if E is the trivial morphism and n = 2, then the 
formula (16) is still valid 

2 

h1(x2,,"';JF3) = h1(Xc,;JF3) + L::ar, 
i=1 

but in this case h1(X2',c:;JF3)- h1(XC';JF3) = 2 even though 

t = -1 has multiplicity 4 in ~~~(t). 

2.2. Characteristic varieties 

Characteristic varieties were introduced by Hillman [55] for links, 
then systematically studied by Arapura [1] for Kahler manifolds, and 
first applied to algebraic curves by Lib gober [7 4]. They can be defined 
analogously to Alexander polynomials as follows. 

Let C := C1 u · · · u Cr similarly as at the beginning of this section, 
except that we are not asking any component to be a line. Let T := 
gcd(d1, ... , dr ). Then 

(17) H1(Xc· Z) = EB~-1 'Yiz ~ zr-1 E9 _.!_ 
' (dn1 + · · · + dr"fr) TZ' 

where 'Yi is the homology class of a meridian of ci. 
We can study the projective plane curve C as follows; let ab: G := 

11"1 (Xc) ---+ H 1 (Xc; Z) be the abelianization epimorphism. The kernel 
G' of ab defines the universal abelian covering of Xc, say Xc,ab ---+ Xc, 
whose group of deck transformations is G/G' = H 1(Xc;Z). Such a 
group acts on G' /G" = H 1(Xc,ab; Z) by conjugation as before endow­
ing M~,ab := H1(Xc,ab; Z) with a Ac-module structure, where Ac := 

Z[G/G'] ~ Z[tr1, ... , t;= 1 ]/(t~ 1 ••••• t~r -1). 
One can tensor M~ ab by a field OC = Q, CC, JF P' •.. to obtain a module 

M~ab over A~= IK[trt'. ... , t;= 1 ]/(t~ 1 • •• • ·t~r -1) (in general we only ask 
A~ to be integrally closed and Noetherian). Since G is finitely presented, 
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M~ ab is again a finitely generated A~-module (by as many 1-cells as 

gen~rators of G). If r 2: 2, then A~ is not a Principal Ideal Domain 
and hence one has to study the module invariants of M~ab' that is, the 

Fitting ideals of M~ab· 
Let us briefly recall the notion of Fitting ideals. Let R be a commu­

tative Noetherian ring with unity and M a finitely generated R-module. 
One has a finite free presentation for M, say <P : Rm ____, Rn, where 
M = coker ¢. The homomorphism <P has an associated ( n x m) matrix 
A,p with coefficients in R such that ¢(x) = A,pxt. 

Definition 2.13. The k-th Fitting ideal Fk(M) of M is defined as 
the ideal generated by 

if k :::; max{O, n- m} 
if k > n 
otherwise. 

It will be denoted Fk if no ambiguity seems likely to arise. 

Definition 2.'!4. [74] Under the above conditions the k-th charac­
teristic variety of M can be defined as 

The subindex k is also known as the depth of a characteristic variety. 
Similarly, the k-th projective characteristic variety Char~IP'(C) of a 

curve C is the k-th characteristic variety of M~ ab as a A~-module. 
If L is a line not contained in C then A ~u~ is naturally isomorphic 

to JK[tt\ ... , t;= 1]. Moreover, if L m C then the A~uc-module M~uc ab 

does not depend on L by Proposition 1.16 and Char~IP'(L U C) is called 

the k-th affine characteristic variety and denoted simply by Char~(C). 
One can also define the k-th characteristic variety Char~(G) of a 

finitely presented group G as the k-th characteristic variety of the mod­
ule MfJ obtained by considering the CW-complex associated with a given 
presentation (of course, such invariant is independent of the finite pre­
sentation of G). 

In the particular case when lK = C and M = M~ab one has: 

• Spec ALuC = 'II'r = (C*t, for the affine case, and 
• SpecAc = 'II'c = {wi}[~l X (er-l = V(tf1 • •• • ·t~r -1) c r, 

where w is a T-th primitive root of unity for the projective case. 
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In the case of a finitely presented group G where GIG' zr EB 
Z/T1Z EB · · · EB Z/T8 Z we obtain 

SpecAa = 'll'a = {(w11 , ..• ,w!·) I ik = o, .. . ,Tk-1, k = 1, ... ,s}x(er, 

where Aa = <C[G/G'] and Wi is a TAh primitive root of unity. 
One might want to keep the non-reduced structure of the Fitting 

ideal. In that case we define the projective (resp. affine} k-th Fitting 
ideal of the curve C over the field IK and denote it as F"f;IP'(C) (resp. 

Fr(c)). 

Remarks 2.15. 

(1) Note that any isomorphism between two finitely presented groups 
G1 and G2 produces an automorphism of the ambient torus 
1!' a 1 = 1!' a 2 such that Chark ( G1) and Chark ( G2 ) are isomor­
phic. 

Note however, that in some particular cases, like funda­
mental groups of link complements (which will not be con­
sidered here) or curve complements, the ambient torus has a 
natural system of coordinates. For instance in the latter case, 
a natural system of coordinates for 'll'c is given by the pre­
ferred basis of H1(Xc;Z) described in (17). In that respect, 
the characteristic varieties of C as subspaces of the torus 'll'c 
are not directly an invariant of the group G, rather they are 
invariant of the embedding of C in JID2 , which is the group G 
with some peripheral information about the homology classes 
of the meridians of the irreducible components of C. 

(2) In the particular case of plane algebraic curves, due to the 
Hodge decomposition of H1 (Xc:,c; C) for appropriate branched 
coverings, the ring homomorphism A~ ---> A~ given by ti ---> 

r; 1 induces an automorphism of the components of Chark(C) 
containing E (see [75, Theorem 3.1.c]). 

Proposition 2.16. If (J!D2 ,C) and (JID2 , V) are homeomorphic, then 
A IC := A~ = A~ in a natural way, and Mtf,ab :::::: M15,ab are isomorphic 

as A1C-modules. In particular Charf(C) = Charf(V). 

Proof. Let us denote by f : (JID2 , C) ---> (JID2 , V) the homeomorphism 
of pairs. Note that the image by f of any disk transversal to a component 
ci of c will be sent to a disk transversal to a component, say vi, of v. 
Since irreducible components intersect pairwise and always positively, it 
is possible to prove that f must either respect or reverse orientations on 
all the irreducible components of the curves. Therefore meridians will be 
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sent to meridians (up to sign) and the induced homomorphism of groups 
!*: H1(Xc;Z) ~ H1(Xv;Z) has the expected property f*('yc;) = 8"(v;, 
i = 1, ... , r (8 = ±1). By Remark 2.22 below, one can assume that 
8 = 1. Finally note that di := degCi = degVi is preserved, since it 
is a topological invariant and hence the first part follows and A C = 
C[tr1 , ... , t;=1JI(tt1 • ••• • t~r - 1). The fundamental groups of Xc and 
X v are isomorphic and the action of each ti on both M~ab = A c ®A 

1r1(Xc)' l1r1(Xc)" and M45 ab = Ac ®A 1r1(Xv)' l1r1(Xv)" is preserved 
by f. Therefore the second part follows. Q.E.D. 

Remark 2.17. 

(1) Note that the isomorphism of NK-modules exhibited in Propo­
sition 2.16 is of a very special kind, since it comes from an 
isomorphism of fundamental groups inducing the identity on 
the abelianization. Since. the. Alexander invariant GIG" of a 
group G can be seen as an extension of GIG' by G' I G", this 
type of isomorphisms of NK-modules will be called extension 
isomorphisms. 

(2) Closely related to Remark 2.15.(1), if one wants to say some­
thing about whether or not the fundamental groups of two 
curves are isomorphic, verifying that M~ab ~ M~,ab as mod­
ules over an abstract A or Chark(C) i= Chark(V) is not enough. 
Instead, invariants of the isomorphism class of Chark(C) and 
Chark(V) should be used such as their total number of irre­
ducible components of a certain dimension (see Section §4), or 
their combinatorial structure (see §2.3). 

Example 2.18. 

(1) Let G = zq *Zip1Z* · · · *Zip8 Z. According to Proposition 2.39 

where 
• A~ = IK[tr1, ... , ti~sl/(t~+ 1 - 1, ... , t~+s - 1), 

Pi 

• Tis the submodule generated by !:!:=~, i = 1, ... , s, and 
• .:1 is the Jacobian submodule. 

In this situation it is easy to see that 

][( (t~+l -1 t~+s -1) F1 (G)= , ... , . 
tq+l - 1 tq+s - 1 
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And hence, 

(2) Consider the Hopf link of d components. For convenience we 
denote its components as Li,j(i), j(i) = 1, ... , di, i = 1, ... , r, 
where I:~=l di = d. A natural presentation of its fundamental 
group G is given by meridians '"Yi,j(i) for each component and 
an extra generator a, and whose relations are [a, "fi,j(i)] = 1 
and 

r d; 

a II II '"Yi,j(i) = 1, 
i=l j(i)=l 

i.e, G is the direct product of .Z and the free group in d - 1 
generators. Then, A~ is a ring of Laurent polynomials in the 
variables sand ti,j(i)• j(i) = 1, ... ,di, i = 1, ... ,r, where the 
product of all variables equals 1. Applying Proposition 2.39 
one obtains 

Moc _ ffil<i<i<d A~xi,j 
a- wd + .:1 ' 

where wd is the submodule generated by s- 1, and .:J is the 
Jacobian submodule. Hence 

r d; 

Ff(G) = (s- 1) = (II II ti,j(i) - 1). 
i=l j(i)=l 

Remark 2.19. Note that if 0 ~ M' ~ M ~ M" ~ 0 is an exact se­
quence of R-modules, then Charf(M) = Charf(M') U Charf(M"). Let 
L be a line transversal to C, and consider T(L) a tubular neighborhood 
of L. In this situation there is a surjection 

Following the notations of Example 2.18(2), we assume that the image 
of '"Yi,j(i) by this surjection is a meridian of ci. 

Since A~L = JK[tr1, ... ,t;!=1], the above morphism induces a ring 

morphism A~""--+-+ A~L given by ti,j(i) f--4 ti and s f--4 {tt1 • ••• • t~r)- 1 . 
Therefore, the surjection Mcoc,GL :=Me""® A~L ~ MLuC,ab induces 
an inclusion 

Charf(C) = Charf(GL) C Charf(Mcoo ® A~J = V(t~1 • ••• • t~r -1), 
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where the last equality can be computed from Example 2.18(2) above. 
In other words, even though the affine Char1 (C) seems to sit in the 

bigger torus 'Jl'T than the projective Char1,1P'(C), the fact is that both 
are contained in 'K'c. Moreover, they coincide as subtori of 'K'c ([75, 
Proposition 1.2.3]). In what follows we will use either one indistinctly. 

D. Arapura, in [1, Theorem 1.6] gives the following description of 
the structure of first characteristic varieties for certain Kahler varieties. 
We adapt the original statement for our particular case of curve com­
plements. In order to do that we need the following concept. 

Definition 2.20. A (fixed component free) pencil of curves in JP'2 

is said to completely contain a curve C, if the induced morphism j : 
W2 -4 JP'1 (after blowing-up the corresponding base points) satisfies that 
C C j- 1(P), where Pis a finite subset oflP'1, and Cis the strict transform 
of C in W2 • Note that, if a pencil completely contains C, then f restricts 
to a well-defined holomorphic map f : JP'2 \ C = Xc -4 JP'1 \ P. A pencil is 
said to contain a curve C, if it completely contains at least one irreducible 
component of C. In addition, a pencil is called primitive if the fibers of 
j are connected. 

Theorem 2.21 ([1]). There exist a finite number of torsion points 
ci E 'K'c, unitary points t 3 E 'K'c, and primitive pencils containing C, 
fi : Xc -4 Vi = IP'1 \ Pi such that 

An analogous result follows for the affine case Char1(C). 
Note that any element of H 1 (Vi;C*) = Hom(H1(Vi;C),C*), i.e. 

any character on H 1 (Vi; C) can be seen as a point of Spec(A~J = 
Spec(C[H1(Vi; C)]) = '['h1 (V;;IC) and vice versa. Therefore ft H 1(1Ji; C*) 
is a subset of'K'c. Also note that edt H 1 (Vi; C*) refers to coordinatewise 
multiplication in 'K'c. Finally, Ci is a torsion point if ci' = (1, ... , 1) =: nr 
for some n E Z and t 3 is unitary if t 3 E (§1 t c 'K'c. 

Remark 2.22. According to a recent work by Libgober [78] unitary 
non-torsion isolated points cannot exist in Chark,IP'(C). Therefore, ac­
cording to Remark 2.15(2), the ring automorphism A~ -4 A~ given by 
ti -4 ti 1 induces a skew automorphism of the corresponding modules 

M~ab· 

Certain components ofChark,IP'(C) can be inherited from subarrange­
ments of C. More specifically, let us assume that V C Chark,IP'(C(i)) 
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is a non-empty component of the k-th characteristic variety of c(i) 
C1 u · · · u Ci-1 u Ci+l u · · · u Cr. Then the natural surjection 

Ae 

if j =I i 

if i = j 

induces an inclusion 

Spec(Ae<'l) = 1l'e<'l C 11'~ 

where 1!'~ = {(c:1, ... ,c:r) E 1l'e I Ei = 1}. 
This allows us to see both Me,ab and Me<'l,ab as Ae-modules and 

consider the natural surjection Me ,ab--+-+ Me< 'l ,ab, as a surjection of mod­
ules. Remark 2.19 and the previous discussion imply that Chark,lP'(C(i)) C 
Chark,lP'(C) n 1!'(;. 

Definition 2.23. We call a component V of Chark,lP'(C) essential 
if it is not contained in any Chark,lP'(C(i))· Otherwise we say V is non­
essential. We call V a coordinate component if it is contained in a 
coordinate torus 1!'~. Otherwise we say V is non-coordinate. 

Note that non-coordinate components are necessarily essential by 
the discussion above. 

Libgober proved in [75] that any positive dimensional coordinate 
component is necessarily non-essential. In [75] he also introduced ideal 
sheaves called ideals of quasi-adjunction denoted by A§", where X E 
(0, 1Y and X is determined by the configuration of singularities of C, 
and showed that points in Char~:P(C) (the non-coordinate components of 
Char1,lP'(C)) can be detected by studying the superabundance (see below 
for its definition) of a finite family of ideal sheaves A§ ( d- 3-eX), where 
Ex:= L~=l diXiE N (see [75] for details). 

(18) 

It is known that, for a given C, A§" satisfies the following properties. 

• The number of points X E (0, 1Y determined by the configu­
ration of singularities of C is finite. 

• OJP'2 /A§" is supported on the singularities of C. 
• Let ~ : = ( 6, ... , ~r) E 1l' e be a torsion point such that ~f 1 • •.• • 

~~r = 1, and ~i =fcl. We define Xi := 2~~ E (0, 1). Under 

these notations, ~ E Char1,lP'(C) if the homomorphism CJx is 
not surjective. 

0 --> H 0 (IF2 , A§" ( d - 3 - £ x)) --> 

--> H 0 (IF2 , O(d- 3- Ex))~ EBPESinge OlP'2 ,P/(A§")p, 
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We say that there is a supembundance of dimension dim coker ax. 
In Example 2.24 below, we describe (A§")P in the case when 
P E Sing(C) is a double point. 

Moreover, in that case the exponential of the irreducible system 
of equations given by the local and global conditions provides an irre­
ducible component of Char1,ll'(C) (by an irreducible system of equations 
with integer coefficients we mean an equivalent system where the integer 
coefficients of the variables are relatively prime). 

Example 2.24. 

(1) One of the simplest examples of positive dimensional non­
coordinate characteristic varieties is the case of two conics 
C = C1 u C2 intersecting at two tacnodes. It is not hard to 
see that the pencil generated by cl and 02 induces an epi­
morphism G := 1r1(Xc)---+-+ Z * Z/2Z =: G2 , where a meridian 
of C1 is sent to (1, 0) and a meridian of C2 is sent to ( -1, 1) 
(see [14, §4] for more details on this). By Example 2.18(1) 
Charf(C) C Charf(G2) = V(f2 + 1), where the embedding 
comes from the following morphism of rings: 

A~:= OC[tf 1 , t~ 1]/(t~t~- 1) 
tl 

--+ A~2 := OC[tf 1 , f~ 1l/m- 1) 
~ fl 

t2 ~ t1 1f2 

Since the classical Alexander polynomial of C is trivial, Char1 (C) 
-1- 1!' c, and hence {( t, -r 1) I t E <C*} C 1!' c is an irreducible 
component of Char1(C). 

(2) Let us describe the local quasiadjunction ideals of the Ak­
singularities (locally described as y 2 - xk+ 1 ). 

(a) If k = 2s, then there is only one local branch. In this case, 
r = 1. Given x1 E (0, 1) we associate 

if there exists 8 E N such that 

2s - 28 - 1 < 2(2s + 1 )x1 :::; 2s - 28 + 1 

if 2s- 1 < 2(2s + 1)xl. 

(b) If k = 2s - 1, then there are two local branches. In this 
case, r = 2. Given (x 11 x2) E (0, 1)2 we associate 

if there exists 8 E N such that 

s- 8- 1 < s(x1 + x2) :::; s- 8 
if s- 1 < s(x1 + x2), 
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Finally note that the description of ideals given here is 
local, analytical and not global, algebraic. In other words, 
if C has an Ak singularity at P, then the equation D of 
a curve 1J belongs to the local ideal m0 := (y, x 8 ) at P if 
the multiplicity of intersection of 1J with each branch of 
C at the singular point P is at least 8. 

The role of essential coordinate components is oftentimes important. 
For instance, in [8] an example of an Alexander equivalent Zariski pair 
was exhibited by computing the characteristic varieties. It turns out that 
they only differ in essential coordinate components. The problem with 
such components is that up to now, no algebra-geometrical condition 
has been found for their existence, so one needs to compute them via a 
presentation of the fundamental group. 

As we mentioned above, non-coordinate components can be detected 
by considering the singularities of C both locally and globally. To be 
more specific, all singularities seem to play a role, except for nodes, as 
the following result claims. 

Proposition 2.25. [31, Proposition 6.1] Let C;.., >. E (0, 1] be an eq­
uisingular continuous family of curves degenerating into a curve C0 with 
the same non-nodal singularities as C;... Consider also a continuous fam­
ily of non-coordinate epimorphisms E;.. : H 1 (Xc>..; Z) ----+ Z degenerating 
into Eo : H1 (Xc0 ; Z) ----+ Z, then 

~C>..,C>.. (t) = ~Co,eo (t). 

Moreover, if Co has the same number of irreducible components as C;.., 
then one also has 

Char~c(C;..) = Char~c(Co) C 1l'c0 , 

where Char~c(C) denotes the union of the non-coordinate components of 
Char1(C). 

Note that the definition of non-coordinate epimorphisms is given in 
the paragraph preceding Remark 2.2. 

Finally we want to compare Fitting ideals, characteristic varieties, 
and Oka-polynomials. 

Theorem 2.26. Let C = Co u C1 u · · · u Cr be a curve where Co 
is a transversal line, denote by G its fundamental group, consider c = 
(cl, ... ,cr) E Hom(G,Z) an epimorphism, and the evaluation morphism 

ifJe : A~ = IK[tr\ ... , t;= 1] ----+ A~ = IK[t±1] 

ti f---+ t"'' 0 
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Then (t -1)qrpc:(Ff(C)) is a principal ideal generated by the Oka-polyno­
mial ~~ c:(t). 

In p~rticular, Char~ n{ W1 ' ••• ' tcr) I t E ][{*} = Supp( A~ I ~~.g ( t)) . 
Proof Let Mif:ab be the Alexander invariant. Let 

Using for example the identity 

MJK. _ ker(81: Cl(Xc,ab) ~ Co(Xc,ab)) 
C,ab- Im(82 : C2(Xc,ab) ~ Cl(Xc,ab))' 

and the fact that gcd( c1, ... , cr) = 1 it is easy to check that 

-oc 
ker(81 : C1(Xc,ab) ~ Co(Xc,ab)) ®A 

= ker(81: Cl(Xc,c:) ~ Co(Xc,c:)) ® (t -1)A~ 

and Im(82 : C2(Xc,ab) ~ C1(Xc,ab)) ® A_IK = Im(82 : C2(Xc,c:) ~ 
Cl(Xc,c:)). Hence 

as A~-modules. The results follows from the exact sequence 

Moc ( Aoc )q JK. JK. JK. C,c: c: 
o~Mc,c:®(t-1)Ac: ~Mc,c:~ oc ( _ )AIK = -( _) ~o 

Mc,c: ® t 1 c: t 1 

and from [55, Lemma III.6]. Q.E.D. 

In other words, varying the epimorphisms c E Hom(G, zr) and com­
puting their corresponding Oka-polynomials, one is able to recuperate 
Char1(C). 

2.3. The special case of line arrangements 

Characteristic varieties and Alexander polynomials of line arrange­
ments have been largely studied in the recent years by Cohen-Orlik [32], 
Cohen-Suciu [33, 34], M. Falk [46], E. Hironaka [56, 57], Libgober [75], 
Libgober-Yuzvinsky [76, 77], M. Marco [81], and S. Yuzvinsky [129] 
among others. It turns out that the set of positive dimensional com~ 
ponents passing through the origin n of the characteristic variety of a 
line arrangement is combinatorially determined (this is also the case for 
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rational arrangements [30]). Components not passing through the origin 
sometimes exist [110, Example 10.6], but it is not known whether or not 
they are combinatorially determined. 

The example we want to describe in more detail was proposed by 
G.Rybnikov in the mid 90's ([102]). He presented a Zariski pair of line 
arrangements (in particular, both arrangements had the same combi­
natorics). His final purpose was to prove that both arrangements had 
non-isomorphic fundamental groups. An alternative proof was proposed 
in [11] using the Alexander invariants plus an extra property that made 
the Alexander invariant an invariant of the fundamental group (this is 
usually not the case as mentioned in Remark 2.17(2)). 

We will briefly recall the concept of combinatorial type or (abstract) 
line combinatorics: 

Definition 2.27. A combinatorial type (or simply a (line) combi­
natorics) is a couple 'f! := (£, P), where L is a finite set and P is a 
family of subsets of £, satisfying that: 

(1) For all PEP, #P ~ 2; 
(2) For any t\,£2 E £, £1 -=1- £z, there exists a unique PEP such 

that £1,£2 E P. 

An ordered combinatorial type 'i&'ord is a combinatorial type where L is 
an ordered set. 

In what follows we will present a typical technique that allows one 
to find Zariski pairs of line arrangements. It is directly related to 
the Alexander invariant and extension isomorphisms (Remark 2.17(1)). 
Other possible techniques related to Massey products have also been 
explored [82]. First we will describe some combinatorial types. 

Example 2.28 (Rybnikov's combinatorics). For details on this ex­
ample see [11]. Let us consider V := Jlf~ \ {(0,0)}, where Jlf§ is the 
2-dimensional affine space on the field Jlf 3 of three elements. We define 
'i&'ML := (L'lfm, P'lf"J, where L'll'ML is the set of points in V and P'll'ML is 
the set of affine lines in V. Note that any affine line in V contains either 
two or three points of V (which implies property (1) in Definition 2.27). 
Also note that any two points in V define exactly one line in V (which 
implies property (2) in Definition 2.27). Thus 'i&'ML is a combinatorial 
type that will be referred to as MacLane 's combinatorial type. 

Recall that a combinatorics is called real if it admits a realization 
in CJP'2 whose global equation has real coefficients, whereas it is called 
strongly real if each line admits a real equation. Note that strongly 
real combinatorics admit strongly real curves as equations in the sense 
of (C2). 
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It is well known that the MacLane combinatorics is real but not 
strongly real and that its combinatorial stratum is connected, however 
its ordered combinatorial stratum has two connected components whose 
representatives have eight complex conjugated lines. Moreover, five of 
them are real and the remaining three have coefficients in Q[w], where 
w := exp( 27r~). 

We will refer to such ordered realizations as 

Let us decompose Lw = LoU L+ and Lw = LoU L_, where Lo := 
{£0 ,£\,£2 } and consider a projective transformation p fixing the initial 
ordered set L 0 (that is, p(Ci) = Ci i = 0, 1, 2) and such that pL+ and 
pL_ intersect both L+ and L_ only in double points. Note that p can 
be chosen with real coefficients. Let us consider the following ordered 
arrangements of thirteen lines: Ra,/3 = Lo U La U p£13, where a, f3 E 
{ +,-}. They produce a combinatorics 'i&'Rya with 13 lines, 33 double 
points, and 15 triple points. 

Using complex conjugation one can see that (IP'2 , R+,+) ;:::::: (IP'2 , R-,-) 
and that (IP'2 , R+, _) ;:::::: (IP'2 , R_ ,+). Hence, we will only deal with the 
Alexander invariants M+ (resp. M_) of R+,+ (resp. R+,-). 

One can prove ([11, Theorem 3.8]) that there is no extension iso­
morphism (see Remark 2.17(1)) from M+ to M_ as A-modules, where 
A = Z[t1 , ... , tl2] and each ti represents a meridian around each affine 
line of R±,± in IP'2 \ £0 . 

Let C =Co u C1 u · · · u Cr be a line arrangement. We will denote by 
Iz the submodule of A~ ab generated by (t1 - 1, ... , tr- 1) and it will 
be referred to as the augmentation ideal. 

Proposition 2.29. The truncation Ml ab0A~/Iz of the Alexander 
invariant of C is completely determined by the combinatorics of C. 

Proof. A Zariski presentation of G := 1r1 (Xc) can be given as in 
Definition 1.17, where the set of relations of the presentation are com­
binatorial up to conjugation. For instance, at each ordinary multiple 
point P of multiplicity k one obtains the following relations [x~1 , X] = 1 

J 

where X:= TI~=l x~j, ab = b- 1 . a. b, Xi is a meridian of the line ci, and 
i 1 , ... , ik are subindices of the k lines intersecting at P. The result is an 
immediate consequence of [11, Proposition 2.15] which assures that the 
class of [x~j, X] in Ml,ab 0 A~/Iz only depends on the abelian class of 

each x~i, that is Xi., and hence it is combinatorial. Q.E.D. 
J J 
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Let £ denote the combinatorial type of a line arrangement C. Since 
H 1 (Xc) only depends on £, it will be denoted it by He. Consider 
Aut(Hc) the set of automorphisms of He. Any h E Aut(He) induces a 
transformation of M'f ab ® A~j'P as follows h([xi, Xj]) = [h(xi), h(xj)] 
(since the elements [~i, Xj] generate G' this defines a transformation, 
but not necessarily an automorphism). The set of those elements in 
Aut(Hc) that induce automorphisms of M'f ab ® A~/Iz (as a group) 

will be denoted by Aut1(Hc). Let r(£) c Aut(Hc) denote the set of 
automorphisms that preserve the combinatorics. Note that if r.p E r(£), 
then ±r.p E Aut1(Hc). Thus {±1} X r(£) c Aut1(He). 

Definition 2.30. A line combinatorics £ is called homologically 
rigid if Aut1(Hc) = {±1} X r(£). 

Proposition 2.31. IJC is a line arrangement whose combinatorics, 
say £, is homologically rigid, then the Alexander invariant M'f ab as 

a A~-module is an invariant of the fundamental group 7ri(Xc) {up to 
extension isomorphisms). 

Example 2.32. Rybnikov's combinatorics 'ifRvs is homologically 
rigid ([11, Proposition 4.22]). We have mentioned above that no exten­
sion isomorphism exists from M+ toM_. Therefore one concludes that 
7ri(XR+,+) ~ 7ri(XR+.-). 

2.4. Twisted Alexander polynomials 

Twisted Alexander polynomials have been developed and exten­
sively studied in the mid 90's for knots. In many instances where abelian 
invariants were not able to identify a certain property of knots, non­
abelian invariants such as these, were able to do it -see [67, 79, 124]. 
Later P. Kirk and C. Livingston [65, 66] were able to give partial answers 
to questions of mutation and concordance for general OW-complexes. 
Our purpose here is to define and briefly describe twisted Alexander 
polynomials for curves and some of their recent applications . follow­
ing [31]. 

Let us consider the general setting of §2.1, that is, a curve C, its 
complement Xc, the epimorphism c : G := 7ri(Xc) -4 Z, Ke := kerc, 
and the infinite cyclic covering Xc,e· In addition let us consider a OC­
vector space V of finite dimension and an (anti)representation 

p: G---* GL(V). 

Note that V inherits a right OC[G]-module structure denoted by VP' Let 
Xc,ab -4 Xc denote the universal abelian covering of Xc. Analogously 
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as mentioned in Remark 2.1 and the subsequent discussion, the cellu­
lar chain complex C* (Xc,abi JK) also becomes a finitely generated (left) 
JK[G]-module generated by the lifts of the cells of X c. Hence, one defines 

c:·P(Xc; JK[t±1]) := Vp 0rrqK,] C*(Xc,ab) 

as a JK[t± 1]-module, where JK[t± 1] is a triviallK[G]-module, as follows: 

tn · (v 0 c) = V')'-n 0 ')'nC 

where 'Y E G verifies c:('Y) = t. 

Definition 2.33. The homology of (Xc,c:, p) is defined as the JK[t± 1]­

module 
H!•P(Xc; JK[t± 1]) = H*(C"'·P(Xc, JK[t± 1])). 

Definition 2.34. The k-th twisted Alexander polynomial fl~,e:,p(t) 
of (Xc,c:,p) is the order of H~'P(Xc;lK[t± 1 ]). For short, we denote by 

flc,e:,p(t) = ~k::~:; the element of lK(t). 

See (12) for a definition of order of a module over a principal ideal 
domain. 

Remark 2.35. 

(1) Note that even if c:: G ____, 7Ljm7L was an epimorphism onto the 
finite cyclic group 7Ljm7L, all the definitions can be modified 
accordingly to suit this case. 

(2) Note that flc,e:,p(t) does not have to be a polynomial. For 
example, we can consider the projective three-cuspidal quartic 
Q, whose fundamental group G is shown in (1). Since G is finite 
we can consider the regular representation p : G ____, GL(12, JK) 
and the trivial morphism c: : G ____, 7L/ 47L. In this situation 

flQ (t) = { t~l ,e,p 1 
t2-l 

if charlK = 3 

otherwise. 

Under certain very general conditions, however, flc,e:,p(t) 
is a polynomial [31, Proposition 5.4]. 

(3) An alternative definition of flc,e:,p(t) can be given by means of 
Fox calculus -see [124]. 

Twisted Alexander polynomials can also be seen ([120, 121]) as the 
Reidemeister torsion of the complex of vector spaces obtained by ten­
soring the usual CW-complex C* describing the homotopy type of Xc 
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by Vp and by JK(t). Since the Reidemeister torsion behaves well with re­
spect to surgery of complexes, a division formula for twisted Alexander 
polynomials that generalizes Theorem 2.10 can be obtained. In order to 
do so, one needs the following construction: 

Suppose that we are given a curve C, an epimorphism c: H1(Xc) --+ 

Z, and a representation p : 1r1 (Xc) --+ GL(V). Let §~, ... , §~ be suf-
ficiently small 3-spheres around the singular points { P1, ... , P8 } of C. 
Denote by Lk = C n §~ the link of the singularity at Pk. Also choose a 
base point Qk E §~ \ Lk and denote by 1rk = 1r1(§~ \ Lk; Qk) the local 
fundamental groups at Pk. The inclusion maps ik : 7rk --+ 1r1 (X c) and 
(c, p) induce morphisms 

and Pk : 1rk --+ GL(V), 

for any k = 1, ... , s. Analogously, one can consider§= a sufficiently large 
3-sphere, L= = C n §= the link at infinity and define accordingly 1r=, 
c=, and P=· 

Theorem 2.36. [31, Theorem 5.6] Let C be a curve, c an epimor­
phism, and p a unitary representation. Suppose also that the induced 
triples (Xc n §~, ck, Pk), k = 1, ... , s, oo are acyclic. Then 

r 

(II det(Id -p(vt)tqt)st-x(Ct)) · II D.Lk,Pk 
l=l k=l, ... ,s,CXJ 

= D.c,e,p · D.c,e,p · det ip8 'P(C), 

where V£ is the homology class of a meridian of the irreducible compo­
nent Ct, S£ = #Sing( C) n Ct, and cp8 'P(C) is an intersection form on 
H~'P(Xc, Q[t±1]) with twisted coefficients. 

Remark 2.37. The condition of acyclicity is purely technical and can 
be expressed as follows. A triple (X, c, p) is acyclic if the chain complex 
C!'P(X;JK(t)) is acyclic over JK(t). 

In the irreducible case, something is known about the roots of the 
twisted Alexander polynomial of unitary representations. 

Theorem 2.38. [78, Theorem 5.3.] Let C be an irreducible curve 
and L is a line at infinity. Let p be a unitary representation of the 
fundamental group and let lK be the extension of Q generated by the 
eigenvalues of p('y) where "f is a meridian of C. Then the roots of D.p(C) 
belong to a cyclotomic extension of JK. 
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Note that in this case the morphism c is uniquely determined up to 
orientation. 

Finally, let us point out that twisted Alexander polynomials are sen­
sitive to nodal degenerations, that is, Proposition 2.25 is no longer true 
for twisted Alexander polynomials as the following example illustrates. 

We say a plane projective curve V of degree, say d, is a type-! curve 
ifV is irreducible and has an ordinary (d-2)-ple point at some point, say 
P. Consider V a type-! curve and let £ 1 and £ 2 be lines through P such 
that either Li is tangent to a smooth point Pi E V or Li passes through 
a double point Pi =/= P of type A2r· Let us denote C = £ 1 + L2 + V. 
Assume that V has only nodes as singular points apart from P. We 
recall the following properties of such curves: 

• There exist nodal degenerations V>, ---> V 0 of non-rational type­
! curves V>, (A > 0) into a rational type-! curve V 0 ([13, 
Corollary 3]). 

• Let V>, ---> Vo be a nodal degeneration as above. This produces 
a degeneration C>, --->Co, where C>, = £ 1 + £2 + V>,, A 2:: 0. If 
G>, denotes 1r1(Xv,J, then G>,, A > 0 is Abelian, whereas G0 

is not ([13, Proposition 6.1]). Moreover, a presentation of G0 

can be given as follows: 

Go=( C,x1,x2l [x1,x2] = 1,c-1x1C = x2,C- 1x2C = x1 ), 

where C is a meridian around a line and x 1 , x2 are meridians 
around Vo. 

Consider C>, ---> Co a degeneration as above. Let us denote by v1, 
v2 and ve the homology classes of the corresponding generators of Go. 
Since x 1 and x 2 are meridians of the same irreducible component, one 
has that v = v1 = v2 . Our purpose is to find a suitable representation 
that produces a sensitive twisted Alexander polynomial. Let us consider 
c the usual morphism c(vt) = c(v) = 1, and the rank 2 representation 

Using c and pone obtains 

(19) ~C0 ,e,p(t) = (t2 - 1). 

Note that p(G0 ) ~ Z/2Z * Z/2Z. 
Finally note that, by Proposition 2.25, the classical Alexander poly­

nomial ~c" (t) and the torsion non-coordinate characteristic varieties 
are invariant for A E [0, 1]. Since G>, is abelian, this implies that 
~c1 ,e = ~Co,e = (t- 1) and Chari(Cl) = Chari(Co) = 0. 
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On the other hand, formula (19) shows that C0 has a non-trivial 
twisted Alexander polynomial, whereas any twisted Alexander polyno­
mial of C>., >. E (0, 1] is trivial since G>. is abelian. 

2.5. Computational methods 
We have used the following result which is a straightforward gener­

alization of [11, Proposition 2.8]. 

Proposition 2.39. Let (x, fj; W) be a presentation of G such that 

(1) x be the free group generated the words XI> .•. , Xr whose abelian 
classes generate GjG' = zq EB 7l../p17l.. EB • • • EB 7l./ps7l., q + s = r, 

(2) fi = (y1, ... , Yu) C G', 
(3) Vw(x, fi) E W, one has that w(x, 1) is a product of commutators 

in x and x:~H. 

Then the module M'fj admits a presentation f' j(T + .7 + W), where 

(1) Az=7l.[tt 1 , ... ,t;1]/(t:+1 -1, ... ,t~· -1), 
(2) T is the submodule of f' generated by the torsion relations 

p; 
ti+q- 1 . 
----'-'---, ~ = 1, ... 's, 
ti+q -1 

(3) .7 is the Jacobian submodule off' generated by the relations 

J(i,j, k) := (ti-1)Xjk-(tj-1)xik+(tk-1)Xij, 1::::; i < j < k::::; r, and 

( 4) W is the submodule of f' generated by subset of f' obtained by 
rewriting the relations W in terms off'. 

Proof. The same proof used in [11, Proposition 2.8] can be ap­
plied using the Reidemeister-Schreier method to obtain a presentation 
of G' /G" (which is not finitely presented in general) and then apply the 
module structure to give the finite presentation as a module. Q.E.D. 

By Proposition 1.18, the fundamental group of the complement of 
any plane curve admits a presentation as in Proposition 2.39. In order 
to obtain the submodule W the following properties are very useful. 

Proposition 2.40. The following equalities hold in M'fj: 

(1) [x, x] = 0, 
(2) [x, y] = -[y, x], 
(3) [x-1, y] = -t;1 [x, y], 
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(4) [x,p] = (tx -1)p Vp E G', 
(5) [xy, z] = [x, z] + tx[Y, z], 
(6) [x * y, z] = [y, z] + (tz- 1)[y, x], where x * y = xyx- 1, 

n m i-1 

59 

(7) [x1· ... ·Xn,Y1'····Ym] = LLTij[Xi,yj], whereTij =II txk· 
i=1j=1 k=1 

j-1 

II tYt' 

£=1 
(8) Jacobi relations: 

J(x, y, z) := (tx- 1)[y, z] + (ty- 1)[z, x] + (tz--'- 1)[x, y] = 0, 

where tx represents the image of x E G in A~. 

Proof Property (1) is obvious (it is even true in G). For (2) note 
that xyx-1y-1 = (yxy- 1x-1) - 1. Property (3) follows from x-1yxy- 1 = 
x-1 (xyx- 1y-1) - 1 x. To prove (4) note that xpx-1 p- 1 = txp-p. Prop­
erty (5) follows from [xy, z] = x (yzy- 1z- 1) x- 1 (xzx- 1z- 1). For (6), 

[x * y, z] = [[x, y]y, z] ~ [[x, y], z] + [y, z] ~ [y, z]- (tz- 1)[x, y] 
(2) = [y, z] + (tz- 1)[y, x]. 

Property (7) follows by induction and using property (2). Finally, for 
the Jacobi relations, note that on the one hand, by (5) 

(20) [xy, z] = [x, z] + tx[Y, z]. 

On the other hand, [xy,z] = [(x*y)x,z], then by properties (5) and (6), 
one has 

(21) (5) 

[xy, z] = [(x*y)x, z] = [(x*y), z]+ty[x, z] = [y, z]-(tz-1)[x, y]+ty[x, z]. 

The difference between (20) and (21) equals zero and the result follows. 
Q.E.D. 

§3. Non-abelian branched coverings and Zariski pairs 

In §2 we have mainly dealt with invariants associated with different 
sorts of abelian coverings. In this section we will give an approach to 
invariants related to non-abelian coverings. A more group-theoretical 
approach is given by the Hall invariants studied by Matei-Suciu [83] in 
relation with the Alexander invariant. The Hall invariant 8r (G) of a 
group G associated with a finite group r is defined as the number of 
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epimorphisms from G tor up to automorphisms of r. Matei-Suciu [83] 
prOVe that in the CaSe of metabelian groUpS f = (7L/q7L) 8 )<l 7Ljp7L, where 
p and q are distinct primes and sis the order of q mod pin (7L/p7L)x, 
the Hall invariant 8r (G) can be computed in terms of the characteristic 
varieties ChariF qs (G). 

Our approach here is more algebraic, in the sense that we ask our­
selves whether or not there are any algebraic conditions on the singu­
lar points of a curve C that can characterize the existence of certain 
metabelian coverings (in this case dihedral coverings). A posteriori tor­
sion points in ChariFqs (C) have an algebraic interpretation in terms of 
position of singularities. 

3.1. Preliminaries 

Let X andY be normal varieties. We call X a (branched) covering of 
Y if there exists a finite surjective morphism n : X ---+ Y. When needed, 
the covering morphism will be specified as a covering n : X ---+ Y. 

Let n : X ---+ Y be a covering. The corresponding rational function 
fields will be denoted by <C(X) and C(Y), respectively. Note that <C(X) 
is an algebraic extension of <C(Y) and degn = [<C(X) : <C(Y)] (see e.g. 
[86, p. 46, Proposition 3.17]). 

Definition 3.1. Let X, Y and n: X---+ Y be as above. 

( i) We call X a Galois covering of Y if the field extension is Galois. 
( ii) Let G be a finite group. We call X a G-covering if X is a 

Galois covering of Y with Gal(<C(X)/<C(Y)) ~G. 

We say that x E X is a ramification point of 71" if n*mY,f(x)Ox,x~ 
mx,x , where mx,x and mY,f(x) are the maximal ideals of Ox,x and 
OY,f(x)' respectively. Geometrically, this means that n is not a local 
isomorphism around x. The set of all ramification points will be denoted 
by R"'. Its image n(R"') is the branch locus of n and will be denoted by 
Ll"' or il(X/Y). By the purity of the branch locus [133], if Y is smooth 
then Ll"' is an algebraic subset of pure codimension 1. 

When we apply the algebraic theory of branched coverings to the 
study of Zariski pairs, we consider their associated analytic spaces. Here 
we summarize some results from algebraic geometry and analytic geom­
etry which will be needed later. 

Let Y be a normal algebraic variety over C. We denote by yan its 
associated analytic space. The following statements are key in relating 
branched coverings of Y with those of yan. 

Theorem 3.2. Let Y be a proper normal variety over C. Let X 
be a normal complex analytic space and let f : X ---+ yan be a proper 
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morphism with finite fiber. Then there exists a unique normal variety 
X (up to isomorphism over Y) and a finite morphism 1r : X --+ Y such 
xan ~X and 1ran = f (up to isomorphism between xan and X). 

For a proof, see [52, EXPOSE XII, Corollaire 4.6]. The following 
theorem can also be found in [52, EXPOSE XII] or [51, Theorem 5.4]. 

Theorem of Grauert-Remmert 3.3. Let Y be a normal analytic 
space and let B be a closed analytic subset of codimension 1. Let 7r0 : 

U --+ Y \ B be an etale finite covering of Y \ B. Then there exist a 
normal analytic space X containing U and a finite surjective morphism 
1r : X --+ Y such that 1r-1(Y \B) = U and rrlu = 7r0 • Moreover X is 
unique up to isomorphism over Y. 

Notation 3.4. Let 1r : X --+ Y be a G-covering of a smooth pro­
jective variety Y. Let B be a reduced divisor on Y whose irreducible 
decomposition will be denoted by B = B1 + · · · + Br. Given a morphism 
O" : X --+ Y between smooth projective varieties and a divisor D in Y, 
a*(D) (resp. a-1(D)) will denote its inverse image as a divisor (resp. 
as a set). Its strict transform will be denoted by a;;1(D). 

Definition 3.5. A covering 1r is said to be branched at e1B1 + · · · + 
erBr (ei ;::: 2) if 

• ~71" =Band 
• the ramification index along the smooth part of B':n is ei. 

Namely, for any smooth point y E Bfn and x E (rran)-1(y), 
there exist neighborhoods Ux and Vy, respectively, such that 
1ran is locally given by 

where ( z1, ... , Zn) and ( w1, ... , Wn) denote local coordinates on 
Ux and Uy, respectively, such that x = (0, ... , 0), y = (0, ... , 0) 
and Bfn n Vy is given by Wl = 0. 

Let 'Yi be a meridian around Bi as in Figure 1, and ['Yi] denote its 
class in 1r1(yan \ Ban,p0 ). 

Proposition 3.6. Let Y be a smooth projective variety and let B = 

B 1 + · · · + Br be the decomposition into irreducible components of a 
reduced divisor B on Y. If there exists a G-covering 1r : X --+ Y branched 
at e1B1 +· · ·+erBr, then there exists a normal subgroup H11" ofrrl(yan \ 
Ban,p0 ) such that: 

(i) ['Yi]e; E H71", ['Yi]k ~ H11", (1:::; k:::; ei -1), and 
(ii) 7rl(yan \ Ban,Po)/H11" ~G. 
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Conversely, if there exists a normal subgroup H of 1r1 (Yan \Ban, p0 ) 

satisfying the above two conditions for Hrr, then there exists a G-covering 
1l'H: XH ____, Y branched at e1B1 + · · · + erBr. 

Proof Since G acts on X such that Y = X/G ([114]), G also acts 
on xan ([52, §3]) transitively on each fiber (7ran)- 1 (y), y E Y. Hence 
xan /G = yan. Since xan \ (7ran)- 1 (Ban) ____, yan \Ban is etale, our 
statement easily follows from the standard theory of covering spaces. 

Conversely, let H be the normal subgroup in the statement. Let X~ 
be an etale covering of yan \Ban corresponding to H. By Theorem 3.3, 
there exists a normal analytic space XH and a finite morphism 7rfF : 
XH ____, yan extending the covering morphism X~ ____, yan \ Ban. Since 
G ~ 1ri(Yan \ Ban,p0 )/H acts on X~ so that X~/G = yan \Ban, G 
also acts on XH ([52, Proposition 5.3]). Hence one has a morphism 
XH /G ____, Y, which is finite and an isomorphism on yan \Ban. By 
Zariski's main theorem (e.g., see [122, Theorem 1.11]), XH/G ~ Y. 

By Theorem 3.2, there exists a normal variety XH and a finite mor­
phism 1l'H : XH ____, Y. Since G acts on XH, it also acts on XH over 
Y. This implies that G C Autqy)(<C(X)). Since deg1rH = #G, XH 
is a G-covering of Y and thus the statement on the ramification index 
follows from how we extend X~ to XH along Bi. Q.E.D. 

Remark 3.7. We recall some facts on Galois theory of Galois cover­
ings. Let Y be a normal algebraic variety. Let K be a finite extension 
of <C(Y) and let XK be the normalization of Y in K called the "K­
normalization ofY ". There exists a canonical finite surjective morphism 
1l'K : XK ____, Y. Hence XK is a covering of Y with <C(XK) = K. If K is 
a Galois extension, then 1l'K : XK ____, Y is a Galois covering. Conversely, 
note that any covering 7r : X ____, Y defines a finite field extension C(X) 
of <C(Y). 

Let G be a finite group and let H be a normal subgroup. Consider 
a Galois extension K of <C(Y) with Gal(K/<C(Y)) ~G. 

Let 7r: X____, Y beaG-covering corresponding the extension K/<C(Y). 
Let K H be the fixed field by H. The field K H is also a Galois exten­
sion of <C(Y) with Gal(KH j<C(Y)) ~ G/H. Let DH(X/Y) be the KH­
normalization of <C(Y). Since K/ KH is an H-extension and KH j<C(Y) 
is a G/H-extension, XK is an H-covering of DH(X/Y) and DH(X/Y) 
is a G / H -covering of Y. The corresponding covering morphisms will be 
denoted by 

(22) f3I,H(7r) : DH(X/Y) ____, Y, and f32,H(7r) :X____, DH(X/Y). 

Note that 7r = f3I,H(7r) o f32,H(7r). 
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3.2. Dihedral coverings 

Let D2n denote the dihedral group of order 2n. The following 
presentation of D2n will be extensively used throughout this section 
(a,T I a 2 = Tn = (ar)2 = 1). 

Remark 3.8. Since we consider non-abelian branched coverings, we 
will always assume that #D2n ~ 6. 

Following the notation introduced in §3.1, we will study the case 
G = D2n and H = (r). Since there is no ambiguity for H, we will 
use notations D(X/Y), f31(1r) and /32(1r) for simplicity. The notion of 
generic and non-generic D2n-coverings will be key in our arguments. 

Definition 3.9. A D2n-covering 7r: X~ Y of a smooth variety Y is 
said to be generic if Ll'/l" = Ll,a1 (7r)' otherwise 1r is said to be non-generic. 

Note that, if 7r : X ~ Y is a D2n-covering, then D(X/Y) is a 
double covering of Y and X is ann-cyclic covering of D(X/Y), whose 
morphisms will be denoted by /31 (1r) and /32(1r) respectively, as in (22). 

Remark 3.10. In what follows, Y will be assumed to be smooth and 
simply connected. Also note that "' will denote linear equivalence of 
divisors. 

Let us start with a sufficient condition for the existence of D 2n­

coverings. 

Proposition 3.11. Let Z be a smooth double covering of Y with 
covering morphism f : Z ~ Y and D be an effective divisor on Z such 
that: 

(i) 

( ii) 

(iii) 

D and a* D have no common component, where a denotes the 
covering transformation, 
if D = L~=l aiDi is the irreducible decomposition, then for all 
i = 1, ... , h, 0 < ai and gcd{a1, ... ,ah,n} = 1, and 
there exists a line bundle £ on Z such that D - a* D "' n£. 

Then there exists a D2n -covering X of Y such that 

(a) D(X/Y) = Z, 
(b) the branch locus Ll,a2 (7r) of f32(1r) is contained in Supp(D + 

a* D), i.e., Ll(X/Y) C Ll,a1 (7r) U f(Supp(D)) and 
(c) if D i c Ll,a2 ( 71"), then the ramification index along D i is 

n 
gcd(n, ai) · 

Proof. For n odd, our statement is a special case of [117, Propo­
sition 1.1], except for part (c), which follows from the proof of [117, 
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Proposition 0.4]. For n even, a similar proof to that of [117, Proposition 
1.1] also works by [117, Remark 3.1, Proposition 0.6]. Q.E.D. 

As for a necessary condition for the existence of D 2n-coverings, one 
has the following: 

Proposition 3.12 ([112, §2, §3]). Let 7f: X --7 Y be a D 2n -covering 
such that D(X/Y) is smooth. Let us denote by u the covering transfor­
mation of j31 ( n). Then there exist (possibly empty) effective divisors, 
D 1 and D 2 , and a line bundle £ on D(X/Y) satisfying the following 
conditions: 

(i) D 1 and u* D 1 have no common components. Moreover, if we 
denote its irreducible decomposition by I:;1 a1 D 1,1 , then 0 :::; 
a1 < n. 

( ii) If D2 -=f. 0, then n is even and D2 is a reduced divisor such that 
there exists a divisor B2 on Y satisfying D2 = f* B2. 

(iii) D 1 + iD2 - u* D 1 ""'n£. 
(iv) !:::..(X/ D(X/Y)) = Supp(D1 + u* D 1 + D 2). The ramification 

index along D1,j (resp. an irreducible component of D2) is 
n 

d( ) (resp. 2 ). gc ai, n 

Corollary 3.13. Let D be an irreducible component of !31 (n)(l:::..;32 (1r))· 
If the ramification index of /32 ( n) along /31 ( 7f) - 1 (D) is > 2, then the di­
visor /31 ( 7f) * D is of the form D' + u* D' for some irreducible divisor D' 
on D(X/Y) such that D' -=f. u* D'. 

3.3. Zariski's example and D 6-coverings 

Let us review Zariski's example of sextics with six cusps using D6 -

coverings as in Zariski's original proof. Our purpose is to give a de­
tailed proof in modern language of (Z5). Let us start with the following 
Lemma. 

Lemma 3.14. Let B be a sextic with 6 cusps such that a D6 -

covering 7f : S --7 lP'2 with I:::..(S/IP'2) = B exists. Then the following 
statements hold: 

(i) j31 (n): D(S/IP'2) -?JID2 is a double covering branched at 2B. 
(ii) The branch locus of j32(n) : S --7 D(S/IP'2) is contained in 

Sing(D(S/IP'2)) and Sis smooth. 

Proof. For (i), since lP'2 is simply connected one has !:::..;3,(1r) -=f. 
0. This means l:::..;31 (1r) = B. For (ii), we first show that t::.. 132 (1r) c 
Sing(D(S/IP'2)) and !:::..132 (1r) -=f. 0. Since D 6 has no element of order 6, 
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/32(1r) cannot be branched along j31(7r)-1(B). This means that ~,82 (1r) C 

Sing(D(S/JID2)). Let JL: Z ~ D(SjJID2 ) be the minimal resolution. Since 
Kz ,...., 0 and the irregularity q = 0 by a general theory of double coverings 
(see [58, §2]) one has that Z is a K3-surface. In particular, Z is simply 
connected. If /32(1r) : S ~ D(SjJID2 ) is unramified, then Z Xv(Sf'i'2) S 
gives an etale cyclic triple covering of Z, but this is impossible. Hence 
~,82 (1r) =F 0. By [118, Lemma 8.8], ~,a2 (1r) = Sing(D(S/JID2 )). Finally, the 
local structure of 1r around a cusp of B (described in [111, §2, Example 
3]) forces S to be smooth. Q.E.D. 

Lemma 3.15. Let B be a sextic with 6 cusps. If a D6 -covering 
1r : S ~ JID2 branched at 2B exists, then 

(i) the quotient surface X:= S/(a) is smooth for any element of 
a E D6 of order 2, 

(ii) Kx,...., -1f*l, where 1f: X~ JID2 denotes the induced non-Galois 
triple covering and l denotes a line of JID2 , and 

(iii) X is a del-Pezzo surface of degree 3. 

Proof. For ( i), due to the local structure of 1r : S ~ JID2 around each 
cusp of B ([112, Example 3, §2]), 7r* B is of the form 2(Rl + R2 + R3), 
where Ri is a smooth divisor such that T acts on the set {Rb R2, R3} 
transitively. One may assume that the fixed locus of a is R 1, and this 
implies that X is smooth. 
For ( ii) and (iii), note that S is a K3-surface. Let us assume that the 
ramification locus of the quotient morphism a : S ~ X is R1. Since 
R~ = 6 and R1 is smooth, R 1 is numerically effective by [19, Proposition 
VIII 13]. Also note that 0,...., Ks,...., a* Kx+Ri> and hence a* Kx,...., -R1. 
Thus -Kx is numerically effective and Kl = 3. This implies that X is 
a rational surface. 
Now choose a general point x of JID2 . Let p : X ~ X be the composition 
of the blowing-ups at the three points of w-1(x). The pencil of lines 
through x on JID2 induces an elliptic fibration 'Px : X ~ JID1 and the three 
exceptional curves of p give sections of 'Px. 

In order to complete the proof, we need the following result. 

Claim 3.16. 'Px : X ~ JID1 is relatively minimal. 

Proof of Claim. Since Ki = 0 and X is a rational surface, the 

topological Euler number of X is 12. This implies that 'Px is relatively 
minimal. Q.E.D. 

By this Claim, K x ,...., - F, F being a fiber of 'Px. By our construction 

of X, p*(1f*l) ,...., F + E1 + E2 + E3, where Ei (i = 1, 2, 3) denote the 
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exceptional curves of p. Hence 

Therefore 1f*l rv -Kx. In particular, -Kx is ample and thus X is a 
del-Pezzo surface of degree 3. Q.E.D. 

We are now in a position to prove the following: 

Proposition 3.17. Let B be a sextic with 6 cusps. Then there exists 
a D 6 -covering branched at 2B if and only if B is given by an equation 
of the form F 3 + G2 = 0, where F(X0 , X1, X2) and G(Xo, X1, X2) are 
homogeneous polynomials of degree 2 and 3, respectively. 

Proof. Suppose that B is given by the equation F 3 + G2 = 0 as 
above. Consider the cubic surface X in Jlll3 given by 

X: Xr + 3F(Xo, X1, X2)X3 + 2G(Xo, X1, X2) = 0, 

where [Xo : X1 : X2 : X3] denotes a homogeneous coordinate system 
of Jlll3. Let P = [0 : 0 : 0 : 1] and let prp : Jlll3 --+ Jlll2 be the projec­
tion centered at P. The restriction prp to X gives a non-Galois triple 
covering prp1x : X ---+ Jlll2. By its defining equation, 1'1(X/Jlll2) = B. 
The Galois closure K of C(X) is a D6-extension of C(Jlll2) and the K­
normalization S of Jlll2 is a D 6-covering 1r : S ---+ Jlll2. By [111, Lemma 
1.4], 1'1(S/Jlll2) = 1'1(X/Jlll2) = B and by Lemma 3.14, 1r is branched at 
2B. These arguments follow Zariski's original idea. 

The converse is the less detailed part in [130]. Suppose that there 
exists a D6-covering 1r : S ---+ Jlll2 branched at 2B. Let 1f : X ---+ Jlll2 be 
a non-Galois triple covering as in Lemma 3.15. By [111, Lemma 1.4], 
1'1(S/Jlll2) = £1(X/Jlll2 ) = B and X is a del-Pezzo surface of degree 3 
according to Lemma 3.15. Hence X is embedded as a cubic surface in 
Jlll3 and its embedding is given by ¢1-Kxl· Moreover, since Kx rv -1f*l 
by Lemma 3.15, one has the following commutative diagram: 

X <PI-Kxl 
Jlll3 \{Po} 

lpr 

where pr denotes the projection centered at a suitable point Po E Jlll3 \ 
¢1-Kxi(X). By choosing homogeneous coordinates [Xo : X1 : X2 : X3] 
appropriately, one may assume that Po = [0 : 0 : 0 : 1]. This implies 
that pr is given by 
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and that ¢1-Kxi(X) is given by the equation 

Xi+ g1(Xo, X1, X2)X~ + g2(Xo, X1. X2)X3 + g3(Xo, X1, X2) = 0, 

where gi(Xo, X1. X2) are homogeneous polynomials of degree i. Now the 
defining equation of B is given by the discriminant of the above cubic 
equation which is 

Q.E.D. 

Remark 3.18. Any sextic given by an equation of the form F 3 + 
G2 = 0, where F and G are homogeneous polynomials of degrees 2 and 
3, respectively, is called a (2, 3)-torus sextic. Zariski pairs of sextics 
given by (2, 3)-torus and non-torus sextics are extensively studied by 
Oka [95, 96]. He uses Alexander polynomials to distinguish the topology 
of the complements. It may be interesting to revisit his proofs using the 
geometry of cubic surfaces. 

3.4. Generic D2n-coverings and Zariski pairs 

In this section, an application of generic D2n-coverings for the study 
of Zariski pairs will be shown. This method was used in [12, 15, 113, 
115, 116]. Let 'E be a smooth projective surface and let B be a reduced 
divisor on 'E. 

Remark 3.19. Thoughout this section, 'E is assumed to be simply 
connected. 

Our purpose is to answer the following question: 

Question 3.20. Are there necessary and sufficient algebraic condi­
tions on B for the existence of generic D2n -coverings with ~11" = B '? 

Suppose that Question 3.20 has a positive answer and let (P) be 
such a condition. The existence of a pair (B1, B2) ofreduced divisors on 
'E such that B1 satisfies (P), while B2 does not, implies that ('E, B1) ';fi 
('E, B2). Hence if 'E = JP>2 and the combinatorial data of B1 and B2 are 
the same, (B1. B2) is a Zariski pair. 

Now let us consider Question 3.20 in the case of n odd. The existence 
of a double covering f' : Z' ---+ 'E with ~ !' = B will always be assumed. 
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Z' +------ Z 
1-' 

I: +------ w. 
p 

denote the canonical resolution of Z' (see [58] for a definition). 

Lemma 3.21. Let 1r : S ---+ I: be a generic D2n -covering with fl.,. = 

B (n is not necessarily odd in this lemma). Then 

(i) D(SjE) ~ Z' over I: and 
(ii) fl,a2 (.,.) c Sing(D(S/E)). 

Proof By hypothesis, the branch locus of j31 (1r) : D(SjE)---+ I: is 
B. Since I: is simply connected, any double covering of I: is determined 
by its branch locus up to isomorphism over E. This implies (i). The 
statement ( ii) is immediate by hypothesis. Q.E.D. 

Suppose that a generic D 2n-covering 1r : S ---+ I: with fl.,. = B exists. 
Let S be the C(S)-normalization of W and let P, : S---+ S be an induced 
morphism. The induced covering morphism from S to W will be denoted 
by ir. Note that S is again a D 2n-covering and one may assume that 
D(SjW) = Z, since C(Z') = C(Z) and the C(S)-normalization of Z is 
also S. Thus one has the following commutative diagram: 

s +------ s 
ji, 

,62(7r) 1 1,62(;!-) 

Z' +------ z 
1-' 

!'=,61(7r) 1 lf=,6l(TI-) 

I: +------ w. 
p 

By Lemma 3.21(ii), j32 (ir) : S ---+ Z is ann-cyclic covering whose 
branch locus is contained in the exceptional locus of f.-L· 

Conversely, suppose that there exists an n-cyclic covering g : X ---+ Z 
such that: 

(Dl) fl9 is contained in the exceptional locus of J.-L and 
(D2) the composition fog : X ---+ W gives rise to a D 2n-covering. 

The Stein factorization of p of o g : X ---+ I: gives a generic D 2n-covering 
of I: with fl(X/E) =B. Thus Question 3.20 is reduced to the following: 
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Question 3.22. Find a sufficient and necessary condition for the 
existence of ann-cyclic covering g : X ~ Z satisfying (D1) and (D2) 
above. 

As usual, let us denote by a the covering transformation of the 
double covering f. Propositions 3.11 and 3.12 provide a partial answer 
to Question 3.22 as follows: 

Proposition 3.23. Assume that Z is simply connected. A generic 
D2p-covering (p odd prime) 1r : S ~ E with ~11" = B exists if and only 
if there exist a non-empty effective divisor D and a line bundle £ on Z 
satisfying the following conditions: 

(i) D and a* D have no common components. Moreover, if D = 
Li aiDi denotes its irreducible decomposition, then gcd( ai, p) = 
1. 

( ii) Supp(D +a* D) is contained in the exceptional set of p,. 
(iii) D - a* D "' p£. 

Proof As noted above, a generic D2n-covering 1r : S ~ E with 
~11" = B exists if and only if there exists another D2n-covering 7i': S ~ 
W satisfying conditions (D1)-(D2) above. Applying Propositions 3.11 
and 3.12 to /32(1i') = f: Z ~ W the statement follows, since the branch 
locus of /32 ( 7i') is non-empty and is contained in the exceptional set of p,. 

Q.E.D. 

From now on, we assume that singularities of B are at most simple 
singularities (see [20] for simple singularities). In this case, another 
version of Proposition 3.23 can be stated. In order to explain it, we 
need some preparation. 

Let us keep the assumption in Proposition 3.23. Since Z is simply 
connected, H 2 (Z, Z) is a unimodular lattice with respect to the inter­
section pairing. Let NS(Z) be the Neron-Severi group of Z. It is a 
sublattice of H 2 (Z,Z) such that H 2(Z,Z)/NS(Z) is torsion-free. Since 
Z is simply connected, the Picard group Pic(Z) coincides with NS(Z). 
For x E Sing(Z'), Rx denotes the subgroup of NS(Z) generated by the 
irreducible components of the exceptional set arising from x. The lat­
tice Rx is a negative definite sublattice of NS(Z). One can define the 
following sublattice of NS(Z): 

T:= EB Rx. 
xESing(Z') 

Given a lattice L, its dual lattice will be denoted by Lv and its quo­
tient modulo L by G L := L v / L. Associated with T one has GT ~ 



70 E. Artal, J. I. Cogolludo and H. Tokunaga 

The type of x QRx 

An Zj(n + 1)Z 
][j)n n = 1 mod 2 Z/ 4Z 
][j)n n = 0 mod 2 (Z/2Z)ffi~ 

IE6 Z/ 3Z 
IE7 Z/2Z 
IEs {0} 

Table 2. 

EBxESing(Z') GRx· For a rational double point x, the results of Table 2 
are well known. 

One can consider both Rx and R'j, as subgroups of Rx ®Q and give a 
Q-divisor which produces a generator of G Rx in the cases of x = IE6 and 
An. This will come in handy for later use. For this purpose, let us label 
the irreducible components of the exceptional divisors for singularities 
of type An and IE6 as in Figure 10. Note that u*8k = 8n+l-k if x is of 
type An, and u*81 = 86, u*82 = 85 if x is of type IE6. 

Fig. 10. 

D 
Lemma 3.24. G R is generated by the class of Q-divisors __ x_ 

x n+1 

( resp. ~x) for x of type An ( resp. x of type IE6), where 

l ':j-:~:)n + 1- k)(8k- 8n+l-k) 
D _ k=l 

x - L;~~ (n + 1- k)(8k- 8n+l-k)+ 
n+l8 !!±! 

2 2 

if x is of type An, n even 

if x is of type An, n odd, 
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and 

Proof Our statement easily follows by considering the inverse of 
the intersection matrix of Rx. Q.E.D. 

Let us now concentrate on the torsion part (NS(Z)/T)tor ofNS(Z)/T. 

Lemma 3.25. 

(NS(Z)/T)tor ~ T.l.l /T, 

where •.l denotes the orthogonal complement in H 2 ( Z, Z). 

Proof Since H 2 (Z, Z)/ NS(Z) is torsion free, one has NS(Z).l.l = 
NS(Z). This implies that T.l.l c NS(Z). Since (NS(Z)/T))tor c 
T.l.l /T, the result follows. Q.E.D. 

Let v be the homomorphism T.l.l ____, Tv ____, Gr. Let L be an 
element in T.l.l such that its image in Gr has order p (p odd prime). 

Since Gr ~ ffixESing(Z') G Rx, one has 

v(L) = ('/'x)xESing(Z') E E9 GRx· 

xESing(Z') 

Note that 'Yx = 0 unless x is a singular point of type An ( n+ 1 = 0 mod p) 
or type JE6 (the latter case happens only when p = 3). 

Lemma 3.26. Assume that 'Yx =/= 0. If x is a singular point of type 
An (n + 1 = 0 mod p), then 

"fx = the class of';- Dx 0 < kx :S: p - 1, 

and if x is a singular point of type lE6, then p = 3 and 

"fx = the class of k3 Dx kx = 1, 2, 

where Dx denotes the divisor in Lemma 3.24. 

Proof Since Rx is a cyclic group generated by the class described 
in Lemma 3.24, the result follows. Q.E.D. 

Now we are in a position to state another version of Proposition 3.23. 

Theorem 3.27. A generic D2p-covering (p odd prime) of~ with 
~11" = B exists if and only if NS(Z)/T has a p-torsion element. 
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Proof. Suppose that there exists a generic D2p-covering with branch 
locus B. Then by Proposition 3.23, there exists a non-empty divisor D 
and a line bundle £ satisfying the three conditions. One can show that 
£gives rise to a p-torsion element of NS(Z)jT. By the condition (iii) 
of Proposition 3.23, p£ E T. Hence it is enough to show that £ ~ T. 
Suppose that £ E T. Hence £ f'V LxESing(Z') Li mi,xei,x, where ei,x 
denotes the irreducible components of the exceptional set arising from 
x. By plugging this relation into the one given in condition (iii), one 
obtains a non-trivial linear relation among ei,x 's. This leads to contra­
diction. 

For the converse, let us suppose that NS(Z)/T has a p-torsion el­
ement. By Lemma 3.25, there exists an element L1 in T.L.L such that 
whose class in T.L.L jT has torsion p. By Lemma 3.26, 

" kx L1 "'IQI ~ - Dx mod T, 
xESing(Z') p 

where "'IQI denotes Q-linear equivalence of divisors. This implies that 
there exists an element L 2 in T such that 

Let us define a divisor D on Z as follows: 

D= L D't, 
xESing(Z') 

where D;% is defined as: 

• D;% = 0, if 'Yx = 0. 

• D;% = kx ( 2:::!1 ( n + 1 - i)8i) , if 'Yx f:. 0 and x is of type An 

(n even). 

• D;% = kx (L:;l11 (n + 1- i)8i), if 'Yx f:. 0 and xis of type An 

(n odd). 
• D;% = kx(81 + 282), if "fx f:. 0 and X is of type !Efi. 

By the definition of D, 

D -a* D ,...., p(L1 + L2 - La), 

where 



A survey on Zariski pairs 73 

Moreover, the greatest common divisor of the coefficients of the ir­
reducible components of D and p is 1. Thus the pair (D, £), £ = 
L 1 + L 2 - L 3 , satisfies the conditions in Proposition 3.23. Q.E.D. 

Example 3.28. Let us consider Zariski's example from the view­
point of Theorem 3.27, where ~ = IP'2 and B is a sextic with 6 cusps. 
In this case, the double covering f' : Z' --+ IP'2 with ~ f' = B has 6 
A2-singularities Xi (i = 1, ... , 6) and its canonical resolution Z is a 
K3-surface. Hence Z is simply connected. Let us denote by 8i,J the ex­
ceptional curves arising at Xi (j = 1, 2). By Proposition 3.17, a generic 
D 6-covering 1T : S --+ IP'2 of IP'2 with ~71' = B exists if and only if B is a 
(2, 3)-torus curve. 

If B is a (2, 3)-torus curve, there exists a conic Q passing through 
the 6 cusps. One can show that Q gives rise to a 3-torsion element 
in NS(Z)/T. Let p;; 1 Q be the proper transform of Q in W. Then 
f*(p;; 1 Q) is of the form Q+ + Q-. After relabeling 8i,J if necessary, we 
may assume that Q+. ei,l = 1, Q- . ei,2 = 0 (i = 1, ... '6). 

Claim 3.29. 3Q+ ,...., 3]*1- L~=l (28i,l + ei,2), where l denotes a 
generic line in IP'2 and j = p o f. 

Proof of Claim. Let us consider 

6 

D := 3Q+- 3]*l + 2::)2ei,l + ei,2)· 
i=l 

One can see that (]* l) · D = 0 and D 2 = 0. By the Hodge index theorem, 
one has that D ~ 0. Since Z is simply connected, D ,...., 0. Q.E.D. 

By the Claim, note that the class of Q+ - ]*l in NS(Z)/T gives a 
3-torsion element. On the other hand, if B is not a (2, 3)-torus curve, no 
D 6-covering branched at 2B exists. Hence, NS(Z)/T has no 3-torsion. 

Remark 3.30. 

( i) When using Theorem 3.27, we often replace T by M ffiT, where 
M is a sublattice of NS(Z) orthogonal to T and such that 
p ~ disc M, disc • being the discriminant of a lattice •. For 
example, M = ]* NS(~) in case p l disc NS(~). 

( ii) By Theorem 3.27, the problem of the existence of generic D 2p­

coverings of~ with ~71' = B is reduced to that of primitive and 
non-primitive embeddings ofT into NS(Z). In the case when 
~ = IP'2 and B is a sextic with at most simple singularities, Z 
is a K3-surface. In this case, using Nikulin's lattice theory and 
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the surjectivity of the period map, more detailed results than 
the existence of generic D 2v-coverings are obtained in [39]. 

3.5. Non-generic D 2n-coverings and Zariski k-plets 

In this section, we will consider non-generic D 2n-coverings and their 
application to Zariski k-plets. 

Let B = B 1 + B 2 be a reduced divisor such that: 

(i) there exists a double covering f': Z' ___...I: with tl.t' = B1, and 
( ii) B 2 is irreducible. 

Let 
Z' +------- Z 

It 

I; +------- w 
p 

be the canonical resolution of Z'. 

Proposition 3.31. Suppose that I: is simply connected and the di­
visor f* (p-;; 1 B 2 ) consists of two distinct irreducible components Bt and 
B2. Assume also that there exist both an effective divisor D and a line 
bundle .C on Z satisfying: 

(i) D = Bt + D'. D' and a* D' have no common components, 
( ii) Supp(D' +a* D') is contained in the exceptional set of J.L, and 

(iii) D - a* D "' n.C. 

Then there exists a D2n -covering 1r : S ___... I: branched at 2B1 + nB2 
such that tl. 131(1r) = B1. 

Proof. By Proposition 3.11, there exists a D2n-covering 7r : S ___... W 
such that !11(ir) = f, D(S/W) = Z, Btu B2 c tl.132 (7r) c Supp(D + 
a* D) and whose ramification index along B~ is n. Since the irreducible 
components of D' are in the exceptional set of J.L, the Stein factorization 
of p o 7r gives the desired D 2n-covering. Q.E.D. 

Proposition 3.32. Under the notation above, if a D2n -covering 
branched at 2B 1 + nB2 with tl.131 (1r) = B 1 exists, then the following 
holds: 

(i) j*(p-;; 1B2) consists of two irreducible components, B~, 
( ii) there exist effective divisors D 1 and D2, and a line bundle .C 

on Z such that 
• Supp(D1 +a* D1 + D2) is contained in the exceptional set 

of J.l, 
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• D1 and a* D1 have no common components, 
• if D2 =f. 0, then n is even, D2 is reduced, and D' =a* D' 

for each irreducible component D' of D2, and 
• (Bt + D1 + ~D2)- (B2 +a* DI) "'n£. 

Proof. Let us denote by 1r : S ---. 'E the D2n-covering given by 
hypothesis. Let S be the <C(S)-normalization of W. The induced mor­
phism if: S---. W is a D2n-covering with D(S/W) = Z and ~,a2 (7r) is 
contained in the union of Supp(f*(pq-1B2)) with the exceptional subset 
of J.L. Since j*(pq-1B2) is a part of ~,a2 (;r), by Corollary 3.13, j*(pq-1B2) 
is of the form Bt + B2, which implies part ( i). For part ( ii) let fYt, ih 
and l be the two effective divisors and the line bundle on Z respectively, 
given by Proposition 3.12 applied to if : S ---. W. Then by hypothesis, 
fh is of the form aBt + D~. Moreover, Supp(D~ +a* D~ + D2) is con­
tained in the exceptional set of J.L. By the assumption on the ramification 
index along B 2 , one has that gcd(a, n) = 1 and there exists an integer 
a' (0 <a< n) such that aa' = 1 mod n. Note that a' is odd if n is even, 
therefore 

a' a* D1 = B2 +a' a* D~ + nM' 

for some effective divisors M and M'. Hence, 

The result follows by considering D1 := a' D~, D2 := D2 and £ .­
a'£+ M'- M. Q.E.D. 

As an application of Propositions 3.31 and 3.32 one has the follow-
ing: 

Theorem 3.33. Let B1 + B 2,j (j = 1, ... , k) be reduced divisors on 
'E satisfying: 

• B 1 is smooth, 
• B 2,j (j = 1, ... , k) are irreducible and not homeomorphic to 

B1, 
• B 1 + B2,j (j = 1, ... , k) have the same combinatorial data, 
• there exists a double covering f : Z ---. 'E with ~~ = B1 such 

that 
Z is simply connected and 
!* B2,j is of the form Bt,i + B2,i' Bt,i =f. B2,i' 
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• there exist distinct positive integers n1 (j = 1, ... , k) and non-
trivial line bundles .C1 , ... , .Ck such that 

Bi,1 - B2,1 '""n1.C1, and 
no line bundle M 1 satisfies Lj '"" djMj for any j and 
dj ~ 2. 

Then (~, B1 + B2,i) ¢ (~, B1 + B2,1). 

Proof By Proposition 3.31, there exists a non-generic D 2n 1-covering 
1rj : Sj ---> ~ branched at 2B1 + njB2,j with ~,a,("'"Jl = B1 for each j. 
Since B2,j (j = 1, ... , k) are not homeomorphic to B1, there does not 
exist any homeomorphism f : lP'2 ---> lP'2 such that f(B1 ) = B2,j and 
f(B2 ,1,) = B1 for any j,j'. Hence, in order to prove this statement, 
it is enough to show that there exists no D 2n 1-covering 1r{ : S[ ---> ~ 
branched at 2B1 + n1B 2,j with ~,6I{7rfl = B 1 if l =f. j. If such a covering 
existed, then by Proposition 3.32, there should exist a line bundle .C' 
such that B:j: - B:; '"" nz.C'. On the other hand, B:j: - B:; '"" nj.Cj. 
Let d = gcd(nz, n1) and set nj = njd, nz = nfd. Thus nf.C' "' nj.C1, 
as Z is simply connected. Choose an integer b so that njb = mnf + 1. 
Thus .Cj '""nf(b.C'- m.Cj) and nf > 1, which contradicts the hypothe­
Slli. Q.E.D. 

Theorem 3.33 serves as the main tool to find the Zariski k-plet given 
in [16], where Zariski k-plets are explicitly obtained for any k. We recall 
that Zariski k-plets for any k were also obtained by V.S Kulikov in [68] 
in a more theoretical way. He proves the Chisini conjecture in many 
cases, i.e., if a curve C is the branch locus of a generic projection, then 
C determines the monodromy of the associated covering. In that case, 
C is an irreducible curve having only ordinary nodes and cusps as sin­
gularities, and its numerical invariants are determined by the numerical 
invariants of the surface. F. Catanese [26, 27] had shown that there exist 
moduli spaces of surfaces with given numerical invariants but different 
topologies and that is how the theoretical existence of Zariski k-plets 
was proved. 

In what follows we will sketch an explicit construction of a Zariski 
k-plet. 

Example 3.34. Let Co be a smooth conic on lP'2 and let f : Z---> JP'2 

be a double covering with ~~ = C0 . It is well known that Z = JP'1 x 
lP'1 , the covering transformation 17 exchanges the two rulings on Z, and 
Pic(Z) ~ Z EB Z. Hence a class in Pic(Z) can be described by a pair of 
integers. Note that 17*(a, b) = (b, a) and Do := (f*Co)red"' (1, 1). 
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Let 9n(t) E <C(t) be a rational function of degree n. Given any 
(a, b) E Pic(Z) one can define a morphism 'T/a,b from lP'1 to lP'1 x JID1 by 

t r-> (ga(t), 9b(t)), 

where t denotes a non-homogeneous coordinate of lP'1. If 9a(t) and 9b(t) 
are generic, then the image Da,b := 'T/a,b(lP'1) satisfies the following prop­
erties: 

• Da,b("' (a, b)) is a rational curve with ab- (a+ b) + 1 distinct 
nodes. 

• Da,b and IJ* Da,b meet at a2 + b2 distinct points, a+ b of which 
are on Do. 

These two properties imply that f(Da,b) is a rational curve of degree 
a+ b tangent to C0 at a+ b distinct points and with (a+~- 1 ) distinct 
nodes. 

Let us fix an integer m 2': 4. Take l ~ J distinct pairs of inte­
gers: (m- j,j), j = 1, ... , l~J, where l•J denotes the greatest in­
teger not exceeding •, and consider a nodal rational curve Dm-j,j as 
above. Consider B1 =Co, B2,j = f(Dm-j,j) (j = 1, ... , l~J). Since 
Dm-j,j- IJ* Dm-j,j "' (m- 2j, 2j- m) = (m- 2j)(1, -1) and m- 2j 
(j = 1, ... , l ~ J) are all different, (Bt +B2,1, ... , B1 + B2,L "¥' J) is a Zariski 
l ~ J-plet by Theorem 3.33. 

In Example 3.34, when m is odd, one has a stronger statement. In 
this case, the fundamental groups themselves (disregarding the periph­
eral information) distinguish the Zariski pair. 

Proposition 3.35. Let (Bt +B2,1, ... ,B1 +B2,L"¥'J) be as in Ex­
ample 3.34. If m is odd, then 

foranyi<j. 

Let us start by proving the following lemma. 

Lemma 3.36. Let B1 + B2,j be as in Proposition 3.35. If a D2n­
covering (n odd) 1r : S _____. lP'2 with ~71" c B1 + B 2,1 exists, then 

(i) ~71" = B1 + B2,j, D(S/lP'2) = Z and f3t(7r) = f, and 
( ii) 1r is branched at 2Bt + nB2,j. 

Proof. Since lP'2 is simply connected, ~lh(7r) -f= 0. Also note that 
the branch locus of a double covering is a reduced curve of even degree, 
~,a1 (7r) = B1. This implies that D(S/lP'2) = Z and f3t(7r) =f. Since Z 
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is also simply connected, il112 (7r) =f 0 and thus Ll~J2 (7r) = J*(B2,j), which 
proves (i). 

In order to prove ( ii) it is enough to show that the ramification 
index along B 2 ,j is n. Since n is odd, by [119], there exists a rational 
function () E C(S) such that: 

• C(S) = C(IP'2)(B) and 
• the action of D2n = (u, T I u2 = Tn = (uT)2 = 1) on() is given 

by 

()" = ~ 
()' 

Considering r.p := ()n, one has that t.p E C(Z). Since C(S) 
C( Z) ( :;:j(P), one may assume that the divisor ( r.p) of r.p is of the form 

(r.p) = (aDm-j,j + nD')- (au* Dm-j,j + nD") 

for some effective divisors D' and D". We claim that gcd( a, n) = 1. If 
gcd(a, n) = d > 1, then one has 

(~Dm-j,j + ~D') - (~u* Dm-j,j + ~D") rv 0, 
for Z is simply connected. Hence there exists '¢ E C(Z) such that 
r.p = 'lj;d. This means that the polynomial xn- r.p = xn- 'lj;d is reducible in 
C(Z)[x], which contradicts C(Z) = C(Z)( :;:j(P). Therefore gcd(a, n) = 1 
and hence fh(n) is branched at n(Dm-j,j + u* Dm-j,J)· Q.E.D. 

Proof of Proposition 3.35. Choose any i < j. Since a D2cm-2w 
covering branched at 2B1 + (m - 2i)B2,i exists, there is a surjective 
homomorphism n1(IP'2 \ (B1 + B2,i),po) -> D2(m-2i)· If 7ri(IP'2 \ (B1 + 
B2,j ), Po) ~ n1 (IP'2 \ (B1 + B2,j ), p 0 ), then there also exists a surjective ho­
momorphism 1r1 (IP'2 \ (B1 + B2,j ), Po) -> D2(m-2i). Therefore a D2(m-2W 
covering 1r : S -> IP'2 with .Ll7l" C B 1 + B 2 ,1 has to exist. By Lemma 3.36, 
D(S/IP'2) = Z, j31(n) = f, and 1r is branched at 2B1 + (m- 2i)B2,1. 

Hence 

Dm-J,J- u* Dm-J,J rv (m- 2j, -m + 2j) rv (m- 2i).C 

for some .C E Pic(Z), which is not possible. Therefore 

for any i < j. Q.E.D. 
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§4. The Zariski pair of Namba and Tsuchihashi 

4.1. Description of the combinatorial stratum 

In this section, an elementary construction of the first Zariski pair of 
an arrangement of conics ([88]) will be given. In their paper Namba and 
Tsuchihashi show the existence of two arrangements of smooth conics 
both having the following combinatorics: if c1' c2' c3' c4 denote four . 
smooth conics, then C1 rh C2, C3 rh C4, and Ci, Ci are bitangent if i = 
1, 2, j = 3, 4. They computed the fundamental groups of two such 
arrangements and proved that they are not isomorphic. 

From a more geometrical point of view, our interest is to describe 
the irreducible components of the combinatorial strata of such curves in 
terms of position of singularities. In order to do so, other combinatorial 
strata of curves will be defined along the way. 

Let M c JP>s be the combinatorial stratum described above. The 
ordered version of M will be denoted by M C (JP>2)4. Following the 
notations in [88], A C JP>6 will be the family of all curves which decompose 
in three smooth conics C1, C2, C3 whose combinatorics results from M c 
JP>s by removing any conic. Finally, A C (JP>2)3 will denote the ordered 
stratum associated with A c JP>6, that is, triples (C1, C2, C3) such that 
c1 rh c2 and ci, c3 are bitangent ( i = 1, 2). 

Notation 4.1. Given a projective space JP> and A C JP> we will denote 
E(A) the smallest projective subspace of JP> containing A. 

Lemma 4.2. The families A and A are irreducible as algebraic 
varieties (and thus, connected). 

Proof By a natural mapping A- A given by (C!,C2,C3) f--+ c1 + 
c2 + c3, it is enough to prove the statement for .A. 

Let A1 be the subset of (JP>1) 2 x JP>2 such that (£1, £2, C3) E A1 if 
and only if C3 is smooth and £ 1 + £2 + C3 has only ordinary double 
points. Given (C1. C2, C3) E A, one can consider the lines Li joining the 
bitangent intersection points of Ci and C3 , i = 1, 2. This defines a natural 
mapping A-+ A1. It is straightforward to show that A1 is irreducible. 
Therefore, it only remains to show that this mapping is surjective with 
irreducible fibers. Note that given (£1, £2, C3) E A1, its fiber is a Zariski 
open subset of E(C3, 2£1) x E(C3, 2£2) x {C3}. Q.E.D. 

Definition 4.3. Let S c JP>2 be a pencil of conics. A point P E JP>2 
is said to be associated with S if P is a singular point of a member of S 
(recall that a multiple curve is singular). 
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Lemma 4.4. Let C1,C2,C3 be conics {not in a pencil) such that 
P tJ_ Ci, i = 1, 2, 3, is associated with both ~(C1, C2) and ~(C2, C3). Then, 
P is associated with ~ ( C1, C3). Moreover, if V12 and V23 are singular 
conics in ~(C1 ,C2 ) and ~(C2 ,C3 ), respectively, such that Pis a double 
point of both, then there is a singular conic V13 E ~(C1 ,C3), containing 
P as a double point, such that V13 E ~(V12, V23). 

Proof If Ci (resp. D1k) denotes an equation for Ci (resp. VJk), 
then there exist constants such that 

a1 C1 + a2C2 =D12 

f32C2 + f33C3 =D23· 

Since P tJ_ Ci we have a1a2f31f32 =f 0. Then f32a1 C1- a2f33C3 = f32D12-
a 2D23 . Since P is a double point of V12 and V23 , the result follows. 

Q.E.D. 

Let B C lP' 4 be the family of curves which decompose into two 
transversal smooth conics and B C (IP'2 ) 2 its ordered version. The pencil 
spanned by each element in B has exactly three associated points, which 
according to Lemma 4.4 are the double points of the three singular con­
ics in the pencil generated by the two transversal smooth conics. Let us 
define the following combinatorial stratum 

and denote by P C (IP'2)2 x !P'2 its ordered version. 

Proposition 4.5. Let (Cl, c2, C3) E A and consider Li the line 
joining the tangency points ofCi and C3 , i = 1, 2. Then, P := L1 nL2 is 
associated with ~(C1 ,C2 ). Also, ifV12 is the reducible conic of~(C1 ,C2 ) 
containing P, then V12 E ~(2L1,2L2). 

Moreover, given (Cl, c2, P) E P, there exists an irreducible quasipro­
jective subvariety u oflP'2 such that c3 E u if and only if (Cl, c2, C3) E A 
and P is obtained as above. 

Proof. Let us fix (Cl, c2, C3) E A and let us consider Ll, L2, p as 
in the statement. Note that Pis associated with ~(C1 , 2Ll) = ~(C1 , C3) 
and also with ~(C2, 2L2) = ~(C2, C3). Then, by Lemma 4.4, Pis associ­
ated with ~(C1, C2). Note also that 2L1 and 2L2 are the reducible conics 
of the Moreover part of Lemma 4.4. 

For the last statement, let V 12 be the reducible conic of ~(C1 , C2 ) 

containing P and fix a line L 1 through P transversal to C1 . In the 
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pencil E(2L1, D12) there is another double line 2L2. For generic Lb L2 
is transversal to C2 . The projective subspace 

is of dimension 2 and contains the pencils E(2Li, Ci) which are lines in 
S and thus intersect at a conic C3. Q.E.D. 

Definition 4.6. The point P in Proposition 4.5 is said to be asso­
ciated with (C1,C2,C3). 

Corollary 4.7. The spaces f5 and P are irreducible. 

Note that the natural projection M --» M is 4:1. For simplicity if 
C := (C1, C2, C3, C4) E M, then C = C1 U C2 U C3 U C4 will denote its 
projection. Conversely, we will add a tilde for any element in the fiber 
of C. 

Corollary 4.8. The spaces M (resp. M) have two irreducible (and 

connected) components M+,M- (resp. M+,M-). 
Moreover, curves in M+ and M_ can be distinguished as follows: 

given C EM, C := (C1, C2, C3, C4) EM, and Pi the point associated with 
(C1,C2,Ci), i = 3,4, thenCE M+ (resp. M_) if and only if P3 = P4 
(resp. P3 =/= P4). 

There is another geometrical property which distinguishes the com­
ponent M+ from M_. 

Theorem 4.9. Let C E M. Then C E M+ if and only if there 
exists a conic passing through its eight tacnodes. 

Proof. Let us fix some notation. Given i E {1,2}, j E {3,4}, we 
will consider Ci n C1 := {Pi1, Qi1} and denote by Lij the line joining 
Pij and Qij· Let us also define P1 := L11 n L21, j = 3, 4, which are 
both points associated with E(C1, C2) according to Proposition 4.5. Let 
us denote by V 1 the conic in E(C1, C2) containing P1 as a double point. 
Note that V1 E E(2Llj, 2L2j) by Proposition 4.5. 

Let us consider the pencils of conics Ai := E(Ci, Li3 + Li4), i = 1, 2, 
and let S := E(A1, A2). The desired conic should belong to A1 n A2, 
and it exists (uniquely) if and only if dimS = 2. Also note that S = 
E(C1, V3, L13 + L14, L23 + L24). Since P := P3 ~ C1 and P E V3 n L13 n 
L23, one has: 

Sp := {C E sIp EC} = E(V3,L13 + L14,L23 + L24) ~ S. 

Let us suppose that the conic exists, i.e., dim S = 2 and dimS p = 1. 
Since P is a base point of the pencil Sp and a double point for one 
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element in Sp, either it is a double point for any element of the pencil, 
or the tangent line at P of the general member is constant. The second 
possibility cannot happen since £13 =/= £23· Since P is a double point, 
P3 E £14 n £24, i.e. P3 = P4. 

Let us assume now that P = P3 = P4, in particular V3 = V4. Let 
us choose coordinates such that P := [0 : 0 : 1], V 3 : xy = 0, and 
£13 : X - y = 0. Since v3 E E(2L13, 2£23), it is easily seen that £23 : 
x + y = 0. Analogously, one can prove that there exists a E C \ {0, ±1} 
such that £ 14 : x - ay = 0 and £24 : x + ay = 0. An easy computation 
concludes that V3 E E(£13 + £14,£23 + £24), i.e., dim Sp = 1 and 
dimS = 2. Q.E.D. 

For the computation of Alexander polynomials and characteristic 
varieties it is useful to calculate the space of curves of a given degree 
passing through some points. Let C E M and let P1, ... , Ps be the eight 
tacnodes in C. Let us consider 

ICk,B := {V E lP'k I P1, ... , Ps E V}, 
1Ck,6 := {V E lP'k I pl> ... , p6 E V}. 

In principle there are several choices for /Ck,6, but the kind of results we 
will obtain for 1Ck,6 do not depend on the choice of such points. Let us 
consider the mappings 

ak,B : H 0 (lP'2; O(k)) --+ C8 

ak,6: H 0 (lP'2; O(k)) ....... C6 

defined as in the exact sequence (18) in §2.2. Then /Ck,8 (resp. 1Ck,6) is 
the projective space of kerak,s (resp. kerak,6)· 

Proposition 4.10. If C E M+ then dim IC3,8 = 2, whereas if C E 

M_ then dim /C3,s = 1. 

Proof Assume first that C EM+· Since there is a conic Q passing 
through the eight points, Q is a base component of IC3,8, i.e., any element 
of IC3,8 is of the form Q + L, L E lP'1. This is trivial if Q is smooth. If it is 
singular, then Q = L1 +L2. It is easily seen that no line can contain five 
of these points; then both L1 and L2 are also base components. On the 
other hand, Q+L E /C3,s, for all L E lP'1. Then, dim/C3,8 = dimlP'1 = 2. 

By Theorem 4.9, it is enough to prove that dim IC3,8 :=::: 2 forces the 
eight points to be on a conic. Two cases will be considered: 

Case. No three points among P1, ... , Ps are aligned. 

Let us consider a conic Q passing through P1, ... , P5 • The hypoth­
esis added for this case implies that Q is irreducible. Take P9 , P10 E Q 
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different from the other eight points. Since dim K3,8 2': 2, the elements 
of K3 ,8 passing through the two extra points P9 and P10 form a subspace 
of dimension at least 0. Hence this space is not empty and Q is a base 
component. Since the other three points cannot be aligned, one may 
suppose that, say P6 E Q. One can now repeat the above argument 
on the elements of K3 ,8 passing through one extra point P9 E Q. The 
given subspace has dimension at least 1 and Q as a base component. 
Therefore, say P7 E Q, and thus, Q is a base component of K3,8 . Since 
the space of lines passing through P8 is of dimension 1 and dim K3 ,8 2': 2, 
Q passes through the eight points P1 , ... , P8 . 

Case. P1, P2, P3 are aligned. 

We will first prove that this case forces four points to be aligned. 
Let L be the line through P1, P2, P3 and suppose that no other Pi is in L. 
Choosing a generic extra point in L as above, one can deduce that L is a 
base component of a subspace of K3 ,8 of dimension at least 1. Therefore 
there exists a pencil of conics passing through P4 , ... , P8 , which can only 
happen if at least four of these points are aligned. 

After reordering, one can assume that P1 , ... , P4 E L. Then L is 
a base component of K 3 ,8 and hence there is a linear family of conics 
through four points of dimension at least 2. Choosing an extra generic 
point on IP'2 one obtains as a subspace a pencil of conics through five 
points, hence four points are aligned. Note that the extra point can 
be chosen in an open Zariski set of IP'2 , thus the four aligned points 
must be P5 , ... , Ps. Therefore there is also a conic passing through 
P1, ... , Ps. Q.E.D. 

Proposition 4.11. IJC EM then dimK3 ,6 = 3. 

Proof. It is enough to show that dim K3 ,6 > 3 leads to contradic­
tion. As in Proposition 4.10 two cases will also be considered: 

Case. No three points among P1 , ... , P6 are aligned. 

Let us consider the irreducible conic Q passing through P1 , ... , P5 . 

Consider two extra points P9 , Pw E Q and two extra points P11 , P12 rf:_ 

Q. The subspace of cubics in K 3 ,6 passing through P9 , P10 , P11 , P12 is 
not empty and contains Q as a base component. Since P11 , P12 can be 
chosen in such a way that P6, P11 , P12 are not on a line, this implies 
that P6 E Q. Repeating the argument with P9 E Q and three extra 
points P10 , P11 , H 2 rf:- Q one obtains again a non-empty subspace of 
K 3 ,6 containing Q as a base component. Since P10 , Pn, P12 need not be 
on a line, a contradiction results. 

Case. P1, P2, P3 are aligned. 



84 E. Artal, J. I. Cogolludo and H. Tokunaga 

Let L 1 be the line joining P 1 , P 2 , P3 and assume that no other point 
Pi (i = 4, 5, 6) belongs to L 1 . Considering P9 E L and Pw, P 11 tJ Lone 
obtains a pencil in K3 ,6 having L 1 as a base component. Hence the five 
points P4, P5 , P6, P10 , P11 belong to a pencil of conics. Since Pw, Pu can 
be chosen so that the line joining them does not contain any other Pi, one 
concludes that P4, P5 , P6 are also aligned. Let L 2 be such a line. Since we 
assumed that no four points are aligned, P9 E L 1 n L 2 is an extra point. 
The subspace of curves in K3,6 passing through P1, P2, P3, P4, Ps, P6, Pg 
has dimension at least 3 and has L 1 U L 2 as a base component. This 
leads to contradiction since dim IP'1 = 2. 

Therefore four points, say P 1 , P2 , P3 , P4 , belong to a line L, which 
automatically becomes a base component of K3,6· Note that neither 
P5 nor P6 can belong to L since multp, (L, C) ;::: 2 and deg C = 8. 
One can now choose four extra points P9 , Pw, Pu, P 12 tJ L such that 
Ps, P6, Pg, Pw, Pu, P12 do not belong to a conic. Since dimK3,6 > 3, 
the subspace of curves in K3,6 passing through P1, ... , P6, P9 , ... , Pt2 is 
not empty and has Las base component. This contradicts the choice of 
Pg, Pw, Pu, P12· Q.E.D. 

Proposition 4.12. IJC EM then dimK4,8 = 6. 

Proof. It is enough to prove that a 4,8 is surjective. If C E M_, 

since 0"3,8 is surjective, so is 0"4,8· If C E M+, then let L~=l aixi = 
0 be the equation of the image of 0"3,8 and let us suppose that a8 =/= 
0. It is enough to find a quartic curve passing through P 1 , ... , P7 and 
not through P8; we can order this points such that P8 is not in the 
line through P5 , P6 . In order to do so, one can choose a conic through 
P 1 , ... , P4, the line through P5 , P6, and a generic line through P7 . 

Q.E.D. 

4.2. Computation of characteristic varieties 

We will first describe the geometrical method to compute some com­
ponents of the characteristic varieties of a curve C E M as proposed by 
Libgober in [75] -see also a brief sketch of it on page 48. After that, a 
similar geometrical argument allows for a computation of its Alexander 
polynomial as proposed in [80, 43, 2]. 

According to Example 2.24(2), a tacnode (that is, an A3-singularity) 
has the sequence of ideals of quasiadjunction associated with it shown 
in Figure 11. 

We follow the notation introduced on page 48. Let~:= (6, 6, 6, ~4) 
E (CC*) 4 be a torsion point such that £g = 2(Xl + X2 + X3 + X4) E .N, 



A survey on Zariski pairs 85 

................... 

(~, 0) 

••• 

Fig. 11. Quasiadjunction ideals for tacnodes 

where Xi= 2:~ E (0, 1). Then ( E Chari(C) if and only if 

ax: H 0 (Jil'2 , 0(5- t'x))---+ E9 0p2,P/(A2)P =: Vx 
PESingC 

is not surjective. Let P be a tacnode of Ci + C1. Following Exam­
ple 2.24(2), (A2)P ¥- Op2,p if and only if 2(Xi + X 1) :::; 1, in which case 
( A2) p = m the maximal ideal. 

Note that we can restrict ourselves to the case t'x :::; 5. Also note 
that, using [75], at least one of these equations is satisfied: 

(23) 2(Xi +Xj) = 1, i = 1,2, j = 3,4. 

Without loss of generality, it can be assumed that 2(X1 + X3) = 1. 
In that case 2(X2 + X4) = t'x - 1. The case t'x = 5 is not possible 
since x2, x4 < 1. If t'x = 1, then x2 = x4 = 0, which corresponds to 
coordinate components. 

For t'x = 4, one has 2(X2 + X4) = 3 and dimH0 (Jil'2, 0(1)) = 3. 
Since only non-surjective ax matter, an extra equation 2(Xi + X 1) :::; 1 
must be satisfied for some appropriate indices (i, j). Without loss of 
generality, it can be assumed that 2(Xl +X4):::; 1, and 2(X2+X3);:::: 3, 
which has no solution in the open hypercube (0, 1)4 . 

The same arguments apply to £ x = 3 but in this case one has 
dimH0 (Jil'2, 0(2)) = 6, X2 +X4 = 1, 2(Xl +X4):::; 1, and X2 + X3;:::: 1. 
There are solutions of the system in (0, 1)4 . In this case dim Vx = 4 and 
it is easily seen that ax is surjective. 
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We finish with the case fx = 2, where 2(X2 + X4) = 1. In this 
situation 2(X1 +X4) = 1+2(X4-X3) and 2(X2+X3) = 1-2(X4-X3), 
hence, either X3 = X4, or say 2(X1 + X4) > 1 and 2(X2 + X3) < 1. 
In the latter case dim Vx = 6 and, by Proposition 4.11, CTJ,6 = cr:x is 
surjective. 

Therefore all of the equations in (23) are satisfied, in which case, 
cr:x = cr3,8 and its cokernel has dimension 1 (resp. 0) for curves in M+ 
(resp. M_) by Proposition 4.10. 

Thus for M+ there is superabundance for solutions X E (0, 1)4 of 
x1 + x2 + x3 + x4 = 1 and (23) i.e. for 

{(X1, X1, 1/2- X1, 1/2- X1) 1 x1 E (o, 1)}, 

whose exponential is {(t, t, -t- 1 , -r1) I t E C*}. We have proved the 
following. 

Proposition 4.13. 

ifC EM+ 

ifC EM-· 

Remark 4.14. As mentioned in Remark 2.17(2), since the number of 
positive dimensional components of Chari (C) is different in these cases, 
the fundamental groups are non-isomorphic. 

Note that, according to Theorem 2.26 one can calculate the roots of 
the Alexander polynomial of C as follows 

Z(~c(t)) \ {1} ={±A ~f C EM+. 
0 1fC EM_ 

el-k 1-kl 
We will consider Ak := Ac-d-, ... ,-d- (according to the definition of 

ideal sheaf of quasi-adjunction) and referred to this ideal as an Alexander 
ideal sheaf of C. One can also obtain ~c(t) geometrically using the 
exponents of the singularities as follows. 

Theorem 4.15 ([72, 2]). The Alexander polynomial of C can be 
written as the product 

d-1 

~c(t) = (t- 1r-1 II ~tk (t), 
k=l 

where ~k = ( t - exp( 21rkF)) ( t - exp( -21r~v'=I)) and bk is the defect 

of the Alexander ideal sheaf Ak(k- 3). 
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Each exponent ~, k = 4, 5, 6, 7 has an Alexander ideal Ak(k- 3) 
associated with it. The quotient sheaf O(k- 3)/Ak(k- 3) is supported 
at the eight tacnodes of C as follows 

if k = 4, 5 

if k = 6, 7, 

where mp is the maximal ideal at P -we refer to [43, 80, 2] for the 
details. Hence h1(A4(1)) = h1 (A5 (2)) = 0, and thus the only two 
interesting cases are the exponents ~ and ~- For the first exponent, by 

Proposition 4.10, h0 (At,(3)) = dimkera3,8 = { 3 ~f C EM+, hence 
2 1fC EM_ 

ifC EM+ 

ifC EM-

Forthesecondexponent, byProposition4.12, h0 (A7 (4)) = dimkera4,s = 
7, hence h1 (A7 (4)) = h0 (A7 (4))- 7 = 0. By Theorem 4.15 one has 

~ (t) = {(t- 1)3 (t2 + 1) 
c (t- 1)3 

4.3. A tower of D2n-coverings 

ifC EM+ 

ifC EM-

In this subsection, we will explain another way to study this example 
by using D2n-coverings. Let us start by introducing the notion of a tower 
of dihedral coverings. 

Definition 4.16. Let Y be a normal projective variety. A sequence 
{1ri: Xi--+ YhEI of Galois coverings is called a tower of dihedml cover­
ings if it satisfies the following conditions: 

(i) 1ri: Xi--+ Y is a D2n,-coverings (ni 2: 3) for each i. 
( ii) Ifni ln1, then there exists a morphism T/ji : X1 --+ Xi such that 

'lrj = 'lri 0 T/ji· 

Here is an example of a tower of dihedral coverings, which we need 
later. 

Example 4.17. Let 'Pn : IP'1 --+ IP'1 (n 2: 3) be the family of mor­
phisms given by 
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where s, t are non-homogeneous coordinates. It is easy to see that 'Pn 
is a D2n-covering branched at 2[1 : ±1] + n[O : 1], where [so : s1] are 
homogeneous coordinates with s = ll. In fact, D 2n acts on the source 

so 

JP>1 in such a way that tu = rl, t 7 = (nt, (n = exp( 211"';(3). The set of 
dihedral coverings { 'Pn : JP> 1 ---7 JP>1 }n~3 is a tower of dihedral coverings. 

Proposition 4.18. Let C = C1 U C2 U C3 U C4 E M. Then the 
following two statements are equivalent: 

(1) There exists a tower of dihedral coverings { 11"n : Xn ---7 JP>2}nEN 

such that: 
(a) Gal(Xn/1P'2) ~ D2Pn> Pn odd prime, 
(b) 11"n is branched at 2(Cl + C2) + Pn(C3 + C4), and 
(c) Pn-/- Pm for any n-/- m. 

(2) There exists a conic through the 8 tacnodes ofC, i.e., C EM+· 

Note that Proposition 4.18 implies that a pair (C+,C-) (C+ EM+, 
C_ E M-) is a Zariski pair. We need several steps to prove Proposi­
tion 4.18. 

Lemma 4.19. Let D1 and D2 be reduced plane curves of degree 
2m such that all intersection points between D 1 and D2 give rise to 
tacnodes in D1 + D2 (i.e., D1 is tangent to D2 at 2m2 distinct points). 
Let A = {>qD1 + >.2D2}[>.1,>.2]EJI'l be the pencil of curves spanned by 
D1 and D2. If there exists a unique reduced plane curve, E, of degree 
m passing through all the 2m2 intersection points of D 1 and D2, then 
2E EA. 

Proof. Since E meets D 1 at 2m2 distinct points, E is smooth at 
each intersection point and meets D 1 transversely. Choose a general 
point x on E. Let Cx be a member of A passing through x. Then 
Cx meets E at 2m2 + 1 points. Hence E is contained in Cx. Write 
Cx = E + E'. Then E' is a curve of degree m. Since the base points 
of A consists of D1 n D2 with multiplicity 2 at each base point, E' 
also passes through all the intersection points of D 1 n D2. This implies 
E'=E. 

Lemma 4.20. Let C = C1 U C2 U C3 u C4 E M. If there exists a 
conic passing through 8 tacnodes, then there exists a D 2m -covering of JP>2 

branched at 2(Cl + C2) + m(C3 + C4) for any m 2: 3. 

Proof. Let A := E(C1 + C2, C3 + C4) be the pencil of plane curves 
spanned by C1 + C2 and C3 + C4. Since the conic Q in the assumption 
passes through the eight (double) base points of A, we have 2Q E A by 
Lemma 4.19. Let Ci (resp. Q) be defining homogeneous polynomials 
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for Ci (resp. Q). Hence we may assume that C3C4 = C1C2- Q2. Let 
<I> : IP'2 --+ IP'1 be the rational function given by 

Let 'Pm : IP'1 ----> IP'1 be the D2m-covering described in Example 4.17. Let 
p: JP2 ----> IP'2 be the resolution of indeterminacy of <I> and put <i> = p o <I>. 
Let X' be the fibered product JP2 XlP'1 IP'1 by <i> and 'Pm· Also let Xm be 
the C(X')-normalization of IP'2. Then Xm is a D 2m-covering branched 
at 2(Cl + C2) + m(C3 + C4). Q.E.D. 

Proof of Proposition 4.18 (~). Let 7rm : Xm ----> IP'2 be the D2m­
covering as in Lemma 4.20. Then {7rm : Xm ----> IP'2}m>J is a tower of 
dihedral coverings such that Gal(Xm/1P'2 ) ~ D2m· Also -7rm is branched 
at 2(Cl + C2) + m(C3 + C4). In particular, one obtains the desired D2Pn­
coverings for odd primes Pn (n = 1, 2, 3, ... ). Q.E.D. 

Finally, our purpose until the end of this section is to prove the 
converse. Let f' : Z' ----> IP'2 be a double covering branched at C1 + C2, 
and let J.L : Z----> Z' be the canonical resolution of Z'. Let 

Z' -.!!.--- Z 

denote the diagram for the canonical resolution. In our case, the mor­
phism p : JP2 ----> IP'2 is a composition of 4 blowing-ups at the 4 nodes of 
C1 + C2 • Let f : Z----> JP2 be the induced double covering. Note that Z is 
simply connected, as it is a rational surface. Suppose that there exists a 
D2Pn-covering 'lrn: Xn----> IP'2 branched at 2(Cl +C2) +Pn(C3 +C4). Then 
D(Xn/1P'2 ) = Z' and f31(7rn) = f'. Let Xn be the C(Xn)-normalization 
of JP2. Xn is a D2Pn -covering of lP2 such that D(Xn/lP2) = Z and 
!h(irn) = f, ifn being the covering morphism. Summing up, one ob­
tains the following commutative diagram: 

Xn - Xn 

1 1 
Z' J.L z -
1 1 

IP'2 p '2 - IP'. 
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Since the irreducible components of the exceptional divisor J.L are invari­
ant under the covering transform off, they are not contained in af32 (7rn) 

(Corollary 3.13). Hence af = p;1(C1 +C2), and af32 (7rn) = (po f)*(C3 + 
C4). Let us denote (p o f)*C3 = ct + C3 and (p o f)*C4 = ct + Ci. One 
has the following. 

Lemma 4.21. There exists an integer k with 0 < k :S: Pn2- 1 such 
that either (Ct + kCt) - (C3 + kCi) or (Ct + kCi) - (Ct + kCt) is 
Pn -divisible in Pic( Z). 

Proof. By Proposition 3.12, either (a3Ct + a4Ct)- (a3C3 + a4Ci) 
or (a3Ct + a4Ci)- (a3C3 + a4Ct), where ai (i = 3, 4) are integers with 
0 < ai < Pn ( i ~ 3, 4), is Pn-divisible. The latter case is reduced to the 
first case by considering 

(a3Ct + (Pn- a4)Ct)- (a3C3 + (Pn- a4)Ci) + Pn(Ci- Ct). 

So one may assume that 

(a3Ct + a4Ct) - (a3C3 + a4Ci) ""'PnL 

for some L E Pic(Z). Choose an integer b (0 < b < Pn) so that a3b = 
1 mod Pn. Let us define 

D1 .- b(a3ct + a4Ct) - Pn ( l :~ J ct + l :~ J ct) , 

ct + ( a4b - Pn l :~ J ct) · 

If 0 < a4b -l ~ J :S: p.,.2- 1 , then define k = a4b -l ~ J so that the 

divisor (Ct + kCt)- (C3 + kCi) is Pn-divisible. 

If a4b -l ~ J > p.,.2- 1 , then define k = Pn + l ~ J - a4b so that the 

divisor (Ct + kCi) - (C3 + kCt) is Pn-divisible. Q.E.D. 

Lemma 4.22. The self-intersection numbers of (Ct + kCt)- (C3 + 
kCi) and (Ct + kCi)- (C3 + kCt) are either -8(k- 1)2 , -8(k + 1)2 

or -8(k2 + 1). 

Proof. Since 

8 = ((pof)*C3)2 = (Ct)2+(C3)2+2Ct·C3, Ct·Ci = 4, (Ct)2 = (C3)2, 

one has (Ct)2 = (C3)2 = 0. Similarly (Ct)2 = (Ci)2 = 0. Hence 
(Ct- cn2 = -8 (i = 3, 4). Also, since 

8 = ((p o f)*C3) · ((p o f)*C4) = ct · ct + ct · Ci + C3 · ct + C3 · Ci 
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and 

ct · ct = c3 · Ci, ct · Ci = c3 · ct, 
one concludes that either 

(a) ctct = C;3Ci = 4, CtCi = CiCt = 0, or 
(b) ctct = CiCi = 4, CtCi = C3Ct = 0, or 
(c) ctct = c3c4 = 2, ctci = c3ct = 2 

holds. Thus 

{
-8(k =t= 1)2 for the case (a), 

{ (C;t- C3) ± k(Ct- C4)} 2 = -8(k ± 1)2 for the case (b), 

-8(k2 + 1) for the case (c). 
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Q.E.D. 

Lemma 4.23. Let k be as above. Then k = 1. 

Proof We will only consider the case when (C;t -C3) + k(Ct -Ci) 
is Pn-divisible (the other case is analogous). Suppose that 

(C;t - C3) + k(Ct- Ci) "'PnL, 

for some L E Pic(Z). After computing the self-intersection numbers of 
both sides, one deduces that either -8(k- 1 )2 = p~L2 , or -8(k + 1 )2 = 
p~L2 , or -8(k2 + 1) = p~L2 holds. Since Pn is odd, £ 2 is an integer and 
0 < k :::; Pn2- 1 , which leads to k = 1 and £ 2 = 0. Q.E.D. 

Lemma 4.24. Either 

(C;t + Ct)- (C3 + Ci) "'0, or (C;t + Ci)- (C3 + Ct) "'0 

holds. 

Proof. By Lemma 4.23, either (C;t +Ct)-(C3 +Ci), or (C;t +C4)­
(C3 +Ct) is Pn-divisible. By the assumption in Proposition 4.18, at least 
one of them is Pn-divisible for infinitely many odd prime numbers Pn· 
Since Z is simply connected, Pic(Z) is a finitely generated free Z-module. 
Therefore, either (C;t +Ct)-(C3 +Ci) "'0, or (C;t +C4)-(C3 +Ct) "'0 
holds. Q.E.D. 

Proof of Proposition 4.18 ( '*). In what follows, only the case ( ct­
C3) + (Ct - Ci) "' 0 will be considered (the other case is analogous). 
Let t.p be a rational function on Z such that 

(t.p) = (C;t + Ct)- (C3 + C4). 
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Note that one can choose 'P in such a way that 'Pat = 1/l.fJ, where Of 

denote the involution of the double covering f : Z ----> JlD2. Let Kn := 

C(Z)( Po/(P) and let Sn be the Kn-normalization of IP'2. 
One can easily see that Pn : Sn ----> IP'2 is a DzPn -covering such that 

D(Snf1P'2) = Z' and Pn is branched at 2(Cl + Cz) + Pn(C3 + C4). In fact, 
Sn is isomorphic to Xn, but we do not need it here. Set 

1 
'P+­

u ·= __ 'P_ 
. 2 . 

Since u is a Of-invariant rational function, u E C(IP'2). Let <I>n : Sn --+ 

IP'1 and ~n : IP'2 --+ IP'1 be the rational maps given by Po/(P and u. Note 
that <I>n is DzPn -equivariant and the following diagram 

<I>n 
Sn --+ IP'l 

(24) Pn l l 'PPn 
IP'2 --+ JPll 

' 
~n 

is commutative, where 'PPn : IP'1 ----> IP'1 is the DzPn -covering in Exam­
ple 4.17. Note that Sn is birational to the fibered product IP'2 XJI'l IP'1 

over IP'2. 
Write u = j;::,, where F0 and F00 are homogeneous polynomials. 

The polar divisor of u is ct +C3 +Ct +Ci. This implies that the plane 
curve given by F00 = 0 is C3+C4 and deg F00 = 4. Using the commutative 
diagram (24) and since 'PPn is branched at 2[1 : ±1] + Pn[O : 1], the 
curves D1 and D2 given by the equations F0 - F 00 = 0 and Fo + F 00 = 0, 
respectively, satisfy either ( i) or ( ii) below: 

(i) D1 = C1 +C2 and D2 is of the form 2Q for some conic (or vice 
versa). 

( ii) D1 = C1 + 2L1 for some line L1 and Dz = Cz + 2Lz for some 
line Lz. 

If (ii) occurs, it implies that C3 + C4 E E(C1 + 2L1,C2 + 2Lz). This 
means that C3 + C4 passes through C1 n C2 , but this is impossible by the 
combinatorics of C E M. Hence (i) must occur and Q is the unique 
conic passing through all the tacnodes of C. Q.E.D. 

Remark 4.25. The proof above shows that there exists a tower of 
dihedral coverings {irn : Xn ----> IP'2 }n~l such that Gal(Xn/1P'2) ~ D2Pn 
(Pn odd prime), where Kn is branched at 2(Cl + Cz) + Pn(C3 + C4), if 
and only if there exists another tower of dihedral coverings { 1r m : X m ----> 
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IP'2}m2:3 such that Gal(Xm/1P'2) ~ D2m, where 7rm is branched at 2(C1 + 
C2) + m(C3 + C4). 
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