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Integral representations of q-analogues of the Barnes 
multiple zeta functions 

Yoshinori Yamasaki 

Abstract. 

Integral representations of q-analogues of the Barnes multiple zeta 
functions are studied. The integral representation provides a meromor­
phic continuation of the q-analogue to the whole plane and describes 
its poles and special values at non-positive integers. Moreover, for 
any weight, employing the integral representation, we show that the 
q-analogue converges to the Barnes multiple zeta function when q j 1 
for all complex numbers. 

§1. Introduction. 

In 1904, E. Barnes introduced his multiple zeta functions with a 
weight w := (w1 , ... , Wr) E cr by the following multiple series ([1]): 

(r(s, z, w) := L (n · w + z)-s 
nEZ~0 

(Re(s) > r), 

where n · w = :L:;=l njWj for n = (n1, ... , nr) E Z~0 . It is known that 
the function (r(s, z, w) can be meromorphically continued to the whole 
plane C via the contour integral representation 

r(1- s) 1 100 s-l dt 
(1) (r(s,z,w)=- Alr(s,z,w;a)+r() t Gr(t,z,w)-, 

271" -1 S a t 

where Ir(s, z, w; a) is an entire function defined by 

(2) Ir(s,z,w;a) := 1 (-t) 8 - 1Gr(t,z,w)dt. 
C(e:,a) t 
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Here C(E,a) is a contour for 0 <a :S oo and 0 < E < min{a,b(w)} 
with b(w) := min1::;j::;r{l27r/wJI} along the real axis from a toE, coun­
terclockwise around the circle of radius E with the center at the origin, 
and then along the real axis from E to a (see [9]), and 

(3) 

Note that the series expression (3) is valid for ltl < b(w). These coeffi­
cients rA-k(z, w) and rBn(z, w) are called the Barnes multiple Bernoulli 
polynomials with the weight w ([1], see also [5]). We also put rAo(z, w) := 

rBo(z, w). From the expression (1), one can see that (r(s, z, w) has sim­
ple poles at s = 1, 2, ... , r with residues 

(4) (1:Sn:Sr) 

and 

(5) ( (1 - ) _ _ rBm(z,w) 
r m,z,w -

m 
(mEN). 

The main purpose of this paper is, as a generalization of the previ­
ous work in [9], to obtain an integral representation of the q-analogue 

d~,!(s,z,w) of the Barnes multiple zeta function (r(s,z,w) defined by 
the following Dirichlet type q-series ([10]): 

(6) 
rr- qnjWj (s-v- j+l) 

( (v)(s z w) := qz(s-v-r+l) "'"""' ____,J:.._-_.,1,-------,---
q,r ' ' L__, [ + js ,. n ·w z q 

nEZ::o:o 

The series converges absolutely for Re(s) > v+r-1. Here 0 < q < 1 and 
[x]q := (1- qx)/(1- q) for x E C. We always denote by v a positive inte­
ger and assume Wj > 0 (to ensure that Jj := 211"J=Tj(wj log q) E yClJR.) 
for 1 :S j :S r. Note that the factor qz(s-v-r+l) is normalization so that 

ct{(s, z, 1) coincides with the q-analogue of the Hurwitz zeta function 
studied in [3, 4, 9]. In [10], we show a meromorphic continuation of 

d~,! (s, z, w) to the whole plane <C by the binomial theorem and calculate 
the special values at non-positive integers (see Remark 4.5). Moreover, 
for the special weight w = lr := (1, ... , 1), using the Euler-Maclaurin 

summation formula, we prove that limqTl d~,! ( s, z, lr) = (r ( s, z, lr) for 
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any s E C except for the points s = 1, 2, ... , v + r- 1. Note that the 

points s = 1, 2, ... , v + r - 1 are the poles of d~) (s, z, lr) on the real 
axis. For a general weight w, however, it is hard to see the classical 

limit q i 1 of d~)(s,z,w) since we can not apply the Euler-Maclaurin 
summation formula. The integral representation also gives a meromor­
phic continuation of d~) ( s, z, w) to the entire plane C and allows us to 
describe the poles and special values at non-negative integers as ( 4) and 
(5). Furthermore, we can obtain the following theorem by employing the 

integral representation of d~) (s, z, w). Notice that this theorem gives a 
part of the answer of Conjecture 4.2 in [10]. 

Theorem 1.1. ForsE C, sf 1, 2, ... , v + r- 1, we have 

lim(q(v)(s,z,w) = (r(s,z,w). 
qp ' 

We remark here that this kind of limit theorems are obtained for the 
other types of q-zeta functions (cf. [6, 7, 8]), which are not of the form 
of the Dirichlet type q-series (actually, they need some extra term). For 
Dirichlet type q-analogues of the multiple zeta values, see [2, 11 J. 

The paper is organized as follows. In Section 2, we define functions 

Fd~j,1 (t, z, w) for 0 ~ j ~ r + 1 and study their analytic properties. In 

particular, for 1 ~ j ~ r, we give another expression of Fd~),1 (t, z, w) by 
using the Poisson summation formula (Proposition 2.2). In Section 3, 

we introduce q-analogues rA~k(z, w; q) of rA-k(z, w) and rB~) (z, w; q) 

of rBn(z, w) respectively by the generating function G~~) (t, z, w), which 

is defined via the functions Fd:J.1(t, z, w). In fact, using a certain re­

lation among Fd~j,1 (t, z, w)'s (Lemma 2.4), we show that ct)(t, z, w) 
essentially gives a q-analogue of Gr ( t, z, w) (Theorem 3.1). In Section 4, 

we first express d~)(s,z,w) as the Mellin transform of Fd~j,+(t,z,w) := 

Fd~J.r+l(t,z,w) (Proposition 4.1), and then establish a contour integral 

representation of d~) ( s, z, w) (Theorem 4. 3). As an application of this 
integral representation, we give the proof of Theorem 1.1. 

Throughout the present paper, we denote by Zp the set of all inte­
gers satisfying the condition P. 

§2. Functions Fd:J.1(t,z,w). 

Let 0 ~ j ~ r + 1. We study functions Fd:J.1(t, z, w) defined by 
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(7) p(v) .(t z w) ·= (tq-z)v+r-1 
q~r,J ' ' · 

r 

X L (II q-n,w,.(v+h-1)) exp( -tq-(n·w+z) [n. W + z]q)' 

nEIDli h=1 

where 

nk ;::: 0 (1 :S k :S j- 1), } 
n1 E Z, . 

nk < 0 (j + 1 :S k :S r) 

In this paper, for simplicity, we assume z > 0 (it is easy to follow the 
subsequent discussion for general setting. For details, see [9]). Here we 

understand lDlo = Z~0 (resp. lDlr+1 = z;0 ) and write F~~- := F~~j,0 
( F (v) p(v) ) nr fi. d - l . . f p(v) resp. q,r,+ := q,r,r+ 1 . vve rst stu y ana ytlc propert1es o q,r,±. 

Lemma 2.1. (i) F~~- (t, z, w) is entire as a function oft. 

(ii) F~.~+(t, z, w) is holomorphic for Re(t) > 0. Moreover, if Re(o:) > 
~r(r + 2v- 1)- v, ta F~~+(t, z, w) is integrable on [0, oo). 

Proof. Using the relation 

r 

q-(n·w+z) [n. w + z]q = q-Z[z]q + L q-(n,w,+···+n,w,+z) [nhwh]q, 

h=1 

we have 

r 

X L II ( q-n,w,(v+h-1) exp( -tq-(nhwh+··+nrw,+z) [nhwh]q)). 

nEIDlih=1 

Let j = 0. Then, since the exponential factors in the series in (8) are 

bounded for n E Z~0 , F~~-(t,z,w) converges absolutely for all t E C, 
whence defines an entire function. Suppose next j = r + 1. Then the 

series in (8) is bounded by f1~= 1 S~~)_h(Re(t), w), where 

s~~:,h(t, w) := 2.:: q-nw,,(v+h-1) exp( -tq-nw" [nwhJq) 

n2:0 

because q-(n1•+ 1 w 1,+ 1 +··+n,w,+z) > 1 for any n E z;0 . This shows 

that F~~+(t,z,w) converges absolutely for Re(t) > 0-since the series 
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s!~J,h(t, w) does for t > 0. Hence F~~+(t, z, w) is holomorphic for 
Re(t) > 0. Moreover, by the same argument as the one in Lemma 2.2 
in [9], one can show 

(9) 

Notice that the following equation is valid for a> 0 and Re(a) > !r(r+ 
2v- 1) - v 

(10) 100 r t-(v+h-1) 
tO!. . tv+r-1e-at II dt 

1- e-t 
0 h=1 

= r( Q- ~r(r + 2v- 3) + ll) (r ( Q- ~r(r + 2v- 3) + v, a, lr). 

Therefore we obtain the rest of assertion in (ii) by (9) and (10) with 
a= q-z[z]q > 0. This shows the claims. Q.E.D. 

For 1 :=:; j :=:; r, the Poisson summation formula asserts the following 

Proposition 2.2. Let 1 :=:; j :=:; r. Then F;~/j(t, z, w) is holomorphic 
for Re(t) > 0 with -7r/2 < arg(t) < 7r/2 via the expression 

(11) p(v) (t,z,w) =- (-1r-J(1- q)v+j-1 (tq-zr-jel!.qt 
q,r,J Wj log q 

L(1-q)moi r(v+j-1+mc5j) 21rv'=Imz/w x --· e 1 

t IJ (1- qw,(j-h+mo;)) ' 
mEZ hi-] 

Proof From the definition, it can be expressed as 

Fd~j(t,z,w) = (tq-zt+r- 1el!.,,t 

X "' II q-n,wh(v+h-1) "'iv) .(n·), 
~ ~ q,r,J J 

n(j)Eiil.; hi-] ni EZ 

where 

lf»j := {n(j) := (n1, ... ,rij,··· ,nr) E zr-11 nk ~ 0 (1 :S k :S j -1), } 
nk < 0 (j + 1 :=:; k :=:; r) 
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(here nj means that nj is omitted) and 

1(v) (x) == q-xw;(v+j-1) exp(--t-q_z. q-xw; II q-n~o.w~o.). 
q,r,J 1- q 

h#j 

Note that, for a fixed n(j) E IDj, the series I:n;EZ ~~~),j(nj) converges 

absolutely for Re(t) > 0. Then, since the Fourier transform ]~~),j(~) of 

~~~!.,j(x) is given by 

the Poisson summation formula I:nEZ ~~~!.,j ( n) = I:mEZ ]~~),j ( m) yields 
the desired formula (11). Remark that, for j + 1 ::; h ::; r, it can be 
calculated as 

-1 
1 _ qw1,(j-h+mii;) · 

Hence we have the factor ( -1r-j in (11). Now, it is easy to see that the 
series in (11) converges absolutely for Re(t) > 0. In fact, by the Stirling 
formula, we have 

and lt-mii; I < expC;121~~~~ ). Therefore F~~),i(t, z, w) is holomorphic for 
Re(t) > 0. This completes the proof of proposition. Q.E.D. 

Remark 2.3. From the expression (11) and using the relation 

qw;ii, = 1, F~~1 (t,z,w) satisfies the following functional equation for 
each 1::; j::; r: 

p(v) .(qwit z w) = qw;(r-j)e-t[w;]qp(v) .(t z w) 
q,r,J ' ' q,r,J ' ' · 
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Let us denote by F~~),J(O)(t,z,w) the term form= 0 in (11); 

(13) F~~j(o)(t,z,w) 
(-l)r+l-J(1- qy+J-l (v + j- 2)!(tq-z)r-J _l_t 

·== el-q 
· w1 logq TI (1- qw,.(J-h)) 

h-h 

Then F~~j(O) (t, z, w) is clearly entire as a function oft. Moreover, we 
p(v) ·- p(v) p(v) £ h h . ( ) put q,r,j(orfO) .- q,r,j - q,r,j(O) or t e ot er terms m 11 . 

The next lemma is crucial in the subsequent discussion. 

Lemma 2.4. For Re(t) > 0, we have 

r+l 
(14) ""'(-1)r+l-j p(v) .(t z w) = 0 

~ q,r,J ' ' - . 
j=O 

Proof. Write F:~j(t,z,w) = I:nElllij h(n). For 0 s:; j s:; r + 1, we 

define the partial series F:~J.1 of F:~j by F:~j(t,z,w) := L:nEiSJ1 h(n), 
where 

Th · h ld h F(v) F~(v) p(v) F~(v) F~(v) c 
en lt 0 S t at q,r,O = q,r,O' q,r,J = q,r,J + q,r,J-l lOr 1 S:: j S:: r 

and F:~r+l = FJ~r· Now, the relation (14) immediately follows from 
these equations. Q.E.D. 

§3. Function G~~)(t,z,w). 

Let 

r 

(15) Gq(")(t,z,w) := ""'(-1r-Jp(v)(o)(t,z,w) + (-1rFq(~_(t,z,w). 
1 L.....t q,r,J , , 

j=l 

It follows from Lemma 2.1 (i) and the expression (13) that ct)(t,z,w) 
has an infinite radius of convergence at t = 0 when 0 < q < 1 and is 
entire. Then we define rA~k(z, w; q) and rB~) (z, w; q) as the coefficients 
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of the Taylor expansion of ct~(t, z, w) at t = 0: 

(16) G~~~ (t, z, w) 
v+r-2 oo tn 

=tv+r-2{ L (-1)krA~k(z,w;q)Ck+L(-1trB~l(z,w;q)n!}· 
k=l n=O 

We also put rA~v\z, w; q) := rB~v) (z, w; q). The following theorem as­

serts that rA~k(z, w; q) and rB~) (z, w; q) are q-analogues of the Barnes 
multiple Bernoulli polynomials. 

Theorem 3.1. For 0 < t < b(w), we have 

(17) limGq(v~(t,z,w) = tv+r-2Gr(t,z,w). 
qTl , 

In particular, it holds that 

(18) l. A(v)( . ) _ {rA-k(z,w) for 0:::; k:::; r -1, 
1m r -k z, W, q -
qp 0 for r :::; k :::; v + r - 2, 

(19) limrB~l(z,w;q) = rBn(z,w) for n 2': 0. qp 

Proof. The assertions (18) and (19) follow immediately from (3), 
(16) and (17). Hence it suffices to show the formula (17). For t > 0, 

we have limqTlF~~+(t,z,w) = tv+r- 2Gr(t,z,w) because F~~),+(t,z,w) 
converges absolutely for Re(t) > 0. On the other hand, from the relation 
(14), we have 

r 

F (v) (t ) _ "'"'( 1)r+l-jp(v) (t ) ( 1)r+lp(v) (t ~ ) 
q,r,+ ,Z,W -- L...t- q,r,y" ,Z,W - - q,r,- '""'W 

(20) 

j=l 
r 

= ct)(t,z,w) + L:(-1r-jFdJ,j(tfo)(t,z,w). 
j=l 

Therefore it is enough to show that for all 1 :::; j :::; r 

(21) limF(v) .(-'O)(t,z,w) = 0 qTl q,r,J .,.. (0 < t < b(w)). 

Put /-lj := #{1:::; h:::; r I wh/Wj E Z, h =J j}. Then notice that if m =J 0, 
we have 

II (1- qw,.(j-h+mt5j)) = 0((1- q)~"i) 

h#j 
(q i 1). 
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Hence, using the formula 1/ logq = -1/(1- q) + 0(1) as q i 1, we have 
from (12) 

(1- qt+J- 1 _1 t !r(v + j- 1 + m51 )i 
-'-------':..:___--e 1- q .,..--'--------=----'---,-

logq I f1 (1 _ qwh(j-h+m6;)) I 
hi'] 

1 1r 2 lml 

( e- 4 w; I log 'II ) ( 3n21ml 1 ) 
= 0 1 exp -(--- t)-- + 0(1) --4 0 

(1 - q)~"1+2 4w1 1 - q 
(q i 1) 

because 0 < t < b(w) ::; ~7r ::; ~7r 31r~ml = 3~~ml_ This shows that each 
J .} .1 

summand of F(v) .(..J.o)(t,z,w) vanishes as q i 1, whence the claim (21) 
q,r,J r-

follows. This completes the proof of the theorem. Q.E.D. 

One can obtain the following explicit expressions of rA~k(z, w; q) 

and rB~) (z, w; q). 

Proposition 3.2. We have for 0 ::; k ::; v + r- 2 

(q- 1)l+k 
rA~k (z, w; q) = _:_::_::---'-­

logq 

r qz(j-r) (v + j - 2)! 

X. L Wjf1(1-qwh(j-hJ)(-k+v+j-2)! 
J=max{k-v+2,1} h#j 

and for n :::0:0 

{ 
n (n) £qz( -e-v-r+2) 

rB~")(z,w;q) = (q -1/-n L(-1)e £ _r ______ _ 
€= 1 TI (1- qw;(-e-v-]+2)) 

j=1 

1 r (n + V + j - 2) -1 qz(j-r) } 

+logq~ v+j-2 w1 f1(1-qw,,(j-h)) · 
J-1 h#j 

Proof. These formulas are directly derived from (15) by calculating 
the Taylor expansions of the exponential functions at t = 0. Q.E.D. 
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§4. Main results. 

Now we are ready to study an integral representation of Ct) ( s, z, w). 

We first show that d~) (s, z, w) can be expressed as the Mellin transform 

of F~,~+(t,z,w). 
Proposition 4.1. For Re(s) > ~r(r + 2v + 1), we have 

(22) ;-(v)(s z w) = -- ts-(v+r- 1) p(v) (t z w)-1 100 dt 
O.,q,r ) ) r( s) 0 q,r,+ ) ) t . 

Proof. From Lemma 2.1 (ii), the integral 

ts-(v+r-1) p(v) (t z w)-100 dt 
0 q,r,+ ' ' t 

converges absolutely for Re( s) > ~r( r + 2v + 1). Then, from the integral 
expression of the gamma function f( s), one can easily obtain the formula 
(22) by changing the variable tq-(n·w+z) [n · w + z]q f--+ t. Q.E.D. 

To establish our main result, we introduce the function cp~~},1 ( s; a, m) 
for 0 <a< oo, mE Z\{0} and 1:::; j:::; r by the following integral: 

cp~~},1 (s;a,m) := 1a ts-v-j-m!iiel!_qtdt. 

Since the integral converges absolutely for Re(s) > v + j - 1, it defines 
a holomorphic function on the region. Further, we have the following 

Lemma 4.2. The function cp~~},1 ( s; a, m) can be meromorphically 
continued to the whole plane C. It has simple poles at s = n + m81 for 
n E Z::;v+j-1 with 

(23) R (v) ( . ) -
s=n$~Hlj 'Pq,r,j S, a, m - -,.(v_+_j---1---n7).,-,!(,--1---q.,-)V-+,-J.,-._--:1---n • 

1 

These exhaust all poles of cp~~},1 (s; a, m). 

Proof. This is obtained by integration by parts. Precisely, see 
Proposition 2.5 in [9]. Q.E.D. 

Moreover, we put 

-(v) ( . ) 'Pq,r,j s, a, m 

:= (1 - q)m!ii f(v + j - 1 + mbj )qz(j-r+mliJ) (v) . s· a m 
IT (1- qw1,(j-h+m61)) 'Pq,r,J( ' ' ). 

h#j 
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The following theorem is our main result, which gives a generaliza­
tion of Theorem 3.6 in [9]. 

Theorem 4.3. (i) For 0 <a< oo and 0 < c: < min{a,b(w)}, we 
have 

(24) . 
( 1)v+r-1r(1 s) 

;-(v)(s z w) = - - J(v)(s z w· a) 
'>q,r ' ' 27l'H q,r ' ' ' 

1 ~ (1 - q)v+j-1 " ~(v) 
- r(s) ~ w·logq ~ 'Pq,r,j(s;a,mj) 

j=1 J mjEZ\{0} 

+ -- ts-(v+r-1) p(v) (t z w)-1 1= & 
r( s) a q,r,+ ' ' t ' 

where 

1 dt 
J(vl(s z w· a) := (-t)s-(v+r-1lc<vl(t z w)-

q,r ' ' ' q,r ' ' t 
C(e:,a) 

and C(c:, a) is the same contour as the one in (1). This provides a 

meromorphic continuation of (t/ (s, z, w) to the entire plane C. 
(ii) The poles of d~)(s, z, w) are all simple and are located at s = 

1, 2, ... , v + r- 1 and s = v + j- 1 - f + m181 for 1 ::; j ::; r, f E Z:::o 
and mj E Z\{0}. For n E Z~v+r-1, m E Z and w E {w1, ... , Wr} with 
8 := 27l'H/(wlogq) E A~, we have 

(25) 
(1 q)n+m6 

Res t,<v)(s, z, w) = --'----_..;. __ 
s=n+m6 q, log q 

r (1/ + j - 2 + m8) djqz(j-r+m6) 
X . L 1/ + j _ 1 _ n w. IJ {1 _ qwh(j-h+m6l)' 

J=max{n-v+1,1} 1 hf;j 

where d1 := #{m1 E Z\{0} I m 18j = m8}. 
(iii) For a positive integer m, we have 

(26) ;-(v)(1 - ) = _rB~)(z,w;q) 
'>.qr m,z,w , m 
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Proof SupposeRe(s) > !r(r+2v+1). Then, fromProposition4.1, 
(20) and (11), it holds that 

r(s)(t) (s, z, w) 

= ts-(v+r-1)Q(vl(t Z w)- + ts-(v+r-1) p(v) (t z w)-1a dt 100 dt 
0 q,r ' ' t a q,r,+ ' ' t 

1a r & 
+ ts-(v+r-1) ~( -1r-j p(v). (t z w)-

o L.... q,r,J(#O) ' ' t 
j=1 

= ts-(v+r-1)Q(v)(t Z w)- + ts-(v+r-1) p(v) (t Z w)-1a dt 100 dt 
0 q,r ' ' t a q,r,+ ' ' t 

Lr (1 - qy+J-1 -(v) 
- l ~ 'Pq r 1 (s; a, m). 

w ogq L.... '' 
j=1 J mEZ\ {0} 

Moreover, we have 

(27) ts-(v+r-l)c(v)(t z w)-1a dt 

0 q,r ' ' t 

_ (-1)v+r- 1r(s)f(1- s) 1(v)( . ) 
- 11 qr s,z,w,a. 

2ny-1 ' 

Actually, since the integral It)(s, z, w; a) converges absolutely and uni­
formly with respect to s, it defines an entire function in s. Further, by 
the Cauchy integral theorem, it does not depend on c. Then, taking the 
limit c -7 0 and using the relation f(s)f(1- s) = n/sin(ns), we have 

(27). Note that the integral on the path It I = c in It) (s, z, w; a) vanishes 
as c -7 0 since Re(s) > ~r(r + 2v + 1) > v + r -1. Hence we obtain the 
desired formula (24). Since the last integral on the right hand side of 
(24) clearly defines an entire function, from Lemma 4.2, (24) provides a 

meromorphic continuation of ct) ( s' z' w) to the entire plane c. Further' 

since It)(s,z,w;a) = 0 for s E Z>v+r by the residue theorem, one can 

see from (24) that d~)(s,z,w) has-simple poles at s = 1,2, ... ,v+r-1 
with residues 

~~ ct)(s,z,w) = -(~:~ f(1- s))rA~{n- 1)(z,w;q) 
(-l)n-1 (v) 

(28) - (n _ 1)! rA_(n- 1)(z, w; q) (1:::; n:::; v + r- 1). 

Hence, from Proposition 3.2, we have (25) for m = 0. Moreover, from 

Lemma 4.2, d~)(s, z,w) has also simple poles at s = v+ j -1- f+mJJJ 
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for 1 ~ j ~ r, £ E Z~o and mj E Z\{0}. Retaining the notation in the 
statement ( ii) above, we have 

(v) ( ) _ 1 
8=~~~8 (q,r s, z, w - - r(n + mJ) 

X 

r 

j=max{n-v+l,l} mjEZ\{0} 
m'jdj =rnO 

(1 - q)v+j-1 ( ~(v) ) 
1 Res .. 'Pqr 1(s;a,mj). 

Wj og q s=n+mi8i ' ' 

Therefore, by the formula (23), we have (25) for m of- 0. From (27) 
again, it follows that 

( 1)v+r-lr(m) 
( (v) (1 ) - I(v) (1 - m z w· a) q,r -m,z,w = 27rH q,r ' ' ' 

rB~)(z,w;q) 
m 

This completes the proof of the theorem. Q.E.D. 

Remark 4.4. From (4), (18) and (28), we have 

( ) {
Res (r(s, z, w) 

lim Res ( vr (s, z, w) = s=n 
qp s=n q, 0 

for n = 1, 2, ... , r, 

for n = r + 1, ... , v + r- 1. 

We finally give the proof of Theorem 1.1. 

Proof of Theorem 1.1. Suppose 0 <a < b(w). Compare the inte­
gral expression (24) with (1). Then, from Theorem 3.1, it is sufficient to 

show that limqp ip~~;,j(s; a, mj) = 0 for all 1 ~ j ~rand mj E Z\{0}. 
Indeed, using the mean-value theorem, one can show the formula by the 
same way as the proof of (21) (more precisely, see Corollary 3.8 in [9]). 
Hence we obtain the desired claim. Q.E.D. 

Remark 4.5. Using the binomial theorem, we obtain the following 
seriesexpressionof(J~)(s,z,w) (see [10], also [3, 4]): 

(29) 
00 (S + £ _ 1) qz(s-v-r+l+£) 

ct)(s,z,w) = (1- q) 8 2: e _r _ _;;__ ____ _ 
£=0 f] (1 _ qw;(s-v-j+lH)) 

j=l 

This also gives a meromorphic continuation of d~) (s, z, w) to the whole 
plane C. One can obtain the same facts (25) and (26) from the expression 
(29), however, it seems to be difficult to show Theorem 1.1. 
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