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Integral representations of g-analogues of the Barnes
multiple zeta functions

Yoshinori Yamasaki

Abstract.

Integral representations of g-analogues of the Barnes multiple zeta
functions are studied. The integral representation provides a meromor-
phic continuation of the g-analogue to the whole plane and describes
its poles and special values at non-positive integers. Moreover, for
any weight, employing the integral representation, we show that the
g-analogue converges to the Barnes multiple zeta function when ¢ 7 1
for all complex numbers.

§1. Introduction.

In 1904, E. Barnes introduced his multiple zeta functions with a
weight w := (wy,...,w,) € C” by the following multiple series ([1]):

¢r(s, z,w) Z(n w+z)"° (Re(s) > ),

nEZZ(,

where n - w = Z; L njwj for m = (n1,...,n,) € Z5,. It is known that
the function (,(s, z,w) can be meromorphically continued to the whole

plane C via the contour integral representation

1) ¢l 20) =~ 7/

where I,.(s, z,w; a) is an entire function defined by

dt

I.(s,z,w;a) + = ts_lGr(t,z,w)T,

(2) I.(s,z,w;a) ::/ (—t)s_lG,«(t,z,w)ﬂ.
Cl(e,a) ¢

Received December 30, 2005.

Revised March 6, 2006.
2000 Mathematics Subject Classification. Primary 11M41; Secondary

11B68.
Key words and phrases. Barnes’ multiple zeta function, Barnes’ multiple

Bernoulli polynomial, g-analogue, contour integral, classical limit.



546 Y. Yamasaki

Here C(g,a) is a contour for 0 < a < oo and 0 < € < min{a,b(w)}
with b(w) := mini<;j<,{|27/w,|} along the real axis from a to €, coun-
terclockwise around the circle of radius £ with the center at the origin,
and then along the real axis from ¢ to a (see [9]), and

te(w1+---+wr—z)t

H; 1(evit —1)
Z (z,w)t™F + Z )g

(3) Grlt,z,w): =

Note that the series expression (3) is valid for |t| < b(w). These coeffi-
cients » A_(z,w) and By, (z, w) are called the Barnes multiple Bernoulli
polynomials with the weight w ([1], see also [5]). We also put A¢(2,w) 1=
rBo(z,w). From the expression (1), one can see that (s, z,w) has sim-

ple poles at s = 1,2,...,r with residues
(_l)n—l
(4)  Res((s,zw) = WTA~(n—1)(z7w) (I<n<r)
and
(5) G -mzw) = PO e

The main purpose of this paper is, as a generalization of the previ-
ous work in [9], to obtain an integral representation of the g-analogue
éf’r)(s, z,w) of the Barnes multiple zeta function (.(s, z,w) defined by

the following Dirichlet type g-series ([10]):

r lanWJ(S v—j+1)
.7

6) (s, z,w) = gD S

n w+z
n€Z>0 ]q

The series converges absolutely for Re(s) > v+r-1. Here 0 < ¢ < 1 and
[z]q := (1—¢%)/(1—q) for z € C. We always denote by v a positive inte-
ger and assume w; > 0 (to ensure that §; := 2my/—1/(w;logq) € vV—1R)
for 1 < j < r. Note that the factor ¢*=*~"*1) ig normalization so that

(") { (s, z,1) coincides with the g-analogue of the Hurwitz zeta function
studled in [3, 4, 9]. In [10], we show a meromorphic continuation of
é"r) (s, z,w) to the whole plane C by the binomial theorem and calculate
the special values at non-positive integers (see Remark 4.5). Moreover,
for the special weight w = 1, := (1,...,1), using the Euler-Maclaurin

summation formula, we prove that limgy Cé:}r)(s, z,1;) = (e (s, 2, 1,) for
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any s € C except for the points s = 1,2,...,v +r — 1. Note that the
points s = 1,2,...,v + r — 1 are the poles of C,g:’r)(s,z, 1,) on the real
axis. For a general weight w, however, it is hard to see the classical
limit ¢ T 1 of Cé:/r) (s,z,w) since we can not apply the Euler-Maclaurin
summation formula. The integral representation also gives a meromor-
phic continuation of Cé:’r) (8, z,w) to the entire plane C and allows us to
describe the poles and special values at non-negative integers as (4) and
(5). Furthermore, we can obtain the following theorem by employing the
integral representation of Cé:’r)(s, z,w). Notice that this theorem gives a
part of the answer of Conjecture 4.2 in [10].

Theorem 1.1. Forsc€ C, s #1,2,...,v+r — 1, we have

llm((")(s z,w) = (r(s, z,w).

‘We remark here that this kind of limit theorems are obtained for the
other types of g-zeta functions (cf. [6, 7, 8]), which are not of the form
of the Dirichlet type g-series (actually, they need some extra term). For
Dirichlet type g-analogues of the multiple zeta values, see [2, 11].

The paper is organized as follows. In Section 2, we define functions

Fq(';)J (t,z,w) for 0 < j <7+ 1 and study their analytic properties. In

particular, for 1 < j < r, we give another expression of F q('lr) j (t,z,w) by
using the Poisson summation formula (Proposition 2.2). In Section 3,
we introduce g-analogues A-k(z,w q) of A_k(z,w) and TBﬁL")(z,vw; q)
of . B,(z,w) respectively by the generating function G((,'f,z (t, z,w), which

is defined via the functions Fq( T) j(t,z,w). In fact, using a certain re-

lation among Fq( ,)J (t,z,w)’s (Lemma 2.4), we show that G(") (t, z,w)
essentially gives a g-analogue of G,(t, z,w) (Theorem 3.1). In Section 4,

we first express Cé,r( z,w) as the Mellin transform of F,, ) oyt z,w) =

F;;)r +1(t, z,w) (Proposition 4.1), and then establish a contour integral

representation of gé,”)(s, z,w) (Theorem 4.3). As an application of this
integral representation, we give the proof of Theorem 1.1.

Throughout the present paper, we denote by Zp the set of all inte-
gers satisfying the condition P.

()
§2. Functions qu](t z,w).

Let 0 < j <r+ 1. We study functions Fq ”(t z,w) defined by
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M Fq(,yr),j(t, zw) = (tg~ 7)ot
T
i Z (H q_n"'w"'(”+h—1)> eXp(—tq“(n'W-I—z) [n-w+ Z]q)7
neD; h=1

where
Djiz n:(nl,...,nr)EZT ’anZ,
ne<0(G+1<k<r)

In this paper, for simplicity, we assume z > 0 (it is easy to follow the
subsequent discussion for general setting. For details, see [9]). Here we

understand Dy = Z7, (resp. Dyy1 = Z5,) and write F;’"T)’_ = Fq(,”r),o

(resp. F;Q+ = F;;?T+1). We first study analytic properties of Fq(flr)yi.
Lemma 2.1. (i) Fq(;),_(t,z,w) is entire as a function of t.

(%¢) Fq(":,),_l_(uz,w) is holomorphic for Re(t) > 0. Moreover, if Re(a) >

rir+2v—1)—v, tan(zﬂ)’_I_(t, z,w) is integrable on [0, 00).

Proof. Using the relation

T

h=1

we have

(8) F) (t,z,w) = (tg=*)"+"~ exp(—tq~*[2],)

T
x 30 T (a7 oD exp(—tg (et tnrwt Dy ,) ).
neD; h=1

Let 7 = 0. Then, since the exponential factors in the series in (8) are
bounded for n € Z7, F;}Vr),_(t, z,w) converges absolutely for all ¢t € C,
whence defines an entire function. Suppose next j = r + 1. Then the -

series in (8) is bounded by [];_, S;f;)’h(Re(t), w), where

Séf;)yh(t,w) = Z q_"“’"'(“+h_l) exp(—-tq_"‘”“ [nwh]q)
n>0
because g~ (Mn+iwniittniwrtz) 5 1 for any n € Z5,. This shows

that Fq('jr) +(t,z,w) converges absolutely for Re(t) > 0 since the series
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Sg"r)h(t w) does for t > 0. Hence Fq(T)Jr(t,z,w) is holomorphic for
Re(t) > 0. Moreover, by the same argument as the one in Lemma 2.2

in [9], one can show

t—(l/+h—1)

1—et

v+h-1

@ SY, (tw) <1+ (w+h—1)e?)

q,m,h (t > O)

Notice that the following equation is valid for @ > 0 and Re(a) > r(r+
2w—-1)—

* 1
10 ta tl/+7‘ —at
(10) /0 1—et
1 1
= F(a— 5r(r+2y -3) +1/)Cr(a - 5r(r+2y— 3)+v,a, lr).

Therefore we obtain the rest of assertion in (i¢) by (9) and (10) with
a = g~ *[z]q > 0. This shows the claims. Q.E.D.

For 1 < j <r, the Poisson summation formula asserts the following

Proposition 2.2. Letl < j <r. Then Fq( T)J(t z,w) is holomorphic

for Re(t) > 0 with —/2 < arg(t) < 7/2 via the expression

(=) - gt
wjlogg

1—q\m% F(V +Jj—-1+ m(s,’l) 2my/—1Imz/w;
x z ( ) [1 (1 — gwrG=h+mé;)) € o
h#j

(11) FY (t,z,w) = (tg~*)Terat

q,7,J

meEZ

where 0; := 2my/—1/(w;loggq) € vV—1R.

Proof. From the definition, it can be expressed as

F(V) (t, 2, w) (q—Z)u+r—le~ll—qt

q,7,]
. Z Hq_""‘w"'(quh_l) Z f;”;),j(nj),

n(j)eD; h#J n;€zZ

n>0(1<k<j-1),
n,<0(+1<k<r)

]f))j = {h(]) = (nl,...,ﬁj,...,nr)GZ’"'l - T
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(here 77; means that n; is omitted) and

. t
("’)’J( )= q~IwJ‘(V+J—1) exp(— T --q Y B H q—nnwh)‘
h#j

Note that, for a fixed 72(j) € Dj, the series Zn ez fé"r)] (n;) converges
absolutely for Re(¢) > 0. Then, since the Fourier transform f‘; f ](5) of
f;:;)’j () is given by

8@ = [ @e T

_ (1 —gq)t ! (tq—z)—(u+j—1) H qm.,wh(v+j—1+£5j)

h

— £6;
X (%) P(l/ +j -1+ g(sj)(gz”\/—:fﬁz/w:i,

wjlogg

the Poisson summation formula ), ., fé"r) ()= ez fé"r) ;(m) yields
the desired formula (11). Remark that, for j + 1 < h < r, it can be

calculated as

qwh(h_j_m(s;i) _.1

Z qrren (G—h+mé;) _ = .
- 1 — gwnlh=j=—mé;) — ] — gwn(i—h+ms;)
Mh

Hence we have the factor (—1)"~7 in (11). Now, it is easy to see that the
series in (11) converges absolutely for Re(t) > 0. In fact, by the Stirling
formula, we have

: @m)H mpr i3 e
(12) lF(V+]—l+m6])l ~ |w.loo-q|l/+j—% e wjllogdl (Iml — OO)
J o

and |t~ (;}%) Therefore Fq( T)J (t, z,w) is holomorphic for
Re(t) > 0. This completes the proof of proposition. Q.E.D.

Remark 2.3. From the expression (11) and using the relation

qid =1, Fq(”r) ](t,z,w) satisfies the following functional equation for

eachlgjgr

Fy? (gt z,w) = ¢ De Wl ) (42, w).
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Let us denote by F” ”(O) (t,z,w) the term for m = 0 in (11);

(13) E%. ) (t, 2,w)

(__1)r+1—j(1 _ q)u+j—1 (V +7j - 2)!(tq—z)r—j ay

w;jlog g I1 (1 — gonl—h) -
h#j

v)
Then Fq i(0)

(v) _ () (v)
put qu](aéO) Fw] quJ(O)

The next lemma is crucial in the subsequent discussion.

(t,z,w) is clearly entire as a function of {. Moreover, we

for the other terms in (11).

Lemma 2.4. For Re(t) > 0, we have

r+1

(14) S (-1 IR (¢, z,w) = 0.
=0

Proof. Write F;?](t 2,w) = Y pep, M(n). For 0 < j <r+1, we

define the partial series F( ; of Fq("r) ; by Fq("r) j(tz,w) =3 5 h(n),

where

_ n >0 (1 <k <j),
D i=dn=,...n)ez D,
i {" (n1,o ) ne<0(G+1<k<r) i

Then it holds that F‘")0 =F" F = F" 4 F¥.  for1<j<r

q,7.7 Q77 q,rj—1
and F, q("r)r 1= Fq,m. Now, the relation (14) immediately follows from
these equations. Q.E.D.

§3. Function G\ (t, z,w).

Let

(t2,w) + (1) FY)_(t, 2, w).

QT

(v @)
(15) GU)(t,z,w) Z IE" o)

It follows from Lemma 2.1 (i) and the expression (13) that G(V)(t z,w)
has an infinite radius of convergence at £ = 0 when 0 < ¢ < 1 and is

entire. Then we define TA(_V,z(z, w; q) and .BY (z,w; q) as the coefficients
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of the Taylor expansion of G\ (t, z,w) at t = 0:

(16) G)(t,z,w)
v4r—2

vhr—2 ) K B®) &
=t { Z kLAY (2w )t +Z( n" (Z’W;q)}ﬁ}'

n=0

We also put A" (z,w; q) := B (2,w;q). The following theorem as-
serts that TAg',l(z, w;q) and TB,({') (z,w; q) are g-analogues of the Barnes
multiple Bernoulli polynomials.

Theorem 3.1. For 0 <t < b(w), we have

(17) 1i%111 GW(t, z,w) = t"TT72G, (t, 2, w).
q

In particular, it holds that

v rA— , 0 S k S _ 1,
(18) lim, AY) (2, w; q) = k(z,w)  for T

qT1 0 forr<k<v+r-2
(19) lqi%IllTBr(:/)(Z’w;q) = . Bp(z,w) forn>0.

Proof. The assertions (18) and (19) follow immediately from (3),
(16) and (17). Hence it suffices to show the formula (17). For ¢ > 0,
we have limgp; Fq(r+(t z,w) = Y7726, (t, z,w) because F(H_(t zZ,w)
converges absolutely for Re(t) > 0. On the other hand, from the relation
(14), we have

T

Fi (b z,w) = = 3 (-1 IRt 2,w) — (1) RS _(t 2,w)

a3
j=1

(20) (t, z,w) + Z )y ’Fq"r)]#o)(t,z,w).

Therefore it is enough to show that forall 1 < j <r

(21) lin F")

q, r](;é(])(tVZ’w) = 0 (0 <t < b((.d))

Put p; := #{1 <h< r|wh/wj €Z, h #]} Then notice that if m # 0,
we have

H(l - qwn(j—h-l-m(sj)) = O((l - q)’”) (q 7 1)

h#j
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Hence, using the formula 1/logg = —1/(1 —¢q) + O(1) as ¢ T 1, we have
from (12)

1- q)u+j—lel+qt |I‘(1/+j -1+ méj)‘ ,

log g - quh(j-h+m6,~))‘
hitg
. _1_7%m

(1 —gqptit 0( e taT )ex ( 1 . 3 m2|m| )

logg (1- gy (logg) -3/ " P\T=q" ~ Zw;llogq]

_%_1%21'_""‘17 3 2! l 1

e Swiliewd Tm
Y Gl PO LR S TS NP

(1 - gt exp 4w;j )1—q+ )= (a1 1)
because 0 < t < b(w) < %”5 < %’Jig—ﬂgﬂ = 3—73% This shows that each
summand of Fq(";)’j( £0) (t,z,w) vanishes as ¢ T 1, whence the claim (21)
follows. This completes the proof of the theorem. Q.E.D.

One can obtain the following explicit expressions of ,A(_",l(z,w; q)
and TBS’)(z,w; q).

Proposition 3.2. We have for 0 < k<v+r—2

— 1)1+k
T‘A(V) M = ————(q
_k(zﬁqu) logq
T z(4-r) ; !
y q (v+35-2)
D 1—qunG=h) (=k+v+j—2)!
q

j=max{k—v+2,1} wjh¢j

and forn >0

Zqz('é—u—r-i—Z)

er(zV)(va; q) = (q - 1)1_H{Z(_1)Z (z

£=1

) [T (1 — gort-t=v=i+2))
j=1

4 1 zr: n+v+j-2\"" q?t=")
logg =\ v+j-2 wj [T (1 —gnG=m) [
= h#j

Proof. 'These formulas are directly derived from (15) by calculating
the Taylor expansions of the exponential functions at ¢ = 0. Q.E.D.



554 Y. Yamasaki

§84. Main results.

Now we are ready to study an integral representation of Cé"r) (s,z,w).
We first show that ¢, ("r) (s, z,w) can be expressed as the Mellin transform

of Fq(';)Jr(t, z,w).

Proposition 4.1. For Re(s) > r(r + 2v + 1), we have

1 * v dt

() enw) =5 [ ETOTIRD (s T
T(s) Jo t

Proof. From Lemma 2.1 (iz), the integral

* 1) ) dt
/ ps—(vtr— )Fq,r,+(tvz’w)—t—

0

converges absolutely for Re(s) > 1r(r+2v +1). Then, from the integral
expression of the gamma function I'(s), one can easily obtain the formula
(22) by changing the variable tg~(™“*+2)[n . w + 2], — t. Q.E.D.

To establish our main result, we introduce the function <p r i(s;a,m)
for 0 < a < 00, m € Z\{0} and 1 < j < r by the following mtegral.

a
(fpf(ll,/z’](s; a, m) = / tS—V——]‘_méj eﬁtdt‘
0
Since the integral converges absolutely for Re(s) > v 4+ j — 1, it defines

a holomorphic function on the region Further, we have the following

Lemma 4.2. The function <qu ](s a,m) can be meromorphically
continued to the whole plane C. It has simple poles at s = n + md; for
n e ZSV‘H"l with

) 1
23) s=ani& Pany(siam) = (v+5-1-n)(1-gp+i-l-n’

These exhaust all poles of <pq ”(s a,m).
Proof.  This is obtained by integration by parts. Precisely, see
Proposition 2.5 in [9]. Q.E.D.
Moreover, we put

3, (ssa,m)
_(1-gm™iT(v+j-1+ mé;)g?u-Ttms) (s:0,m)
[T (1 — gonG=h+ms)) Pq,r,j\5 @ M)

h#j
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The following theorem is our main result, which gives a generaliza-
tion of Theorem 3.6 in [9].

Theorem 4.3. (i) For 0 < a < 00 and 0 < ¢ < min{a,b(w)}, we
have

(24) - C(”)(s z,w) = (_1)’/;::/11(1 _S)Ié‘;)(s z,w;a)

V+j—1

(1-9) ~(v) ..
F(S Z wjloggq Z wq,r,j(saaamj)

m;€Z\{0}

1 dt
gs—(wtr— I)F(V) ¢ =
+F@>L art (6505

where

— r— v dt
Ié:’r)(s,z,w;a) ::/ (—t)° (vt I)Gé,r)(t,z,w)?
C(e,a)

and C(g,a) is the same contour as the one in (1). This provides a
meromorphic continuation of Céf'r) (s,z,w) to the entire plane C.

(it) The poles of (é,”) (s,2,w) are all simple and are located at s =
1,2,...,v+r—lands=v+j—1—£€+m;d; for 1 <j<r, L el
and m; € Z\{0}. Forn € Z<y4r—1, m € Z and w € {wi,...,w,} with

§ :=2my/-1/(wlogq) € v—1R, we have

(=gt
logg
r i—92 § d.g?d—r+mé)
S (”*9. *"1) EI

S _ qwn(G—h+md))’
immax{no v+ 11} v+j—-1—n whgj(l qwnG m)

(25) Res C(”)(s zZ,w) =

where dj := #{m; € Z\{0} | m;0; = md}.
(731) For a positive integer m, we have

Br(rf)(z,w;q)

(26) (1 -m,z,w) = -
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Proof. Suppose Re(s) > %T(T+2I/+1). Then, from Proposition 4.1,
(20) and (11), it holds that

(s )C(”)(sz,w)
dt

s—(v+r—1) ~(v) dt OO s—(v+r—1) p(v)
= ; t Gq’r(t,z,w)? + t qur’+(t,z,w)—t—
a

- dt
+/0 IR Y Co Mt I CEN o
j=1

* —(v4+r— v dt o s—(v+r— dt
:/0 e I)G’g’r)(t,z,w)?-k/ o=t 1)F(I(f;)’+(t,z,w)7
a

S LT S 5 (siam)

j=1 wj logg mezZ\{0}

Moreover, we have

@ dt
(27) / ts_(y+r_1)G((;,jr)(t,Z,w)—t’
0

(=D IT()CA = 8) ¢, :
= p Ié,r) (s,z,w;a).

Actually, since the integral I, (ZJT)(S, z,w;a) converges absolutely and uni-
formly with respect to s, it defines an entire function in s. Further, by
the Cauchy integral theorem, it does not depend on €. Then, taking the
limit e — 0 and using the relation I'(s)['(1 — s) = #/sin(ns), we have
(27). Note that the integral on the path [t} = £in Iéf’r) (s, z,w; a) vanishes
as € — 0 since Re(s) > 4r(r +2v+1) > v +r — 1. Hence we obtain the
desired formula (24). Since the last integral on the right hand side of
(24) clearly defines an entire function, from Lemma 4.2, (24) provides a

meromorphic continuation of Cé:’r) (s, z,w) to the entire plane C. Further,
since Iéf’r)(s, z,w;a) =0 for s € Z>, 4, by the residue theorem, one can
see from (24) that Céf’r)(s, z,w) has simple poles at s =1,2,...,v+r—1
with residues

Res C(”)(s zZ,w) = ( es I'(1 - s)) A(_V()nﬁl)(z,w;q)

8§=n

(28) = ((njl)'TA(U)n 1)(‘ w; q) (1§n§1/+r.— 1)

Hence, from Proposition 3.2, we have (25) for m = 0. Moreover, from
Lemma 4.2, Qgijr)(s, z,w) has also simple poles at s = v+ j —1 — £+ m;0;
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for 1 <j <r, £eZsoand m; € Z\{0}. Retaining the notation in the
statement (i7) above, we have

1

Res ({7)(s,z,w) = Tt mo)

s=n+md

r .
(1—(1)"”"1( ()
X E E —_ Res ¢ s;a,m )
jemax{n_v+1, 1} m €EN0} wj lqu s=n+m;d; q, TJ( J)

mjdj=ms

Therefore, by the formula (23), we have (25) for m # 0. From (27)
again, it follows that

(—1)"*710(m)
BT _TI;,.)(I —m, z,w;a)

B (2w q)
m

Céf’r)(l —-m,z,w) =

This completes the proof of the theorem. Q.E.D.
Remark 4.4. From (4), (18) and (28), we have

lim Res C

Res (-(s,z,w) forn=1,2,...,7r,
g1l s=n (szw): 0

forn=r+1,...,v4+r—1.

We finally give the proof of Theorem 1.1.

Proof of Theorem 1.1. Suppose 0 < a < b(w). Compare the inte-

gral expression (24) with (1). Then, from Theorem 3.1, it is sufficient to
show that limg1q 5.(:2,1‘(5?“77711') =0foralll1 <j <randm; € Z\{0}.
Indeed, using the mean-value theorem, one can show the formula by the
same way as the proof of (21) (more precisely, see Corollary 3.8 in [9]).

Hence we obtain the desired claim. Q.E.D.

Remark 4.5. Using the binomial theorem, we obtain the following
series expression of Cé"r) (s, z,w) (see [10], also [3, 4]):

v s+4-1
(29) lgr)(szw 1—q)Z( ) ~ .
[1 (1 — guils—v=i+140)

=1

qz(s—l/—r+1+l)

This also gives a meromorphic continuation of Cgf’r) (s,z,w) to the whole
plane C. One can obtain the same facts (25) and (26) from the expression
(29), however, it seems to be difficult to show Theorem 1.1.
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