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On simultaneous Diophantine approximation to
periodic points related to modified Jacobi-Perron
algorithm

Shunji Ito and Shin-ichi Yasutomi

Abstract.
For each (o, 3) which is a periodic point related to modified Jacobi-

Perron algorithm and Q(a) has a complex embedding, we claim the
following facts: the limit set of {(\/@n(gne — Pn), Van (gnB — T0)|n =
1,2,...} is a finite union of similar ellipses, where (pn, ¢n,7n) is the
n-th convergent (pn/qn,7n/dn) of (e, B) by the modified Jacobi-Perron
algorithm but for some («, 3) the ellipse given above is not the nearest
ellipse in the limit set of {(,/g(ga — p), /q(¢B —)|q € Z,q > 0} which
is a union of similar ellipses.

§1. Introduction

We denote by C, R, Q and Z the set of all complex numbers, the
set of all real numbers, the set of all rational numbers and the set of all
integers respectively. Let 31, (2, ..., B, € R be linearly independent over
Q. Then, it is well known that there exist infinitely many ¢ € Z(g > 0)
such that q% gB;|| < 1 for any integer ¢ with 1 < i < n. We consider
the limit set of points:

{(a

which is denoted by lim(8y, B2, ..., 0n), where ||z|| = x — m and m is
the nearest integer to x € R. For n = 1, using the continued fraction
expansion of 3, we know the nearest point in lim(f1) to the origin, that
is, let v= thUPQ2m+1||qzm+1ﬂ1|| and 7' = llmlnf%m“(lzmﬂln then

@Bl ---,q"|1gBal)lg € Z,q > 0},

lim(B;) N [% ] = {v,7'}, where (pm,qm) is the m-convergent of 3.
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W. Adams [1] determined the lim(f, 82) for specific 51, B2 by using
algebraic number theory. '

Theorem(W. Adams[l]). Let 1,51, 52 be a basis for a real cubic
number field. Let us define matriz A by

1 B pe
(1) A= 1 p* B3 |,
1 /6{'2 ;2

where 11, T2 are non trivial embeddings of Q(B1) into C. Let us define a
quadratic form F(z,y) by

F(x,y) = (oT'z + az'y) (o’ T + a3’y),

where
o aq (&)
(tA)—l — agl a‘{] a72’1
aa‘z a‘{z a72'2
Let

M = Zog ® Zovy ® Zas,
N*(M) = {N(a) | a € M,a > 0},

where N(a) = aa™a™.
Then, we have

lim(B1,8) = |J {(@v) | Fz,y)=c}

cENtT(M)

By Theorem of W.Adams, if 1,01, 82 is a basis for a real cubic
number field and Q(f;) has a complex embedding, lim(5;, 82) is a union
of similar ellipses whose center are at the origin. If the modified Jacobi-
Perron algorithm ([7],[10]) admits (51, B2) as a fixed point, it computes
the nearest ellipse in lim(3;, f2) to the origin ([5]).

Furthermore, in [5] it is conjectured that the modified Jacobi-Perron
algorithm gives the nearest ellipse for each (81, 82) which is purely peri-
odic point by the modified Jacobi-Perron algorithm and has a complex
embedding. In this paper, we show that for such (8;, 82) the limit set
of {(v/@n(gnf1 — Pn),v/@n(gnB2 — rn)ln = 1,2,...} is a finite union of
similar ellipses, where (pn, ¢n,7n) is the n-th convergent (pn/qn, Tn/dn)
of (81, B2) by the modified Jacobi-Perron algorithm. We also prove that,
for some case, the nearest ellipse to the origin among them is not equal to
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the nearest ellipse to the origin in lim(3;, 82). Therefore, the conjecture
([5]) is not true.
Some closely related results appear in [2, 3].

Acknowledgement. The authors are grateful to the referee for helpful
comments.

§2. Modified Jacobi-Perron algorithm

Let us define an algorithm called modified Jacobi-Perron algorithm,
which is introduced by Podsypanin [10] as follows: Let X be the domain
given by {(z,y) € [0,1] x [0,1)|1,z,y are linearly independent over Q}
and let us define the transformation 7" on X by

(%7% — [%J) if (z,v) € Xo

(2) T(I, y) =

1 1] =z
Z—1=1,2) if(zy)eX
G- D tevex
where Xo = {(z,y) € X|z > y} and X; = {(z,y) € X|z < y}. We
define the integer valued functions a( , ) and €(, ) on X? by

H if (z,y) € Xo

a(z,y) =
E} if (z,y) € X1,

(z.9) 0 if (z,y) € Xo
e(z,y) =
Y 1 if (z,y) € X;1.

We have for each (a, 8) € X a sequence of digits (an(a, 8), en(a, B)) ==
(a(T™ Ya, B),e(T" (e, B)) for n € Z with n > 0. For simplicity,
an(a, B) and e,(a, B) are denoted by a, and €, respectively.

The triple (X,T,a(a, 8),€(e, B)) is called modified Jacobi-Perron
algorithm. We denote (o, 8,) by T™(a, 3). For the modified Jacobi-
Perron algorithm, we introduce a transformation (X, T) which is called
a natural extension of the modified Jacobi-Perron algorithm as follows:
let X = X x X and let us define the transformation T on X by

3) T(z,y,s,t) = (T(z,y),T,, ., (s1)),
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where for a > 0, € € {0,1} and (u,v) € R? with u,v >0,

—t_ _1__) ife=0,
(4) T‘il . (S, t) _ a1+s’ a1+s
’ . ife=1.
a1+t? a1+t)

(X,T) was first introduced in [7].
For (o, 8,7, 0) € X we denote (an, B, Vn, 0rn) by T™(ex, 8,7, 6). We
define 6, and 7, for n =1,2,... by

an(av IB) = max{an_l, /Bn—l}7

{%_1 +an ife, =0,

s My a5 =
(@ f,7,9) Opn_1+a, ife, =1

Let us define the family of matrices as follows: for each (a,€) with
aeN,ee{0,1}

(fa 0 1
1 0 0| ife=0,
0 1 0
(5) Afae) =
a 1 0
0 0 1 ife=1.
{ 0 0

We define M, (e, 8) by
n(o, ) qn(a, B) qi{(mﬁ))

(6) Mn(auﬁ): ( n(a,ﬁ) p;(aaﬂ) pg(a,,@) = H A(ai,el‘)‘
rn(a, B) ro(e,B) rr(e, B)

Then, we have the following formulae.

Lemma 1 ([7]). Forn € N,

1 1
Qn_1 | = en(av ﬁ)A(a,,,,e,,_) Qn |,
ﬁn—l ﬂn

1 1
Tn | = 777:1(0‘7 B5s 6)A€an,en) Tn-1] -
6n 5n—l
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From Lemma 1 we see easily following formulae.

Lemma 2 ([7]). Forn € Z with n > 0,
1

1

a | = I bc.B)Mu(.8) | an |,
B 1<i<n Bn

1 1
v | = ] mleB,70)Mi@B)™ | ¥n
1) 1<i<n On

Then, roughly speaking, (fl""—:%g—;, g—%%) gives a simultaneous ap-

proximation of (a, 8) (for example, see [4]).

83. Periodic points

In this section, we assume that (o, ) € X satisfies T™(a, 3) =
(a, B) for some integer m > 0. On the assumption, « is a cubic number
and Q(a) has a complex embedding. Let 79 be the trivial embedding of
Q(a) into R. Let 71,7 be non trivial embeddings of Q(a) into C and
T1 # T2. We note that u™ = u™ for any u € Q(«a), where T is the com-
plex conjugate of x. We set v = [[; ;< 0i(®, 5). From Lemma 2 we
have M,,(a, B)(1, o, B)t = v~ 1(1, o, B)t. We denote M,,(a, B),0n(a, B)
and n,(a, 8,7,8) by M,0, and 7, respectively. We have following
Lemma.

Lemma 3.

(1) AT =42 =1,
(2) v t>1,

(3) ’7_1 = H1§i§m Tis

(4) Qo) =Q(B) = Q7).

Proof. The term y™™~72 is the coefficient term in the characteris-
tic polynomial of M ; since M is the product of matrices of determinant
1 according to (5) and (6), we have assertion (1). We can prove the rest
of the assertions easily. O

Lemma 4. Let (u,v,w)? be a non trivial eigenvector related to
M (o, B) and the eigenvalue y~'. Then, u # 0 and (£,%2) € X and
Qo) = Q(3) = Q).
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Proof. Since 77! is the dominant eigenvalue of M, it is not difficult
to see that u, v, w > 0 or u, v, w < 0 by using Perron-Frobenius Theorem.
We assume that u, v, w > 0 without loss of generality. We set (¢;;) = M®.
Then, we see easily c13 > 0 or ¢;3 > 0. Therefore, if w = 0, then v =0
or w = 0, which contradicts that < is the cubic number. Hence, we
have u # 0. Since (1,%,%) is an eigenvector related to M t and the
eigenvalue v, we see that %, % € Q(a). On the setting *o = ¥ and
*8 =2, since M(1, *a™, *f7)" = (y"1)7i(1, *a™, *f) for i = 1,2,3,
we see that (1, *a™, *B7)t for ¢ = 1,2,3 are linearly independent on
C. Therefore, 1, *a, *3 are linearly independent on Q. On the other
hand, from the fact that (1,* a, *3) is the eigenvector of M?* with the
eigenvalue y~! we see that *a, *3 € Q(v). By using Lemma 3 we have
Q(a) = Q(*a) = Q(*p).

We set (1, *a(0), *8(0))t = (1, *a, *B)t. For each positive integer
k, we set c(k)(1, *a(k), *B(k))" = Ti<i<k Alarr_senss (L "0 "B)%
Then, it is not difficult to see that *a(k) and *@(k) are positive and
1, *a(k) and *@(k) are linearly independent on Q for each integer %,
which implies that Q(a) = Q(*a(k)) = Q(*B(k)). By using (4) and
(5) we have T, . ... (*a(k), *B(k)) = (*a(k + 1), *B(k + 1)) for each
k. From the fact that (1, *a, *3) is the eigenvector related to M¢, we
see that (*a(k), *6(k)) = (*a(k + m), *B(k + m)) for each k > 0. By
(5) and *a(k), *B(k) > 0 we see that if max{ *a(k), *8(k)} < 1, then
max{ *a(k + 1), *B(k + 1)} < 1 and if max{*a(k), *8(k)} > 1, then
max{ *a(k), *B(k)} > max{*a(k + 1), *8(k + 1)}. Therefore, we see
that max{ *a(m), *A(m)} < max{1, *a(0), *3(0)} holds. Finally, since
(*a(0), *B(0)) = (*a(m), *A(m)), we have max{ *a(m), *B(m)} < 1,
which implies that max{ *a(k), *8(k)} < 1 holds for any k > 0. O

(1, *a, *B)* is denoted the non trivial eigenvector related to M} (c, 8)
and the eigenvalue y~1. Then, we have the following lemma.

Lemma 5. For any positive integer n,

1 Ffape *@re 1 1 1 §™ 0 0

1 *air *plt ol ol a|=t0 4t 0},

1 *Ot? *,8;;2 ﬂrTln /677;1 ﬂ;z 0 0 572
where (an, Br, *Qn, *Bn) = T, B, o, *B) and § = 1+ *opoy, +
* BrBn-

Proof. We set M(n) = [[1<;cm A(aniienss)- Then, it is easily
seen that M(n)(1, an, B2)' = 711, an, Br)t and M(n)(1, *oy, *Ba)t =
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v~ Y(1, *ap, *Bn)t. Therefore, we have

1 *ajo *pre 1 1 1

n n
1 *air *po ar® ol o
1 *a2 *BR2) \Br Bt BR
1 *al*  *gr 1 1 1
=11 *at B |M®n)Mn)|ap o af
1 *a;l;z *ﬂ;z 1317;0 77;1 '677;2
Y (Yram)™ (Y *Ba)™ (y"hHe  (yH™ (vH™
=7 (Pran)™ (VB)T ) | (vTlen)™ (vTlan)Rt (v o)™
7" ('7’*an)T2 (7*:671)72 (7_1571)7-0 ('Y‘lﬂn)‘r1 (’Y_Iﬂn)T2

Form above formula and the fact that v # 47 with i # j we have
Lemma. ]
For each n € Z with n > 0, P, is defined by {(z,y,z) € R3|z +
*any + *Bnz =0} and L, is defined by {t(1, an, B,) € R3|t € R}.
We define p,,(x,y, z) for each n € Z with n > 0 and (z,y, 2) € R3 by
PnlZ,y,2) = |z+(*an)™y+(*Bn)™ z|. Then, we have following Lemma.

Lemma 6.

(1) For anyu € P, withu # 0, pp(u) > 0.

(2) Foranyw € R? and any v € L, po(W +v) = po(W).
(3) For any w € R® po(w) = [k 1|pns1 (AL | . W)

Proof. First, we assume that p,(u’) = 0 for some u’ = (uy, uy, u},) €
Pp,. Then, we see that |uy + (o) uy + (*Bn)"u}| =0 for i = 0,1, 2.
Therefore, we have u; = u, = u, = 0 and we have (1). Secondly, let
W = (wg, wy,w;) and v = t(1,ap,0r) € L. Then, using Lemma 5 we

have

prn(W + V)
= I(wz + t) + (*0471)7-1 (wy + tan) + (*5n)Tl (wz + tﬁn)l
= wz + (Tan) " wy + ("Bp) M we + 1+ (Fan) T an + (78n) Bl

= pn(W).
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Therefore, we have (2). For the proof of (3), let w = (w,,wy, w,), then,
we have

Pn(W) =|wz + (Fan) " wy + (*Bn) " w;|

Wy
= (L (Tan)™, ("Fn)™) | wy
W
Wy
= (1’ ( *an)n, (*/Bn)‘ri)A(an-{—lyeﬂv"}'l)Ai_ail-}—l!e‘"--‘"l) Wy
Wz

-1
= lnv?-i»l lp"+1 (A(a11.+1 76u+1)w).
O

By Lemma 6 we remark that |z *a™ + y*(37 |2 is a positive definite
quadratic form.

Lemma 7. For each n € Z with n > 0, we have po(gn,Pn,Tn) =
|H1§ign il

Proof. By Lemma 6 and an easy recurrence, we have

p0(an:Prsn) = po( ] Atarenrer)

1<i<n

=nl'o( [ Awierne)l

2<i<n

=| [T 71,

1<i<n

1
wheree; = [0 ]. O
0

Let 7, be the projection map to P, along L, and 7 be the projection
map to {(z,y,z) € R®z = 0} along Lo.

Lemma 8. For each n € Z with n > 0, we have |(p, — ¢gnax) *a™ +
(Tn = gnB) "B = |H1§i§n nl
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Proof. Since 7(gn, Pn, ) = (0, Pn — gnx, 7 — ¢ 3), by using Lemma
6 we have

Po(@nsPnyTn) = po(0,Pn — @na, T — ¢n3)
= '(pn - qna) o™ + (rn - ‘Inﬁ) *8m |

Therefore, using Lemma 7 we obtain Lemma 8. ]

Lemma 9. There ezists a positive constant C1(a, 8) such that for
anyn € Z withn >0

.

‘(p" - qna) *a™ + (Tn - qnlg) *ﬁﬁ| <Cy (Oly ﬂ)'y 20

Proof. We set Ci(a, 8) = [],<;<m max{1,|n;*|}. Using the fact
that /7 = [[[;<;<m ;'] and njtm = n; for each j > 0, we have

|(Pn — @) *a™ + (rn — ga8) A7 = | T[] o7

1<i<n
< Ci(a, B)y7m.
O

From the fact that |z *a™ +y*B™|? is a positive definite quadratic
form and by Lemma 9 we have the following lemma.

Lemma 10. There exists a positive constant Ca(a, 3) such that for
anyn € Z withn >0

|Pn — qnal < 22\(/—(;:-@27
Irn - Qnﬁl S gz_(g“’ﬁ)‘

Vi

We remark that the above formulae hold for each periodic point
(a, B) related to Jacobi-Perron algorithm (see [9]).

Lemma 11. For eachn > 1, gn + *opp + *Brn = []1<;<,, 7 holds.
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Proof. It is easy to see that

an + *O‘pn + *ﬁ"'n = (1 *or *;6) Pn
Tn

1
:(1 e’ */6) H A(ahei) 0
0

1<i<n
1
= H 7:(1 *a *B) | 0
1<i<n 0
= i
1<i<n
O
We define uy,, vy and ryby
1 1
u, = = ot | + | a2 ,
T1 T2
n n
L (o) - [
Va = o al'' | — | ar ,
B Br?
1
rp,= | ap
Bn
By Lemma 5 we see that up,vnp €P,. We set (y1)~1 = /e

with 0 < 6 < 1. From the fact that M (1,a™, 87)t = (y1)71(1,a™, 7)?
and M(1,a™,87) = (y2)71(1,a™, 37)! we have

_ Vycos2wf .\ /ysin2mf
(M) M(upn, Va) = (Un, Vo) <—ﬁsin27n9 Vycos2ml )

Lemma 12. 6 is irrational.

Proof. We suppose that 0 is rational. We set § = %, where k,l € Z
and | > 0. From (7) we see that (y™)!, (v2)! € R. Since ()} €



Modified Jacobi-Perron algorithm 181

Q(y) NR, we see (Y1)} € Q. Therefore, v € Q. By using Lemma 3
we see that 7' is the unit in Q(v). Therefore, we have 4/ = +1. But it
contradicts that 0 <y < 1. 0

Theorem 13. For each 0 <k < m — 1, the limit set of {\/qn(pn
@n0, Ty — qnB)In =k mod m} as n — oo is the following ellipse

ngigk n(n:) ),

2 * T1 T1~_ .
(8) {(z,y) € R¥||z"a™ +y*B"| l1+a*a+ 3*06

which is denoted by E(k).

Proof. We see that |z *a™ + 1y *371|? is a positive definite quadratic
form, which is noticed as the remark following Lemma 6. Therefore, the
set (8) is an ellipse. From Lemma 8 and 11 we have

V& (P — ga@) 0™ + \/Gn(rn — gnB) 67|
= gn|(Pn = gna) "™ + (rn — guB) " AT |?

(In * * T112
= " (qn + *apn + *Bra)| H ;'
qn + *apnp + *Bry 1<i<n

o II
= " " n(1;)-
Gn + *apn + *Prp 1<i<n

Therefore, by using Lemma 10 we have

lil’r;g l\/q_n(pn - Qna *a + \/q_n( Qnﬁ ﬂn|2
n=

n—oo

1
“1faarp s LI nm.

1<i<k

Thus, the limit set of {,/gn (Prn—qne, Tn—¢nB)In = k mod m}asn — oo
is included in E(k). We define ¢y, di, ex by

K
Pi | = ckug + dipvo + exro.
Tk
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We see easily that ¢ # 0 or dy, # 0. Then, for n = ml + k we have

1
H A(ai,ei) 0
Tn 1<i<n 0
dk
=M | px
Tk
VYtcos2md  A/ylsin2xf 0O Ck
=(up vo 1) | —/¥'sin278 /ylcos2mf O di
0 0 :Yl‘- €k

Therefore, we have

0 qn
Pn —Gnax | =T | Pn

Tn — @3 n
— (n(uo) T(v0) VAtcos2m8  \/lsin 270 ( )
- 0 \/_sm 2mo \/—cos 270 ’

which yields Theorem 13 by using Lemma 12.

Similarly, we have the following corollary.

< 4 < 3) be non negative integers and
< i < 3) and any positive integer n, we

Corollary 14. Let j; (1
Ji > 0 for some i. For j; (1
define p},, gy and r;, by

In J
pi| = I Awe) |52
Ty 1<i<n J3

Then, for each 0 < k < m — 1 the limit set of {\/q:(pi — g, 7%
)in =k mod m} as n — oo is the following ellipse

(9)
n(j1 + *awja + *Bris) [Ti<cick n(m)
2 * T T2 _ Sts
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In [5] we conjecture that the modified Jacobi-Perron algorithm gives
the best simultaneous approximation to the points (81, 82) such that
1, 51,32 is a basis for a real cubic number field, Q(3;) has a complex
embedding and (8, 32) is a purely periodic point by the modified Jacobi-
Perron algorithm. But we have a following counter example.

Counter Example. Let v be the real root of 23 + 822 + 16z —
1. Then, Q(y) has a complex embedding. Let a = % and 3 =
~. (a,B) is the purely periodic point by the modified Jacobi-Perron
algorithm and the digits are given as follows: (a1,€1) = (1,0), (az, €2) =
(1,1), (a3, €3) = (2,0), (a4,€4) = (3,0) and (ant4,€nta) = (an,€y,) for
each n € Z with n > 0.

Then, we have the following table.

n 0 1 2 3
* 2y 2+y 1+
Qn i~ | 2947 | 2 v
*,3 1 T—v 1—-v 2
n Y43 | y+1 | 2946 | y+5
T 2 [y
In iy | 7341 P}
5 1 3
n(1n) 12 E i

Let 4 = 34 2*ap. For any positive integer n we define p},, ¢ and
r by

an 3
:z = H A(ai 1€i) 2
re 1<i<n 0

Then, we have n(u) = 3. Since n(u) < min{[];<,<, n(n)li = 1,2,3},
by using Theorem 13 and Corollary 14 we see that the ellipse defined
from {p},q’, 7% }n=1 mod 4 as in Corollary 14 is nearer to the origin than
the ellipses defined from {p,,, gn, 7} as in Theorem 13. We remark that
Pij = Pijy1 t Pljr2, 94 = Qij41 + dijq0 and 1 = 1h4 + 1), for
each 7 € Z with j > 0. In our paper [6] in preparation we will show
that under some conditions for («, 3) the nearest ellipses to the origin
in lim(e, 3) are given as intermediate convergents of modified Jacobi-
Perron algorithm.
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