
Advanced Studies in Pure Mathematics 49, 2007 
Probability and Number Theory - Kanazawa 2005 
pp. 171-184 

On simultaneous Diophantine approximation to 
periodic points related to modified Jacobi-Perron 

algorithm 

Shunji Ito and Shin-ichi Yasutomi 

Abstract. 

For each ( n, {3) which is a periodic point related to modified Jacobi­
Ferron algorithm and IQ(n) has a complex embedding, we claim the 
following facts: the limit set of {(y'Qn(qnn- Pn), y'Qn(qn/3- rn)ln = 
1,2, ... } is a finite union of similar ellipses, where (Pn,qn,rn) is the 
n-th convergent (Pn/qn, rn/qn) of (n, {3) by the modified Jacobi-Perron 
algorithm but for some (n, {3) the ellipse given above is not the nearest 
ellipse in the limit set of { ( y'Q(qn- p), y'Q(qf3- r) lq E Z, q > 0} which 
is a union of similar ellipses. 

§1. Introduction 

We denote by C, JR., Q and Z the set of all complex numbers, the 
set of all real numbers, the set of all rational numbers and the set of all 
integers respectively. Let (31, (32, ... , f3n E JR. be linearly independent over 
Q. Then, it is well known that there exist infinitely many q E Z(q > 0) 
such that q:.llqf3ill < 1 for any integer i with 1 :::; i :::; n. We consider 
the limit set of points: 

which is denoted by lim(/31. fJ2, ... , f3n), where llxll = x - m and m is 
the nearest integer to x E R For n = 1, using the continued fraction 
expansion of (31, we know the nearest point in lim(/31) to the origin, that 
is, let "( = limsupq2m+1llq2m+lf3111 and "(1 = liminf q2mllq2mfJ1II, then 

m-+oo m-+oo 

lim(/31) n ["f,"f'] ={"(,"('},where (Pm,qm) is them-convergent of fJ1-
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W. Adams [1] determined the lim(,8I. ,82) for specific ,81. ,82 by using 
algebraic number theory. 

Theorem(W. Adams[1]). Let 1, ,81. ,82 be a basis for a real cubic 
number field. Let us define matrix A by 

(1) ( 
1 ,81 

A= 1 ,8? 
1 ,8? 

where Tt, 72 are non trivial embeddings of <Q(,8l) into C. Let us define a 
quadratic form F(x, y) by 

where 

Let 

N+(M) = {N(a) I a EM, a> 0}, 

where N(a) = aa71a72 . 
Then, we have 

lim(,81,,82)= U {(x,y)IF(x,y)=c}. 
cEN+(.M) 

By Theorem of W.Adams, if 1, ,81, ,82 is a basis for a real cubic 
number field and Q(,81) has a complex embedding, lim(,81, ,82) is a union 
of similar ellipses whose center are at the origin. If the modified Jacobi­
Ferron algorithm ([7],[10]) admits (,81, ,82) as a fixed point, it computes 
the nearest ellipse in lim(,81, ,82) to the origin ([5]). 

Furthermore, in [5] it is conjectured that the modified Jacobi-Perron 
algorithm gives the nearest ellipse for each (,81, ,82) which is purely peri­
odic point by the modified Jacobi-Perron algorithm and has a complex 
embedding. In this paper, we show that for such (,81, ,82) the limit set 
of {(JQn"(qn,81- Pn), JQn"(qn,82- rn)ln = 1, 2, ... } is a finite union of 
similar ellipses, where (Pn,Qn,rn) is the n-th convergent (Pn/Qn,rn/Qn) 
of (,81, ,82) by the modified Jacobi-Perron algorithm. We also prove that, 
for some case, the nearest ellipse to the origin among them is not equal to 



Modified Jacobi-Perron algorithm 173 

the nearest ellipse to the origin in lim(,B1 , ,82). Therefore, the conjecture 
( [5]) is not true. 

Some closely related results appear in [2, 3]. 

Acknowledgement. The authors are grateful to the referee for helpful 
comments. 

§2. Modified Jacobi-Perron algorithm 

Let us define an algorithm called modified Jacobi-Perron algorithm, 
which is introduced by Podsypanin [10] as follows: Let X be the domain 
given by {(x,y) E [0, 1] x [0, 1)11,x,y are linearly independent over Q} 
and let us define the transformation T on X by 

! (~, ~- [~]) 
T(x, y) = 

(~-[~].~) 

if (x,y) E Xo 

(2) 

if (x,y) E X1 

where Xo = {(x,y) E Xlx > y} and X1 = {(x,y) E Xlx < y}. We 
define the integer valued functions a( , ) and c:( , ) on X 2 by 

a(x,y) ~ l ::: 
c:(x,y)={~ 

if (x,y) E Xo 

if (x, y) E X1, 

if (x,y) E Xo 
if (x, y) E X1. 

We have for each (a, ,B) EX a sequence of digits (an(a, ,B), En(a, ,B)) := 

(a(Tn- 1(a, ,B), c:(Tn- 1(a, ,B)) for n E Z with n > 0. For simplicity, 
an(a, ,B) and En(a, ,B) are denoted by an and En respectively. 

The triple (X,T,a(a,,B),c:(a,,B)) is called modified Jacobi-Penon 
algorithm. We denote (an, ,Bn) by Tn(a, ,B). For the modified Jacobi­
Perron algorithm, we introduce a transformation (X, T) which is called 
a natural extension of the modified Jacobi-Perron algorithm as follows: 
let X = X x X and let us define the transformation T on X by 

(3) T(x, y, s, t) = (T(x, y), T~1 ,, 1 (s, t)), 
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where for a> 0, E E {0, 1} and (u, v) E JR2 with u, v:;::: 0, 

(4) 

(X, T) was first introduced in [7]. 
For (a, {3, ,, 8) E X we denote (an, f3n, /'n, 8n) by rn(a, {3, ,, 8). We 

define On and TJn for n = 1, 2, ... by 

Let us define the family of matrices as follows: for each (a, E) with 
aEN,~:E{0,1} 

(~ 
0 

~) 0 

1 

if E = 0, 

(5) A(a,e) = 

(~ 
1 

r) 0 

0 

if~:=l. 

We define Mn (a, {3) by. 

(
qn(a,{3) q~(a,{3) q~(a,{3)) 

(6) Mn(a, {3) = Pn(a, {3) p~(a, {3) p~(a, {3) = IJ A(a;,e;)· 

rn(a,{3) r~(a,{3) r~(a,{3) l~i~n 

Then, we have the following formulae. 
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From Lemma 1 we see easily following formulae. 

Lemma 2 ([7]). For n E Z with n > 0, 

175 

Then roughly speaking ( Pn (a,,B) r, (a,,B)) gives a simultaneous ap-
, ' q,. (a, ,B)' q, (a, ,B) 

proximation of (a, !3) (for example, see [4]). 

§3. Periodic points 

In this section, we assume that (a, !3) E X satisfies ym (a, !3) = 
(a, !3) for some integer m > 0. On the assumption, a is a cubic number 
and Q(a) has a complex embedding. Let To be the trivial embedding of 
Q(a) into R Let T1 , T2 be non trivial embeddings of Q(a) into C and 
T1 =J T2. We note that u7 ' = u72 for any u E Q(a), where xis the com­
plex conjugate of X. We set 'Y = I11<i<m Bi(a, /3). From Lemma 2 we 
have Mm(a,j3)(1,a,f3)t = 'Y- 1 (1,a,f3)t~ We denote Mm(a,j3),8n(a,f3) 
and 77n(a, /3, "(, 8) by M, Bn and 77n respectively. We have following 
Lemma. 

Lemma 3. 

(1) 'Yro'Yr''Yr2 = 'YI"fr'l2 = 1, 
(2) 'Y- 1 > 1, 
(3) 'Y- 1 = rrl<i<m 7]i, 

(4) Q(a) = Q(/3) = Q('Y). 

Proof. The term "(70 "(71 "(72 is the coefficient term in the characteris­
tic polynomial of M ; since .M is the product of matrices of determinant 
1 according to (5) and (6), we have assertion (1). We can prove the rest 
of the assertions easily. 0 

Lemma 4. Let ( u, v, w )t be a non trivial eigenvector related to 
M:n_ (a, /3) and the eigenvalue 'Y- 1 . Then, u =J 0 and ( ~, ~) E X and 
Q(a) = Q(~) = Q(~). 
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Proof. Since 1'- 1 is the dominant eigenvalue of Mt, it is not difficult 
to see that u, v, w 2: 0 or u, v, w:::; 0 by using Perron-Frobenius Theorem. 
We assume that u, v, w 2: 0 without loss of generality. We set ( Cij) = Mt. 
Then, we see easily c12 > 0 or c13 > 0. Therefore, if u = 0, then v = 0 
or w = 0, which contradicts that 1' is the cubic number. Hence, we 
have u =f 0. Since (1, ~' :!fi:) is an eigenvector related to Mt and the 
eigenvalue 1'-1, we see that ~' :!fl: E Ql(a). On the setting *a = ~ and 
* j3 = :!fi:, since Mt(1, *a7 ', * /37 ' )t = (1'- 1 t' (1, *a7 ', * /37 ' )t fori = 1, 2, 3, 
we see that (1, *a7 ', * /37 ' )t for i = 1, 2, 3 are linearly independent on 
C. Therefore, 1, *a, */3 are linearly independent on Ql. On the other 
hand, from the fact that (1,* a, *!3) is the eigenvector of Aft with the 
eigenvalue 1'- 1 we see that *a, * j3 E Ql('T'). By using Lemma 3 we have 
Ql(a) = Ql( *a)= Ql( */3). 

We set (1, *a(O), *f3(0))t = (1, *a, *f3)t. For each positive integer 
k, we set c(k)(1, *a(k), *j3(k))t = fL::;i::;kA(ak+ 1 _,,Ek+l-i)(1, *a, *j3)t. 
Then, it is not difficult to see that *a( k) and * !3( k) are positive and 
1, *a(k) and *j3(k) are linearly independent on Ql for each integer k, 
which implies that Ql(a) = Ql(*a(k)) = Ql(*j3(k)). By using (4) and 
(5) we have T~k+l,Ek+ 1 (*a(k), *j3(k)) = (*a(k + 1), *j3(k + 1)) for each 
k. From the fact that ( 1, *a, * !3) is the eigenvector related to Mt, we 
see that ( *a(k), * j3(k)) = ( *a(k + m), * f3(k + m)) for each k 2: 0. By 
(5) and *a(k), *f3(k) > 0 we see that if max{ *a(k), *j3(k)} < 1, then 
max{ *a(k + 1), *j3(k + 1)} < 1 and if max{ *a(k), *f3(k)} > 1, then 
max{ *a(k), *f3(k)} > max{ *a(k + 1), *f3(k + 1)}. Therefore, we see 
that max{ *a(m), *j3(m)} < max{1, *a(O), */3(0)} holds. Finally, since 
(*a(O), */3(0)) = (*a(m), *j3(m)), we have max{*a(m), *j3(m)} < 1, 
which implies that max{ *a(k), *j3(k)} < 1 holds for any k 2:0. 0 

(1, *a, * f3)t is denoted the non trivial eigenvector related to A1;,. (a, !3) 
and the eigenvalue 1'- 1 . Then, we have the following lemma. 

Lemma 5. For any positive integer n, 

where (an, f3n, *an, * f3n) 
* f3nf3n · 

1 

Proof. We set M(n) = fL<i<m A(a,+,,E,+i)· Then, it is easily 
seen that M(n)(1, an, f3n)t = 1'- 1 (i,-an, f3n)t and M(n)(1, *an, * f3n)t = 
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G 
*a~o ·~~") c 1 

a~') *o:~1 * {3Tt QTO (}:T1 
* {3~2 !3?:) 

n 
*a~z {3~1 {3~2 

G 
*a~o 'W") (' 1 

a~) *a~~ * {3~1 M ( n) - 1M ( n) o:~" 0:T1 n 
*a~2 * (3~2 (3~0 {3~1 {3~2 

c (1 *o:nf0 (>'~n)'") ( (1-'r" b-1r1 (>-')~ ) 
''(1 b *o:nf1 ('"y*f3nf1 b-10:nf" (1-1o:n)~1 b-1o:nf2 . 
''(2 (1 • O:n)T2 (1 * f3nf2 b-1 f3nf" (1-1f3nf1 (1-1f3nf2 

Form above formula and the fact that '"'(i =I "!Tj with i =I j we have 
Lemma. 0 

For each n E Z with n ~ 0, Pn is defined by {(x, y, z) E JR3 Ix + 
*o:ny + *f3nz = 0} and Ln is defined by {t(1,o:n,f3n) E 1R3It E lR}. 

We define Pn(x, y, z) for each n E Z with n ~ 0 and (x, y, z) E JR3 by 
Pn(x, y, z) = lx+( *o:nf1y+( *f3nf1zl. Then, we have following Lemma. 

Lemma 6. 

For any u E Pn with u =I 0, Pn(u) > 0. (1) 
(2) 
(3) 

For any wE 1R3 and any v E Ln Pn(w + v) = Pn(w). 
For any wE 1R3 Pn(w) = I7J~1+ 1 1Pn+1(A(- 1 )w). 

an+l,fn+l 

Proof. First, we assume that Pn(u') = 0 for some u' = (u~, u~, u~) E 

Pn· Then, we see that lu~ + ( *o:n)T'u~ + ( * f3nf'u~ I = 0 for i = 0, 1, 2. 
Therefore, we have u~ = u~ = u~ = 0 and we have (1). Secondly, let 
w = (wx,Wy,wz) and v = t(1,o:n,f3n) E Ln. Then, using Lemma 5 we 
have 

Pn(w + v) 

= l(wx +t) + (*o:nr1 (Wy +to:n) + (*f3nP(wz +tf3n)l 

= lwx + ( *o:nr1 wy + ( *f3nr1 wz + t(1 + ( *o:nr1o:n + ( *f3nr1f3n)l 

= Pn(w). 
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Therefore, we have (2). For the proof of (3), let w = (wx, Wy, w 2 ), then, 
we have 

Pn(w) =lwx + (*o:nr'wy + (*Onr'wzl 

(1, ('an)'', ( • !W') (::) 

0 

By Lemma 6 we remark that lx *o:71 + y * ,871 12 is a positive definite 
quadratic form. 

Lemma 7. For each n E Z with n > 0, we have po(qn,Pn, rn) 

I IL:o:i:o:n 11T'I· 

Proof. By Lemma 6 and an easy recurrence, we have 

Po(qn,Pn, rn) =Po( II A(a;,,.i)el) 
l:'::i:'::n 

=l11r'P1( II Ara,,,;J)el)l 
2:0:i:'::n 

=I II 11T' I, 
l:'::i:'::n 

0 

Let 7rn be the projection map to Pn along Ln and 1r be the projection 
map to {(x, y, z) E 1R.3 Ix = 0} along Lo. 

Lemma 8. For each n E Z with n > 0, we have I(Pn- qno:) *o:71 + 
(rn- qn,B) *,87 '1 =I IT1:o;i:o:n 11T'I· 
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Proof. SinceJr(qn,Pn,rn) = (O,pn-qna,rn-qnf3), by using Lemma 
6 we have 

Po(qn,Pn,rn) = Po(O,pn- qna,rn- qnf3) 

= I(Pn- qna) *aT' + (rn- qnf3) * (37 '1· 

Therefore, using Lemma 7 we obtain Lemma 8. D 

Lemma 9. There exists a positive constant C1 (a, (3) such that for 
any n E Z with n 2': 0 

Proof. We set C1(a,(3) = fl 1:s;i:s;mmax{l,I1Jj'l}· Using the fact 
that v'f = I [ll<i<m 11}' I and 1JJ+m = 1}j for each j > 0, we have 

D 

From the fact that lx*a71 +y*f37 '1 2 is a positive definite quadratic 
form and by Lemma 9 we have the following lemma. 

Lemma 10. There exists a positive constant C2 (a, (3) such that for 
any n E Z with n 2': 0 

We remark that the above formulae hold for each periodic point 
(a, (3) related to Jacobi-Perron algorithm (see [9]). 

Lemma 11. For each n 2': 1, qn + *apn + *f3rn = fl 1:s;i:<:;n 1Ji holds. 
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Proof. It is easy to see that 

Qn + •apn + ·~rn ~ (1 •a ·~) G:) 
= (1 *o: * (3) II A(a,,E;) (~) 

l:S::i:S::n 0 

= II 1Ji(l *o: *(3) (~) 
l:S::i:S::n 0 

= II 1Ji· 
l:S::i:S::n 

0 

By Lemma 5 we see that Un, Vn EPn. We set (''{' )-1 = ,JYe21riB 

withO::::: e < 1. FromthefactthatM(l,o:71 ,(371 )t = (1'7 ')- 1(l,o:71 ,(37 ')t 
and M(l,o:r2,(3r2)t = br2)-1(l,o:r2,(3r2)t we have 

(7) M( ) ( ) ( fi cos 21re fi sin 21re) 
, Un, Vn = Un, Vn -,Jrsin27re ,Jrcos21re · 

Lemma 12. e is irrational. 

Proof. We suppose that e is rational. We set e = f, where k, l E Z 
and l > 0. From (7) we see that ('·(' )1, ( '"'(2 ) 1 E R Since ('·(' )1 E 
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QJ(I'r1 ) n IR, we see (''(1 ) 1 E QJ. Therefore, ·yl E QJ. By using Lemma 3 
we see that 11 is the unit in QJ(I'). Therefore, we have 1 1 = ±1. But it 
contradicts that 0 < '"Y < 1. D 

Theorem 13. For each 0 ::; k ::; m- 1, the limit set of { ytq;;,(Pn -
qncx, rn - qn,6) In = k mod m} as n----+ oo is the following ellipse 

(8) {(x )EIR211x*aTt+ *,6Ttl2= ITI<i<kn(TJi)} 
,y y 1+a*a+,6*,6' 

which is denoted by E(k). 

Proof. We see that lx *aT1 + y *,6T1 12 is a positive definite quadratic 
form, which is noticed as the remark following Lemma 6. Therefore, the 
set (8) is an ellipse. From Lemma 8 and 11 we have 

Therefore, by using Lemma 10 we have 

n ----+ oo 

Thus, the limit set of { ytq;;,(Pn -qncx, r n -qn,6) In = k mod m} as n ----+ oo 
is included in E(k). We define ck, dk, ek by 
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We see easily that ck =f. 0 or dk =f. 0. Then, for n = ml + k we have 

Therefore, we have 

Hsin27r8 

H cos27f8 
0 

which yields Theorem 13 by using Lemma 12. 

Similarly, we have the following corollary. 

0 

Corollary 14. Let ji (1 ::; i ::; 3) be non negative integers and 
ji > 0 for some i. For ji (1 ::; i ::; 3) and any positive integer n, we 
define p~, q~ and r~ by 

Then, for each 0 ::; k ::; m - 1 the limit set of { Vii::(P~ - q~a, r~ -
q~{J) In = k mod m} as n --> oo is the following ellipse 

(9) 
n(J. + *a J. + *{3 J. ) f1 n(n·) 

{( ) m211 * r1 *{JT'I2 = 1 k 2 k 3 l<i<k .,, } 
X, y E ~ X a + y {3 {3 . 

1 +a*a+ * 



Modified Jacobi-Perron algorithm 183 

In [5] we conjecture that the modified Jacobi-Ferron algorithm gives 
the best simultaneous approximation to the points ((31 , (32 ) such that 
1, fJ1, fJ2 is a basis for a real cubic number field, Q((31) has a complex 
embedding and ((31 , (32 ) is a purely periodic point by the modified Jacobi­
Ferron algorithm. But we have a following counter example. 

Counter Example. Let 'Y be the real root of x3 + 8x2 + 16x-
1. Then, Q('Y) has a complex embedding. Let o: = 1'!3 and (3 = 

'Y· (a, (3) is the purely periodic point by the modified Jacobi-Ferron 
algorithm and the digits are given as follows: (at, €1) = (1, 0), (a2, €2) = 
(1, 1), (a3, €3) = (2, 0), (a4, €4) = (3, 0) and (an+4• fnH) = (an, En) for 
each n E Z with n > 0. 

Then, we have the following table. 

n 0 1 2 3 
*an ~')' ~7 ~ 'Y 1--y 2 
* f3n __'}'·:h .!..=.2 ...!.=..1.. ~5 -y_+1 :J'Y+6 
'f/n '"'L:t.l 2 ~ 

1--y -r+1 2 
n(rJn) f2 * J 

Let p = 3 + 2 *n0 . For any positive integer n we define p~, q~ and 
r~ by 

(:~) = II A(a;,E;) (~) · 
rn 1$t$n 0 

Then, we have n(p) = ~- Since n(p) < min{f]1<i<k n(rJi)li = 1, 2, 3}, 
by using Theorem 13 and Corollary 14 we see that the ellipse defined 
from {p~, q~, r~}n=1 mod 4 as in Corollary 14 is nearer to the origin than 
the ellipses defined from {Pn, Qn, rn} as in Theorem 13. We remark that 

P4J = P4J+l + P4J+2• q4J = q4J+l + q4J+2 and r4j = r4J+l + r4J+2 for 
each j E Z with j ;::: 0. In our paper [6] in preparation we will show 
that under some conditions for (a, (3) the nearest ellipses to the origin 
in lim( a, (3) are given as intermediate convergents of modified Jacobi­
Ferron algorithm. 
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