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On lacunary trigonometric product 

Katusi Fukuyama 

Abstract. 

We prove the law of the iterated logarithm for gap series under 
weak regularity condition and apply to the lacunary trigonometric 
product. 

§1. Introduction 

Let f be an R-valued function on R satisfying 

(1) J(t + 1) = J(t), 11 
J(t) dt = o, 11111~ = 11 lf(tW dt < oo. 

Denote by S(f; N) the N-th partial sum of Fourier series of J, and put 

R(f; N) = f- S(f; N) and IIIII* = ll!ll2 + 2:%"=1 IIR(f; k)ll2/k. 
We prove the theorem below: 

Theorem 1. Let { nk} be a sequence of positive integers satisfying 
nk+l/nk 2:: q > 1. If 

(2) 

for some a > 0, then 
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where Cq is a constant depending only on q. If nk+dnk -7 oo, then 

(4) 

If 

(5) 

(6) 

a. e. 

f E £ 16+"' and 

IIR(f; N)ll2 = O((log N)- 1 (1oglogN)- 1-"') 

for some a > 0, then the same conclusions hold. 

We apply the above theorem to functions 

00 00 

"""' COS 27fV """' v 1 COS 27fV 
log 12 sin 1rxl = - L.......- v , log 12 cos1rxl = L.......-( -1) - v 

v=1 v=1 

which are unbounded and £ 2-1/2-Holder continuous. (Cf. Lemma 5 of 
[11]) In case when nk+I/nk > q > 1, we have 

I 

k 

1

1 I ..jk log log k 

lim IT 2 cos( 1rn1x) < C < oo, 
k-+oo 

j=1 

(7) 

and when nk+I/nk -7 oo, we have 

I 
k 11 I ..jk log log k 

lim IT 2cos(1rn1x) = e1r!v'6. 
k-+oo 

j=1 

These results remain valid if we replace cosine functions by sines. 
The above gap conditions are best possible in the following sense. 

It is proved in [10] that for any Pk l 0, there exists { nk} such that 
nk+l/nk > Pk and the law of the iterated logarithm (7) does not hold. 

Now we make a little survey on the studies of this fields. The central 
limit theorem corresponding to ( 4) was proved by Kac [13] by assuming 
uniform Holder continuity on function f, and later the condition was 
weakened to (6) by Takahashi [15]. (The condition in [15] seems to 
stronger than (6), but it is clear that (6) is enough to convey the proof 
given by Takahashi.) 

As to the law of the iterated logarithm (3) and (4), Takahashi [16] 
and [17] proved by assuming Holder continuity. Philipp [14] proved 
for functions of bounded variations and Berkes [2] proved for bounded 
L2-Holder continuous functions. Our conditions are much weaker than 
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these, which is clear from the inequality (10). Although extra integra­
bility condition (5) is assumed, it should be emphasised that the law of 
the iterated logarithm was proved under the same regularity condition 
(6) as the central limit theorem. And it is also noted that application 
to product of lacunary trigonometric is made possible by our results. 

At the end we remark that functions satisfying conditions (5) and 
(6) exist. Actually, by taking a sequence {ak} satisfying L:;::Na~"' 
(log N)-2(log log N)-2- 2"' and consider function defined by the random 
series L ±an cos 2rrnx then it belongs to Lr for all r > 0 almost surely. 
(Ch. 5 Theorem 8.16 of Zygmund [19]). 

Our proof goes along with the direction given by Takahashi [17]. 
The uses of various truncation techniques make it possible to give a new 
result. 

§2. The proof of the theorem 

We put 6, 6', 6", and J.L( k) as follows: In the case the condition 
(2) is assumed, we put 6 = 1, 0 < 6" = 6' < 1/30, and J.L(k) = k28'. 

In the case the conditions (5) and (6) are assumed, take 6" between 
1/(30 + 2o:) and 1/30, and take 0 < 6' < 1/15 small enough to satisfy 

o' 
1/(30 + 2o:) < 6"- 6', put J.L(k) = 2k and 6 = 6"- 6'. 

In both cases, we have 

(8) (M--+ oo). 

We may assume nk+l/nk 2: 3. ForM> 0, put 

~M(t) =(tAM) V ( -M) and rJM(t) = t- ~M(t). 

Lemma 2. If IIR(j;N)II2 = O((logN)- 1 (loglogN)-'"Y) for some 
"f > 0, then supM>O IIR(6,r(f); N)ll2 = O((log N)-1 (log log N)-'"Y). For 
any Mk, we have 

00 

(9) 
k=l 

where C0 is an absolute constant. 

Proof Let us recall the notion of L2-modulus of continuity w<2l (c, g) 
of function g. It is given by w<2l(c,g) = suplhl<c llg( · +h)- g( · )112, 
and have close relations with the decay order of IIR(g; N) 11 2: by (3.3) of 
pp. 241 of Zygmund [19] and by (2.6) of pp. 160 of Bari [1], we have 

N-1 

(10) IIR(f; N)ll2 ~ Clw(2)(1/N, f)~ c2 ~ L IIR(f; k)ll2, 
k=O 
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where c1 and c2 are absolute constants. Thus IIR(.;M(f); N)ll2 < 
C1w(2l(1/N,.;M(f)). Because of I.;M(t)- .;M(s)l ~It- sl, we have 

II.;M(f(. +h))- .;M(f(. ))112 ~ II!(. +h)- f(. )112 

and see w(2l(c,.;M(f)) ~ w(2l(c, f). We also have 

N-1 

C1w(2l(1jN, f)~ C2 ~ L IIR(f; k)ll2 
k=O 

= ~ ( L + L )o((logk)- 1 (loglogk)-"~) 
O~k<VN VN9<N 

= O((log N)-1(log log N)-"~). 

Thus we have supMw(2l(1/N,.;M(f)) = O((logN)-1(loglogN)-'Y) and 
eventually have the conclusion. The proof of (9) is given as follows: 

00 00 1 3k-1 

I: IIR(.;Mk (!); 3k)ll2 ~ c2 I: 3k I: IIR(f; Z)ll2 ~ C2llfll*· 
k=1 k=1 l=O 

Q.E.D. 

Lemma 3. We have 

N 

(11) LTJkli(f(nkt)) =o(vfNloglogN) a.e. 
k=1 

Proof Let f3 = 1 or 15 +a, we have f E £ 1+!3 and J > 1/(2(3). 
Since 117M(!) I~ 1/ll{IJ~;:::M} ~ IJil+/3 jM!3, we have 

By Kronecker's lemma, we have the conclusion. Q.E.D. 

Lemma 4. We have 

N 

(12) L R(.;kli (!); ~-t(k))(nkt) = o( JN log log N) a. e. 
k=1 
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Proof ForgE L 2 , put g(x) = 0 for x rf. Z and denote Specg ={vI 
. g(v) =1- 0} and I Specgl = {lvll g(v) =1- 0}. We first prove by assuming 

· (2). If j ~ k, then we have 

If h(kt)g(jt) dtl =I L h(n)g(m)l ::::; L lh( -mjjk)g(m)l 
kn+jm=O mESpecg 

( ) 
1/2 ( ) 1/2 ::::; L lh(mjjk)l 2 L 19(m)l2 

lml2min I Specgl mESpecg 

::::; IIR(h; min I Specgljjk)II2IIYII2· 

Therefore if j ~ k, by Lemma 2 and nj/nk ~ 3)-k we have 

I J R(~j" (!); p,(j))(njt)R(~ks (!); p,(k))(nkt) dtl 

::::; IIR(~j" (!); p,(j)) II2IIR(~k6 (!); p,(j)nj /nk) ll2 

= O((logj)-2(loglogj)-a(logj + (j- k))-2). 

Hence we have 

!( ~ R(~ko(f);p,(k))(nkt)) 2 dt 
~ (kloglogk)l/2 

k=A+1 

< 2 t fl/ R(~ks (!); p,(k))(nkt)R(~(k+l)o (!); p,(k + l))(nk+lt) dtl 
- k=A+1l=O (kloglogk)112((k+l)loglog(k+l))1/2 

( 
B 00 1 ) 

=O L Lk(logk)2(loglogk)l+<>(logk+l)2 
k=A+1l=O 

-o( ~ . 1 ) -----o - ~ k(logk)3(loglogk)l+<> 
k=A+l 

(A,B----> oo). 

Thus the series" R(~ks(fl;J.L(k))(nkt) converges in L2-sense. Thanks to 
L.. (kloglogk) 112 

(

00 00 
1 ) 

= 0 L L k(logk)3(loglogk)l+<> 
A=0k=2A 

( 

00 
1 ) =0 =01 L k(logk)2(loglogk)l+<> ( ), 

k=1 
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h "2A R(~ko (fl;JL(k))(nkt) A 
we see t at L-k=1 (kloglogk)'/ 2 converges a.e. as ----> oo. 

For 9n E L2 and An E R satisfying 119m -gnll§ -::;Am -An form 2': n, 
Menchoff's inequality claims II maxn:c;N 9n II§ -::; C3(log N) 2(AN - Ao), 
where C3 is an absolute constant. Applying this, we have 

= o( 2
.;' 1 ) 
Lt k log k(log log k)Ha · 

k=2A+1 

Since it is summable in A, by Beppo-Levi's theorem, we see that the inte-
d d A h h . "oo R(~ko(f);JL(k))(nkt) 

gran ten s to 0 a.e. as ----> oo. T us t e senes L-k=1 (kloglogk)'/2 

converges a.e. By Kronecker's lemma, we have the conclusion. 
Next, we prove by assuming (5) and (6). By noting Lemma 2 again, 

we have the estimate 

I/ R(~J" (!); JJ(j))(nJt)R(~k/5 (!); fJ(k))(nkt) dtl 

= ou-li' (j- k)-1(log(j- k))-1-a). 

In the same way as before we can complete the proof. Q.E.D. 

Lemma 5. We have 

(13) 

Proof. When (2) is assumed, it is clear from the Schwartz inequal­
ity: 
IIS(g; M)lloo -::; llgii2M1/ 2. When (5) and (6) are assumed, it is de­
rived from the inequality IIS(f,N)IIoo-::; C4llflloologN, where c4 is an 
absolute constant. This inequality is proved in the same way as the 
proof of Th. 11.9 of Ch. II in Zygmund [19]. Q.E.D. 

Lemma 6. ex -::; (1 + x + x 2 /2)elxl 3 for all x E R. 

Proof. By expressing both sides by power series, it is clear for x 2': 
0. Elementary calculus shows that ex -::; 1 + x + x2 /2 holds for all 
X -::; 0. Q.E.D. 

Lemma 7. Put '2J = (VC0IIflbllfll*)112. There exists Mo such 
that, for all M 2': M 0 , for all 0 < >. < M-112 log M, and for all N -::; 
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M 1517, we have 

Proof Let m 7 :S M < (m + 1)1, m(2L + 2) :S M < m(2L + 4) and 

(l+1)m+N 

U1(t) = L S(~kli (!); JL(k))(nkt) 
k=lm+N+1 

Because of 

max IJS(~ko (!); JL(k))lloo = O((N + M)6") = O(M<1517l6''), 
k<.:;;N+M 

we have 

I 
N+M 2£+1 I 

A k!;t+l S(~ko(f);JL(k))(nkt)- t; U1(t) 

N+M 

L 
k=m(2L+2)+N+1 

= O(M-1/2+1/7+(15/7)6" logM) = o(1). 

Similarly, Amaxl<.:;,L IU21(t)l = O(M-112+1/7+( 15/ 7)6" logM) and 

L 

(14) A3 L IU2l(tW = O(M3(-1/2+1/7+(15/7)6")+6/7(logM)3) = o(1). 
l=O 

Thus forM 2': M 0 , we have 

1 ( 2£+1 ) 
< J21 exp A~ U1(t) dt 

:S v'2 (11 
exp ( 2A t. U21(t)) dt 11 

exp ( 2A t. U21+1 (t)) dt) 
112

. 

By Lemma 6 and (14), for M 2': Mo, we have 

L L 

exp( 2A t; U21(t)) :S J2g(l + 2AU2l + 2A2Uil) 
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Denote the Fourier series of S(~ko(f);p,(k)) by 

S(~ko(f);p,(k)) = L Pk,vcos(27rvt+"(k,v), 
V~JJ>(k) 

and denote 

(l+l)m k-l 

Wt(t)= L L L 
k=lm+2 j=lm+l (r,s)E<P(k,j) 

PN+j,rPN+k,s cos(27r(nN+kS- nN+jr)t + /'N+k,s- /'N+j,r) 

(l+l)m JJ>(N+k) 

Vi= 2>-.Ut + >-. 2 (2U?- k=~+l ~ p~+k,s- 2Wt(t)). 

Let l ::::; 2L + 1 and lm + 2 ::::; k::::; (l + 1)m. Because of 

1 JJ>(N+k) 

S(~(N+k)" (!); p,(N + k)) 2(nN+kt)- 2 L P~+k,s 
s=l 

=2 2::: 
l~s<r~JJ>(N +k) 

PN+k,sPN+j,r cos(27rnN+kst + /'N +k,s) cos(27rnN+kTt + /'N+j,r ), 

if we expand into trigonometric polynomial, frequencies all belong to 

We also see that frequencies of Vi all belong to the last interval. By (8), 
3nl 3A11/7 

2JJ>( 2Ml5/7) 2:: 2JJ>( 2Ml5/7) ----+ oo as M ----+ oo, and ntm.+N > 
2JJ>(2M 1517 )n(l-l)m+N 

hence {V2t} satisfies 

(15) 11 V2h (t) ... V2t, (t) dt = 0 (r. EN, h < · · · < l,J 

when M is large enough. If lm + 1 ::::; j < k ::::; (l + 2)m, we have 
ntm+N/nJ+N::::; 1/3 and <P(k,j) C {(r,s) llsnk+N/nJ+N- rl < 1/3}, 
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and hence 

L IPN+j,rPN+k,s I :S ( f>Jv+k,s f. PJv+j,snN+k/nN+J) 
112 

(r,s)E<f>(k,j) s=1 s=1 

:S II~(N+k)" (!) II2IIR(~(N+j)li (!); nN+k/nN+j) ll2 
Therefore, by (9) we have 

(!+1)m p,(N+k) 

L L PJv+k,s + IIWtlloo 
k=lm+2 s=1 

(l+l)m k-1 

::; 11!112 L (11!112 + L IIR(~(N+j)"(f); 3k-j)ll2) 
k=lm+2 j=lm+1 

1 ( L ) 1L 1 exp 2,\ ~ U21(t) dt::; h 1 g (1 + Vz(t) + 2(A.31 )2) dt 

L L 

= hll (1 + 2(A.3J )2 m) ::; h exp ( L 2(A3J )2m). 
l=O l=O 

If we replace 2l by 2l + 1, it is still valid. Thus for M 2: M 0 , we have 

which is less than 2exp(2(A.31)2M). Q.E.D. 

Lemma 8. Let 1/J(M) < (23JlogM) 2 . For all M 2: M 0 and N::; 
M 1517 , we have 

Proof. By Putting,\= (231)- 1121j;112(M)M- 112 , applyingLemma 
7 and Markov's inequality, we have the above estimate. Q.E.D. 

Lemma 9. We have 

a. e. 
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Proof By putting M = 2m, N = 0 and 1/J(2m) = 2(1 +E) logm 
and by applying previous lemma, we have 

2"' 

I { t; {;S(~k• (!); J.L(k))(nkt) ;:::: 23f\/2m+qogm} I :::; 2m-1-€, 

and Borel-Cantelli Lemma proves the conclusion. Q.E.D. 

Lemma 10. We have 

Proof. Let 2[(7/ 15lm] > Mo and (1 + 1/logm)/2 < 9/16. Let E > 0 
and take m large as 2(m -l) + 2(1 +E) logm < (23J log 21)2 (m > l;:::: 
[(7 /15)m]). Put 

2"'+(r+1)21 

X1(t) = 0 V 2~!-t L S(~k•(f);J.L(k))(nkt). 
k=2"'+r21+1 

Then L::l~b 15lmJ- 1 X 1 equals to a sum of at most 2[(7/ 15lml- 1 many terms 
among S(~k• (!); J.L(k))(nkt) (2m < k:::; 2m+1 ). Because of (13), we have 

2"'+N 
max " S(~k• (f); J.L(k))(nkt) 

N<2"' ~ 
k=2"'+1 

m-1 m-1 
:S L X1(t) = 0(2[(7/ 15)m]-1IIJII226"m) + L X1(t) 

1=0 1=[(7 /15)m] 

Let us put 1/J(21) = 2(m -l) + 2(1 +E) logm (m > l > [(7/15)m]). Then 
the condition of Lemma 8 is satisfied and we haveN:::; 2(15/7)1 

N+21 

I { t; L S(~k• (!); J.L(k))(nkt) ;:::: 23tV211jJ(21)} I :::; 2e-(m-1lm-1-€. 

k=N+1 

By noting N <2m:::; 2( 1517l1, we see that lEd:::; 2m-l+1e-(m-1lm-1-€ 

form> l;:::: [(7/15)m], where E1 = {t;X1(t);:::: 23J\/211jJ(21)}. Thus we 

have z:::::=1 L::;:(c~; 15)mJIEd < oo and t tj_ U;:(c~; 15lml E1 for large m 

a. e. If t tj_ U;:(c~ ;15lml E1, we have 

m-1 m-1 
L X1(t):::; 23t L J211jJ(21). 

1=[(7 /15)m] 1=((7 /15)m] 
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Because of 

we have 

m-1 
L V2l1j;(2l):::; J2m-11j;(2m-1)(1 + ~ + (~)2 + ... ) 

1=[(7 /15)m] 

:::; 4 J~2m-(.,--1-+---,-( 1-+-E-:-)--,--lo_g_m---:-) < 3 J 2m+ 1 (1 + ( 1 + E) log m). 

Thus we have the conclusion. Q.E.D. 

By Lemmas 9 and 10 we have 

- N 1 
lim L S(~k" (!); p,(k))(nkt) :::; 83J. 

N->oo k=1 ,j2N log log N 

Combining this with (11) and (12), we have 

- 1 N 
lim L f(nkt) < 83f, 

N->oo ,j2NloglogN k=1 -

which is the first assertion of our theorem. By applying this to ±R(f; A), 

- 1 N 
lim L ±R(f; A)(nkt) :::; 83R(f;A)· 

N->oo ,j2NloglogN k=1 

- 1 N 
lim L S(f; A)(nkt) =liS(!; A)ll2· 

N->oo ,j2NloglogN k=1 

2:: f(nkx) = 2:: S(f; A)(nkx) + 2:: R(f; A)(nkx) implies 

( )II ~ -. 2::~- 1 f(nkt) IIS(f A) II ~ liS f; A 2- 8.::c.R(f;A) :::; hm V Nl 1 N :::; ; 2 + 8.::c.R(f;A)· 
N->oo 2 og og 

By letting A----+ oo, we have the second assertion. 
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