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Perturbations of constant connection Wagner spaces

Peter L. Antonelli and Solange F. Rutz

Abstract.

This paper is dedicated to the memory of Makoto Matsumoto,
Finsler teacher and friend. Prof. Matsumoto augmented work of Dar-
boux and proved that any 2-spray is projectively a geodesic spray of
a Finsler manifold, [12]. This result has a refinement for the case of
constant coefficient sprays, all of which are projectively equivalent to
straight lines, [5].

In the present paper, we classify 2-sprays whose coefficients are
linear in z?!, z2, the adapted coordinates, by a perturbation technique.
We also study the Feynman-Kac solutions to the corresponding Fins-
lerian diffusions. The results herein arose from applications, especially
(3], (4], [7), [10], {14].

The computations in this work have been performed by the com-
puter package Finsler [1], {13].

§1. Finsler Geometry

Our standard reference here is [1], Vol. I, Part 2. All manifolds will
be C*° without boundary. Let M™ be an n-dimensional manifold. By
parallel transport on M™ we mean the existence of linear (Kozul) connec-
tion. A Finsler connection is a linear (Kozul) connection ID on TM™, the
tangent bundle on M™ with zero section deleted, which preserves under
the action of ID the Whitney sum decomposition TTM = HIM&VTM
of horizontal and vertical distributions. Thus, DH = 0 = IDV. The
HTM subbundle of the double tangent bundle of M is often called a
nonlinear connection on M™. We define the covariant derivative (induced
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by HT M) of a vector field (C*) on M™ with local components X* by
(1) VX' =09;X"y + N} X’

where (z!,...,2%,y!,...,y") are local coordinates on T'M. The summa-
tion convention on repeated upper and lower indices is used throughout.
Also, 05 = 527 throughout this paper. The n? functions N]’f transform
under (z*) — (Z?) non-singular just as 7}k(a:)yk, where v is the classical
Levi-Civita connection of Riemannian geometry. The n?-quantities are
called the local coefficients of the non-linear connection.

Define now the Berwald basis for the set of all vector fields on TM™
by

0

(2) {6:,0:}, 6i=08;, — N)(z,y)9;, 9;= R

Using this basis we can define the local coefficients of the Finsler con-
nection ID as follows:

Dy, 5j = Ffi(mv y)dka ]D&'aj = Fﬁ(l), y)ak

(3) :
]Dgi(sj- :Cfi(z,y)&, IDgiaj :C]’?i(:r,y)ak.

Under non-singular coordinate change (z¢) — (T ?) the F;‘i(a:,y) trans-
form just as a classical linear connection (like, say v}, (z)) while C]’?i(:c, )
is a tensor.

Denote {6;,8;} by {Xao}to—1n and by {6°}, 155, the dual basis
{dz*, 6y*}. The connection 1-forms (w) corresponding to 6% are defined
as

(4) w) = Fldz* + Cj.oy*
and 15*-structure equations for ID are
—dzh A wj- =-0!

(5) i
d(6y*) — oyt Awi = —O°

where the 2-forms of torsion ©2 = {©%,©} are given as

) 1 . . ) .
(6) ' = STjrda’ A da® + Cjpda? A Gy*

~. 1 _. ) . ) 1 . )
' = 2 Rjyda’ A dz® + Phdx? A Sy* + 5550y’ A syk.
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The 2-forms of curvature for ID are

(7 dw;- - w;-‘ Awh = —Q;,

(8) Q; = '2— ;khdl'k AN d.'L'h + P}khdl'k AN l5yh + §S;kh6yk A 5yh

For a Finsler metric on M, we shall need to use the so-called Cartan
Finsler connection, but there are a number of other very important
connections, [1]. For Cartan we must require

(9) Tk =0, S§=0, P:=o0.

It will follow that Cjj, = gilC’fk = ia'iéjékLZ’, where L(z,y)is the so-
called Finsler metric function. If we set F = %2— , then g;;(z,y) =
Blﬁjﬁ is the so-called fundamental metric tensor g = (g;;) of the Finsler
manifold (M™, F ). However, the Levi-Civita coefficients ’y; © depend on
y*, as well as x* and are not connection coefficients in Finsler geometry
proper (ie. C} # 0 <= g;; depends on y"). But, the local coefficients
of Cartan satisfy

(10) F;k(xvy) = 5 glr(x7 y)((skgjr(xvy) + 5]glr(xvy) - 67‘9]']6(‘7:7 y))7

which is, in fact, very similar in form to the famous Levi-Civita formula
which, by replacing §; by 0;, gives precisely that formula.

The last two basic properties of the Cartan connection for (M™, ﬁ)
are horizontal and vertical metricity: if we denote this most important
connection by CT = (I'",T'?) where ' is given by FJ; (z,y) and I'* by
C;k(z, y), then globally,

h-metrical :V'g =0,
(11)
v-metrical :Vhg =0,

where the first is given locally as
(12) 0rgi; = Fije + Fjk,
where Fi = gMka, and the 29 is given locally by

(13) Ogi; = Cijk + Cjak = 2Cij -
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Definition. A vector field S on T'M is a semispray if and only if
S = yia—% —2G%(x,y)0; locally on TM. G* are the local coefficients and
HTM is the induced nonlinear connection, N} = 9,G* = G;

Consider the Berwald connection D induced by HT M. This is a

Finsler connection with the local coefficients BT' = (N, ]’ = gg ,F;k =

8—‘?}%5, C;k = 0). The connection 1-forms of the Berwald connection D
are then given by

; ok %Gt |, Dk
1 7 — — T
wi = Fjpdz*t = Byjaykdx = G dz".

The Berwald connection has only one component of torsion, the v(h)-
torsion, which also gives the 3-index curvature of the nonlinear connec-
tion:

) ) . SNk  §NE .
14 — —) =Rk, = L _ LY.
(14) v (53:” 5:69) 330k = ( dxt dxi )%

The horizontal two forms of torsion ©° of the Berwald connection vanish
and the vertical two-forms of torsion of the Berwald connection are given
by:

oy 1. .
o' = §R;kda¢7 A dzF.

The two nonzero components of curvature for the Berwald connection
D are:

. OF..  §F! ; o
Rujy, = ’&TJ - 5—;}& + E o — FRiEgs

(15) |
Dpip = —22G

The curvature 2-forms of the Berwald connection are given by:
Lo ok h i gk h
Q= §Rj;chdx Adx" + Dy, dx® A dy™.

The first structure equations of the Berwald connection D are given
by:

—dzh A wh =0,

(16)
d(éy')  —dyh AWl = —%R;.kdzj A dz*.
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The second structure equations of the Berwald connection D are given
by:
. , 1., ‘
(17) dw} — w;-l ANwp = —ERj}Chdzk Adzh — Djt, dzF A Sy".
Theorem 0. The Berwald connection of a semispray S has zero
curvature (is flat, i.e. R =0, D =0 in (15)) if and only if about every
point p € M there are local coordinates (z*) in M such that with respect

to the induced coordinates (z*,y*) on TM, the local coefficients of the
semispray S have the form:

(18) 2G'(z,y) = Al(z)y’ + B'(z).

Proof. If there exist induced coordinates on T'M such that the semis-
pray S has the local coefficients 2G*(x,y) = A%(x)y’ + B*(z), then the
local coefficients of the Berwald connection D vanish, that is F}, =
% = 0. From (15) we can see that the curvature components of D
vanish so the Berwald connection is flat.

Now let us assume that the curvature two forms Q; of the Berwald
connection vanish. As the horizontal torsion two forms ©' are zero,
there are induced coordinates on T'M with respect to which the local

coefficients of the Berwald connection vanish: F ]’k = 0 and C;k = 0.

2

But ;k = %%, so with respect to these coordinates we have that

2G'(z,y) = Aj(2)y’ + B'(2).
§2. Projective geometry

2.1. Local sprays

Consider a smooth connected n-manifold M™ and select a trivializ-
ing chart (U, h) on M™ for the slit tangent bundle TM™ (i.e. with the
zero section removed). A (local) spray in (U, h) is a system of ode’s

d?z? , dz
1 £2% 1o9Gi(2, 2 = =1,...
where the n functions G* are C® on U in z¢,...,2" and in dz'/ds, ...,

dx™/ds (off the zero section), are otherwise continuous and are second-
degree positively homogeneous in the dz*/ds. The path parameter s is
special. For a general parameter ¢ along solutions of Eq.(19) we have

"

(20) # 4 2Gi(z,3) = =i,

Sl
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where s’ := ds/dt, i := dz'/dt and F* := d*z*/dt>.
Consider ¢(z, %), a smooth scalar function on TM™, which is first-
degree positively homogeneous in &!,...,&".

The quantities

i+ 2G4+ 2G7

o pra Vi,je{1,...,n}

remain unchanged by the transformation
(21) G' -G =G +y.d

which sends the spray G in (U, h) to spray G in (U, h). That is, there
exists a diffeomorphism which smoothly maps solutions of G into solu-
tions of G. Such a mapping is called the projective transformation of G
onto G in (U, h).

One obtains from the spray parameter s (i.e. one which makes
the RHS of Eq.(20) vanish) a new spray parameter determined by 1.
Namely,

(22) s=A+B '/ez/(n+1)f7 w(x,dx/di)did&

where t is any parameter along any path -, that is a solution of G, and
A, B are constants of integration.

We can see the effect of this projective change, or time-sequencing
change, by considering the canonical spray connection coefficients in

(U, h):

(23) Gl = 0;G', Gy = kGl

where 9; indicates partial differentiation with respect to #!. The trans-

formation of coordinates from (U, k) to (U, h) , i.e. from z!,...,z" to

zl,...,2", has the effect [1],

(20) ox" 0z° ~;  Ox' . 02zt
9z7 9zk " T dgr I* 9xixk’

l

Because G* are homogeneous of the second degree in z‘, we have the

equivalent expression for Eq.(19)}

A2zt : dz\ dz? dzF
25 LI R () R
25) sz ik (x ds) ds ds

IEinstein summation convention throughout.
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Upon time-sequencing change ¥ of Eq.(25), we have by differentiation
in (U, h)

(26) Fip = Gl + b + 5115 + 30ty
where i = 1.
Define
i._ (i 1 )
H = Gl — mGg.’E ,
(27)

I := O;IT,  IIi, = G,IT¢

for a given spray G in (U, h). It is easy to see that

. . 1 A : iea
(28) I, = Gy — m(5§GZk +6;Go; + ' Dgyk)
and that
a
ak — Y
ID;-M = 3;G;-k, called the (mon-projective) Douglas tensor, transforms

as a classical fourth-rank tensor. Its importance lies in the fact that G; k
are independent of &' if and only if ]D;k, = 0. That is, the vanishing of
tensor ID is necessary and sufficient for G to be a quadratic spray, as in
classical affine geometry and its specialization to Riemannian geometry.
If G;k are constants in (U, h), then we say (25) is a constant spray and
(U, h) is an adapted coordinate system.

Furthermore, H; x remains unchanged when G is projectively mapped
onto G. Il is called the normal spray connection in (U, h) for G. Its spray
curves are solutions of

d?xt - dx? dx*

1 —

(29) i e gg g
Remark. (1) 5 remains unchanged under coordinate transforma-
tions (U, h) — (U, h), whose Jacobians lie in SL(n, IR), the real unimod-
ular group on IR™, and only those (i.e. the structural group of TM™
is reduced from GL*(n,IR), the nonsingular real n X n matrices with
positive determinant, to SL(n, IR)).

(2) H;k transforms as a classical connection (i.e. like G%; above) if
and only if transformations have constant Jacobian determinant.

(3) H;k is a tensor if and only if the structural group of TM" is

reduced to the transformation of coordinates (U,h) — (U,h) of the
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form:
bl
aizi + b a
= and !
crxk + h
bn
Ct...Cp h

(n+1) x (n+1) constant matrix. This is the classical projective group.

Performing path-deviation for spray Eq.(29), we obtain the analogue
of the usual “geodesic” deviation equation:

D2y} .y
where
(31) W} = 20,I" — 8, I144" + 2115, 11" — T IT.

This occurs as follows: We are given the local spray Il in (U, h)
and let 7°(5;7) be a smooth 1-parameter family of solutions with initial
conditions z*(0;n), #*(0). Since a spray will have a solution through any
point p € U and in any direction, these are called arbitrary smooth initial
conditions.

By Taylor’s theorem,

2'(5;m) = 2'(8) + nu'(8) + *(...)

and substituting this into H;k(x,i) passage to the limit n — 0, yields
the variational equations

A2yt X dzJ dz* ) dz* du’
32 — + 9 I1% S\t 22 g B
(82) ds? ALy (@, 2)u ds ds 2 (2, %) ds ds 0

Defining the projective covariant differential operation as, for example,

(33) Al = QA + 11 (2, 2) A,
and
DA? - dx!
34 — =AY —
(34) ds Vds’

with similar formulas holding for higher order tensors.
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Using this we can rewrite Eq.(32) as

(35)
D (du' (e, P
dg( )+Hz(d + M |+ 20,1 — — — =0,

which is precisely Eq.(30) because of Eq.(29) and the second degree
homogeneity of IT*(z, %) in # and Eq.(27).
Now, following Berwarld’s technique, define

2

. 1 . .
(36) W?k = g(akw; - BJW,z)
and (Weyl’s Projective Curvature)

(37) Wiy = oW}

This four-index quantity actually is a tensor. However, the projective
covariant derivative of a tensor is not necessarily a tensor.

We are now able to state the two main theorems of local projective
differential geometry, [11].

Theorem A. There is a coordinate chart (U,h) on M", n > 3,
such that IP,c = 0, if and only if, Wi, =0, and BlHJk = ijl =0. The
tensor, I}, is called the (projective) Douglas tensor.

Theorem B. There is a coordinate chart (U, h) on M? such that
1'[’,c =0, if and only if, szl = 0 and pjr; = 0, where pjg; = Tjr/1—Tji1/k,
Tik 1= IB;‘kh, where

Bjiy = Al + I3, I0 + I, T15,,8™ — (k/1).

The symbol, —(k/l), means repeat all terms that come before but inter-
change k and | and put a minus in front of the whole expression.

Remark. The four-index tensor IB is analogous to the usual curva-
ture of a spray except that G}, G% are replaced by IT}, I,

The condition II%, = 0 for all 4,5,k € {1,...,n} in some (U,h)
coordinate system is the so-called condition of projective flatness. We
now consider the n = 2 case of a normal spray connection curves (29)
associated with a given constant spray. We know from Eq.(28) that

Hu = —H%1 and ng = —H%z
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We can therefore set II}, = a;, 12, = By, I}, = @ and II3, = B2 in
Eq.(29), which becomes

d?z' | - (dx! 2_ 7 dzl dz® | - (dz? 2
2 +a (%) 2Bt a (H) =0,
(38)
222 |z (dz2\° - dxtdz® | 5 (dx! 2 _
Fa (75‘) — 200775 g5 P2 (—JE) =0.
Now,
(39) pr21 = Migry + Iprar — Iy r12 — Mg

from Theorem B. But,

(40) 2 = thgz - H%lnéz = T21.

Also,

(41) I—[%27"21 - Hhrm = _Hh[?H}lH%z - HéQHil - H%QH%I]'
Furthermore,

T2 = Z[Hézﬂéz - H%J@z}’
(42)
rn = 2[-1I}, 10}, + T5,113,],

so that substitution of Eqs.(40) and (42) into Eq.(39), yields
(43) pror = 0,

by using Eq.(41). Similarly, one can prove that

(44) p212 = 0.

It is now clear that p;; = 0. Also, H;’kl = 0 because in this constant
connection case the normal spray is quadratic since, in general,

. . 1 i 1 .
H;'kl = z‘kz -P <m6;'][)akl) - myzaﬂm?klv
where P means a sum of the three terms obtained by the cyclic permu-
tation of j, k, [. Therefore, H;-k = 0 in some coordinate chart (U, h).
We have therefore, proved the following theorem:.

Theorem C (Part I). Fvery two-dimensional constant spray is pro-
jectively flat, [5].



Perturbations of constant connection Wagner spaces 207

Remark. It is not true that there is a projective time-sequencing
change from, say,

N !
45
%; = —2a1d‘i, dg’ + o [(%)2 B (%“;—2)2}

to d?x'/ds? = 0, d*x?/ds? = 0, by assuming that ay, ay are not zero.
The reason is that Eq.(28) implies

3, #0, IIf; #0,

since ]D;kl = 0 holds for Eq.(45). Theorem C states only that there is
some coordinate system (U, h) for which II%, in Eq.(28), vanish. This
is where the tensor character of Theorems A and B play an important
role.

Theorem C (Part II). In every dimension > 3 there exists a con-
stant spray which is not projectively flat.

Proof. Consider the n-dimensional conformally flat Riemannian metric
(9i5) = e2¢® (5;;), with ¢(z) = a;a?, a; constants. It is a well known
fact that the Riemannian scalar curvatute IR is never constant and van-
ishes if and only if n = 2. Yet, the (geodesic) spray of this metric has
constant coefficients. But, in Riemannian geometry, projective flatness
is equivalent to constant sectional curvatures. Therefore, IR must be a
constant as well, and the proof is complete (see [6]).

Remark. There exist two-dimensional projectively flat Finsler met-
rics which are not of constant curvature [1]. Obviously, these can not
be Riemannian metrics.

In the next section we briefly describe some of the basics on Wagner
theories.

83. Semiprojective geometry

3.1. Local Finsler theory

Euler-Lagrange equations suggest studying a geometry for which
the trajectories are geodesics. To find such a geometry, let M™ denote
a closed, connected, C®-manifold and TM™ its tangent bundle with the
0-section removed. Let

(46) F:TM" - TR
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be a C® function (positively) homogeneous of degree one in y* = 3%, i =
1,2,...,n.
If the Hessian matrix

(47) gii(z,y) = 8;9; (%F2>

of second partial derivatives with respect to y¢ and y’ (or, what is the
same, dz'/dt = &' and dz? /dt = ©7) is nonsingular in some open conical
subset of TM™, then the Euler-Lagrange equations are equivalent to the
geodesic equations

o dirt da* da? ,
(48) E{""Y;k(%y)—d‘i‘ﬂzo, 1=1,...,n,
where
) 1 .
(49) Y5k(@,y) = 59" (Okgrs + 059rk — Orgjk)
2

are the so-called Christoffel symbols of the second kind. Here ¢ is travel
time and

(50) (dt)? = F?(z,dx) = gij(z,y)dz'd’

and g gy, = 6%, that is, (g%) is the inverse of (g;;), and d is the partial
derivative with respect to z*. Moreover, upon nonsingular coordinate
transformation z° — z*, and the induced transformation y* — §* by the
Jacobian, g;;(x,y) transforms as a covariant Finsler tensor of rank 2,
which is to say, it transforms as in classical tensor analysis. (This is true
of all Finsler tensors regardless of type.) We remark that F(z,dz/dt)
1s conserved along geodesics. It has value one and defines the indicatriz
surface at each point . We introduce the unit length element of support
I* = y*/F and the angular metric tensor

(51) hij = gs5 — lilj,

where I; = g;l". Here, h;; is the induced metric tensor defined on the
indicatriz surface. It is globally defined on the indicatriz subbundle of
the slit tangent bundle TM™, just as gij is globally defined on TM™.
Another important Finsler object is the Cartan “torsion tensor”

1.
(52) Cijk = §ak9ij (z,y),
from where we get

(53) Vjik = C;k = gierrky
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which defines the vertical-connection coefficients, that is, a vertical co-
variant differentiation (V). For example, for any tensor A; (z,y),

(54) O VRAL = 0p AL + ATV — ALV
Using the geodesic equations (48) in the local form

d%zt . dx ,
(55) W+2G (%g)—o, i=1,...,n,

the nonlinear Berwald connection coefficients of (M™, F') are
(56) G = 9;G'

where §; = 0; — G{{:)r. The horizontal and vertical local Berwald connec-
tion coefficients are defined by

(57) Gl =G, and V=0

in (54). From Egs.(56) and (57), we define the horizontal covariant
derivative VP, for example,

(58) VEAL = Ou AL ~ (0,A3)GE + ATGl — ALGT.

The Ricci identities are given by the usual commutation relations
ViVEA] — VIVLA) = AjGly — ALGy — (0rA)RY,
VEVIAL - VIVIAL = AT, — ALD],

where } _ A A _

Glisk = 0kGip + G} Gy — 0:Gl — GGl
is the so-called (h) h-curvature and

which detects angular dependence in the local connection coefficients
G;k, is the Douglas tensor (or (v) h-curvature of the Berwald connec-
tion), while

(60) R}y, = 0xG}, — GiGh, — OnGy, + G1Gi,

agrees with (15). We remark that geodesiscs are straight lines if and
only f D =0=1R in (59) and (60).
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The Cartan connectionCI" = (F;k, G;, C;k) of (M™, F) is character-
ized by Matsumoto’s axioms, as follows?

1. VIg;; = 0 (h-metrical),

2. Vigij = 0 (v-metrical),

3. S} == Cj — Cy; = 0 (v-symmetric),

4. T}, := T — T'; = 0 (h-symmetric),

5. D; = yrl"f;j — G;» = 0 (deflection tensor D vanishes).

Note that axiom 3 is superfluous in our development here because we
defined the vertical covariant derivative in terms of the tensor of Cartan
(53). Had we used a general tensor V]’ , then axiom 3 would have been
necessary to secure I, as the coefficients of the Cartan connection.
Note that 6;f is a covariant Finsler vector field, while, in general, 0; f
is not, when f is a smooth function on TM™. Of course, if f has no
y-dependence, then 0; f is a vector.

We now have the following theorem.

Theorem 1. (Matsumoto) The (horizontal) Cartan connection co-
efficients are given locally by (49) with O being replaced by 6.

Using the triple notation we haveCT' = (%, G%, C%,) for the Cartan
connection €T and BI' = (G%, G},0) for the Berwald connection IBI'.

Thus, (54) is the vertical covariant derivative of A; according to the
Cartan connection CI', while

(61) BVEAL = 04 A

gives it for the Berwald connection IBI'. (The missing term, compared
to (54), explains the zero in the third slot of the Berwald triple.) We
remark that if there are coordinates Z for which F is independent of Z,
then (55) has G* = 0. Such a space is called locally Minkowski. However,
Ci; are not generally zero even in this case. In fact, vanishing of Cj;x
implies that the geometry is Riemannian.

Both the above connections are important in the Finsler geometry.
The Cartan connection CI' is defined entirely in terms of the metric
function F' and its derivatives. The Berwald connection IBI" comes di-
rectly from the geodesic equations of (M™, F'). However, the Berwald
connection satisfies

(62) BVIgi; = ~25V}Ciny'.

2Here we use the “triple” notation of Matsumoto.
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This expression is generally not zero! If we replace gV (Berwald) by
V (Cartan) in (58), the left side must be equal to zero. This is the
so-called h-Ricci lemma. In fact, both A and v-Ricci lemmas hold for CT
and both fail for IBI". For the well-known axiomatic characterization of
the Berwald connection and more details on that of Cartan see [1].

We wish to consider yet another connection, called the Wagner con-
nection IWT = ( ]k,Gl C’ ). A Wagner connection IWT on (M™, F) is
similar to the Cartan connection in that the above axioms are the same
except for axiom 4, which is replaced by

) % 1 ipa 1 3
Tjk = Tjk - mdjTak - n—_l-:‘i-(s;cTﬁl = 0,
where 7}, is called the Thomas’ tensor (J.M. Thomas). The vanishing of

Thomas’ tensor is equivalent to the existence of a covariant field o;(z, y)
such that

(63) T}, = biox — b40;.

In the classical literature, the Wagner connection is thus said to have
semi-symmetric torsion. Let us recall the following theorem:

Theorem 2 (Matsumoto, Hashiguchi, Ichijyo, Tam&ssy). A Finsler
space (M™, F'} is conformal to a locally Minkowski space if and only if
there exists a Wagner connection WT = (F}y, G4, Ciy) on (M™, F) such
that F},, depends at most on z*, o4(x) = d;0(x), and the h-curvature of
WT vanishes. This means that F(z, ) has the form F = explo(x)]F (&),
where explo(x)] is the so-called conformal factor, which depends only on
x, [8], [9]. Such a space is called a o-Wagner space.

Note that many spaces are conformally Minkowski but by no means
all of them, even in dimension two! Also recall that every two-dimensional
Riemannian space is conformally Euclidean. We remark that the vertical
Wagner connection is identical to that of the Cartan connection.

The simplest kind of Finsler spaces beyond the locally Minkowski
(whose tangent planes are curved for n > 3, in general) are Berwald
spaces. These are characterized by

(64) CV?CZ'J'/C =0,
or, equivalently, by
(65) sVICiy, = 0.

For n = 2 a complete isometric classification was given by L. Berwald
(see [1]). All of these two-dimensional Berwald spaces that are not locally
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Minkowskian have principal scalar I equal to a constant (see (84) below).
Of those, exactly four classes are distinguished; three are positive definite
with I? < 4 I? = 4 and I? < 4. In this case IR = 0.

Wagner spaces of dimension n are by definition Finsler spaces which
have a Wagner connection with its o;-field being a gradient, o;(x) =
0;0(z). They are generalizations of Berwald spaces in many respects. A
notable example of this relationship is the

Theorem 3. (Hashiguchi) (M™, F) is o-Wagner if and only if
(66) WV{lCijk =0,
while (M™, F) is Berwald if and only if (65) holds (see [9]).

All Berwald spaces are trivial (i.e., o; = 0) examples of Wagner
spaces. From Theorem 2, we can start with any locally Minkowski space
(M™,F) and form a Wagner space by using F = explo(z)]F in M™.
This Wagner space (M™, F') has a linear (affine) connection F’ ]'.ik (z) and
its (usual) curvature tensor is just the horizontal Wagner curvature,

which vanishes. It is notable that the geodesics of (M™, F') are never,
for o, # 0, the autoparallels

d*z! ; dz? dx*
dt? T dt dt
of WT ([1], vol. II, p.735). As an example, let us write

6 F(nE)men TR op(?)

with o(z) = —Inf(z). Here, 2! =z, 22 = 2, 2! = %, 4> = 7 and F,
the anisotropic part, is a Finsler function of a Minkowski space. The
Wagner autoparallels are solutions of

(67) =0

d?zt o dxd da?

ST (i) T o,

@z O

where 01 = 010 = 0,0, 02 = 020 = 0,0(z). The geodesics are solutions

of

(69)

d?z? dzd dxk -

70 2 —_—_ ="

(70) Pl + (050%)—- FTa Q'
where

: ) o  dxd dx*

(71) Q' = F2g'0; — Glox =~
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with ¥ being the inverse of
_ ca (1o
Moreover, Q° is orthogonal to dz*/dt, namely,
B dxd
(73) gile_&t_ =0,

so that Q' is the Wagner curvature of a solution of Eqs.(70) and (71).
This means that geodesics are curved in Wagner geometry and Q* mea-
sures the “curvature”. Of course, geodesics are not curved in their usual
geometry.

Let us take a specific form for ¢(i/2) in (68) above, say

s( %) = (@)% + (2)%]*2

z) @)™+ (mp/m?
where m is an even interger > 2. Furthermore, let us take the linear
form

(74)

(75) o = —Inf(z, z)= —In(a + bz),

where a and b are positive constants, to allow z dependence. We then
obtain the Finsler space (M2, F) with the metric function

(76) F o) =@ + @

_om=2 (1-(/a)"
2vm—1\ /E/&)™ )’
The Berwald Gauss curvature scalar IK of this space is
Lmb(2) 2" [(m — 2)(#)™ — m(2)"]
(m = D2((&)™ + ())&

where

(77) K =

3.2. More on two-dimensional Finsler spaces

We assume g;;(x,y) to be positive definite on an open conical region
of TM?. Berwald discovered the frame (I*, m*) with

(78) Gij - m'm! =1= Gij - 19,

(79) 9i5 - milj = 0,
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(80)

P. L. Antonelli and S. F. Rutz

hi]‘ = m;myj,

as in (51), and

(81) m; = gym’
and finally

(82) Gij = lily +mym;.
Using

(83) Cijkl* =0,

we have

(84) FCiji = Imymymy,

where I(z,vy) is the principal scalar of (M?, F). The 3-index curvature
formula (60) can now be written

(85)

;’k = F]sz(ljmk — lkmj),

where IK is the so-called Berwald’s Gauss curvature.

(86)

Consider now the 3 local semisprays on (M?2, F)

dy*

- = Gl vy + Ay’ + B,

where y* = dz'/ds and where F? has one of the following 3 forms:

(i) F? = L% exp {2 [-a1z' + (A + 1) apz? + r3z'2?]},
L= )+ /(yh)%, oy > 0;
(i) F?2 = (y*)2exp {2 [y'/y® + (c1 — c2) z' + c12? — v32' (2%)?] };
(i) F2 = [(s) + (5)%] . exp {2 [(—%)L (anz! + aa?)
—Qp — !
+& % tan L 4 w(x)] }

(=31 +a2

Here, F = F(z,y) and ¢(z) = 3[r1(z")? + v2(2?)?] (see [2] and [5]).

are,

The geodesic equations (i.e. A% =0, B* = 0) for these 3 geometries
respectively,

(1) dy'/ds + X (a1 — v32?). (y1)2:
dyz/ds+/\<a2+ L ) (v2)? =
(i) dy'/ds + (c1 — 2vsztz?) . (y 2)2

dy?/ds+[vs (2? — z') (—2?) — ca] . (y1)2+2 (a1 — 2wsazta?) . yly?

[ %]
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and
(iii)’ dy!/ds+2 (a2 +vez?) yly? + (ay +v12t) ((y1)2 — (y2)2) =0
dy?/ds+2 (a1 +v1zt) yly? + (ag + vaz?) ((y2)2 - (yl)Q) =0.

The Berwald-Gauss curvature scalar IK for each case (ibid) is given

as
2

& s (yl/y2)1+2/’\. exp{-2[-a1z? + (A +1) 22
+v3 :L'l.’EQ]};
(ii)” K =2usz! . exp {-2[ y'/y® + (c1 — c2) 2! + c12? — v3 £} (2?)?] } ;
and
2 2
(i) K = 2 20 (v +w) exp { 2 [0(2) + 252 tan(y' /)] }

ajtaz

(i) K =

2+ 2 N
where ¢(z) = 237 (") + § [ (z")® + 1a(2?)?].

We can see that the trajectories, i.e., geodesics in this case, are
Jacobi stable in (i)” and (ii)”, if and only if v5 > 0. Likewise, in the

case (iii)”, trajectories are Jacobi stable if and only if v; + 15 < 0.

Theorem 4. (Antonelli, Matsumoto) With v3 = 0 in (i) and (i)
and vy = vo = 0 in (i), the equations (i), (i1)’ and (i)’ give the only
constant coefficients Finsler geodesics in dimension 2.

Proof. See [1] or appendix of {8].

Let us now consider (86) with B = —6%0x(z) N7 N*, 0}, = 9o with
o(x) = oxz*, a linear function. Thus, B! = -0y (N})2 ~ 0y N!N? and
B? = —03 (N?)?2 — 0; N'N2, and, with A% = A%, A > 0, exactly 3
sprays emerge with I' given by the coefficients in each of (i)’, (i)’ and
(iii)’. But, the result is a new connection F;k = F;k + 0%oy. Writing
only the second equation for the new connection I, these are as follows:

()" dN'/dt = X N' —a; (N')? — oy NIN?

dN?/dt = X\ N? — Gy (N?)2 — 0y NIN?
Sgn(oy,02) is (+,4) for competition , (+,—) or (—,+) for parasitism
and (—, —) for mutualism. All 3 cases exhibit linearly stable positive
steady-states.

(ii)” dN1'/dt = X N! — & (NY)? — g NIN?

dN?/dt = XA N? — g2 (N?)2 + & (N!)2 - (61 +c1) NIN?
An unique linearly stable positive steady-state exists.
(iii)” dN'/dt = A N' —a; (NY)2 — a3 NIN2 4 (o) — a1) (V?)?
dN?/dt = X N2 — a3 (N?)?2 — 01 NIN? 4 (03 — 6) (N1)?
An unique linearly stable positive steady-state exists. '
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Let us now pass to the parameter s in each of the above 3 systems.
In the following, dz/ds = y*:

(A) dy'/ds+a; (y')? + o2 yly2 =0
dy?/ds + a2 (y*)? + o1 y y =0,
(B) dy'/ds +¢é1 (y')* + 02 y'y® =0
dy?/ds + o2 (y*)? — & (y )2 + (&1 +c1) yly? = O
(C) dy'/ds+ a1 (y')* + 02 y'y® + (a1 —01) (¥7)* =
dy?/ds + a2 (y2)? + 01 y'y® + (G2 — 02) (¥')* =

The tildes over the coefficients indicate that the coefficients are approx-
imations and constants up to order £2.

Theorem 5. Along any solution of (A), e 3" Fy s constant, F;
being the Fmsler function F in (i) above. Likewise, along any solution
of (B), o= Fy; is constant, where Fy; is the Finsler functional in (ii)
above. Similarly, eorat, F;;; is constant along any solution of (C), Fy;
being the cost functional in (iii) above [5].

Remark. The reader may verify that dF /ds = 0 along solutions of
(A), (B), (C) where F denotes the appropriate 7= F function.

Difinition. Given a spray S on M™, if for each pont p € M™ there
are local coordinates in an open set U, p € U, in which the local Berwald
coeflicients, G;.k, are linear, then we say S is a locally linear Berwald
spray, or (LLB)-spray. The local coordinates are called adapted.

Theorem 6. There are exactly eight 2-dimensional LLB-sprays
which are autoparallels of a Wagner connection. FEach is a semipro-
jective transformation of one of (i)’, (ii)’, (iii)’ above. Furthermore,
each conserves a functional of the form e®®) F(y), with ¢ quadratic in
adapted coordinates.

§4. Stochastic Finsler geometry

Consider a solution z(s), y(s) of

ds — Y
(87)
W = —Fiy(z,y)y'y*.
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The hv-rolling along this solution defines a smooth curve u(s), v(s) in
IR?" given by

syt i dv’
(88) 4= 25
dzt ’c
rri Fkl(l‘ y) _Ckl(m y) Zj d )
where
5yt dy dx?
— G -
(89) ds ~ a5 TG

For stochastic differential equations which are (88) perturbed by
noise, we have the general form

dz* = y'ds + zi(s) o dv?

(90) oy* = 2i(s) o du’

dzj = —Fjy(z,y)z{(s) o dz* — Cy(x,)25(s) o oy*
where
(91) oy’ = dy' + G%(x,y) oda’.

Here zj—(s) is the orthonormal frame process and the circle notation in-
dicates Stratonovich stochastic theory is employed, [1], [8].

Let us use the above to examine the Riemannian case, i.e. C” =
in (87). Thus,

&=y

(92)
d i . .
b= —Ti(@)y’y*

where I‘;- (z) must be the Levi-Civita connection of Riemannian geome-
try. Because the metric tensor g;;(z) is independent of y, the fibers 7'M
of the slit tangent bundle are full n-dimensional flat Euclidean spaces
(i.e. zeros included).

Next we perturb u(s), v(s) by adding independent white noises v(s),
w(s) and use hv-isometric rolling (stochastic) to transfer the diffusion
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u(s)+v(s), v(s) +w(s) back to (M™, F). Here, we assume the stochastic
Ansatz for noise addition.

dzidx?  dxidy’ g9 -g*Gi,
(93) o = ds .
dy'dz?  dy'dy’ —g7*GL g9 + gMGLGY

This says simply that the distance by which the state (z,y) will be dis-
placed is proportional to the magnitude of (dv?, dw?). A suitable metric
on TM* must be chosen. The most natural choice (for many reasons)
is the diagonal lift of the Finsler metric tensor. This is “diagonal” only
when written in terms of the Berwald basis {X,},_127 = {6:,9;}. In
natural coordinates it is not diagonal. Thus the covariance matrix (93)

. . . _ | 9ip(zy) 0
above has this special form: [Gap] = 0 955, 9)
to {5% 8.7 } .
Retaining the same notation z(s), y(s) for the diffusion on TM*,
we obtain the system so when we apply the stochastic Ansatz for noise
addition we use

, relative

dridr?  dxidy’ g¥(z) 0
(94) =ds
dy'dz?  dy'dy’ 0 0

where 8 is the Kronecker delta instead of the diagonal lift. (This lift
does not work since tangent spaces are not always flat in Finsler geom-
etry!) This condition (94) is fulfilled by

dz’ = y'ds + z} o dv’
95 dyt = —T% _(z)yIy*ds + dw'
jk

dz} = Ty (x)25 o daF,
a diffusion (z(s), y(s), z(s)) on the orthonormal frame bundle. Here, as
above, v'(s) and w(s) are independent standard Brownian motions in
IR™ and zJi» (s) is the auxiliary orthonormal frame process. The resulting
Markov diffusion z(s),y(s) on TM™ has generator

1 . 1 ... . .
(96) D = - g"(0:8; — IF6k) + 5070105 +y'0; - I yiybo;

the probability density p(s, x, y) of this process satisfies the initial-bound-
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ary value problem

o *
o =D
(97) limeo p(s,2,y) = po(z,y)

p(87x7y)‘aD - 07

where the initial density po(z,y) is supported on B = {(x,y)’yi >
0, V;, (z,y) € TM™} and ID* is the formal adjoint of ID relative to

the metric

gi; O
(98) [GAB] = )

0 (5;3
AB=1,....2n;4,5=1,...,m%,j=n+1,...,2n, on TM™

§5. Results on Evolution Models with Noise

The deterministic equations are of the form (92) but with constant
coefficients, thusly,

F;l = a, F;k:O, 1£5#k

F;j =TI% = aj, i ;éj

F‘,;J = —Qy, ? # J-
See 1], [4] or [6], Chapter 5. Here, oy,...,a, are non-zero constants,
so this means z',...,z" is an adapted coordinate system on (M™, F) =

(M, e?® . F(i)) where

F(z) = F(a',...,d&") = /@&H2 +--- + (&n)2
is the flat Euclidean metric function.

Remark These constant coefficients characterize a model of Woese’s
Ancestral Commune Theory of proto-cell evolution, [10], [14]. One con-
sequence is that G;.k = I‘;k = constant, with all indices different (so
n > 3) must vanish. This means that where ¢ # j, i # k and j # k (so
n > 3) there is no interaction between j*" and k' type to influence the
it? type. There are no higher-order interactions in this sense.

The system perturbed by noise has form (96) generator

(99) D =2 Ag +y'0: — 9,62y’ ~ §71y[*)0;,
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here Ag being the Riemannian Laplacian on TM™.

We shall compute the adjoint operator ID* for the problem (97) in
terms of the curvature R := g“IR;;, IR;; being the Ricci tensor the
contraction of R;M given explicitly as

(100) Ri; = 0k — TRTE, + 50k (fn /9) — 8:0;(fn /g),
where g = det [g;j(z)] = €2"*®). From this
(101) R = —(n - 1)e”2*®§9(20,8,¢ + (n — 2)0;¢ - 9;¢].

The adjoint is straightforwardly

(102) D = 2 Ag + A9, + B9, +V,

where A® = —y', B/ = 0;¢(2y'y’ — 6Y|y|?) and the so-called Feynman-
Kac potential is

V_(Q(]R n+2

(103) R

A 2) +20,4y".
= (55 V4@1%) +20:y

The forward initial-boundary value problem (97) can be solved by
first introducing an auxiliary diffusion (X (s),Y(s)) on TM™ following

by projection of the diffusion on the orthonormal frame bundle

dXt = Alds + z;- odv’
(104) dY' = Bds+ duw'

dZ} = T (X)zf 0 dXF,

where Z}(s) is an orthonormal frame process. To ensure the existence
of solutions of (104) without explosions we can employ the C* bump
function technique, assuming that ¢ is compactly supported with supp ¢
large enough to contain the region of interest with 9;¢ non-vanishing
everywhere in that region for any i = 1,...,n, (see [8]).

By the Feynman-Kac formula, the solution of (104) can now be
expressed
(105)

p(:2.9) = By {Xio1po(X(9). Y (9) ex0 | [ Ve, Y]}

where o = inf {s > 0| (X(s),Y(s)) € OB} is the first time of hitting the
boundary 0B of B and E, , is the conditional expectation given that
X(0)=zand Y(0) = y.
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Inspection of the (negative) Riemann scalar curvature IR shows it
becomes less negative with distance from the origin and that |IR| in-
creases at least quadratically with n, all other things being equal. Thus,
the probability density p is reduced because of negative IR values and
even more so as n becomes larger. We interpret this as an indication that
the process is speeding up, in a relative sense, as n increases, thereby
contributing to greater stochastic chaos for the system.

The orthonormal frame bundle exhibits (90) as a diffusion whose
projection onto 7M™ has generator

1
2

where (Fl’; (z,y), G§ (z,9), C;k (z,y)) are the local coefficients of the Car-

tan connection for the 2-dimensional Berwald type Finsler space whose
metric function is

(106) D = = g% (8:6; — Fi’j.ék) + 5 g7(0:;0; — C{;ak) +y?é;

(y2)1+
7 L = ex )|
(107) p[¢(z)] @)

>l=

=

and whose scalar curvature is (see [3])

A (F)
where ¢(z) = —arz! + (A4 1)agr? + v3ztz? with A > 0, a1 > 0, a2 > 0
and v3 > 0. The geodesics of F = % L? are given as

(108) exp [—2¢]

2
ddz:gl + )\(011 - l/3.’E2)(——ddISl) =0
(109)

2.2 .
i . ,\(a2 + xl)(y2)2 ~0
or written as real time (ecological/physiological) interactions, for open

growth,
d’ — ki, N' i=1,2

(110) AN? AN — May — vaz?)(N1)?

2 >
U2 = AN = A + 5 ot (N2)2,

Biological Remark. The parameter vz is called the exchanges
parameter and serves to measure information exchange (see [3]). Type
#1 are proto-mitochondrians while type #2 are ancient bacteria.



222 P. L. Antonelli and S. F. Rutz

Let Gog (o, = 1,2,3,4) denote the diagonal lift of g;;(z,y) ob-
tained from (107) above by gij(z,y) := 8;9;(3 L?), as before. If G =
det [Gap) then G = g2 with g = det[g;;]. We denote by p(s,z,y) the
probability density of the process with generator (106) stopped at time
o to be in a region A C TM*N{y! > 0,y? > 0}, relative to the measure
VG dxdy on TM*, thus,

Prob {(z(s),y(z)) € A} = /Ap(s,x, y) VG(z,y) dzdy

the function p(s,z,y) satisfies the forward initial boundary value prob-
lem

D*p = %
(111) lims\ 0 p(s,7,y) = po(z,y)

p(s, Z, y)‘y1y2:0 =0.

The solution can be found, much as above, to be (after [8] or [1],
Vol. I, Part 3)

pls:2.8) = E{ (e~ , 010 (€)1 (@) ex0 [ V(€ (1), )

where x is the indicator function, and
V =2R + ®(x,y)

where {m’, £'} is the Berwald orthonormal frame and I is a constant
principal scalar, with

q)(.'lf, y) = QImiquSij — 4]m’£’¢1¢] — 212m1m9¢1¢]
(112)
+8¢Y s ; + dy'p; — %IQ/LQ-

Here ¢; = 0;¢ and ¢;; = 0;¢; from (108) we see that p(s,xz,y) is in-
creased because of the positivity of IR so that the process is slowed
down, relatively speaking. The curvature contributes to stochastic sta-
bility rather that stochastic chaos. But, 2 = Q42

11 so large growth
rate \ offsets this slow down.

Remark. Similar results to those above obtained for the cases
I? = 4 and I? < 4. The stochastic treatment of non-Berwald geometry
(76) has been carried out as well [1].
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Remark.The computations in this work have been performed by
the computer package Finsler [1], [13].
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