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Determination of the limit sets of trajectories of the 
Gierer-Meinhardt system without diffusion 

Wei-Ming Ni, Kanako Suzuki and Izumi Takagi 

Abstract. 

We consider a reaction-diffusion system consisting of an activator 
and an inhibitor which models biological pattern formation. A com
plete description of the entire dynamics of the kinetic system, i.e., the 
system without diffusion terms, is given. In particular, then-limit sets 
and the w-limit sets of all trajectories are determined. 

§1. Introduction and Statement of Main Results 

One of the central problems in developmental biology is to under
stand the mechanism of the formation of a spatial pattern in tissue 
structure, starting from almost homogeneous states. As a model of 
morphogenesis, A. Gierer and H. Meinhardt ([1]) proposed an activator
inhibitor system: 

(1) 

au 2 uP 
- = c /::iu- u + - + a(x) for X E n, t > 0, at vq 

av ur 
T- = d/::iv - V + - for X E n, t > 0, at v 8 

au = av = 0 for X E an, t > 0, av av 
where l::i = r.f=l a2 I ax; is the Laplace operator in IRN' n is a bounded 
smooth domain in JRN, V is the unit outer normal to an, a is a non
negative function, T, c and d are positive constants. The exponents p, 
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q, r and s satisfy 

(2) p > 1, q > 0, r > 0, s:::: 0 and 0 < p -1 < _q_. 
r s + 1 

The system (1) is derived based on the idea of "short-range activa
tion, long-range inhibition", which means that the inhibitor, although 
activated by the activator, spreads by diffusion faster than the activa
tor and blocks the production of the activator in distant places. As a 
results, striking patterns of the activator concentration are expected to 
emerge. For the past two decades there have been several papers on 
the existence of solutions of the initial-boundary value problem (1) ([2]
[5], [7], [8]). In particular, solutions to (1) are proved to exist and are 
bounded for all t > 0 provided p- 1 < r when a > 0 ([2, 8]). However, 
our understanding of the dynamics of (1) is far from complete. 

It is our purpose to give a complete understanding of the dynamics of 
the following kinetic system which is obtained by removing the diffusion 
terms from the Gierer-Meinhardt system: 

du uP 
- = -u + - for t > 0, 
dt vq 

(K) dv ur 
T- = -v + - for t > 0, 

dt V 8 

u(O) = uo, v(O) = vo, 

where u0 :::: 0, v0 > 0 and the exponents p, q, r, s satisfy 

(C) p > 1, q > 0, r > 0, s > -1 and 0 < p-1 < _r_ 
q s + 1' 

which is slightly more general than (2) as we now assume that s > -1 
in (C) instead of s :::: 0 in (2). 

It turns out that the dynamics of (K) exhibits various interesting 
behaviors including convergence to the equilibria (0, 0) or (1, 1), periodic 
solutions, unbounded oscillating global solutions, and finite time blow
up solutions. At this stage it is too early to draw biologically meaningful 
conclusions from our results, but we expect that they stimulate further 
mathematical studies on the original Gierer-Meinhardt system towards 
a better understanding of the mechanism of pattern formation. 

We begin by introducing some notation to state our main results. 

1.1. Preliminaries 
We shall assume throughout this paper that the initial value is in 

the first quadrant Q = {(u, v) E JR2 I u > 0, v > 0}. By 8Q we mean the 
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set {(u, v) I uv = 0, u 2: 0, v 2: 0}. By oo we mean the point at infinity 
(u,v) = (+oo,+oo) and by 0 the origin (u,v) = (0,0). For P E Q, let 
(T _ ( P), T + ( P)) denote the maximal existence interval of the solution 
of the initial value problem for (K) with initial value (u(O), v(O)) = P. 
Moreover, let '"Y(P) denote the orbit 

'"Y(P) = {(u(t),v(t)) I T_(P) < t < T+(P)} 

of the solution (u(t), v(t)) with (u(O), v(O)) = P. We denote thew-limit 
set and the a-limit set of')'(P) by L+('"Y(P)) and L-('"Y(P)), respectively. 

The two curves cl and c2, defined by v = u(p-l)fq(on which Ut = 0) 
and v = ur/(s+ll(on which Vt = 0) respectively, intersect at exactly one 
pointE = (1, 1). Hence it is an unique equilibrium point in Q. These 
two curves divide the first quadrant into four regions R 1, R 2, R 3 and 
R4: 

R1 = {(u, v) I 0 < u < oo, v < min{u(p-l)fq, urf(s+ll}}, 

R2 = {(u, v) 11 < u < oo, u(p-l)fq < v < urf(s+l)}, 

R3 = {(u, v) I 0 < u < oo, v > max{u(p-l)fq, urf(s+l)}}, 

R4 = {(u, v) I 0 < u < 1, urf(s+l) < v < u(p-l)fq}. 

First, we deal with the stability of the equilibrium point E = (1, 1) 
of (K). To do this, we define an important quantity by 

(3) 

Note that a > 0 by (C). 

qr 
a=--- (s + 1). 

p-1 

Lemma 1. The equilibrium E = (1, 1) of (K) is locally asymptoti
cally stable if 7 < 7E, and, it is unstable if 7 > 7E. To be more precise, 
we have 

{i} E is a stable node if 7 :::; 7t, 

{ii) E is a stable focus if 71 < 7 < 7E, 

{iii} E is an unstable focus if 7E < 7 < 72, 

{iv) E is an unstable node if 72 :::; 7, 

where 

(4) 
s+1 

7E = --, 
p-1 

s + 1 + 2a- 2Ja(s + 1 +a) 
71 = . ' 

s + 1 + 2a + 2Ja(s + 1 +a) 
72 = 1. . p-1 p-
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1.2. Main results 

We now come to the precise statements of the results. 
All the possible choices of the exponents (p, q, r, s) satisfying (C) fall 

into the following three cases: 

Case I: r > p- 1, s + 1 > q, (example: (p, q, r, s) = (2, 4, 2, 4)), 
Case II: r 2': p- 1, s + 1 :::; q, 

(example: (p,q,r,s) = (2,2,2,0) or (2,1,2,0)), 
Caselli: r<p-1, s+1<q, (example: (p,q,r,s)=(4,2,2,0)). 

Notice that (C) is never satisfied in the remaining case r < p-1 and 
s + 1 2': q. Moreover, in Case II, the possibility of (r, s + 1) = (p -1, q) is 
ruled out by (C). It turns out that these three cases differ in the possible 
a- and w-limit sets of solution orbits. In addition, in each of the cases, 
solutions of (K) behave quite differently as the relaxation parameter T 

varies. 

(5) 

In addition to ( 4) we define the following special values of T: 

s+1 
TOCJ = --, 

r 
- q To=--. 

p-1 

Theorem 2 (Case I). Let r > p- 1 and s + 1 > q. Then T= < 
To< TE. In the following statements (a)-(e), we assume P E Q\{E}. 
(a) If T < T =, then there are special orbits "( c and "( s for which the 

following (i)-(iii) hold. (i) L+("fc) = {E} and L-("fc) = {oo}, 
while L+("fs) = {E} and L-("fs) = {0}. The combined curve 
"fc U {E} U 'Ys separates Q into two subdomains A and B, where 
boundary 8A contains the positive v-axis and 8B contains the pos
itive u-axis. (ii) If ( u(O), v(O)) = Pis in A, then L +(1(P)) = { E} 
and L- ("f(P)) = { oo }. (iii) If P is in B, then there exists a pos
itive number up depending only on P such that L +(1(P)) = { E} 
and L-("f(P)) = {(up,O)}. Conversely for any positive number 
~~there is aPE B such that L-("f(P)) ={(CO)}. 

(b) If Too :::; T :::; To, then for each P E Q, there exists a non-negative 
number up depending only on P such that L+("f(P)) = {E} and 
L-("f(P)) = {(up,O)}. Conversely for any non-negative number 
~'there is aPE Q such that L-("f(P)) = {(~,0)}. 

(c) If To < T < TE, then there is a special orbit "is for which the 
following (i)-(iii) hold. (i) L + hs) = { 0} and L- hs) = { (Us, 0)}, 
where Us is a positive number. Let V be the domain enclosed by 
"fs and the u-axis. (ii) If P is in V, then there exists a up with 
0:::; up< Us depending only on P such that L+("f(P)) = {E} and 
L- ("f(P)) = { (up, 0)}. Conversely for any non-negative number~ 
with 0:::; ~<Us, there is aPE V such that L-("f(P)) = {(~,0)}. 
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(iii) If P is in Q\D, then there exists a positive number up with 
Up > U8 depending only on P such that L +('y(P)) = { 0} and 
L- ("!(P)) = { (up, 0)}. Conversely for any positive number~ with 
~ > u 8 , there is aPE Q\D such that L-('y(P)) = {(~,0)}. 

(d) If T = TE, then there is a special orbit "( s for which the following 
(i)-(iii) hold. (i) £+("!8 ) = {0} and L-("!8 ) = {0}. Let V be 
the domain enclosed by 'Ys. (ii) If P is in V, then 'Y(P) is a 
closed orbit. (iii) If P is in Q\D, then there exists a positive 
number up depending only on P such that L+('y(P)) = {0} and 
L-('y(P)) = {(up,O)}. Conversely for any positive number~' 
there is aPE Q\D such that L-('y(P)) = {(~,0)}. 

(e) If T > TE, then there is a special orbit 'Y 8 for which the following 
(i)-(iii) hold. (i) L+("!s) = {0} andL-("!8 ) = {0}. LetV be the 
domain enclosed by 'Ys· (ii) If Pis in V, then L+('y(P)) = {0} 
and L -('y(P)) = {E}. (iii) If Pis in Q\D, then there exists a pos
itive number up depending only on P such that L+('y(P)) = {0} 
and L- ("!( P)) = { (up, 0)}. Conversely for any positive number 
C there is aPE Q\D such that L-("!(P)) = {(~,0)}. 

Furthermore, if L-("!(P)) ={(up, 0)}, then -oo < T_(P), while T_(P) 
= -oo if L-('y(P)) = {oo} or {E}. On the other hand, T+(P) = +oo 
for all P E Q. 

Theorem 3 (Case II). Let r 2': p- 1 and s + 1 :::; q. Then T00 :::; 

TE :::; To. For all P E Q, T+(P) = +oo and T_(P) = -oo. Moreover 
the following statements (a)-(e) hold for any P E Q\{E}. 
(a) ljT < T00 , then£+("!)= {E} and L-("!) = {oo}. 
(b) ljT00 :::; T < TE, then£+("!)= {E} and L-('y) = fJQ. 
(c) If T = TE, then all the orbits are closed. 
(d) lfTE < T:::; To, then£+("!)= aQ and L-("!) = {E}. 
(e) ljT >To, then£+("!)= {0} and L-('y) = {E}. 
Here "( stands for "f(P) and fJQ denotes the extended boundary of Q: 

aQ ={(u,O) I u 2': 0} u {(O,v) I v 2': 0} 

U {(u, +oo) I u 2': 0} U {(+oo,v) I v 2': 0}. 

Theorem 4 (Case III). Let r < p- 1 and s + 1 < q. Then TE < 
T00 <To. In the following statements (a)-(e), we assume P E Q\{E}. 
(a) If T < TE, then there is a special orbit "( s for which the following 

(i)-(iii) hold. (i) L+("!s) = {oo} and L-("!8 ) = {oo}. The orbit 
r s separates Q into two subdomains A and B, where A contains 
E. (ii) If Pis in A, then L+("!(P)) = {E} and L-('y(P)) = 
{ oo }. (iii) If P is in B, then there exists a Vp with 0 < vp < 
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+oo depending only on P such that L + (1'( P)) = {( +oo, v p)} and 
L-('"y(P)) = {oo}. Conversely for any positive numberry, there is 
aPE B such that L+('Y(P)) = {(+oo,ry)}. 

(b) If T = TE, then there is a special orbit 'Ys for which the following 
(i)-(iii) hold. (i) L +(1'8 ) = { oo} and L- (1'8 ) = { oo }. The orbit 
'Ys separates Q into two subdomains A and B, where A contains 
E. (ii) If P is in A, then 'Y(P) is a closed orbit. (iii) If P is 
in B, then there exists a Vp with 0 < Vp < +oo depending only 
on P such that £+(-y(P)) = {(+oo,vp)} and L-('"y(P)) = {oo}. 
Conversely for any positive number ry, there is a P E B such that 
£+(-y(P)) = {(+oo,ry)}. 

(c) If TE < T < T 00 , then there is a special orbit ')' s for which the 
following (i)-(iii) hold. (i) L +(-ys) = {( +oo, v8 )} and L- bs) = 
{ oo }, where V8 is a number with 0 < V8 < +oo. The orbit 'Ys 
separates Q into two subdomains A and B, where A contains E. 
(ii) If P is in A, then there exists a Vp with V8 < Vp ~ +oo 
depending only on P such that L + (1'( P)) = {( +oo, v p)} and 
L-('"y(P)) = {oo}. Conversely for any positive number 17 with 
V8 < 17 ~ +oo, there is aPE A such that £+(-y(P)) = {(+oo,ry)}. 
(iii) If P is in B, then there exists a vp with 0 < vp < v8 

depending only on P such that £+(-y(P)) = {(+oo,vp)} and 
L- (1'( P)) = { oo}. Conversely for any positive number 17 with 
0 < 17 < V8 , there is aPE B such that £+(/'(P)) = {( +oo, ry)}. 

(d) If Too~ T ~To, then there exist a vp with 0 < vp ~ +oo depend
ing only on P such that L +(-y(P)) = {( +oo, vp)} and L- ('"y(P)) = 

{ E} for all P E Q\ { E}. Conversely for any number 17 with 
0 < 17 ~ +oo, there is aPE Q such that £+(-y(P)) = {(+oo,ry)}. 

(e) If T > To, then there are special orbits /'c and 'Ys for which the 
following (i)-(iii) hold. (i) £+(1'c) = {0} and L-('Yc) = {E}, 
while L + (1' s) = { oo} and L- (1' s) = { E}. The combined curve 
'Yc U {E} U 'Ys separates Q into two subdomains A and B, where 
boundary 8A contains the positive v-axis and 8B contains the 
positive u-axis. (ii) If P is in A, then £+(-y(P)) = {0} and 
L-('"y(P)) = {E}. (iii) If P is in B, then there exists a vp 
with 0 < vp < +oo depending only on P such that £+(-y(P)) = 
{(+oo,vp)} and L-('"y(P)) = {E}. Conversely for any positive 
number ry, there is aPE Q such that £+(-y(P)) = {(+oo,ry)}. 

Furthermore, ifL+(-y(P)) = {(+oo,vp)} with 0 < vp ~ +oo, then 
T+(P) < +oo, while T+(P) = +oo if £+(-y(P)) = {E} or {0}. On the 
other hand, T_(P) = -oo for all P E Q. 
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In many of the cases above, the behavior of orbits may be concisely 
described in terms of "connecting orbits". For example, in (a) of Case 
I, (i) 'Ys is the unique homoclinic orbit from 0 to 0, (ii) each point P 
in A is on an orbit connecting 00 to E, and (iii) B = u~>O "(~, where 
"(~ is an orbit that connects the point (~, 0) to E. To help the reader 
visualize the behavior of the solutions, we have included the graphics of 
the orbits in the above three theorems in Appendix. 

We see that if T+(P) < +oo, then the solution (u(t), v(t)) with 
initial value P must blow up, i.e., at least u(t) diverges to +oo as t I 
T+(P). However, if T_(P) > -oo, then the solution remains bounded 
as t l T _ ( P). Moreover, we see that there is no blow-up solution in Case 
I and Case II, while in Case III, there exists a solution which blows up 
in finite time for any T > 0. Moreover we observe that the behavior of 
solutions to (K) changes drastically as the parameter T passes through 
TE, To or T00 • In particular, at T = TE the stability of the equilibrium E 
changes, while there are solutions approaching the origin as t ---+ +oo if 
and only if T > To, and there appear solutions tending to oo as t ---+ -oo 
if and only if T < T00 • 

From Theorem 2 and 4 we notice that Case I and Case III seem 
to share the same degree of complexity. As a matter of fact, these two 
cases are "dual" in the sense that will be made clear in the next section. 
This is the key to the proof of theorems. 

§2. Transformation among the (K) family 

For the complete classification of the solution orbits, the following 
transformation is crucial. Indeed, it reveals the underlying beautiful 
mathematical structure of (K). It is important to regard (K) as a family 
of differential equations labelled by (p, q, r, s, T). Hence, for the moment 
we denote the problem by (K;p,q,r,s,T). 

If we set 

(6) 
1 u= -, 
v 

- 1 
V=-

u 
and 

- t 
t= --, 

T 

then the system (K) is converted into the following system: 

{ 

du _ uii 
--:::: = -u +----=-
dt i)Q ' 

_dv _ uf' 
T dt = -V + i]8 ' 
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where 

(7) 
1 

f = -, jj = s + 2, ij = r, f = q and 8 = p - 2. 
T 

It is easily verified that jj, ij, f > 0, 8 > -1 and 

jj -1 f 
O<q<8+I" 

Hence, (K) becomes the same system (:K) by transformation (6). 
More precisely, the transformation 

(u,v,p,q,r,s,t,T) r-> (u,v,jj,ij,f,8,i,f) 

defined by (6) and (7) maps the problem (K; p, q, r, s, T) to (K;jj, ij, f, 8, f). 
We state here a few important properties of the transformation (6). 

The two curves CI, c2' defined by v = u (p-1) ;q (where Ui = 0) and 
v = uf/(B+1l(where vi= 0) respectively, intersect at exactly one point 
E = (1, 1). Then it is the unique equilibrium point of (:K) in Q = 
{(u, v) I u > 0, v __?> ~- !hese t~o curves divide the first quadrant Q 
into four regions R1, R2, R3 and R4: 

ii1 = {(u, v) 1 o < u < oo, v < min{u(ii-1lN, uf/(B+1l}}, 

R2 = {(u, v) 11 < u < oo, u(ii- 1}/Q < v < uf/(B+ 1l}, 

R3 = {(u,v) 1 o < u < oo, v > max{u(ii- 1W,uf/(B+1l}}, 

R4 = {(u,v) 1 o < u < 1, ufl(s+l) < v < u(ii- 1lN}. 

By simple computations, we see that (6) gives a bijection between (i) 

n1 and RI, (ii) n2 and R4, (iii) n3 and R3, (iv) n4 and R2· Moreover, 
it follows from the definition that f- (jj- 1) = q- ( s + 1) and 8 + 1 - ij = 
(p- 1) - r. Therefore, we see that (6) changes the conditions on the 
exponents in Case I, Case II and Case III into those in Case III, Case II 
and Case I, respectively. We obtain the following proposition: 

Proposition 5. The transformation (6) gives the following duali
ties: 

(i) Solution trajectories of (K) in (a), (b), (c), (d) and (e) of The-
orem 2 become those in (e), (d), (c), (b) and (a) of Theorem 4, 
respectively. 

(ii) Solution trajectories of (K) in (a), (b), (c), (d) and (e) of The-
orem 3 become those in (e), (d), (c), (b) and (a) of Theorem 3, 
respectively. 
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(iii) Solution tmjectories of (K) in (a), (b), (c), (d) and (e) of The-
orem 4 become those in (e), (d), (c), (b) and (a) of Theorem 2, 
respectively. 

This proposition means that Case I and Case III are symmetric, 
while Case II and itself are symmetric. Therefore, if we know the be
havior of solutions for T ::::; TE in Case II completely, then we obtain 
at the same time the complete knowledge of the behavior of solutions 
for T > TE, while if we have complete understanding of the behavior of 
solutions in Case I, then so do we also for Case III. 

We notice that the direction of the time variable is reversed by the 
transformation (6). Therefore, in virtue of Proposition 5, for the proofs 
of Theorems 2-4, it suffices to verify only the assertions for L + in all 
cases (a)-( e) of the three theorems. 

§3. Outline of the proof of theorems 

In this section, we give an outline of the proof of Theorem 2-4. For 
the details, see [6]. We start by stating some general observations which 
hold true for all cases under (C). 

Lemma 6. Each solution in R 2 must enter R3. Similarly, each 
solution in R4 must enter R 1 . 

Lemma 7. If (K) has a solution (u(t),v(t)) converging to (0,0) as 
t --> +oo, then it is necessary that T > To. 

Lemma 8. If T > To, then the solution (u, v) must tend to (0, 0) 
monotonically (i.e., u ~ 0 and v ~ 0) in t > 0 if (u(O), v(O)) E R3 and 
v(O) = ~u(p-l)fq(O) with[;- (p -1)] + (p- 1)cq < 0. 

Lemma 9. If T -=F TE, then (K) does not possess any periodic solu
tion. 

Lemma 10. If a solution (u, v) of (K) stays inside R1 for t E 
(0, T+), then it must either converge to E = (1, 1) or blow up in finite 
time. 

Lemma 11. Let (u(t),v(t)) be a solution of(K) such that it neither 
converge to (0, 0) as t --> +oo nor blows up in finite time. If T > TE, 

then its w-limit set contains no interior point of Q. 

3.1. Proof of Theorem 2 

First, we prepare the following lemma. 
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Lemma 12. Let p- 1 < r and q < s + 1. Then every solution 
trajectory cannot stay entirely in R 1 as t ---+ T+ unless it converges toE 
as t---+ T+ (and in that case T+ = oo). 

Now, we are ready to sketch the proof of Theorem 2. We shall prove 
here only the assertion for L + (')'). The proof will be completed when 
we finish the proof of those for £+(-y) of Theorem 4 (see the remark 
immediately after Proposition 5). 

Proof of Theorem 2 for £+(-y). We discuss the following four cases 
I-IV separately: 

I. If T ::; To, then L + (')') = { E}. 

Lemma 7 guarantees that (u, v) cannot go to (0, d) in R3. There is no 
periodic solution by Lemma 9. Denote two consecutive intersections of 
the trajectory with the line segment L = {(u, 1) I 0 < u < 1} by Q1 = 
(u(Tl), v(Tl)) and Q2 = (u(Tz), v(T2 )). It follows from the stability of E 
that Qz lies in between E and Q1 , which implies that the solution ( u, v) 
must converge toE as t---+ +oo. Therefore, all solutions must converge 
to E. The assertions for £+(-y) in (a) and {b) have been proved. 

To treat the remaining three cases, we rely heavily on Lemma 8. We 
consider the solution with initial value (u(O),v(O)) E L = {(u, 1) I 0 < 
u < 1 }. Lemma 8 shows that if u(O) is small enough, the solution must 
converge to (0, 0) monotonically in t > 0 as t---+ +oo. Now, set 

(8) U* =sup{ u(O) < 1 I (u, v)---+ (0, 0) monotonically in t > 0}. 

It follows from Lemma 1 that u* < 1 if T < Tz. Then we see easily 
that for any initial value (u(O), v(O)) with u(O) < U* and v(O) = 1, 
the solution ( u, v) tends to (0, 0) monotonically in t > 0, and for any 
(u(O), v(O)) with U* < u(O) < 1 and v(O) = 1, the solution (u, v) does 
not tend to (0, 0) monotonically (although it may still tend to (0, 0) 
eventually). 

We denote the solution with initial value Q0 = (U*, 1) by (u*, v*). 

Lemma 13. If Tz > T > To, then the solution ( u*, v*) defined above 
must tend to (0, 0) monotonically in t > 0. Moreover, if we extend 
(u*, v*) backwards in t < 0, then it must enter R 2 and then R 1 as t < 0 
decreases further. 

We now turn to the proof of the following: 
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II. If To < T < TE, then there exists a special orbit 'Ys for which 
the following (i)-(ii) hold. (i) L+hs) = {0}, L-hs) = {(u 8 ,0)} for 
some U 8 2: 0. (ii) Let D be the domain surrounded by 'Ys and the positive 
u-axis. If P E D, then L+('Y(P)) = {E}, while L+('Y(P)) = {0} if 
P E Q\D. 

We check that the solution ( u., v.) gives rise to the desired orbit 'Y 8 • 

Indeed, from the examination of the vector field defined by (K), we can 
prove that (u.,v.) tends to (u 8 ,0) as t---+ T_ with u 8 2:0. 

Now, the trajectory of (u.,v.) separates Q into two regions: a 
bounded D and its complement. It is obvious that a solution with initial 
value in D must stay in D and therefore tends to E as t ---+ +oo by the 
definition of (u.,v.), while a solution with initial value in the comple
ment of D must converge to (0, 0) as t---+ +oo. The assertion for L +h) 
in (c) has been proved. 

III. If TE < T, then L +("f) = {0}. 

This follows from Lemma 1, Lemma 12, Lemma 6, Lemma 8 and Lemma 
11, and the assertion for L + ( 'Y) in (e) has been proved. 

IV. If T = TE, then there exists a special orbit "( s such that L + h 8 ) = 
{ 0} and L- ( "( s) = { 0}. Let D be the bounded domain enclosed by "( s. If 
P ED, then 'Y(P) is a closed orbit, while L+('Y(P)) = {0} if P E Q\D. 

This is verified by examining the level curves of the following function: 

(9) 

H(u, v) = vs+: + p- 1 (ur-(p-1)- 1)- s + 1 (vs+l-q- 1). 
uP- r - (p - 1) s + 1 - q 

The assertion for L+('Y) in (d) has been proved. 

3.2. Proof of Theorem 3 

We need the following lemma. 

Q.E.D. 

Lemma 14. Let r 2: p - 1 and q 2: s + 1. If a solution lies in R1 
at some t, then it must either enter R 2 or converge to E as t ---+ +oo. 

As was pointed out in Section 2, it is sufficient to verify the assertions 
for L+('Y) of (a)- (e). 

Proof of Theorem 3 for L + ( "(). We treat the following four cases 
I-IV separately: 
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I. IfT < TE, then£+(!')= {E}. 

By Lemma 14 and Lemma 7, the conclusion follows immediately. The 
assertions for£+(!') of (a) and (b) have been proved. 

II. If TE < T ::; To, then L + (!') = { uv = 0}. 

Observe that T2 >To. Therefore, Lemma 1 implies that near E, every 
solution ( u, v) must spiral outward. By virtue of Lemma 14 and Lemma 
11, the assertion for£+(!') of (d) has been proved. 

III. IfT >To, then£+(!')= {0}. 

We notice that E is unstable. By Lemma 14, our conclusion follows 
immediately. The assertion for L + ( 1) of (e) has been proved. 

IV. If T = TE, then all the orbits are closed. 

For the case r > p - 1 and s + 1 < q, we use the same function H as 
(9). For the case r = p- 1 and s + 1 < q, we use a slightly different 
potential, namely, 

vs+l s + 1 ( 1 ) 
(10) H1(u,v)=-1 +(p-1)logu+ ( ) (+l).-1, uP- q - s + 1 vq- s 

which is obtained by letting r - (p- 1) --> 0 in (9). Finally for the 
case r > p- 1 and s + 1 = q, if we transform (u, v, t) to (u, v, f), then 
( u, v) is in the previous case. We see that these functions are a constant 
along a solution trajectory and every level curve of these functions is 
compact. Therefore, all solution of (K) must be periodic. The proof of 
(c) of Theorem 3 is now complete. Q.E.D. 

3.3. Proof of Theorem 4 

Before proving Theorem 4, we study blow-up solutions. Assume 
that the exponents satisfy the condition r < p- 1, s + 1 < q. 

From Lemma 10, we have already known that if there is a solution 
which stays inR1 for all 0 < t < T+, then it blows up in finite time 
unless it converge to {E} as t--> +oo. 

We first prove that, for any T > 0, there is always a blow-up solution. 
To this end, we set a = (p - 1) - r, b = q - ( s + 1), c = abr + 1 and 
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throughout this entire subsection. It is obvious that from (C) we have 
ajb < (p- 1)/q. Our result reads as follows. 

Proposition 15. Let (u(t), v(t)) be a solution with initial value 
(u(O), v(O)) ESc. Then it must blow up in finite time. 

Next, we consider the behavior of blow-up solutions. We have the 
following two possibilities as t --7 T+: 

(1) (u(t),v(t)) --7 (+oo,vo) with 0 < vo < +oo, 
(2) (u(t),v(t)) --7 (+oo,+oo). 

We have the following two theorems. 

Theorem 16. We assume that vo < +oo. For each 0 < vo < +oo, 
there is a unique solution of (K) such that 

(u(t),v(t)) --7 (+oo,v0 ) as t --7 T+. 

Such a solution is unique up to translations of the time variable t. 

Theorem 17. We assume that vo = +oo. For given T+, there is a 
unique solution (u, v) of (K) such that 

(u(t),v(t))-'-+(+oo,+oo) as t-7T+. 

Theorem 16 is proved by using the contraction mapping theorem. 
Indeed, put 

1 
U(t) = uP-l, V(t) = vs+l, U(() = U(T+- (), V(() = V(T+- (). 

We note that 

U(O) = lim U(() = o, V(O) = lim V(() = Vo < +oo, 
(~o (-o 

- p-1 
lim U'(() = _ /( +1)" 
(-o Voq s 

Therefore, we can regard U ( () as a continuously differentiable function 
at ( = 0. Hence, we have 
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where w(() = o(1) as ( ~ 0. Using the notation above, we change (K) 
into the following system: 

(11) 

\{! ( () 

V(() - Vr e~(- -8 - 0 "' e d~ 
_ + 1 (v;-qf(s+1)) r/(p- 1) 1( c-r/(p-1) ~((-e) 

- 0 T P- 1 o (1 + w(~))ri<P- 1 l ' 

with initial data w(O) = 0, V(O) = Vo. 
Therefore, in order to prove the assertion in Theorem 16, it is suffi

cient to verify that (11) has a unique solution (w, V) for each Vo > 0. 
Next, in order to prove Theorem 17, we change (K) into the following 

system: 

(12) {

dW 

dt 

dz 

dt 

where we have set 

We have the following two lemmas. 

Lemma 18. If (u, v) blows up at t = T+, then 

(W(t), z(t)) ~ (0, zo) as t ~ 0 

with 0 ~ zo ~ +oo. 

Lemma 19 .. If z(O) = 0, then there exists a constant C > 0 such 
that 

v(t) ~ C fort close toT+· 

It follows from Lemma 18 and Lemma 19 that there is no solution 
which derived from a solution of (K) converging to oo, among solutions 
of (12) with its initial value (W(O), z(O)) = (0, 0). Therefore, to prove 
Theorem 17, it suffices to verify that there is a unique solution (W, z) 
of (12) with its initial value on the positive z-axis. Hence, the following 
proposition yields our conclusion: 
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Proposition 20. 
(i) If there exists a solution of (12) with its initial value (W(O), z(O)) = 
(0, zo) for some zo > 0, then zo = aT jb. 
(ii) There is a unique solution of (12) with its initial value (W(O), z(O)) = 

(0, aTjb). 

Finally we come to the proof of Theorem 4. We notice also that 
it suffices to verify the assertions for L + ('y) of (a)-( e). We shall prove 
assertions (a)-( e) separately in this order. 

Proof of Theorem 4. (a) We have already showed that the exis-
tence and uniqueness of a solution converging to oo. Letting this solu
tion trajectory be "(8 , we easily see that L+('y(P)) = {(+oo,vp)} with 
0 < Vp < +oo if P E B. 

Assuming P E A, we see that the solution with initial value P 
does not converge to oo. Moreover, it does not tend to 0 by Lemma 
7. Therefore, by applying the same arguments as in the verification of 
Assertion I of the proof of Theorem 2, we conclude that (u(t), v(t)) tends 
to E as t --+ +oo. 

(b) Set p = s + 2, ij = r, f = q, 8 = p- 2, u = 1/v, v = 1/u and 
'H(u, v) = H(u, v), where His defined by (9). We have that f > p- 1, 
8 + 1 > ij, and 

'H(u, v) = ~~+1 - - 8 + 1 - (vB+1-ii -1) + - fJ-= 1 (-ur-(ii-1) -1). 
uP- 1 s + 1- q r- (p- 1) 

Hence, the qualitative behavior of the level curves of 'H(J..L, v) is exactly 
the same as that of H studied in the proof of Theorem 2. Translating 
( u, v) back into ( u, v), we get the conclusion. 

(c) Recall that we have proved the existence of the solution (u*, v*) 
which tends to (0, 0) as t --+ +oo and ( uo, 0) as t --+ T _ ( see in the 
verification of Assertion II of the proof of Theorem 2). It follows from 
the transformation (6) that this solution trajectory becomes the one 
leaving 00 in R3, passing through R4 and going to ( +oo, V 8 ) with V 8 > 
0 in n1. We notice that Vs < +oo in virtue of the uniqueness of a 
solution tending to oo by Lemma 7 and Lemma 11. It is easily seen 
that L+('y(P)) = {(+oo,vp)} for some 0 < vp < V 8 if P E B. Now, 
let us consider the case P E A. Since E is unstable and the solution 
trajectory cannot intersect itself, it follows from Lemma 7 and Lemma 
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11 that L+('y(P)) = {(+oo,vp)} for some V 8 < Vp:::; +oo when PEA. 

(d) The assertion follows immediately from the arguments similar 
to those in the proof of (c) . 

(e) We know that there is a unique trajectory 'Ys which goes to oo. 
On the other hand, it follows from Lemma 8 that there are solutions 
tending to (0, 0) monotonically as t ----> +oo. Fix VI with VI < 1 and set 
LI = {(u,vl) I 0 < u < (vl)qf(p-IJ}. We consider a solution with initial 
value (u(O), v(O)) ELI. Now, we define U* by 

U* = sup{u(O) < (v!)qf(p-I) I (u,v) ____, (0,0) monotonically ast ____, +oo}. 

Denote the solution with initial value Q = (U*,v1) by (u*,v*). We see 
that (u*,v*) tends to (0,0) monotonically as t----> +oo and denote the 
trajectory of ( u*, v*) by 'Yc· 

If P E A, then a solution ( u, v) of (K) with initial value P cannot 
converge to oo or E. In virtue of Lemma 11, it must tend to 0 as 
t ----> +oo. If P E B, then the solution of (K) with initial value P must 
converge to {(+oo,vp)} for some vp, 0 < vp < +oo, since it cannot 
intersect 'Ys· Q.E.D. 
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Theorem 3 
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Theorem 4 
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