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Remark on the dissipative quasi-geostrophic
equations in the critical space

Hideyuki Miura

Abstract.

We consider the two dimensional critical and super-critical dis-
sipative quasi-geostrophic equations. We prove the local existence of
a unique regular solution for arbitrary initial data in Bi‘f‘" which is
corresponding to the scaling invariant space of the equation.

§1. Introduction
We consider the dissipative quasi-geostrophic equation in R2:

%+(~A)“0+U-V0:O in R2 x (0, 00),
ot
(DQGq) w=(~Ryf,R160) in R2x (0,00),

‘9|t=0 = 90 in Rz,

where the scalar 6 and the vector u denote the potential temperature
and the fluid velocity, respectively, and « is non-negative constant.
R, = ai(—A)“l/ 2 (i = 1,2) represents the Riesz transform. We are
concerned with the initial value problem for this equation. It is known
that (DQG,,) is an important model in geophysical fluid dynamics. In-
deed, it is derived from general quasi-geostrophic equations in the special
case of constant potential vorticity and buoyancy frequency. Since there
are a number of applications to the theory of oceanography and meteo-
rology, a lot of mathematical researches are devoted to the equation.
The case oo = 1/2 is called critical since its structure is quite sim-
ilar to that of the 3-dimensional Navier-Stokes equations. The case
o > 1/2 is called sub-critical and a < 1/2 is called super-critical, re-
spectively. In the sub-critical cases, Constantin and Wu [4] proved global
existence of the unique regular solution. However, in the critical and
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super-critical cases, global well-posedness for large initial data is still
open. In the critical case, Constantin, Cordoba and Wu [3] constructed
a global regular solution for the initial data in H! with small L norm.
In the critical and super-critical cases, Chae and Lee [2] proved the
global well-posedness for the initial data in the Besov space 32 22 with
small homogeneous norm. Later on, Ju [8] improved their results on
the space of initial data. Indeed, he proved the global existence of a
unique regular solution for the initial data in H?~2* with small ho-
mogeneous norm. For large initial data, Cordoba-Cordoba [5] proved
the local existence of a regular solution for the initial data in H® with
s> 2—a. Ju [8], [9] improved the admissible exponent up to s > 2~ 2a.
Here the exponent s, = 2 — 2« is important, because this is the bor-
derline exponent with respect to the scaling. We observe that if 6(z,t)
is the solution of (DQGa), then Oi(z,t) = A**716(\z, A**1) is also a
solution of (DQG,). Then the homogeneous spaces H2~2* and B} _**
are called scaling invariant, since ||0x(:,0)|| g2—2 = [|0(:,0)|| jy2-2o and
16 (-, )”Bz 2a = ||6(-, O)HBz 2o hold for all A > 0. The scaling invariant
spaces play an important role for the theory of nonlinear partial differ-
ential equations. If the equation has a class of scaling invariance, then it
coincides with the most suitable space to construct the solution which is
expected unique and regular. (See e.g. Danchin [6], Koch-Tataru [10].)

In this paper we establish the local well-posedness for (DQG,,) with
the initial data in 32 2> in the critical and super-critical cases. In

fact, we can extend the class of initial data 32 7%* to the larger class

32,1 N B§112°‘. Compared with Chae-Lee [2], we can construct a local
solution for arbitrary large initial data. On the other hand, we improve
the local well-posedness result with respect to the space of initial data.
Indeed, Bg;zo‘ contains the space such as H® (s > 2 — 2a). See remark
on Theorem 2.2 below.

We now sketch the idea of the proof. In contrast with other equa-
tions, it seems to be difficult to prove the local existence of regular
solutions by the classical approach such as Fujita-Kato method [7]. As
pointed out in [2], we have difficulty to find an appropriate space X
which yields the following bilinear estimate of the Duhamel term

[1B(u,6)llx < Cll6l%,

where B(u, 6) f e~ (t=3)(=A)"(y.V@)(s)ds in the appropriate function
space X. For o < 1/2, we see the linear part (—A)*8 is too weak to
control the nonlinear term «-Vé. In fact, the smoothing property of the
semigroup e *(~2)” is not enough to overcome the loss of derivatives



dissipative quasi-geostrophic equations 239

in the nonlinear term. To avoid this difficulty, in [2] and [8] they ap-
plied the cancellation property of the equation to construct the small
global solution. However, their method seems to be not suitable to deal
with the large initial data. So, in this paper we introduce the modified
version of Fujita-Kato method. To be precise, we derive the family of
integral inequalities on the Littlewood-Paley decomposition of the solu-
tion, which makes it possible to apply the cancellation property of the
equation. In the usual Fujita-Kato method, such cancellation property
seems to be not available. On the other hand, in order to treat the non-
linear equation by the perturbation argument, we establish smoothing
estimates for the linear dissipative equations in the Besov spaces. Com-
bining with these observations, we construct the local solution for large
initial data in Bi—l?a. As a byproduct of our method, we obtain the
precise behavior of the solution near t = 0 in higher order Besov spaces.

The paper is organized as follows. In Section 2, we define some
function spaces and precise statements of theorems. Section 3 is devoted
to establish some useful estimates such as the commutator estimate.
Finally in Section 4 we prove the theorem.
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§2. Definitions and the statements of the theorems

In this section we define some function spaces and then state main
theorems. Let us first recall the definition of the Besov space. Let
{p;}2 be the Littlewood-Paley decomposition of unity ie. ¢ €

j=—00 I R

C5°(R™\ {0}), supp ¢ C {€ € R 3/4 <[] < 8/3} and ) 72 $(277€)
= 1 except £ = 0. We define the convolution operator A; as A; = ¢;*
where F(¢,)(€) = (]3(2‘%). We denote by S’ the topological dual space
of that of tempered distributions S. Moreover, we denote by Z’ defined

as the topological dual space of Z defined by

Z={feS;[z*f(z) dz =0 for all o € N"}.
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Definition 2.1. Fors € R, 1 < p < oo and 1 < g < oo, we write
the B, ,-(quasi) norm by

1/q
o0

b= O A

j=—00

I1f1

For s >0,1<p<ocoandl<gq< oo we also write the By ,-norm
by
1z, = 17 ee + £,

We define function spaces as follows:
B, ={fe Zilfls, <}
B, = {f e S5 flss, < oo}.

Remark i) While the inhomogeneous space B; , is a subspace of S,
the homogeneous counterpart B;;’q is that of Z’ ~ &’ /P. Here we denote
P as the set of all polynomials. Since we cannot distinguish zero from
other polynomial in &’ /P, they seems not to be appropriate as function
spaces where equations are treated. Fortunately, if the exponents satisfy
the following condition:

either s<n/p or s=n/pandg=1,

then Bg)q can be regarded as a subspace of &’. Indeed, if s, p and ¢
satisfy the above condition, we have

B; = {f €83 |fllp, <ocand f= Y A;fin 5’}.

j=—00

For the details one can see, e.g. Kozono-Yamazaki [11].

ii) Roughly speaking, the exponent s represents the differentiability
of functions and p represents the integrability. ¢ is less important since
their differences are at most logarithmic. These spaces are considered
as generalizations of LP space and Sobolev space. For example, we have
the following embeddings:

BY,cLPcCBY

p,00?

Bi, CWPCBS ..

We will also mention some facts on the Besov space in the remark of
Theorem 2.2 below.

Now we state the main theorem of this paper.



dissipative quasi-geostrophic equations 241

Theorem 2.2. Let 0 < a < 1/2. Suppose that the initial data
0o € B%,l 32 22 Then there exist a positive constant Ty and a unique
solution of (DQGa) in C([0,T1); B} ;) N L*(0,Ty; B ).

Remark i) The assumption that the initial data belongs to the scaling
invariant space B%,"lzo‘ plays an crucial role in the theorem. In the critical
case o = 1/2, one can take the class of initial data as B% 1- On the other
hand, in the super-critical case a < 1/2, we must assume that the initial
data belongs to B 2,1 in addition to 32 12%. One of the reason is that
B2 2a s only the subspace of §’/P, so Bi_lz‘" is no longer appropriate
to treat equation (DQG,).

ii) Ju [8], [9] proved local existence of a unique solution for the initial
data in H® (s > 2 — 2a). Theorem 2.2 improves his result on the class
of initial data. In fact, the following inclusion relation holds:

H° - 32 oo, 321032 2o for s>2-2a.

iii) Chae-Lee [2] proved the global existence of a unique solution for
the initial data in 32 2@ with small homogeneous norm. Theorem 2.2
is regarded as the local version of their result. In fact, by the argument
of our proof, one can also cover their global existence theorem:

Corollary 2.3. There exists a positive constant € such that for the
initial data 6y € 32 1N 32 2o satisfying ||6o]| B2y <6 there exists a

unique global solution in C(]0,00); B%l) N LY(0, oo; B%l)

In contrast with [2] [8], we make use of Fujita-Kato type method to
construct the solution. This approach also tell us the behavior of the
solution in higher order Besov spaces:

Theorem 2.4. Suppose that 0y belongs to 32 1% N B} 2,1 and 6 is

the solution of (DQGq) in L=(0,Ty; B ;)N LY(0,Ty; B ). Then for all
B €[0,2a), there exist constant Ty € (0,11) such that

s
sup t2e||0(t)]| p2-2048 < 00.
LS 1600 g
Moreover, the solution satisfies
. B
lim ¢2=(|0(t) || g220+0 = 0.
Notations

Throughout this paper we denote a positive constant by C' (or C’
etc) the value of which may differ from one occasion to another. On
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the other hand, we denote C;(i = 1,2,---) as the certain constants.
Moreover we write the space LP(0,T;dt) as L%.

§3. Preliminaries

In this section we prepare some estimates in the Besov space. First,
we recall Bernstein’s inequality.

Lemma 3.1. (i) Letk € R, 1 <p < co.Then there exist constants
C = C(k,p,n) such that

C12H| flle < | D*fllze < C27% fl[1r,

holds for all f € S'(R™) with suppf C {2972 < |£| < 27} and j € Z.
(ii) We have the equivalence of norms

k
ID*fllgy , ~ 1 Fllspip-

We state various product estimates in the Besov space.

Proposition 3.2. Let s, t < n/p with s +t > 0. Then there exists
a positive constant C = C(s,t,p,n) such that

[[uv|

pevrrr < Cllullg, vl

Finally we state the commutator estimate associated with the op-
erator A;, which plays an important role in the estimate of nonlinear
term.

Proposition 3.3. Let1 <p<oo,n/p<s<1+n/p, t<n/pand
s+t >n/p. Then there ezists a constant C = C(s,t,p,n) such that

29D, Aful| e < Ocsllull g ol e

for allu e B.’;’l and w € B;l with 3z cj = 1. Here we denote
[u, Ajlw = uAjw — Aj(uw).
These estimates are obtained by using Bony’s paraproduct theory

1]. We can see the proof of Proposition 3.2 in [6] and that of Proposition
3.31in [12].
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84. Proof of main theorem

In this section we explain the proof of Theorem 2.2. We can also
prove Theorem 2.4 by using standard weighted norm approach. See [1 2]
for more details.

4.1 Linear Estimates

Let consider the following linear dissipative equation:

L) ZTZ +(=A)%q in R?x (0,00),

Nlt=0 = Mo in R2-

The following proposition is the useful characterization on the Besov
norm of the solution and its application to the smoothing estimate.

Proposition 4.1. Suppose that the initial data 19 belongs to Bg,l
for some s € R and let n(t) = et =)y be the solution of (Ly) for
a > 0. Then there exist positive constants ¢ and ¢ (¢ < ') depending
only on a > 0 such that

(4.1)
- p2af (A . _92aj

D 2967 (0) 2 < e A o]l 5y <D 297y (0)] 12

JEZ JEZ

for all t > 0, where 7;(0) = Ajno.
Moreover we have

(4.2) sup tY/P|le t(=A)" TIOHB21 < Clle™*= )GWUHL%BEU
0<t<T '

and

(4.3) 102 0]l 20+ 5 | < Climoll 5.,

Proof Firstly we prove (4.1). Applying the operator A; to (L), we
have
Omj + (—A)*n; =0,

where we denote n; = Ajn.
Taking inner product in L? with the first equation and 7n;, we have

1d

S lIngll3a + (=2 E 113 =0,
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By Lemma 3.1, there exist positive constants ¢ and ¢’ (¢ < ¢’) such that

1d ;
5 alngll3 + 2% s 32 <o,

and L4
5 2 Ingl13 + 2% 3 > 0.

Dividing the above inequality by lin;||z2= and then integrating on the
interval (0,t), we have

_ 22(:3 C/

e n; ()12 < Ml (lze < e Y0 (0)]] 2

Multiplying by 2%/ and summing over j € Z, we have (4.1).
Secondly we will prove (4.2). By (4.1), we see that it suffices to show

(4.4)

;9207 S _ 20
sup /7" 29¢=F 4y (0) 2 < €| 3 296 gy (0) 4
0<t<T JEZ jez

Ly

. _92aj . .
Since e™2" ¢t is monotone decreasing for ¢ > 0, we have

S 259 (0) ) 2 Y 27T ()12 for 0 <7 <.
JEZ JEZ

Taking LP(0,¢; dr) norm on the both side, we have

L o2aj . 92aj
£/ 32296 gy 0)]| 0 < || 30 296720y 0) 2|

ez ) Lr(0,t;d7)
By change of variables, we observe that
| 22962y 0)122|
ez Lr(0,t;dr)
d\1/p ; 20j 7
(IS 1]
(9712 Iz,

which yields (4.4).
Finally we will prove (4.3). Applying (4.1), we have

s)j —2%9¢
(45) 1970l 205, < C|| 32202t (0) 12|
JEZ

L2a/7(0,T;dt)
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Let U;(t) = 259=2°""¢t||n;(0)|| 2. Then U; satisfies
U +c2**U; =0 for ¢t>0 and je€Z

Multiplying U ]-20‘/ 7~1 and integrating on (0,T), we have

T
U,(T)2/7 + /0 22291 (5)2%/ Y dt = U;(0)2/7

In particular we have
||27jUjf|L2Tu/w < CU;(0).

Taking sum on the both side of the estimate over j € Z and applying
Minkowski’s inequality for the left hand side, we have

H Z Qij‘ e < CZ U;(0).
JEZ JEZ
By the definition of U;, the above inequality yields

L o2aj
|2 2049964 (0) 1.2
JEZ

Lo < Clnol g , -

Combining this estimate with (4.5), we obtain (4.3).

4.2 Proof of Theorem 2.2

Step 1: We first show an a priori estimate in L%Bi‘la. More precisely
we will prove that there exist a positive constant C'; and a bounded
functionI (T") with limp_,o I(T) = 0 such that
(4.6) 1811352+ < I(T) + CLllBl125 oo
Applying the operator A; to (DQG,), we obtain
81;0]' + (—A)O‘Hj = —Aj(u . VG),
where we denote 0; = A;6. Adding u - VA6 on both sides, we have

80; + (~A)*0; + u - VA0 = [u, A;]V8.
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Taking inner products with 6;, we obtain from the divergence free con-
dition that

210,130 + 227651132 <l A,1V00 1211651 -

Dividing both side by [|6;| 2, we have
d .
T 103llz2 + 2270165l 2 < [[lu, A5V 2.

Applying Proposition 3.3 with s =2 — o and t = 1 — «, we obtain

1d

5 2105l + c2229 85 |2 < [, A,]96)] 12

o—(2-2a)j ., -
< C¢j2 lull g2+ 1V g1

< Cey2 @27 9|12, .

Integrating both sides in time on the interval (0,t), we have
(4.7) 165l z>

. . t aj
Se-zzr)th”Oj(O)“Lz+ch2_(2_2a)J\/0 2 c(t~8)|lg(s)||2333ad3_

Multiplying the above inequality by 2(2~®)J and taking {*-norm to j € Z,
we obtain

. 2ajC
(48) 1185 gz <D 20772 9;(0)] 1o

JEZ

oS zaﬂ/ &2 =) 9(5)] 2y -

JEZ

In order to show (4.6), we need to estimate L2 norm of the both sides
of (4.8).
By Proposition 4.1, the first term is estimated as follows

—a)j 2%
| Yo 2Cm e g0 o
T

JEZ

< Cloll 522

Let
I(T)

_92aj
|3 22 et g, 0) o |

JEZ

Then we have I(T) < C||60HB§—120 and limr_0 I(T) = 0 by absolutely
continuity of the integral. ‘
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As for the second term of (4.8), we have
. . ,
| s / e 0(s) B ds|
JEL 0 >
t .
gzcjzai / 6—22”6<f—s>||9(s)||232-.,ds\
' 2.1

g 1/2
<anza](/ e Hlddt) H@HizTB;—la

JEZ
2
< CllOlI7; pa-o-

L%

L%

Therefore we obtain a priori estimate (4.6).
Secondly we will show the following estimate:

(4.9) 1611y 53, < I'(T) + Cal6ll3 oo

with imr_¢ I'(T) = 0.
In (4.7), multiplying 2% and taking sum over j € Z, we obtain

N, V1=% 1
16; (1)l 5z, <> 2% 16,(0)] 2

jEZ

L O g / 2 () By d

JEZ

By Proposition 4.1, we have L}, estimate for the first term as follows:

| S0 22629, (0) 10

JEZ

< Cll0oll g2-2o-

Ly

Hence let I'(T) = H Y ez 22je‘22aj°t||9j(0)||Lz o Then absolutely
T

continuity of integral yields limp_o I'(T) = 0.
On the other hand, applying Young’s inequality, we have

20§ —2%d (-
e [ o) ] < Ol e
J

Thus we obtain the a priori estimate (4.9).
Similarly to the previous argument, we can also obtain

||9|‘L7°?B§32“ < 6ol gz52+ + 03"9‘@%3530“
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Step 2: To construct the solution, we consider the following successive
approximation:

0,00+ (—A)*° =0 in R?xRy,
eOlt:O = 90 in Rz

and
80"t + (=AYt 4y . VOl =0 in R? xRy,
(4.10) u™ = (—Rg@",Rle") in R?x R+,
6"+ 1—o = o in R2?,
forn=0,1,2---.
We will prove the uniform estimate on 6". Let X7 = ||0"“L2TB§A1Q
and Y = ||9"”L;B§ .- By the argument in Step 1, we can show that

there exists a bounded function I(T) with limp_o I(T) = 0 such that
Xr <I(T),
X2 < I(T) + Oy XX forn >0,
Taking Ty > 0 so small that I(Tp) < 1/(4C1), we have
(4.11) Xt <2I(T) for n>0.

Moveover, we can also prove that there exists a bounded function I'(T)
with limp_,o I'(T) = 0 such that

Y <I'(T)

YT < I'(T) + Co X2XZH.
Combining with the above estimate and (4.11), we have
(4.12) Y2 < I(T) + C4(I(T))2  forn > 0.

Using (4.12), we will prove the convergence of the sequence in L%‘)B%,l.
Let 667t = g7+l — g7 and du"*t! = u"*! — u*. Then we have
following equations of the differences:

6™ 4+ (= A)*§O™FL 4y - VO™ 4 fun - VO™ =0,

Su™ = (—Ry66™, R166™) in R? x Ry,
56"+1|,_o =0 in R2,
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for n > 0.
Similarly to Step 1, we have

|

1865+ 12427271607+ 2.

<—(Aj(u™ - V™) + A (Su™ - VO™, 6071,

1
2

U

t

where 667 = A;6™t! — A;6™. Since divu = 0, we have
(u™ - V67+ 567+) = 0.

By Hélder’s inequality, we have
d j n n
d—t||66?+1||L2+22°‘3||69;.‘+1||L2 <u™, AIVEO™ | L2+ A (Su™- VO™ || L2,
which implies
(4.13) (16674 (8|2

t _ »

<c / e =) ([[u™, A,|VS6™ g + [| Ay (5™ - V6™ 12)ds.
0

By taking s = 2 and t = 0 in Proposition 3.3. Then we have

™, A;1VE6™ 22 < ;27 M| g V667 g

< e, 27918% 53 1867 155 .
Multiplying (4.13) by 27 and summing over j € Z, we have
186™+2(8) 51
<cC /0 te-f“jc“-s)(lleﬂng 1867 | 3y 11 (6u™ - VO™)l| 55, )ds
<c / e (07 5 (68 5y + 1007 5y 167 55 s,
where we use Proposition 3.2 in the last line. Hence we have

167 53 < CUO 1 53 106" g+ 1567wy 167 32,

< CsYR (166" | e gy, + 11667 s 1 ,)-
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By (4.12), there exists Ty > 0 such that Y7! < 1/(3Cs) for all n.
Hence we have

1
n+1 5 _ n .
166 HL%CIBZ;1 < 2”59 “L%ClB%J
1 0
et Lz 5y,
C
WH%”B;J-

<

<

This shows the existence of the function 6 € L7, B%’l satisfying 6" — 6
in L§ Bil as n — 00. Furthermore, uniform estimates show that 6 also
belongs to L ngl?a N L, Bg,l by the uniqueness of the limit 6(t) in
Z' for t € (0,77). Here we can easily observe that the limit function
satisfies (DQG,).

Finally we prove continuity (in time) of the solution in B%,r The
proof is the same as the argument in Chae-Lee [2]. Indeed 6™ satisfies

atgn-i-l = _qyn. v0n+1 _ (_A)a6n+l’

where the right hand side belongs to L!(0, T}; B;l) So the absolutely
continuity of the time-integral yields continuity of g7tl. Since g7+l
converges to 6 in Bil uniformly in time, we obtain continuity of 6 in
Bi,.

|
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