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Abstract. 

We consider the two dimensional critical and super-critical dis­
sipative quasi-geostrophic equations. We prove the local existence of 
a unique regular solution for arbitrary initial data in B~.J. 2"' which is 
corresponding to the scaling invariant space of the equation. 

§1. Introduction 

We consider the dissipative quasi-geostrophic equation in JR.2 : 

(DQG") { 
ae 
at + ( -~)"e + u. V'O = 0 in JR.2 X (0, oo), 

u=(-R20,R10) in JR.2 x(O,oo), 

Olt=O = eo in lR.2 ' 

where the scalar e and the vector u denote the potential temperature 
and the fluid velocity, respectively, and a is non-negative constant. 
Ri = 8~, ( -~)- 112 (i = 1, 2) represents the Riesz transform. We are 
concerned with the initial value problem for this equation. It is known 
that (DQG<>) is an important model in geophysical fluid dynamics. In­
deed, it is derived from general quasi-geostrophic equations in the special 
case of constant potential vorticity and buoyancy frequency. Since there 
are a number of applications to the theory of oceanography and meteo­
rology, a lot of mathematical researches are devoted to the equation. 

The case a = 1/2 is called critical since its structure is quite sim­
ilar to that of the 3-dimensional N avier-Stokes equations. The case 
a > 1/2 is called sub-critical and a < 1/2 is called super-critical, re­
spectively. In the sub-critical cases, Constantin and Wu [4] proved global 
existence of the unique regular solution. However, in the critical and 
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super-critical cases, global well-posedness for large initial data is still 
open. In the critical case, Constantin, Cordoba and Wu [3] constructed 
a global regular solution for the initial data in H 1 with small L 00 norm. 
In the critical and super-critical cases, Chae and Lee [2] proved the 
global well-posedness for the initial data in the Besov space B~,J. 20 with 
small homogeneous norm. Later on, Ju [8] improved their results on 
the space of initial data. Indeed, he proved the global existence of a 
unique regular solution for the initial data in H 2- 20 with small ho­
mogeneous norm. For large initial data, Cordoba-Cordoba [5] proved 
the local existence of a regular solution for the initial data in H 8 with 
s > 2- o:. Ju [8], [9] improved the admissible exponent up to s > 2- 2o:. 
Here the exponent Sc = 2 - 2o: is important, because this is the bor­
derline exponent with respect to the scaling. We observe that if B(x, t) 
is the solution of (DQG0 ), then B;..(x, t) = >. 2<>- 1B(>.x, >. 2<>t) is also a 
solution of (DQG0 ). Then the homogeneous spaces if2- 2<> and .8~,~ 20 

are called scaling invariant, since liB;..(·, O)II.H2-2n = liB(·, O)II.H2-2a and 
liB;..(·, O)ll32-2a =liB(·, O)ll32-2" hold for all>.> 0. The scaling invariant 

2.q 2.q 

spaces play an important role for the theory of nonlinear partial differ-
ential equations. If the equation has a class of scaling invariance, then it 
coincides with the most suitable space to construct the solution which is 
expected unique and regular. (See e.g. Dan chin [6], Koch-Tataru [10].) 

In this paper we establish the local well-posedness for (DQG0 ) with 
the initial data in B~]_ 20 in the critical and super-critical cases. In 

fact, we can extend the class of initial data B~,J. 20 to the larger class 
. 1 . 2 2 

B 2 ,1 n B 2,1 °. Compared with Chae-Lee [2], we can construct a local 
solution for arbitrary large initial data. On the other hand, we improve 
the local well-posedness result with respect to the space of initial data. 
Indeed, B~]_20 contains the space such as H 8 (s > 2- 2o:). See remark 
on Theore~ 2.2 below. 

We now sketch the idea of the proof. In contrast with other equa­
tions, it seems to be difficult to prove the local existence of regular 
solutions by the classical approach such as Fujita-Kato method [7]. As 
pointed out in [2], we have difficulty to find an appropriate space X 
which yields the following bilinear estimate of the Duhamel term 

IIB(u, B)llx :::; CIIBII3c, 

where B(u, B)= J; e-(t-s)(-~)" (u· \lB)(s)ds in the appropriate function 
space X. For o: :::; 1/2, we see the linear part ( -f:!.)<>B is too weak to 
control the nonlinear term u ·\lB. In fact, the smoothing property of the 
semigroup e-t( -~)"' is not enough to overcome the loss of derivatives 
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in the nonlinear term. To avoid this difficulty, in [2] and [8] they ap­
plied the cancellation property of the equation to construct the small 
global solution. However, their method seems to be not suitable to deal 
with the large initial data. So, in this paper we introduce the modified 
version of Fujita-Kato method. To be precise, we derive the family of 
integral inequalities on the Littlewood-Paley decomposition of the solu­
tion, which makes it possible to apply the cancellation property of the 
equation. In the usual Fujita-Kato method, such cancellation property 
seems to be not available. On the other hand, in order to treat the non­
linear equation by the perturbation argument, we establish smoothing 
estimates for the linear dissipative equations in the Besov spaces. Com­
bining with these observations, we construct the local solution for large 
initial data in B~J. 2"'. As a byproduct of our method, we obtain the 
precise behavior of the solution near t = 0 in higher order Besov spaces. 

The paper is organized as follows. In Section 2, we define some 
function spaces and precise statements of theorems. Section 3 is devoted 
to establish some useful estimates such as the commutator estimate. 
Finally in Section 4 we prove the theorem. 
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§2. Definitions and the statements of the theorems 

In this section we define some function spaces and then state main 
theorems. Let us first recall the definition of the Besov space. Let 
{ ¢J }~-oo be the Littlewood-Paley decomposition of unity i.e. ¢ E 

C0 (1Rn \ {0} ), supp ¢ C {~ E lRn; 3/4:::; 1~1 :::; 8/3} and L~-oo ¢(2-j~) 
= 1 except ~ = 0. We define the convolution operator D..j as D..j = cPJ* 
where :F(¢J)(~) = ¢(2-J~). We denote by S' the topological dual space 
of that of tempered distributions S. Moreover, we denote by Z' defined 
as the topological dual space of Z defined by 

Z = {J E S; J x"' f ( x) dx = 0 for all a E Nn}. 
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Definition 2.1. For s E lEt, 1 ::::; p ::::; oo and 1 ::::; q < oo, we write 
the s;,q-(quasi) norm by 

by 

llfiiBs 
p.q 

For s > 0, 1 ::::; p::::; oo and 1 ::::; q < oo we also write the B;,q-norm 

llfiiBs ='= llfii£P + llfiiBs • p.q p.q 

We define function spaces as follows: 

s;,q = {fEz'; llfiiB; q < oo }, 

B;,q = { f E S'; llfiiB; q < 00 }· 

Remark i) While the inhomogeneous space B;,q is a subspace of S', 

the homogeneous counterpart s;,q is that of Z' '::' S' /P. Here we denote 
P as the set of all polynomials. Since we cannot distinguish zero from 
other polynomial inS' /P, they seems not to be appropriate as function 
spaces where equations are treated. Fortunately, if the exponents satisfy 
the following condition: 

either s < njp or s = njp and q = 1, 

then s;,q can be regarded as a subspace of S'. Indeed, if s, p and q 
satisfy the above condition, we have 

00 

s;,q '::' { f E S'; llfiiB; q < 00 and f = L .6.jf inS'}· 
j=-00 

For the details one can see, e.g. Kozono-Yamazaki [11]. 
ii) Roughly speaking, the exponent s represents the differentiability 

of functions and p represents the integrability. q is less important since 
their differences are at most logarithmic. These spaces are considered 
as generalizations of LP space and Sobolev space. For example, we have 
the following embeddings: 

f3s c ws,p c f3s . 
p,l p,oo 

We will also mention some facts on the Besov space in the remark of 
Theorem 2.2 below. 

Now we state the main theorem of this paper. 
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Theorem 2.2. Let 0 ::; a ::; 1/2. Suppose that the initial data 
eo E B~, 1 n B~,l_ 2a. Then there exist a positive constant T1 and a unique 

. . . 1 1 . 2 
solutzon of (DQGa) zn C([O, TI); B 2,1) n L (0, T1; B2,1). 

Remark i) The assumption that the initial data belongs to the scaling 
invariant space .B~,1 2a plays an crucial role in the theorem. In the critical 

case a = 1/2, one can take the class of initial data as B~ 1 . On the other 
hand, in the super-critical case a < 1/2, we must assum~ that the initial 
data belongs to .8~, 1 in addition to B~,l_ 2a. One of the reason is that 

B~,l_ 2a is only the subspace of S' /P, so B~,l_ 2a is no longer appropriate 
to treat equation (DQGa)· 

ii) Ju [8], [9] proved local existence of a unique solution for the initial 
data in H 8 (s > 2- 2a). Theorem 2.2 improves his result on the class 
of initial data. In fact, the following inclusion relation holds: 

B2-2a 
2,1 

_B1 n _B2-2a 
2,1 2,1 for s > 2- 2a. 

iii) Chae-Lee [2] proved the global existence of a unique solution for 
the initial data in B~]_ 2a with small homogeneous norm. Theorem 2.2 
is regarded as the loc~l version of their result. In fact, by the argument 
of our proof, one can also cover their global existence theorem: 

Corollary 2.3. There exists a positive constant c such that for the 
initial data eo E Bb n B~,1 2a satisfying [[eollt~~ 1 2a < E, there exists a 

unique global solution in C([O, oo); Bb) n L1(0, oo; .8~, 1 ). 

In contrast with [2] [8], we make use of Fujita-Kato type method to 
construct the solution. This approach also tell us the behavior of the 
solution in higher order Besov spaces: 

Theorem 2.4. Suppose that e0 belongs to B~,l_ 2a n B~, 1 and e is 

the solution of (DQGa) in L00 (0, T1; B~ 1) nL1(0, T1; B~ 1). Then for all , , 
(3 E [0, 2a), there exist constant T2 E (0, T1) such that 

Moreover, the solution satisfies 

lim t-fn[[e(t)[[tl2-2a+l3 = 0. 
t->0 2,1 

Notations 
Throughout this paper we denote a positive constant by C (or C' 

etc) the value of which may differ from one occasion to another. On 
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the other hand, we denote Ci ( i = 1, 2, · · · ) as the certain constants. 
Moreover we write the space LP(O, T; dt) as L!],. 

§3. Preliminaries 

In this section we prepare some estimates in the Besov space. First, 
we recall Bernstein's inequality. 

Lemma 3.1. (i) Let k E JR., 1 :::; p:::; oo. Then there exist constants 
C = C(k,p,n) such that 

holds for all f E S'(JR.n) with suppj C {21- 2 :::; 1~1:::; 2l} and j E .Z. 
(ii) We have the equivalence of norms 

We state various product estimates in the Besov space. 

Proposition 3.2. Lets, t :::; njp with s + t > 0. Then there exists 
a positive constant C = C(s, t,p, n) such that 

Finally we state the commutator estimate associated with the op­
erator ll1 , which plays an important role in the estimate of nonlinear 
term. 

Proposition 3.3. Let 1 :::; p < oo, njp:::; s :::; 1 + njp, t :::; njp and 
s + t 2: njp. Then there exists a constant C = C(s, t,p, n) such that 

for all u E 13~, 1 and w E 13~, 1 with LjEZ Cj = 1. Here we denote 

These estimates are obtained by using Bony's paraproduct theory 
[1]. We can see the proof of Proposition 3.2 in [6] and that of Proposition 
3.3 in [12]. 
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§4. Proof of main theorem 

In this section we explain the proof of Theorem 2.2. We can also 
prove Theorem 2.4 by using standard weighted norm approach. See [12] 
for more details. 

4.1 Linear Estimates 

Let consider the following linear dissipative equation: 

(La) { 8"'+(-~)arJ=O in JR.2 x(O,oo), at 
"'lt=O = 'f/o in 1R2 • 

The following proposition is the useful characterization on the Besov 
norm of the solution and its application to the smoothing estimate. 

Proposition 4.1. Suppose that the initial data rJo belongs to B2 1 

for somes E JR. and let rJ(t) = e-t(-b.)u'f/o be the solution of (La) f~r 
a > 0. Then there exist positive constants c and c' (c < c') depending 
only on a > 0 such that 
(4.1) 
L 2sje-22ujc'tii1Jj(O)II£2 ~ lle-t(-b.)u 1Joii.B2 1 ~ L 2sje-22ujctii1Jj(O)II£2 
jEZ , jEZ 

for all t > 0, where 'TJJ(O) = ~J1JO· 
Moreover we have 

(4.2) 

and 

(4.3) 

Proof Firstly we prove (4.1). Applying the operator ~j to (La), we 
have 

8t1Jj + ( -~)a1Jj = 0, 

where we denote 1JJ = ~J1J· 
Taking inner product in L2 with the first equation and 1JJ, we have 
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By Lemma 3.1, there exist positive constants c and c' (c < c') such that 

and 
1 d 2 1 2a · 2 
2dtll111ll£2 +c2 1 II111IIL2 2:0. 

Dividing the above inequality by 1177111£2 and then integrating on the 
interval (0, t), we have 

Multiplying by 2 81 and summing over j E Z, we have (4.1). 
Secondly we will prove (4.2). By (4.1), we see that it suffices to show 

( 4.4) 

sup t 11P L 2sje- 22"jctll77j(O)II£2 :::; ell L 2sje- 22"lc'tll77j(O)IIL211 p. 

O<t<T jEZ jEZ LT 

Since e- 22"1 ct is monotone decreasing for t > 0, we have 

jEZ jEZ 

Taking LP(O, t; dT) norm on the both side, we have 

By change of variables, we observe that 

which yields (4.4). 
Finally we will prove (4.3). Applying (4.1), we have 

( 4.5) 
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for t > 0 and j E Z. 

Multiplying u]"'h-l and integrating on (0, T), we have 

In particular we have 

Taking sum on the both side of the estimate over j E Z and applying 
Minkowski's inequality for the left hand side, we have 

By the definition of U1, the above inequality yields 

II L 2(-y+s)je- 22ajctii1Jj(O)II£2 t 2ah :::; CII1Jollsj 1 • 

jEZ T 

Combining this estimate with (4.5), we obtain (4.3). 

0 

4.2 Proof of Theorem 2.2 

Step 1: We first show an a priori estimate in L'}B~,]n. More precisely 
we will prove that there exist a positive constant C 1 and a bounded 
functionl(T) with limr ..... o I(T) = 0 such that 

( 4.6) 

Applying the operator D.1 to (DQGa), we obtain 

where we denote e1 = D.1e. Adding u · V' D.1e on both sides, we have 
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Taking inner products with ()j, we obtain from the divergence free con­
dition that 

1 d 2 2a · 2 ] 
2dtll()jll£2 +c2 1 ll()jll£2 :S ll[u,Llj V1()11£211()jll£2· 

Dividing both side by II() j II £2 , we have 

d 2 . 
dt11ej11£2 +c2 "'1 11ejll£2::; ll[u,Llj]Vell£2. 

Applying Proposition 3.3 with s = 2 - a and t = 1 - a, we obtain 

1 d 2 . 
2dtllejll£2 +c2 "'1 llejll£2::; ll[u,Llj]Vell£2 

$ Ccj2~(2- 2a)j lluii.B2-a IIV()II.B1-<> 2,1 2,1 

Integrating both sides in time on the interval (0, t), we have 

(4.7) ll()j(t)ll£2 

::;e-22"'jctllej(O)II£2 + CcjTC2-2aJj ft e-22"'jc(t-sllle(s)ll~2-ads. 
Jo 2.1 

Multiplying the above inequality by 2(2-a)j and taking l1-norm to j E Z, 
we obtain 

(4.8) ll()j(t) II .82-a ::; L 2(2-a)j e-,-22aj ct ll()j(O) II £2 
2,1 

jEZ 

+ C L Cj2"'1 t e-22"'Jc(t-s) ll()(s)ll~2-ads. 
jEZ lo 2,1 

In order to show (4.6), we need to estimate L} norm of the both sides 
of (4.8). 

By Proposition 4.1, the first term is estimated as follows 

II L2(2-a)je-22"'jctll()j(O)II£211£2 ::; Cll()oii.B~:J:2a. 
jEZ T 

Let 
J(T) = II L 2(2-a)je-22ajctll()j(O)II£2 t2. 

jEZ T 

Then we have I(T) ::; Cll()oii.B2-2a and limr_,.o I(T) = 0 by absolutely 2,1 
continuity of the integral. 
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As for the second term of ( 4.8), we have 

Therefore we obtain a priori estimate (4.6). 
Secondly we will show the following estimate: 

(4.9) 

with limy_,0 I'(T) = 0. 
In ( 4. 7), multiplying 22J and taking sum over j E Z, we obtain 

IIBj(t)IIB~ 1 ::; L 22je-22aicti1Bj(O)IIL2 
jEZ 

+ c2: Cj2 201j t e-22ajc(t-s)IIB(s)ll12-uds. 
jEZ lo 2.1 

By Proposition 4.1, we have L} estimate for the first term as follows: 

Hence let I'(T) == II LjEZ22je-22aictiiBj(O)IIL211u. Then absolutely 
T 

continuity of integral yields limy_,0 I'(T) = 0. 
On the other hand, applying Young's inequality, we have 

Thus we obtain the a priori estimate (4.9). 
Similarly to the previous argument, we can also obtain 
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Step 2: To construct the solution, we consider the following successive 
approximation: 

and 

(4.10) { 

{ f3t(J0 + ( -~)"'e0 = 0 in JR.2 x JR.+, 
go lt=O = eo in JR.2 

atgn+l + ( -~)<>gn+l + un . ven+l = 0 

un=(-R2en,Rlen) in JR.2 xlR.+, 

gn+llt=O = eo in JR.2 , 

for n = 0, 1, 2 · · ·. 
We will prove the uniform estimate on en. Let X!} = 11en11L2 82-C< 

T 2.1 

and Y,P = 11enllu iJ2 . By the argument in Step 1, we can show that 
T 2.1 

there exists a bounded function I(T) with limr_,0 I(T) = 0 such that 

X~ ::; I(T), 

x~+1 ::; I(T) + c1xy.x~+ 1 for n 2: 0. 

Taking To> 0 so small that I(T0 ) ::; 1/(4CI), we have 

(4.11) X~ ::; 2I(T) for n 2: 0. 

Moveover, we can also prove that there exists a bounded function I'(T) 
with limr_,o I'(T) = 0 such that 

Y; ::; I'(T), 

Yy+l::; I'(T) + C2X!}X~+1. 

Combining with the above estimate and ( 4.11), we have 

( 4.12) for n 2: 0. 

Using ( 4.12), we will prove the convergence of the sequence in L'T 13~, 1 . 
Let bgn+l = en+ I - en and bun+l = un+l - un. Then we have 

following equations of the differences: 

{ 
8tbgn+l + ( -~)"'ben+l + un · \7ben+l +bun· ven = o, 
bun= (-R2ben,R1ben) in JR.2 x JR.+, 

bgn+llt=O = 0 in JR.2 , 



dissipative quasi-geostrophic equations 249 

for n ~ 0. 
Similarly to Step 1, we have 

~! llc58j+llll2+22"1 ll88j+1 IIE2 

:::; -(~1 (un · V'c58n+l) + ~1 (8un · V'On), c58j+1), 

where 88j = ~1en+l - ~1 en. Since div u = 0, we have 

By Holder's inequality, we have 

which implies 

(4.13) llc58j+1 (t)ll£2 

:::; C lt e-22njc(t-s)(ll[un,~J]V'c58n+liiL2 + li~J(8un. V'On)ll£2)ds. 

By taking s = 2 and t = 0 in Proposition 3.3. Then we have 

ll[un,~j]V'c58n+liiL2 :::; CjT111unll132 IIY'Mr+1 llilo 2,1 2,1 
:=:; CjT11W'l.ll132 ll88n+lll131 · 

2,1 2.1 

Multipl~ing (4.13) by 21 and summing over j E Z, we have 

:=:; C te-22nic(t-s)(ll8nll132 ll88n+lll131 +ll(c5un · V'On)ll131 )ds 
} 0 2.1 2,1 2,1 

:=:; C lte_22<dc(t-s)(ll8nllilL llc58n+lllilb + llc58nllilb IIOnllil~)ds, 

where we use Proposition 3.2 in the last line. Hence we have 
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By (4.12), there exists T1 > 0 such that Y'J\ < 1/(3C5) for all n. 
Hence we have 

This shows the existence of the function () E LT;_ Bb satisfying ()n ----+ () 

in LT;_ .BJ,1 as n----+ oo. Furthermore, uniform estimates show that () also 

belongs to LT;_ B~,J. 2a n Lh .8~, 1 by the uniqueness of the limit B(t) in 
Z' for t E (0, T1). Here we can easily observe that the limit function () 
satisfies (DQGa)· 

Finally we prove continuity (in time) of the solution in .B~ 1. The 
proof is the same as the argument in Chae-Lee [2]. Indeed ()n s~tisfies 

8t()n+1 = -un . \i'()n+l _ ( -~)a()n+l, 

where the right hand side belongs to £1(0, T1 ; B~ 1). So the absolutely 
continuity of the time-integral yields continuity 'of ()n+ 1. Since ()n+l 

converges to () in .B~ 1 uniformly in time, we obtain continuity of () in 
. 1 , 

B2,1· 

0 
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