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Polarized K3 surfaces of genus thirteen 

Shigeru Mukai 

A smooth complete algebraic surface S is of type K3 if S is regular 
and the canonical class Ks is trivial. A primitively polarized K3 surface 
is a pair (S, h) of a K3 surface S and a primitive ample divisor class 
h E Pic S. The integer g := !(h2 ) + 1 ~ 2 is called the genus of (S, h). 
The moduli space of primitively polarized K3 surfaces of genus g exists 
as a quasi-projective (irreducible) variety, which we denote by :F9 . As 
is well known a general polarized K3 surface of genus 2 :::; g :::; 5 is a 
complete intersection of hypersurfaces in a weighted projective space: 
(6) c P(1112), (4) c P 3 , (2) n (3) c P 4 and (2) n (2) n (2) c P 5 . 

In connection with the classification of Fano threefolds, we have 
studied the system of defining equations of the projective model 829 _ 2 C 

pg and shown that a general polarized K3 surface of genus g is a com­
plete intersection with respect to a homogeneous vector bundle V9 _ 2 (of 
rank g- 2) in a g-dimensional Grassmannian G(n, r), g = r(n- r), in a 
unique way for the following six values of g: 

g 6 8 9 10 
r 2 2 3 5 

V9-2 30c(1) E6 Oc(2) 60c(1) /\:& £ E6 40c.(1) 1\4 £ E6 30c(i) 

12 20 
3 4 

3{\"£EB0c(1) 3/\:& £ 

Here£ is the universal quotient bundle on G(n, r). See [4] and [5] for 
the case g = 6, 8, 9, 10, [6, §5] for g = 20 and §3 for g = 12. 

By this description, the moduli space :F9 is birationally equivalent 
to the orbit space H 0 (G(n,r), Vg-2)/(PGL(n) x Autc(n.r) Vg-2) and 
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hence is unirational for these values of g. The uniqueness of the descrip­
tion modulo the automorphism group is essentially due to the rigidity 
of the vector bundle E := Els- All the cohomology groups Hi(sl(E)) 
vanish. 

A general member (S, h) E :F9 is a complete intersection with respect 
to the homogeneous vector bundle 8U in the orthogonal Grassmannian 
O-G(10, 5) in the case g = 7 ([4]), and with respect to 5U in O-G(9, 3) 
in the case 18 ([6]), where U is the homogeneous vector bundle on the 
orthogonal Grassmannian such that H 0 (U) is a half spinor representa­
tion U16 . Both descriptions are unique modulo the orthogonal group. 
Hence :F7 and :F18 are birationally equivalent to G(8, U16)/ PS0(10) and 
G(5, U16)/ S0(9), respectively. The unirationality of :Fn is proved in [7] 
using a non-abelian Brill-Noether locus and the unirationality of Mn, 
the moduli space of curves of genus 11. 

In this article, we shall study the case g = 13 and show the following: 

Theorem 1. A general member ( S, h) E :F13 is isomorphic to a 
complete intersection with respect to the homogeneous vector bundle 

of rank 10 in the 12-dimensional Grassmannian G(7, 3), where :F is the 
dual of the universal subbundle. 

Corollary :F13 is unirational. 

Remark 1. A general complete intersection (S, h) with respect to 
the homogeneous vector bundle 1\4 :FffiS2[ in the 10-dimensional Grass­
mannian G(7, 2) is also a primitively polarized K3 surface of genus 13. 
But (S, h) is not a general member of :F13 . In fact, S contains 8 mutually 
disjoint rational curves R 1 , ... , R 7 , which are of degree 3 with respect 
to h. This will be discussed elsewhere. 

Unlike the known cases described above, the vector bundle E = Els 
in the theorem is not rigid. Hence the theorem does not give a birational 
equivalence between :F13 and an orbit space. But E is semi-rigid, that 
is, H 0 (sl(E)) = 0 and dimH1 (sl(E)) = 2. Instead of :F13 itself, the 
theorem gives a birational equivalence between the universal family over 
it and an orbit space. 

Let S c G(7, 3) be a general complete intersection with respect to 
V. Then S is the common zero locus of the two global sections of 1\2 [ 

corresponding to general bivectors a-1 , a-2 E 1\2 C 7 and one global section 
of 1\3 :F corresponding to a general T E 1\3 C 7' v. The 2-dimensional 
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subspace P = (cr1, cr2) C A 2 C 7 is uniquely determined by S. Let P 1\ P 
be the subspace of A 3 C 7·v corresponding to p 1\ p c A 4 C 7 . Then 
CT modulo P 1\ P is also uniquely determined by S. It is known that 
the natural action of PGL(7) on G(2, A2 C7) has an open dense orbit 
(Sato-Kimura[9, p. 94]). Hence we obtain the natural birational map 

4 

(1) '1/J: P*(A C 7 j(P A P))/G · · · -4 :F13, 

which is dominant by the theorem, where G is the (10-dimensional) 
stabilizer group of the action at P E G(2, A 2 C7 ). 

Theorem 2. For every general member p = (S, h) E :F13 , the fiber 
of 'ljJ at p is birationally equivalent to the moduli K3 surface Ms(3, h, 4) 
of semi-rigid rank three vector bundles with c1 = h and x = 3 + 4. 

As is shown in [8], S := Ms(3, h, 4) carries a natural ample divi­
sor class h of the same genus (=13) and (S,h) ~-----> (S,h) induces an 
automorphism of :F13. (In fact, this is an involution.) Hence we have 

Corollary The orbit space P*(A 4 C 7 /(P 1\ P))/G is birationally 
equivalent to the universal family over :F13 , or the coarse moduli space 
of one pointed polarized K3 surfaces (S, h, x) of genus 13. 

Remark 2. 8 Kond6[3] proves that the Kodaira dimension of :F9 is 
non-negative for the following 17 values: 

g =41,42,50,52,54,56,58,60,65,66,68,73,82,84,104,118,132. 

The Kodaira dimension of :Fm2(g-l)+l is non-negative for these values 
of g and for every m 2:: 2 since it is a finite covering of :F9 • 

Notations and convention. Algebraic varieties and vector bun­
dles are considered over the complex number field C. The dual of a vec­
tor bundle (or a vector space) E is denoted by Ev. Its Euler-Poincare 
characteristic Li(-)ihi(E) is denoted by x(E). The vector bundles of 
traceless endomorphisms of E is denoted by sl(E). For a vector space 
V, G(V,r) is the Grassmannian of r-dimensional quotient spaces of V 
and G(r, V) that of r-dimensional subspaces. The isomorphism class of 
G(V, r) with dim V = n is denoted by G(n, r). The projective spaces 
G(V, 1) and G(1, V) are denoted by P*(V) and P*(V), respectively. 
Oa(1) is the pull-back of the tautological line bundle by the Pliicker 
embedding G(V, r) ~ P*(Ar V). 
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§ 1. Vanishing 

We prepare the vanishing of cohomology groups of homogeneous 
vector bundles on the Grassmannian G(n, r), which is the quotient 
of SL(n) by a parabolic subgroup P. The reductive part Pred of P 
is the intersection of GL(r) x GL(n - r) and SL(n) in GL(n). We 
take {(a1, ... , ar; ar+l, ... , an) 1 I:~ ai = o} c zn as root lattice and 
zn /Z(1, 1, ... , 1) as the common weight lattice of SL(n) and Pred· We 
take { ei - ei+ 1 11 ~ i ~ n - 1} as standard root basis. The half of the 
sum of all positive roots is equal to 

6 = (n- 1, n- 3, n- 5, ... , -n + 3, -n + 1)/2. 

Let p be an irreducible representation of Pred and 
w E zn /Z(1, 1, ... , 1) its highest weight. We denote the homogeneous 
vector bundle on G(n, r) induced from p by Ew. w is singular if a 
number appears more than once in w + 6. If w is not singular and 
w+6 = (a1, a2, ... , an), then there is a unique (Grassmann) permutation 
a = O:w such that aa(l) > aa(2) > · · · > aa(n). We denote the length of 
aw, that is, the cardinality of the set {(i,j) 11 ~ i < j ~ n, ai < aj}, by 
l(w). 

Theorem 3 (Borel-Hirzebruch[2]). (a) If w is singular, then 
all the cohomology groups Hi(G(n,r),Ew) vanish. 

(b) lfw is not, then all the cohomology groups Hi(G(n, r), Ew) van­
ish except for one i := l(w). Moreover, H 1(w)(G(n,r),£p) is an 
irreducible representation of S L ( n) with highest weight 

The dimension of this unique nonzero cohomology group is equal 
to rrl:'Oi<j:'On lai - aj 1/ (j - i). 

l ( w) is called the index of the homogeneous vector bundle Ew. 

Example. In the following table, - means that the weight w is 
singular and we put s = n- r. 
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weight w homogeneous bundle Ew l(w) Hl(w) 

(1, 0, 0, ... '0, 0; 0, ... '0, 0) £, universal quotient 0 en 
bundle 

(0, 0, 0, ... ' -1, 0; 0, ... '0, 0) £V -
(1, 1, 0, ... '0, 0; 0, ... '0, 0) /\2£ 0 /\2Cn 
(1, 1, 1, ... ' 1, 1; 0, ... '0, 0) Oc(1) = det£ = detF 0 f\rcn 

(0,0,0, ... ,0,0; -1, ... ' -1) 
(0, 0, 0, ... '0, 0; 1, ... '0, 0) ,rv, universal sub bundle -
(0, 0, 0, ... '0, 0; 0, ... '0, -1) F 0 cn,V 

(1, 0, 0, ... '0, 0; o, ... '0, -1) Tc(n,r), tangent bundle 0 sl(Cn) 
(0, 0, 0, ... ' -1; 1, 0, ... '0, 0) nc(n,r)l cotangent bundle 1 c 
( -s, -s, ... , -s; r, r, ... ,·r) Oc( -n), canonical bundle rs c 

We apply the theorem to the 12-dimensional Grassmannian G(7, 3). 

Lemma 4. (a) All cohomology groups of the homogeneous vec-
tor bundle /\P(2£(-1)) ® /\q(F(-1)) on G(7,3) vanish except 
for the following: 

i}p=q=O, h0 (0c)=1,and 
ii} p = 6, q = 4, h12 (0c( -7)) = 1. 

(b) All cohomology groups of Oc(1) ® /\P(2£(-'-1)) ® /\q(F(-1)) 
vanish except for the following: 

i} p = q = 0, h0 (0c(1)) = 35, 
ii} p = 1, q = 0, h0 (2£) = 2 · 7 = 14, and 
iii} p = O,q = 1, h0 (F) = 7. 

(c) All cohomology groups of£® /\P(2£( -1)) ® 1\ q (F( -1)) vanish 
except for h0 (£) = 7 with p = q = 0. 

(d) All cohomology groups ofF®/\P(2£(-1))®/\q(F(-1)) vanish 
except for h0 (F) = 7 with p = q = 0. 

(e) All cohomology groups of /\2 £®/\P(2£(-1))®/\q(F(-1)) van­
ish except for the following: 

i} p = q = 0, h0 (/\2 £) = 21, and 
ii} p = 1, q = 0, h0 (/\ 2£ ® (2£( -1))) = 2. 

(f) All cohomology groups of f\3 F®/\P(2£(-1))®/\q(F(-1)) van-
ish except for the following: 

i}p=q=O, h0 (/\3 F)=35, 
ii}p=O,q=1, h0 (/\3 F®F(-1))=1, and 
iii)p=2,q=O, h1(f\3 F®/\2(2£(-1))) =3h1(f\3 F® 

/\2 £V) = 3. 
(g) All cohomology groups ofsl(£)® /\P(2£( -1)) ® 1\ q (F( -1)) van­

ish except for h6 = 2 with p = 3, q = 2. 
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Proof. The following table describes the decomposition of 
/\P(2£(-1)) into indecomposable homogeneous vector bundles. 

p decomposition weightw' w' + J' 
0 Oc (0,0,0) (3,2, 1) 
1 2£( -1) 2(0, -1, -1) (3,1,0) 
2 3(/\2 £)( -2) 3(-1,-1,-2) (2,1,-1), 

ffiS2£( -2) ffi(O, -2, -2) (3,0,-1) 
(2) 3 40c(-2) 4( -2, -2, -2) (1,0, -1), 

ffi2sl(£)( -2) ffi2(-1, -2, -3) (2, 0, -2) 
4 3£( -3) 3( -2, -3, -3) (1, -1, -2), 

ffi(S2 /\2 £)(-4) ffi( -2, -2, -4) (1, 0, -3) 
5 2(/\2 £)(-4) 2( -3, -3, -4) (0, -1, -3) 
6 Oc(-4) (-4, -4, -4) (-1,-2,-3) 

Here J' = (3, 2, 1) is the head of J = (3, 2, 1; 0, -1, -2, -3). 
1\ q (F( -1)) is indecomposable. The following lists its weight w" and 

w" + J", where J" = (0, -1, -2, -3) is the tail of J. 

q bundle weightw" w" + J" 
0 Oc (0,0,0,0) (0, -1, -2, -3) 

(3) 
1 F(-1) (1, 1, 1, 0) (1, 0, -1, -3) 
2 (/\ 2 F)( -2) (2,2,1,1) (2, 1, -1, -2) 
3 (/\3 F)(-3) (3,2,2,2) (3,1,0,-1) 
4 Oc( -3) (3,3,3,3) (3,2,1,0) 

We prove (a), (f) and (g) applying Theorem 3. The other cases are 
similar. 

(a) Take w' and w" from the tables (2) and (3), respectively, and 
combine into w = ( w'; w"). Then w is singular except for the two cases 

w + J = (3, 2, 1; 0, -1, -2, -3) with p = q = 0 

and 

w+J=(-1,-2,-3;3,2,1,0) with p=6,q=4. 

The indices l(w) are equal to 0 and 12, respectively. 
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(f) The homogeneous vector bundle 1\3 F 181 1\ q (F( -1)) decomposes 
in the following way: 

q weight w" w" + li" 
0 (0 -1 -1 -1) 

' ' ' 
(0 -2 -3 -4) 

' ' ' 
(4) 

1 (1,0,0, -1) EB (0,0,0,0) (1, -1, -2, -4), (0, -1, -2, -3) 
2 (2,1,0,0) EB (1,1,1,0) (2, 0, -2, -3), (1, 0, -1, -3) 
3 (3,1,1,1) EB (2,2,1,1) (3, 0, -1, -2), (2, 1, -1, -2) 
4 (3,2,2,2) (3,1,0,-1) 

Take w' and w" from the table (2) and this table, respectively, and 
consider w = ( w'; w"). Then w is singular except for the following three 
cases. 

i) p = q = 0, w + li = (3, 2, 1; 0, -2, -3, -4), l(w) = 0, 
ii) p = 0, q = 1, w + li = (3, 2, 1; 0, -1, -2, -3), l(w) = 0, and 
iii) p = 2, q = 0, w + li = (2, 1, -1; 0, -2, -3, -4), l(w) = 1. 

(g) The following table shows the indecomposable components of 
sl(£) 181 /\P(2£( -1)) which do not appear in that of /\P(2£( -1)). 

p weight w' other than Table (2) w' + li' 
0 (1,0,-1) (4,2,0) 
1 2(1, -1, -2) EB 2(0, 0, -2) (4, 1, -1), (3, 2, -1) 
2 4(0, -1, -3) EB (1, -2, -3) (3, 1, -2), (4, 0, -2) 

(5) 3 2(0, -2, -4) EB 2( -1, -1, -4) (3, 0, -3), (2, 1, -3) 
EB2(0, -3, -3) (3,-1,-2) 

4 ( -1, -2, -5) EB 4( -1, -3, -4) (2, 0, -4), (2, -1, -3) 
5 2( -2, -3, -5) EB 2( -2, -4, -4) (1, -1, -4), (1, -2, -3) 
6 ( -3, -4, -5) (0, -2, -4) 

Take w' and w" from the table (2) and this table, respectively, and 
consider w = ( w'; w"). Then w is singular except for the case w + li = 
(3, 0, -3; 2, 1, -1, -2) with p = 3 and q = 2. The index is equal to 
6. Q.E.D. 

Let S c G(7, 3) be a complete intersection with respect to V = 

2 1\2 £ EB 1\3 F. The Koszul complex 

2 9 10 

K : Oa .__ vv .__ f\ Vv .__ · · · .__ f\ vv .__ f\ Vv .__ 0 

gives a resolution of the structure sheaf Os. 1\ n vv is isomorphic to 
$p+q=n /\P(2£( -1)) 1811\ q(F( -1)). 

Proposition 5. (a) H0 (S, Os) = C, H 1(S, Os) = 0. 
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(b) The restriction map H 0 (G(7, 3), Oc(1)) ---+ H 0 (S, Os(l))is 
surjective, H0 (S, 0 5 (1))is of dimension 14 and H 1(S, Os(1)) 
= H 2 (S, Os(1)) = 0. 

(c) The restriction map H 0 (G(7, 3), £)---+ H 0 (S, E) is an isomor­
phism and H 1 (S, E) = H 2 (S, E) = 0. 

(d) The restriction map H 0 (G(7,3),F) ---+ H 0 (S,F) is an iso­
morphism. 

(e) H 0 ( G ( 7, 3), 1\2 £) ---+ H 0 ( S, 1\2 E) is surjective and the kernel 
is of dimension 2. 

(f) H 0 ( G(7, 3), 1\3 F) ---+ H 0 (S, 1\3 F) is surjective and the kernel 
is of dimension 4. 

(g) E is simple and semi-rigid, that is, H 0 (sl(E)) = 0 and 
h 1 (sl(E)) = 2. 

Proof. We prove (a) and (f) as sample. Other cases are similar. 

(a) The restriction map H 0 (G(7, 3), 0 0 )---+ H 0 (S, Os) is surjective 
by the vanishing H 1(Vv) = H 2(/\2 Vv) = · · · = H 10 (f\ 10 Vv) = 0 and 
the exact sequence 0 ,...__ Os ,...__ K. H 1 (S, Os) vanishes since H 1 (0c) 
= H2(Vv) = ... = Hll(/\ w vv) = 0. 

(f) The restriction map is surjective by the vanishing Hn(/\ 3 F 0 
1\ n vv) for n = 1, ... ) 10 and the exact sequence 

3 3 

0 ,.__1\F ,.__f\F0K. 

The dimension of the kernel is equal to 

3 3 2 

h0 (f\ F 0 Vv) + h1(f\ F 01\ Vv) = 1 + 3 = 4 

since Hn- 1(/\3 F 0 1\n Vv) = 0 for n = 3, ... , 10. Q.E.D. 

§2. Proof of Theorems 1 and 2 

Let S be the zero locus (s) 0 of a general global section s of the 
homogeneous vector bundle V = 1\2 £ EB 1\2 £ EB 1\3 F on the Grassman­
nian G(7, 3). Since V is generated by global sections, S is smooth by 
[6, Theorem 1.10], the Bertini type theorem for vector bundles. Since 
r(V) = 3 + 3 + 4 = dimG(7, 3)- 2 and 

det V ~ Oc(2) 0 Oc(2) 0 Oa(3) ~ det Ta(7,3)' 

S is of dimension two and the canonical line bundle is trivial. By (a) 
of Proposition 5, S is connected and regular. Hence S is a K3 sur­
face. We denote the class of hyperplane section by h. Then, by (b) of 
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Proposition 5, we have x(Os(h)) = 14, which implies (h2 ) = 24 by the 
Riemann-Roch theorem. Hence we obtain the rational map 

to the moduli space F~3 of polarized K3 surfaces which are not neces­
sarily primitive. 

By (g) of Proposition 5, the vector bundle E = Els is simple. Let 
(S', h') be a small deformation of (S, h). Then there is a vector bun­
dle E' on S' which is a deformation of E by Proposition 4.1 of [6]. 
E' enjoys many properties satisfied by E: E' is simple, generated by 
global sections, h0 (E') = 7, 1\3 H 0 (E') ______, H 0 (1\ 3 E') is surjective, etc. 
Therefore, E' embeds S' into G(7, 3) and S' is also a complete intersec­
tion with respect to V. Hence the rational map w is dominant onto an 
irreducible component of F~3 and Theorem 1 follows from the following: 

Proposition 6. The polarization h of (S, h), a complete intersec­
tion with respect to V in G(7, 3), is primitive. 

In the local deformation space of (S, h), the deformations (S', h')'s 
with Picard number one form a dense subset. More precisely, it is the 
complement of an infinite but countable union of divisors. Hence we 
have 

Lemma 7. There exists a smooth complete intersection S with re­
spect to V whose Picard number is equal to one. 

Proof of Proposition 6. Since the assertion is topological it suffices 
to show it for one such ( S, h). We take ( S, h) as in this lemma. Assume 
that h is not primitive. Since (h2 ) = 24, h is linearly equivalent to 2l 
for a divisor class l with (lZ) = 6. The Picard group Pic S is generated 
by l. By the Riemann-Roch theorem and the (Kodaira) vanishing, we 
have h0 (0s(nl)) = 3n2 + 2 for n 2: 1. 

Claim 1. h0 (E( -l)) = 0. 

Assume the contrary. Then E contains a subsheaf isomorphic to 
Os(nl) with n 2: 1. Since h0 (0s(nl)):::; h0 (E) = 7, we haven= 1 and 
the quotient sheaf Q = E/Os(l) is torsion free. Since 5 = h0 (0s(l)) < 
h0 (E) = 7, we have H 0 ( Q) =F 0. Since Q is of rank two and det Q c::: 
Os(l), we have Hom (Q, Os(l)) =F 0, which contradicts (g) of Proposi­
tion 5. 

Now we consider the vector bundle M = (/\ 2 E)( -l). By the 
claim and the Serre duality, we have h2 (M) = dimHom(M, Os) = 
h0 (E( -l)) = 0. Hence we have h0 (M) 2: x(M) = 4. Take 4 linearly 
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independent global sections of M and we consider the homomorphism 
cp : 40s -----+ M. 

Claim 2. cp is surjective outside a finite set of points on S. 

Let r be the rank of the image of cp. Since Hom(Os(l), M) 
H 0 (f\ 2 E)( -h)) = H 0 (Ev) = H 2 (E)v = 0 by (c) of Proposition 5, 
we have r 2 2. Since Hom(M, Os) = 0, r = 2 is impossible. Hence 
we have r = 3. Since the image and M have the same determinant line 
bundle ( ~ 0 s ( l)), the co kernel of cp is supported by a finite set of points. 

The kernel of cp is a line bundle by the claim. It is isomorphic to 
Os( -l). Hence we have the exact sequence 

0-----+ Os( -l) -----+ 40s ~ M. 

Since x(Cokercp) = 3 < x(M), cp is not surjective. In fact, the cokernel 
is a skyscraper sheaf supported at a point. Tensoring Os(l), we have 
the exact sequence 

2 
cp(l) 1\ 

0 -----+ 0 s -----+ 40 s ( l) -----+ E -----+ C (p) -----+ 0. 

H 0 (cp(l)) is surjective since h0 (40s(l)) = 20 and h0 (/\2 E) = 19. But 
this contradicts (e) of Proposition 5. Q.E.D. 

Proof of Theorem 2. Let P = (a1 , a 2 ) be a general 2-dimensional 
subspace of 1\2 C 7 and X 6 c G(7, 3) the common zero locus of the 
two global sections of 1\2 E corresponding to a 1 and a 2 . A point q of 
P * (/\ 3 C7•v I P 1\ P) determines a global section of 1\3 Fix. We denote 
the zero locus by Sq c X 6 . 

Sq c X 6 c G(7, 3) 
n n n 

p13 c p20 c p34 

The restriction of E to Sq is semi-rigid by (g) of Proposition 5. Let 
3 31 c P * (/\ 3 C 7• vI P 1\ P) be the open subset consisting of points q such 
that Sq is a K3 surface and the restriction Elsq is stable with respect to 
h. 

Lemma 8. 3 31 is not empty. 

Proof. Let (S, h) be as in Lemma 7 and put E = Els. Then, by 
Proposition 6, Pic Sis generated by h. Since h0 (0s(h)) = 14 > h0 (E) = 
7, we have Hom(Os(nh),E) = 0 for every integer n 2 113. Since 
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c1(E) =hand since Hom(E, Os(nh)) = 0 for every integer n ~ 1/3, E 
is stable. Q.E.D. 

The correspondence q f---> £1sq induces a morphism from a general 
fiber of 3 31 /G · · · -+ F 13 at [Sq] to the moduli space Ms(3, h, 4) of semi­
rigid bundles. Conversely there exists a morphism from a non-empty 
open subset of Ms(3, h, 4) to the fiber since a small deformation E' of 
£1sq gives an embedding of Sq into G(7, 3) such that the image is a 
complete intersection with respect to V. 

Remark 3. By (f) of Proposition 5, H 0 (X6 , 1\3 Fix) is isomorphic 
to I\3 C 7,vjPI\P. Hence the rational map '1/J in (1) coincides with 
P *(H0 (X6 , 1\3 Fix ))/G · · ·-+ F13 induced by sf---> (s)o. 

§3. K3 surface of genus seven and twelve 

We describe two cases g = 7 and 12 closely related with Theorems 
1 and 2. The proofs are quite similar to the cases g = 13 and 18, 
respectively, and we omit them. 

First a polarized K3 surface of genus 7 has the following description 
other than that in the orthogonal Grassmannian O-G(5, 10): 

Theorem 9. A general polarized K3 surface (S, h) of genus 7 is a 
complete intersection with respect to the rank four homogeneous vector 
bundle 20a(1) EB £(1) in the 6-dimensional Grassmannian G(5, 2). 

Sis the common zero locus of two hyperplane sections H1 and H2 of 
G(5, 2) c P 9 corresponding to a 1 , a 2 E 1\2 C 5 and one global section s 
of £(1). The 2-dimensional subspace P = (a1,a2) c /\2 C 5 is uniquely 
determined by S and X 4 = G(5, 2) n H 1 n H 2 is a quintic del Pezzo 
fourfold. Let Q be the image of C 5 Q9 P by the natural linear map 
C 7 0/\2 C 7 -----+ H 0 (£(1)). Then Q is of dimension 10 and we obtain 
the natural rational map 

as in the case g = 13, where G8 is the general stabilizer group of the 
action PGL(5) n. G(2, 1\2 C 5 ). H 0 (£(1)) is a 40-dimensional irreducible 
representation of GL(5) by Theorem 3. The fiber of the map (6) at 
general (S, h) is a surface and birationally equivalent to the moduli K3 
surface Ms(2, h, 3) of semi-rigid rank two vector bundles with c1 = h 
and x = 2 + 3. 

Secondly, in the 12-dimensional Grassmannian G(7, 3), there is an­
other type of K3 complete intersection other than Theorem 1. 
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Theorem 10. A general member (S, h) E :F12 is a complete inter­
section with respect to V10 = 3/\2 t' EB Oa(l) in G(7, 3). 

Sis the common zero locus of the three global sections of 1\2 t' cor­
responding to general bivectors a 1 , a 2 , a3 E 1\2 C 7 . The 3-dimensional 
subspace N = (a1, a 2, a3) C 1\2 C 7 is uniquely determined by S. The 
common zero locus XN of the global sections of /\2 t' corresponding toN 
is a Fano threefold and is embedded into P 13 anti-canonically. XN's are 
parameterized by an open set 3 6 of the orbit space G(3, 1\2 C 7 )/ PGL(7). 
See [5] for other descriptions of XN's and their moduli spaces. The mod­
uli space :F12 is birationally equivalent to a P 13-bundle over this 3 6 . 
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