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( r) does not imply ( n) or ( np f) for definable sets 
in non polynomially bounded o-minimal structures. 

David Trotman and Leslie Wilson 

Abstract. 

It is known that if two subanalytic strata satisfy Kuo's ratio test, 
then the normal cone of the larger stratum Y along the smaller X 
satisfies two nice properties: the fiber of the normal cone at any point 
of X is the tangent cone to the fiber of Y over that point; the projec­
tion of the normal cone to X is open ("normal pseudo-flatness"). We 
present an example with X a line and Y a surface which is definable 
in any non polynomially bounded o-minimal structure such that the 
pair satisfies Kuo's ratio test, but neither of the above properties hold 
for the normal cone. 

In [OT2] P. Orro and the first author defined a regularity condition 
(re) for C 2 stratifications which provides a way of quantifying Kuo's ratio 
test (r) [K], because for subanalytic stratifications, Whitney's condition 
(a) and (re) hold, for some e, 0 < e < 1, if and only if Kuo's ratio test 
(r) is satisfied. They further showed that if 0 < e < 1, (a+ re) implies 
rather good behaviour of the normal cone along strata: the special fibre 
of the normal cone at a point x in a stratum X is equal to the tangent 
cone to the normal slice to X through x (this property is denoted by ( n) 
in [OT2]), and the stratification is normally pseudo-flat (abbreviated 
to (npf)). Thus for subanalytic stratifications, (r) implies both (n) and 
(npf). 

In the example below, which is not subanalytic, (r) holds, but nei­
ther ( n) nor ( np f) hold, and one can check that ( re) fails for all 0 < e < 1, 
so that in particular Verdier's condition ( w) fails ( ( w) is equivalent to 
(a+ r 0 )). Example 4.2 of [OT2] provides a different non-subanalytic 
example without (n) or (npf), called a Kuo Escargot (cf. [OTl]), which 
was (b)-regular and not (r)-regular, but this example was not definable 
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in any o-minimal structure, due to spiralling. The example below is log­
analytic, so is definable in the o-minimal structure Rexp,an, but it is not 
definable in any polynomially bounded o-minimal structure, by Miller's 
dichotomy [M] stating that an o-minimal structure is not polynomially 
bounded if and only if it possesses the exponential function as a defin­
able function. By the same dichotomy, our example is definable in every 
o-minimal structure which is not polynomially bounded. 

It is straightforward to show that (r) implies (re) for some e, 0 < e < 
1, for stratified sets whose strata are definable in a polynomially bounded 
o-minimal structure, as the proof of the implication in [OT2] uses only 
curve selection and the Lojasiewicz inequality (see [DM] or [V]). 

One can check easily that (rcod 1) fails for our example showing that 
(r) does not imply (r*) for definable sets in non polynomially bounded 
o-minimal structures. The proof in [NT] that (r) implies (r*) for sub­
analytic strata presumably works for polynomially bounded o-minimal 
structures (but it would be good to have a complete proof of this). 

One can also check that (b) holds for the example, showing that (b) 
does not imply (b*) along a stratum X for definable sets in non poly­
nomially bounded o-minimal structures, even when dim X = 1. Recall 
from [NT] that (b) implies (b*) for subanalytic strata if dimX = 1 
because then (r) and (b) are equivalent, by [K]. 

Presumably, for definable sets in polynomially bounded o-minimal 
structures, (r) implies (b), and (b) implies (r) if dim X= 1, so that then 
(b) would imply (b*) if dim X= 1. 

In the example below the density is actually constant along the 
small stratum, so in particular it is continuous. In 2000, G. Comte 
[C] has shown continuity of the density along strata of any (r)-regular 
subanalytic stratification (hence along 1-dimensional strata of any (b)­
regular subanalytic stratification). In 2003 G. Valette found a different 
proof of this result [V] with a strengthened conclusion and has very 
recently (2003) announced an extension to any (b)-regular subanaiytic 
stratification. 

Are these results about the density true for definable sets in any 
o-minimal structure ? 

Definitions. Below k will denote an integer greater than or equal 
to 2. Let S be a closed stratified subset of JRn, whose strata are differ­
entiable submanifolds of class Ck. For each stratum X of S denote by 
CxS the normal cone of S along X, that is the restriction to X of the 
closure of the set { (x, tl(xn(x))) : X E s- X} c JRn X sn- 1 ' where 7r is 
the local canonical projection onto X, 11(x) is the unit vector ll~ll, and 
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here and throughout the paper pq denotes the vector q- p. In fact Cx S 
is the union of the normal cones Cx Yi, where {Yi} are the strata of S 
whose closures contain X. 

Condition (n): The fibre (CxS)x of CxS at a point x of X is the 
tangent cone Cx(Bx) to the fibre Bx = S n rr- 1(x) of S at x, for every 
stratum X of S. 

Normal pseudo-flatness (npf): The projection p: CxS---+ X is open 
for every stratum X of S. 

When a stratification satisfies two conditions, for example Whitney 
(a)-regularity and (n)-regularity, we say it is (a+n)-regular. Subanalytic 
stratifications satisfying (a+ n) or (npf) have a normal cone with good 
behaviour from the point of view of the dimension of its fibres. In fact 
they satisfy the condition 

dim(CxS)x < dimS- dim X -1. 

This is obvious for (a+ n), while for (npf) it follows from (5.1.ii') 
of [OT2]. For differentiable stratifications one first needs to be able to 
define the dimension. 

Despite this limitation, the tangent cone Cx(Bx) to the fibre Bx = 
S n rr- 1(x) (hence the fibre (CxS)x of the normal cone, assuming (n)) 
can be quite arbitrary: recent work of Ferrarotti, Fortuna and Wilson 
show that every closed semi-algebraic cone of codimension ~ 1 is realised 
as the tangent cone at a point of a certain real algebraic variety [FFW], 
while Kwiecinski and Trotman showed that every closed cone is realised 
as the tangent cone at an isolated singularity of a certain C00 (b)-regular 
stratified espace [KT]. 

Hironaka showed in [H] that a Whitney stratification (i.e. (b)­
regular) of an analytic set (real or complex) is normally pseudo-flat along 
each stratum. J.-P. Henry et M. Merle [HM2] obtained (n) with S re­
placed by XU Y when X and Y are two adjacent strata of a subanalytic 
Whitney stratification of X U Y. 

Every C2 (w)-regular stratification satisfies automatically (a) and 
(re), i.e. (a + re). For subanalytic strata the combination (a + re) 
is equivalent to the ratio test (r) introduced by T.-C. Kuo in 1971, 
which implies Whitney's condition (b) [K]; since [T] we know that (r) 
is strictly weaker than ( w) in the semialgebraic case, and there even 
exist real algebraic examples [BT]. The equivalence of (b), (r) and (w) 
for complex analytic stratifications was completed by Teissier in 1982 
([Te2], [HMl]). 
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In [OT2] it is proved that every (a+ re)-regular stratification is 
normally pseudoflat and satisfies condition (n). Hence for (r)-regular 
stratifications which are definable in a polynomially bounded a-minimal 
structure, (n) and (npf) hold. 

We recall the definitions of the conditions (a) and (b) of Whitney, 
(r) ofKuo [K], and (w) ofKuo-Verdier [Ve]. 

Let X and Y be two submanifolds of IR.n such that X C Y, and let 
1r be the local projection onto X. Following Hironaka [H], denote by 
ow,x(Y) the distance of TyY to T-rr(y)X, which is 

ay,x(y) =max{< J.L(u), J.L(v) >: u E NyY- {0}, v E T-rr(y)X}, 

and by {3y,x(y) the distance of yrr(y) to TyY expressed as 

{3y,x(y) =max{< J.L(u), J.L(yrr(y))} >: u E NyY- {0}}, 

where <, > is the scalar product on IR.n. 

For v E !Rn, the distance of the vector v to a plane B is 

TJ(v,B) =sup{< v,n >: n E Bl., llnll = 1}. 

Set 
d(A, B) = sup{ TJ( v, B) : v E A, II vii = 1 }, 

so that in particular 

Set also 

Ryx(y) = IIYIIay,x(y) 
' llyrr(y)ll and W ( ) _ d(TxX, TyY) 

Y,X y, X - llyxll . 

Definition. The pair of strata (X, Y) satisfies, at 0 EX : 
condition (a) if, for y in Y, 

lim ow,x(y) = 0, 
y---+0 

condition ( b -rr) if, for y in Y, 

lim {3yx(y) = 0, 
y---+0 , 
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condition (b) if, for y in Y, 

lim ay,x(Y) = lim ,By,x(y) = 0, 
y--->0 y--->0 

condition (r) if, for y in Y, 

lim Ry,x(y) = 0, 
y--->0 

condition (w) if, for yin Y and x in X, Wy,x(y,x) is bounded near 
0. 

In [OT2] P. Orro and the first author introduced the following con­
dition of K uo-Verdier type. 

Definition. Let e E [0, 1). One says that (X, Y) satisfies condition 

(re) at 0 E X if, for y E Y, the quantity Re(Y) = 117r(y)llecw,x(y) is 
IIY7r(y)ll 

bounded near 0. 

This condition is a C 2 diffeomorphism invariant. It is Verdier's 
condition (w) when e = 0, hence (w) implies (re) for all e E [0, 1). But, 
unlike (w), condition (re) when e > 0 does not imply condition (a) : a 
counter-example which is a semi-algebraic surface can be obtained by 
pinching a half-plane {z ::::: O,y = 0} of JR3 , with boundary the axis 
Ox = X, in a cuspidal region r = {x2 + y2 < zP}, where pis an odd 
integer such that p > ~' such that in r there are sequences tending to 0 
for which condition (a) fails. Such an example will be (re)-regular. 

Theorem[OT2]. Every (a+ re)-regular stratification is normally 
pseudo-flat and satisfies condition ( n). 

Corollary. For (r)-regular stratifications which are definable in a 
polynomially bounded a-minimal structure, (n) and (npf) hold. 

Now we recall the definition of E* -regularity for E an equisingu­
larity condition, as in [OTl]. This notion came from the discussion of 
B. Teissier in his 1974 Arcata lectures [Tel]. Teissier stated that one 
requirement for an equisingularity condition to be "good" is that it be 
preserved after intersection with generic linear spaces containing a given 
linear stratum. Various equisingularity conditions have been shown to 
have this property, notably Whitney (b)-regularity for complex analytic 
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stratifications ([Te2], [HMl]), and Kuo's ratio test (r) and Verdier's 
condition ( w) for subanalytic stratifications [NT]. 

Definition. Let M be a C 2-manifold. Let X be a C 2-submanifold 
of M and x E X. Let Y be a C2-submanifold of M such that x E Y, 
and X n Y = 0. Let E denote an equisingularity condition (examples: 
Whitney (b), (r), (w)). Then (X, Y) is said to be Ecod k-regular at x 
(0 < k <cod X) if there is an open dense subset Uk of the Grassmann 
manifold of codimension k subspaces of TxM containing TxX such that 
if W is a C2 submanifold of M with X c W near x, and Tx W E Uk, 
then W is transverse toY near x, and (X, Y n W) is E-regular at x. 

Definition. (X, Y) is said to be E *-regular at x if (X, Y) is Ecod k­

regular for all k, 0 < k <cod X. 

Theorem[NT]. For subanalytic stratifications, (r) implies (r*) 
and (w) implies (w*). 

Corollary. For subanalytic (b) ··regular stratifications, ( b*) holds 
over every !-dimensional stratum. 

In the log-analytic example below, (r) and (b) hold, but (r*) and 
(b*) fail. 

Example. 
In R 3 consider the graph Y of the function f(x, z), for z > 0, and 

x and z small, where 

y = f(x,z) = z- -1
2 ln(x+ Jx2 + z2). 
nz 

Note that limz_,o f(x, z) = 0. 
Then let X be the x-axis, so that X C Y, and X and Y are disjoint 

coo submanifolds of R 3 . We consider the closed stratified set S with 
just 2 strata (X, Y). 

Remark 1. f(x, z) = - f( -x, z), i.e. f is an odd function of x. 

Proof. 

f(x, z) + f( -x, z) = 2z- -1 z [ln(x + J x 2 + z2) + ln( -x + J x2 + z2)] 
nz 
z 2 2 2 z.2lnz 

= 2z- -[ln(x + z - x )] = 2z- -- = 0. 
~z ~z 

Q.E.D. 
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Remark 2. XC Y, because limz-->0 f(x, z) = 0. 

Proof Obviously 

lim z = 0, 
z--+0 

and 
. 1 

hm -1 - = 0. 
z--+0 nz 

If x > c > 0, then lln(x + v'x2 + z2 )1 < lln(2c)l, so that 

lim z ln(x + Jx2 + z2) = 0. 
z-->0 

By remark 1 we do not need to study the case of x < 0. 
If both x and z tend to 0, consider the cases: 

(i) fxt -> 0. Then 

lz ln(x + Vx2 + z2 )1 < lz ln(2x)l < lx ln(2x)l-> 0 as x-> 0. 

(ii) m is bounded. Then 

lz ln(x + Vx2 + z2 )1 = lz lnzl-> 0 as x-> 0. 

We prove below that the following five properties hold : 

(1) (n) and (npf) fail at (0, 0, 0). 
(2) (r) holds. 
(3) (b) holds. 
(4) (b*) and (r*) fail at (0,0,0). 
(5) The density of Sis constant along X. 

Property 1. (n) and (npf) fail at (0, 0, 0). 

Q.E.D. 

Proof. We will show that the limits of secants from (x, 0, 0) to 
(x, f(x, z), z) as (x, z) tends to (xo, 0) are the straight lines which in the 
(y, z)-plane have equations 

y=z if xo > 0 

y = az for all a E [-1, 1] if xo =0 (1.1) 

y = -z if :io < 0. 

However, for the secants from (0,0,0) to (O,f(O,z),z) as z tends 
to 0, the limiting secant is y = 0. Hence (n) fails (the tangent cone to 
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C0 (S0 ) does not equal the fibre at 0 of the normal cone). Moreover (npf) 
fails since for x0 -:/:- 0 the fibre at x0 of the normal cone is 0-dimensional, 
while the fibre at 0 is 1-dimensional. 

Proof of (1.1). First observe that, for all 0 < z < 1, the secant from 
(0, 0, 0) to (0, f(O, z), z) has slope 

f(O,z)_ 1 lnz_ 0 
-z-- -lnz- · 

Take x0 > 0 and let (x, z) tend to (x0, 0). The slope of the secant from 
(x, 0, 0) to (x, f(x, z), z) is 

f(x, z) ln(x + Jx2 + z2) 
-- = 1 - ---'------'-

z lnz 

which tends to 1 as z tends to 0 and x tends to xo. 
By symmetry (Remark 1), when x0 < 0 the limiting slope is -1. 
Now suppose (x, z) tends to (0, 0). 
By symmetry (Remark 1 again) it will be enough to study the case 

x > 0 and to show that all the values CJ E [0, + 1] are realised. So we 
must show that the limits of 

ln(x + Jx2 + z2) 
lnz 

take all values in [0, 1] as x and z tend to 0 when x > 0. 
First notice that if x < Cz for some positive constant C, then 

lim 
x----+O,z--+0 

ln(x + Jx2 + z2) 
I = 1, nz 

because 

and the second term is bounded and non-negative. 
So it remains to check that ln(x+v'x2 + z 2 ) takes all values in [0, 1], 

when z = o(x). Write 
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The second term on the right has a bounded numerator so goes to 0 as 
(x, z) goes to (0, 0). Because 0 < z < x < 1, the first term on the right 
belongs to (0, 1). 

Let o: E (0, 1). On the curve x = z"', 

so that 

lnx 
lnz = o:, 

lim ln(x + Jx2 + z2 ) = o:. 
lnz 

On the curve xlln zl = +1, 

lnx 
-1 - = xllnxl, 
nz 

with limit 0 as x tends to 0. 
This completes the proof of (1.1), and hence the proof of Property 

1. Q.E.D. 

Property 2. (r) holds for the pair of strata (X, Y) at (0, 0). 

Proof Recall that Kuo's ratio test (r) holds when 

l(x, y, z)l.d(T(x,o,o)X, T(x,y,z)Y) __. 0 
l(y, z)l 

as (x, y, z) tends to (0, 0, 0) on Y. 
Now, 

d(I: x r: Y) = I ¥xI < I a f I (x,O,O) ' (x,y,z) l(lti. -1 8f)l ax. 
ox' 'f)z 

And 

1¥xl-l(x, y, z)l ~ 1¥xi_Jx2 + zZ 
l(y, z)l lzl 

z 1 x Jx 2 + z 2 

-1 -1. .(1 + ). 
ln z x + v' x2 + z2 v' x2 + z2 z 

1 

llnzl 
which tends to 0 as z tends to 0. 

We check directly that (a) holds. As above, d(T(x,o,o)X, T(x,y,z)Y) < 

1¥xl· 

But 1¥xl = 1 ~:~ 1 . v'x 2
1+z2 < ll~zl, which tends to 0 as z tends to 0, 

as required. Q.E.D. 
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Note that although (r) holds, this argument does not show that 
(re) (of [OT2]) holds. In fact we know already, by the main theorem of 
[OT2], that (re) must fail, because (a) holds, while (n) and (npf) fail. 

Property 3. (b) holds for (X, Y) at (0, 0, 0). 

Proof We have just seen that (a) holds. Thus we need only prove 
that (b"'') holds. 

Again by remark 1, we need only treat the case x ::::0: 0. 
Suppose 0 < z < 1, and 0 < x, for x small. 

Then x + vx2 + z2 ::::0: z, so that 

0 ln(x + ,Jx2 + z2) 
< l < 1. (*) nz 

Also 
zz 

0< <1. (**) 
xvx2 + z 2 + x 2 + z2 -

The zy slope of the secant line from (x, 0, 0) to (x, f(x, z), z) is 

f(x,z) = 1 _In(x+vx2 +z2). 
z lnz 

The zy slope of the tangent in the z direction on Y is 

of (x, z) = 1- ln(x + vx2 + z2) - z!!_ (ln(x + ,Jx2 + z2)) . 
az lnz az lnz 

To prove that Whitney (b"') holds at (0, 0, 0) we must show that 

r ( a (ln(x+vx2 +z2))) 
(x,z)~O,O) z az In z = O. 

But 

z!!_ (ln(x + ,Jx2 + z2)) 
az ln z 

which tends to 0 as z tends to 0 for x small, by (*)and ( ** ). This implies 
that (b7r) holds, and hence that (b) holds for (Y, X) on a neighbourhood 
of (0, 0, 0) in X. Q.E.D. 
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Property 4. (b*) and (r*) fail at (0,0,0). 

Proof We intersect Y with planes {y = az, -1 <a< 1} to obtain 

which becomes 

(1 - a)z = -1 z ln(x + -J x2 + z2), 
nz 

zl-a = x + )x2 + z2. 

Squaring, we get x2 + z2 = z2- 2a - 2xzl-a + x2 which simplifies to 

x=-----
2 

This curve in the xz-plane passes through (0, 0) if -1 < a < 1, 
showing that (b*) and (r*) fail to hold, since Y n {y = az} contains 
curves passing through (0, 0, 0), and so (X, Y n {y = az}) cannot be 
(b)-regular, because (a) fails for (X, Y n {y = az} ), and hence (X, Y) is 
not (bead !)-regular and (b*) fails, implying that (r*) fails also. Q.E.D. 

Property 5. The density of S is constant along X. 

Proof We show first that the tangent cone to S at (0, 0, 0) is the 
half-plane {y = 0, z ~ 0}. 

Each definable curve on Y which passes through (0, 0, 0) and which 
is not tangent to X has a projection to the (x, z)-plane tangent to some 
line x = cz, where cis a nonzero constant. On such a curve, 

y = z ( 1 - ln(cz + o(z) + -Jc2z2 + 2cz.o(z) + o(z2) + z2)) 
lnz 

= z ln(c + o(1) + -Jc2 + 2c.o(1) + 1) = o(z). 
lnz 

Hence such a curve on Y is tangent to {y = 0}. 
Now consider a curve whose projection to the (x, z)-plane is tangent 

to the x-axis, so of the form (x,y(x,z),z(x)) where z = o(x). Then 

( 
ln(x + ../x2 + z2)) y = z 1 - -'--.,.----'-

lnz 

= O(z) = o(x), 

so that again the curve itself is tangent to the x-axis. It follows that the 
tangent cone to S at (0, 0, 0) is {y = 0, z ~ 0}. 
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It is easy to see that the tangent cone at (xo, 0, 0) equals {y = z} if 
xo > 0 and equals {y = -z} if xo < 0. 

It follows that the density of S at points of the x-axis has the con-
stant value 1/2. Q.E.D. 
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