
Advanced Studies in Pure Mathematics 41, 2004 
Stochastic Analysis and Related Topics 
pp. 13-29 

Invariant Measures for a Stochastic Porous 
Medium Equation 

Giuseppe Da Prato and Michael Rockner 

Abstract. 

We prove the existence of (infinitesimally) invariant measures 
for a stochastic version of the porous medium equation (of exponent 
m = 3) with Dirichlet Laplacian on an open set in !Rd. 

§1. Introduction 

The porous medium equation 

(1.1) ax= A(Xm) N at ' mE ' 

on a bounded open set D C JRd has been studied extensively. We refer 
to [1] for both the mathematical treatment and the physical background 
and also to [2, Section 4.3] for the general theory of equations of such 
type. 

In this paper we are interested in a stochastic version of ( 1.1). 
Throughout this paper we assume 

(H1) m=3. 

We believe our approach can be extended for other odd values of m, but 
this would require a technically much more complicated proof. To avoid 
the latter and to explain the main idea we restrict to the above case. 

We consider Dirichlet boundary conditions for the Laplacian A. So, 
the stochastic partial differential equation we would like to analyze for 
suitable initial conditions is the following: 

(1.2) dX(t) = A(X3 (t))dt + VC dW(t), t;::: 0. 
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As in (3], where similar equations were studied (but with x -+ x3 replaced 
by some {3 : R -+ R of linear growth, satisfying, in particular, {3' ~ c > 
0), it turns out that the appropriate state space is H- 1(D), i.e. the dual 
ofthe Sobolev space HJ := HJ(D). Below we shall use the standard 
L2 (D) dualization (·, ·) between HJ(D) and H = H- 1(D) induced by 
the embeddings 

without further notice. Then for x E H 

and for the dual H' of H we have H' = HJ. 
(Wt)t>o is a cylindrical Brownian motion in H and C is a positive 

definite b;;unded operator on H of trace class. 'Th be more concrete 
below we assume: 

There exists Ak, k E (0, +oo), kEN, such that for the eigenbasis 
(H2) {ekl kEN} of ti (with Dirichlet boundary conditions} we have 

Cek = .;>:/. ek for all k E N. 

(H3) 
ForOtk := SUPeeD lek(~)l 2 , kEN, we have 

00 

K := L OtkAk < +oo. 
k=l 

Our aim in this paper is to construct invariant measures for (1.2). Exis­
tence of solutions to (1.2) will be studied in another paper. To formulate 
what is meant by "invariant measure" without refering to a solution of 
(1.2) we need to consider the generator, also called Kolmogorov operator, 
corresponding to ( 1. 2). 

Applying Ito's formula (on a heuristic level) to (1.2) one finds what 
the corresponding Kolmogorov operator, let us call it N0 , should be, 
namely 

(1.3) 
1 00 

Nor.p(x) = 2 L >.kD2r.p(ek, ek) + Dr.p(x)(ti(x3 )), x E H, 
k=l 

where Dr.p, D2 r.p denote the first and second Fnkhet derivatives of r.p : 
H -+ R. So, we take r.p E C~(H). 

In order to make sense of (1.3) one needs that ti(x3 ) E Hat least 
for "relevant" x E H. Here one clearly sees the difficulties since x3 is, 
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of course, not defined for any Schwartz distribution in H = H- 1 , not to 
mention that it will not be in H/i(D). An invariant measure for (1.2) is 
now defined "infinitesimally" (cf.[4]), without having a solution to (1.2), 
as the solution to the equation 

(1.4) 

with the property that J.L is supported by those x E H for which x 3 

makes sense and ~(x3) E H. (1.4) is a short form for 

Any invariant measure for any solution of (1.2) in the classical sense will 
satisfy (1.4). 

In §2 we construct a solution J.L to (1.4) and prove the necessary 
support properties of J.L, more precisely, that for all MEN, M ~ 2, 

so that N0 in (1.3) is J.L-a.e. well defined for all rp E Cl(H). We rely on 
results in [3] which we apply to suitable approximations, i.e. the function 
x ~ x3 is replaced by 

x3 
f3c(x) := 2 + E:X, E: E (0, 1], 

1 + E:X 

to which the results in [3] apply. 

§2. Existence of an infinitesimal invariant measure 

Throughout this section (H1)-(H3) are still in force. So, we first 
consider the following approximations for the Kolmogorov operator N 0 . 

ForE: E (0, 1] we define for rp E Cl(H), x E L 2 (D) such that {3"'(x) E HJ 

(2.1) 
1 00 

N"'rp(x) := 2" L AkD2rp(x)(ek, ek) + Drp(x)(~f3"'(x)), 
k=l 

where 

(2.2) 
r3 

f3"'(r) := 1 + cr2 + cr, r E R 

We note that {3"' is Lipschitz and recall the following result from [3] which 
is crucial for our further analysis, see [3, Theorems 3.1, 3.9, Remark 3.1]. 



16 G. Da Prato and M. R.Ockner 

Theorem 2.1. Let e E {0, 1]. Then there exists a probability mea­
sure f..Le on H such that 

{2.3) f..Le(HJ) = 1, 

{2.4) 

{2.5) 

and 

{2.6) l Necpdf..Le = 0 for all cp E c:(H). 

Remark 2.2. {i). In [3] only 

J.Le ( {x E L2 (D)I f3e(x) E HJ}) = 1 

was proved. But since f3e(O) = 0, f3e(R) = JR, and 

{2.7) ' 2 3 + er2 
f3e(r) = r (1 + er2 ) 2 + e ~ e for all r E JR, 

it follows that the inverse {3;1 of f3e is Lipschitz with {3;1{0) = 0, so 
f3e(x) E HJ is equivalent to x E HJ and {2.4) follows from {2.5), since 

We thank V. Barbu for pointing this out to us. 
(ii) By Theorem 2;1 we have that Necp(x) is well defined for 1-Le-a.e. 

xEH. 

For N E N we define 

N 

PNx = 'L)x, ek}kek, x E H. 
k=1 

Note that, since { ek I k E N} is the eigenbasis ofthe Laplacian we have 
that the respective restriction PN is also an orthogonal projection on 
L2 (D) and HJ and on both spaces (PN)NEN also converges strongly to 
the identity. 

The first new result on IJ.e 1 e E {0, 1], is the following: 
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Proposition 2.3. {JJ.e, e E {0,1]} is tight on H. For any weak 
limit point p. 

In particular, p.(L2(D)) = 1. 

Proof. For n E N let Xn E C 00 {R), Xn(x) = x on [-n, n], Xn(x) = 
(n + 1)sign x, for x E R\[-(n + 2), n + 2], 0 :5 X~ :5 1 and SUPnENIX~I < 
+oo. Define for n, N E N 

Then 'PN,n E C~(H) and for x E H 

N 

Ne'PN,n(x) = ~ LAk [2x~(IPnxi~)(PNx,ek)~ +x~{IPnxl~)] 
k=l 

Hence integrating with respect to JJ.e, by {2.6) we find 

N 

= ~ L Ak 1 [2x~(IPnxl~ )(PNx, ek)~ + x~(IPnxl~ )] P.e(dx) 
k=l H 

For all n E N the integrand in the left hand side is bounded by 

and similar bounds for the integrand in the right hand side hold. There­
fore, {2.5) and Lebesgue's dominated convergence theorem allow us to 
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take N -+ oo and obtain 

i X~(lxl~ )(x, f3e(x)) £2(D)Jl-e(dx) 

:S: ~ t..\k +sup..\k { lx~(lxl~)llxl~ 11-e(dx). 
k=l kEN JH 

Hence taking n -+ oo by (2.4) and using the definition (2.2) of f3e we 
arrive at 

Since c E (0, 1], this implies 

(2.8) i lxli2(D)Il-e(dx) :S: fv ( 1 + 1 :4;~~~)) ~11-e(dx) 
:::: fv 1 d~ + ~ 'If c. 

Since L 2 (D) CHis compact, this implies that {JJ-el c E (0, 1]} is tight on 
H. Since the map x-+ lxli2(D) is lower semicontinuous and nonnegative 
on Hall assertions follow. D 

Later we need better support properties of p,. Therefore, our next 
aim is to prove the following: 

Theorem 2.4. Let (H1)- (H3) hold. Then: 

(i) For all M E N, M ~ 2, there exists a constant CM = CM(D, K) 
> 0 such that 

(ii) For all MEN, M ~ 2 and any limit point p, as in Proposition 
2.3 
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In particular, setting 

we have 

p.(HJ,M) = 1 for all M ~ 2. 

In order to prove Theorem 2.4 we need some preparation, i.e. more 
precise information about the JLe, e: E {0, 1]. This can be deduced from 
{2.6), i.e. from the fact that P.e is an infinitesimally invariant measure 
for N,.. So, we fixe: E {0, 1] and for the rest of this section we assume 
that {H1)- {H3) hold. 

We need to apply {2.6) with r.p replaced by r.pM: L2(D) -t [0, oo], M 
EN, given by 

Clearly, such functions are not in C~(H) so we have to construct proper 
approximations. So, define for 6 E {0, 1] 

{2.9) 
r2M 

!M,6(r) := 1 + 6r 2 , r E JR. 

Then for r E lR 

{2.10) 

and 

{2.11) 
f'f.t 6(r) = 2{1 + 6r2)-3[M(2M -1)r2M-2 + 6(4M2 - 6M -1)r2M , 

+ 62(M- 1){2M- 3)r2M+2]. 

We have chosen this approximation since below ( cf. Lemma 2. 7) it will 
be crucial that fft 6 is nonnegative if M ~ 2. More precisely we have , 

(2.12) o ~ f~,6(r) ~ 2r lri2M-3 

0 ~ fft,6(r) ~ 16M2 Iri2M-4 inf{r2, 1/6}. 
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Remark 2.5. The following will be used below: if x E HJ is such 
that forME N 

(2.13) 

then xM E HJ and xM-1'Vx = }j 'VxM, or using the notation intro­
duced in Theorem 2.4-(ii) equivalently x E HJ M· The proof is standard 
by approximation. So, we omit it. We also n~te that by Poincare's in­
equality, HJ M C £ 2M (D). More precisely, there exists C(D) E (0, oo) 
such that ' 

(2.14) C(D) k x2M (~)d~ ~ fvi'VxM (~)l 2d~ 

= M l x2(M-l)(~)IVxM (~)12~, 
for all x as above. 

The following lemma is a consequence of (2.6) and crucial for our 
analysis of J..L"' E: E (0, 1] and their limit points. 

Lemma 2.6. Let MEN, 8 E {0, 1]. Assume that 

Then 

(2.16) 

Proof. We first note that (2.15) holds for M = 2 by (2.3). For 
K E (0, 1] we define 

!M,o,K(r) := !M,o(r)e-! "'r2
, r E IR if M 2: 2 

and !t,o,"' := ho· Then (2.11) implies that !M,o,~< E Cl(JR). Define 
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Then it is easy to check that <fJM,li,,. is Gateaux differentiable on L 2 (D) 
and that for all y, z E L2 (D) 

(2.17) <p:W,6,,.(x)(y) = L f~,li,,.(x(~))y(~)d~, 
(2.18) <p'l.J,6,,.(x)(y, z) = L JJ&,6,,.(x(~))y(~)z(~)d~. 
Hence 

<{)M,li,,. o PN E C~(H) 

and for all x E HJ (hence f3e: ( x) E HJ) 
N 

Ne:(<fJM,li,,. o PN )(x) = ~ L Ak j !J&,6,,.(PNx(~))e~(~)d~ 
k=l D 

Since PN ~ = ~PN, integrating by parts we obtain 

N 

Ne:(<fJM,li,r<oPN)(x) = ~ LAk r !I&,li,r<(PNx(~))e~(~)~ 
k=l lv 

Since (PN )NEN converges strongly to the identity in HJ, we conclude by 
(H3) that 

~ ~ Ak L ff&, 6,,.(x(~))e~(~)d~ 
-L JJ&,li,,.(x(~))f3~(x)(~)IY'x(~)l 2d~. 

Since f3e: is Lipschitz, by (2.3)-(2.5) and (H3) this convergence also holds 
in L 1(H, fte:)· Hence (2.6) implies that 

(2.19) 

~ ~ Ak L L fJ&,li,,.(x(~))e~(~)d~fLe:(dx) 
= L L JJ&,li,,.(x(~))f3~(x)(~)IY'x(~Wd~fte:(dx). 
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So, forM= 1 the assertion is proved. If M 2: 2, an elementary calcu­
lation shows that by (2.12) there exists a constant C(M, 8) > 0 (only 
depending on M and 8) such that 

(2.20) lfft-Ot<(r)l ~ C(M,8)r2(M-2), r E R , , 

Hence by (H3), Remark 2.5 and assumption (2.15) we can apply 
Lebesgue's dominated convergence theorem to (2.19) and letting K-+ 0 
we obtain the assertion. D 

Lemma 2.7. Let MEN and assume that (2.15) holds if M 2: 3. 
{i} We have 

(2.21) 

>_ {H {D X2(M-1)(t) ( x2(~) + ) lr7 (t)l2dt (d ) }F }, <, 1+x2(~) E: vx <, <,J.Lc X. 

{ii} If M 2: 2, we have 

~ L l ( x2(M-l)(~) + x2(M-2)(~)) ~J.Lc(dx) 

(2.22) 2: L l x2(M-l)(~) IV'x(~Wd~J.Lc(dx) 

= ~2 L kiVxM (~Wd~J.Lc(dx). 

{iii} 

Proof. (i) By (H3) the left hand side of (2.16) is dominated by 

K r r , 2 JH Jn fM,o(x(~))~JLc(dx). 

If M 2: 2, by assumption (2.15) and Remark 2.5 we know that 
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which trivially also holds forM= 1. So, by (2.11), (2.12) and Lebesgue's 
dominated convergence theorem we obtain that for M ;::: 2 

K { { 2M(2M- 1)x2(M-l)(~)~JLe(dx) 
2 jHjD 

;::: liminf f f !~.6 (x(~))f3~(x(~))IVx(~)l 2 d~JLe(dx). 
o---+o JH lv 

Since f'k,o ;::: 0 for M ;::: 2 and 

r2 
(31 (r) > -- + e _> 0 for all r E ~, 

e - 1 + r2 

we can apply Fatou's lemma to prove the assertion. If M = 1 we con­
clude in the same way by (2.3) and Lebesgue's dominated convergence 
theorem which applies since (3~ is bounded and If~' 61 ~ 6 for all8 E (0, 1]. 

(ii) Since (2.15) holds forM= 2, by Holder's 'inequality (2.15) holds 
with M- 1 replacing M, since by assumption it holds for M. So, the 
inequality in (i) also holds with M- 2 replacing M- 1. Estimating 
e on the right hand sides from below by 0 and adding both resulting 
inequalities we obtain the inequality in (2.22). The equality in (2.22) 
follows by Remark 2.5. 

(iii) The assertion follows from (2.21) setting M = 1. 0 

By an induction argument we shall now prove that the integrals in 
(2.22) are all finite and at the same time prove the bounds claimed in 
Theorem 2.4. 

Proof of Theorem 2.4. (i). If M = 2, then the left hand side of 
(2.22) is finite by (2.8) and moreover (2.22) applies, so that by (2.8) we 
have 
(2.23) 

L L x2 (~)1V'(x(~)W~ILe(dx) ~ ~ (~ Tr C + 2 L 1~) < oo. 

Suppose the left hand side of (2.22) is finite for M E N, M ;::: 2, and 
(2.15) holds. Then (2.22) holds and by Remark 2.5 

00 > L L x2(M-l)(~)IV'(x(~))l 2d~JLe(dx) 

(2.24) = ~2 L L IV'(xM (~))l 2d~JLe(dx) 

;::: cy;t L L x2M (~)d~JLe(dx). 
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Hence (2.15) holds with M- 1 replacing M- 2 and the left hand side 
of (2.22) is finite for M + 1 replacing M, hence by induction for all 
M E N. Furthermore, for all M first applying. (2.22) and then applying 
(2.24) first with M- 1 replacing M and then with M- 2 replacing M 
respectively we obtain 

L L X2(M-l)(e)l'~(x(e))l 2 dette(dx) 

(2.25) 5 ~ [ ( ~(;)1 ) 2 L L x2(M-2>(e)IV(x(e)Wdette(dx) 

+ L L x2(M-2>(e)dette(dx)] 

(2.26) 

5 20fn)2 [<M -1)2 L L x2(M-2>(e)IV(x(e)Wdette(dx) 

+(M- 2)2 L L x2(M-3>(e)IV(x(e))l 2dette(dx)J. 

H M = 3 we cannot use (2.26) since for the second summand we have 
no bound which is independent of c, but from {2.25) we obtain by {2.23) 
and {2.8) that 

L L x4 (e)IV(x(e)Wdette(dx) 

5 ~ [ ( C(~)) 2 ~ ( ~ Th c + 2 L 1de) + ~ Th c + L 1del· 

Now assertion {i) follows from {2.26) by induction. 

To prove (ii) we start with the following 
Claim: For all M E N 

(2.27) eM(x) := 1Hl (x) f IVxM (e)l 2de + 00. 1H\Hl (x), X E H 
O,M lv O,M 

is a lower semi continuous function on H. 
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Since J-L is a weak limit point of {J-Le:l c E {0, 1]} and eM ~ 0, the 
claim immediately implies assertion (ii). 

To prove the claim let a > 0 and Xn E {eM ::=; a}, n E N, such 
that Xn ---t x in Has n ---t oo. By Poincare's inequality {xnl n EN} is 
a bounded set in £ 2M (D). So Xn ---t x as n ---t oo also weakly in L2 (D), 
in particular x E L2 (D). Since {x~l n EN} is bounded in HJ, there 
exists a subsequence (x~ )kEN and y E HJ such that x~ ---t y as k ---t oo 
weakly in HJ and 

Since the embedding HJ C L2 (D) is compact, x~ ---t y as k ---t oo in 
L2 (D). Selecting another subsequence if necessary, this convergence is 
d~-a.e., hence 

1 
Xnk ---t y""M as k ---t oo, ~-a.e. 

Since (selecting another subsequence if necessary) we also know that the 
Cesaro mean of (xnk)kEN has x as an accumulation point in the topology 
of d~-a.e. convergence, we must have xM = y, sox E {8M ::=;a}. D 

As a consequence of the previous proof we obtain: 

Corollary 2.8. Let MEN. Then eM has compact level sets in H. 

Proof. We already know from the previous proof that eM is lower 
semicontinuous. The relative compactness of their level sets is, however, 
clear by Poincare's inequality since £ 2M (D) c H is compact. D 

Since for M E N and x E HJ,M 

(2.28) 

so D..xM E H, we can define the Kolmogorov operator in {1.3) rigorously 
for x E HJ,3 . So, for cp E Cl(H) 

(2.29) 
1 00 

Nocp(x) := 2 L AkD2cp(x)(ek, ek) + Dcp(x)(D..x3 ). 

k=l 

We note that by Theorem 2.4-(ii) and (2.28), N0 cp E L2 (H, J-L) for any 
weak limit point J-L of{J-Le:l c E (0, 1]} on H. Now we can prove our main 
result, namely that any such J-L is an infinitesimally invariant measure 
for N0 in the sense of [4], i.e. satisfies (1.4). 
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Theorem 2.9. Assume that (Hl)-(H3) hold. Let J.L be as in Propo­
sition 2.3. Then 

L N0 r.pdJ.L = 0 for all <p E C~(H). 

Proof. Let r.p E C~(H). For N EN define 1./)N := <p o PN. Then for 
x E HJ 3 

' 

No<pN(x) = ~ f: >..kD2r.p(PNx)(PNek, PNek) + Dr.pN(x) (~x3) 
k=l 

N 

= ~ L AkD2r.p(PNx)(ek, ek) + Dr.p(PNx)(PN(~x3)). 
k=l 

If we can prove that 

{2.30) 

the same is true for r.p by Lebesgue's dominated convergence theorem. 
So, fix N E N. Then by (2.6) 

(2.31) 

L No<pNdJ.L = lim [ ~ f: >..kD2r.pN(x)(ek, ek)J.Le:(dx) 
e:-+O}H 2 

k=l 

+ L Dr.pN(x)(~x3 )J.L(dx) 
= -lim f DcpN(x)(~f3e:(x))J.Le:(dx) 

e:-+O}H 

+ L Dr.pN(x)(~x3)J.L(dx) 
!~t. L [Dr.p(PNx)(ei)(ei,~x3)HJ.L(dx) 
-Dr.p(PNx)(e.)(ei, ~f3e(x))HJ.Le:(dx)]. 
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ForiE {1, ... , N} fixed we have 

(2.32) 

I i Dr.p(PNx)(ei)(ei, l::!..x3 )HJ1,(dx) 

-i Dr.p(PNx)(ei)(ei, l::!..f3.:(x))HJ.l.:(dx)l 

~ li Dr.p(PNx)(ei)(ei, l::!..x3 )H(J.l- J.l.:)(dx)l 

+ li Dr.p(PNx)(ei)(ei,!:!..(x3 - f3.:(x)))HJ.l.:(dx)l· 

The right hand side's second summand is bounded by 
(2.33) 

leii£2(D) sup IDr.p(x)IHl r r lx3 (~)- f3.:(x(~))l 2 d~ J.l.:(dx). ( ) 1~ 
xEH 0 JH JD 

We have 

So, the term in (2.33) is dominated by 

which by Theorem 2.4-(i), Remark 2.5 and Poincare's inequality con­
verges to 0 as c --+ 0. 

Now we estimate the first summand in the right hand side of (2.32). 
So, we define 

f(x) := Dr.p(PNx)(ei)(ei, l::!..x3)H· 

Then since (ei, !:!..(x3 ))H = (ei, x3 )L2(D), it follows by the proof of the 
lower semicontinuity of 8 3 that f is continuous on the level sets of 8 3 

(with 8 3 defined as in (2.27)). Furthermore, since 

it follows that 
lim sup IJ(x)l = 0. 

R->oo {e3 ~R} 1 + 83(x) 
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Furthermore, by Corollary 2.8 the function 1 + 8 3 has compact level 
sets. Hence by [8, Theorem 5.1 (ii)], there exist fn E Cb(H), n E N, 
such that 

(2.34) 

But 

lim sup lf(x)- fn(x)l = 0. 
n---+oo xEH 1 + 83(x) 

li Dc.p(PNx)(ei)(ei,Ax3)H(J.-L- J.-L.,)(dx)l 

:<::; i lf(x)- fn(x)I(J.-L + J.-Le:)(dx) + li fn(x)(J.-L- J.-Le:)(dx)l· 

For fixed n the second summand tends to 0 as c --+ 0 and the first is 
dominated by 

IJ(x)- fn(x)l 1 
sup 1 e ( ) sup (1 + e3)d(J.-L + J.-L.,), 
xEH + - 3 X e:>O H 

which in turn by Theorem 2.4 and (2.34) tends to zero as n--+ oo. So, 
also the first summand in (2.32) tends to zero as c--+ 0. Hence the right 
hand side of (2.31) is zero and (2.30) follows which completes the proof. 
D 
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