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Zero-Range-Exclusion Particle Systems 

Kohei Uchiyama 

§1. Introduction 

Let TN denote the one-dimensional discrete torus Z / NZ represented 
by {1, ... , N}. The zero-range-exclusion process that we are to introduce 
and study in this article is a Markov process on the state space XN := zrN (Z+ = {0, 1, 2, ... } ). Denote by 'f/ = ('fix, X E TN) a generic element 
of X N, and define 

~x = l('f/x 2: 1) 

(namely, ~x equals 0 or 1 according as 'f/x is zero or positive). The process 
is regarded as a 'lattice gas' of particles having energy. The site x is 
occupied by a particle if ~x = 1 and vacant otherwise. Each particle has 
energy, represented by 'f/x, which takes discrete values 1, 2, ... If y is a 
nearest neighbor site of x and is vacant, a particle at site x jumps to y at 
rate Cex('f!x), where Cex is a positive function of k = 1, 2, ... Between two 
neighboring particles the energies are transferred unit by unit according 
to the same stochastic rule as that of the zero-range processes. In this 
article we shall give some results related to the hydrodynamic scaling 
limit for this model. 

To give a formal definition of the infinitesimal generator of the pro­
cess we introduce some notations. Let b = (x, y) be an oriented bond 
of TN, namely x and y are nearest neighbor sites of TN, and (x, y) 
stands for an ordered pair of them. Define the exclusion operator 1T'b 

and zero-range operator '\i'b attached to b which act on f E C(XN) by 

7rbf(ry) = f(S~x'fl)- f(ry) and "Vbf(ry) = f(S~r'fl)- J(ry) 

where the transformation S!x: xN f-+ xN is defined by 
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if z = x, 
if z = y, 
otherwise, 
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if ex= 1 and ey = 0; and s~r"l by 

if z = x, 
if z = y, 
otherwise, 

if Tlx ~ 2 and ey = 1; and in the remaining case of TJ, both S!x"l and S~r"l 
are set to be ry, namely 

if ex(1- ey) = 0, 

if 1("'"' ~ 2)ey = o. 

Let Cex and Czr be two non-negative functions on z+ and define for 
b = (x,y) 

Lb = Cex(TJx)1rb + Czr(TJ:z:)'Vb. 

Let T:N denote the set of all oriented bonds in TN: 

Ti\r = {b = (x,y): x,y E TN, lx- Yl = 1}. 

Then the infinitesimal generator LN of our Markovian particle process 
on TN is given by 

It is assumed that for some positive constant ao, Cex(k) ~ ao fork~ 1 
and Czr ( k) ~ ao for k ~ 2. This especially implies that the lattice gas on 
TN with both the number of particles and the total energy being given 
is ergodic. We call the Markov process generated by LN the zero-range­
exclusion process. For the sake of convenience we set 

Cex(O) = 0 and Czr(O) = Czr(1) = 0. 

We need some technical conditions on the functions Cex and Czr: 
there exist positive constants a~, a 2 , a3 , a4 and an integer ko such that 

(1) lczr(k)- Czr(k + 1)1:::; a1 for all k ~ 1; 

(2) Czr(k)- Czr(l) ~ a2 whenever k ~ l + ko; 

(3) 

These conditions are imposed mainly for guaranteeing an estimate of 
the spectral gaps for the local processes ([4]). The conditions (1) and 
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(2) are the same as in the paper [2] where is carried out an estimation 
of the spectral gap for the zero-range processes. 

We shall also write 1fx,y, s:.;_Y, Lx,y, etc. for 1fb, s~X' Lb, etc. 

Grand Canonical Measures and Dirichlet Form. 

For a pair of constants 0 < p < 1 and p > p let vp,p = v ',J,'; denote 
the product probability measure on XN whose marginal laws are given 
by 

Vp,p({"' "x ~ !)) '~ l 1-p if l = 0, 
p 

if l = 1, 
Z>.(p,p) 

p (,\(p, p))l-1 
if l ~ 2, ---· 

Z>.(v,P) Czr(2)Czr(3) · • · Czr(Z) 

,\z-1 

for all x. Here Z>. := 1 + 2:~2 ( ) ( ) () and ,\(p,p) is a 
Czr 2 Czr 3 · · · Czr l 

positive constant depending on p and p and determined uniquely by the 
relation Evv,p ["lx] = p, where Evv,P denotes the expectation under the 
law Vp,p· Clearly Evv,p [~x] = p. The lattice gas is reversible relative to 
the measures vp,p (namely LN is symmetric relative to each of them). 

It is convenient to introduce the transformations sb' b = (X' y) which 
acts on "7 E X N according to 

and the operators 

if ~y = 0, 
if ~y = 1, 

(b = (x, y)). 

The latter may also be defined by fb/(ry) = f(Sbry)- f(ry) (! E C(XN)). 
Let Tx"l be the configuration "7 E X viewed from x, namely (Tx"l)y 
"lx+y· We let it also act on a function f of "7 according to Txf(ry) 
f(Tx"l)· Setting 

Col("l) = Cex("7o)(1- 6) + Czr("7o)6; 

cw("l) = Cex("71)(1- ~o) + Czr("ll)~o; 

and Cx,x+l = TxCQl, Cx+l,x = TxClQ, we can write 
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The Dirichlet form is then given by 

VP·P{f} = 2: Evv,p[(rbf)2cb]· 
bETJ'v 

(Functions f of configuration rJ will be always real in this article.) 

Diffusion Coefficient Matrix. 

Following Varadhan [7] we define the diffusion coefficient matrix. 
First we introduce some notations. Let X denote Z~, the set of all 
configurations on Z and Fe the set of all local functions on X (namely, 
f E Fe iff depends only on a finite number of coordinates of rJ E X). 
For f E Fe we use the symbol j to represent the formal sum I:x Txf. It 
has meaning if r 01 is acted: 

X X 

where the infinite sums are actually finite sums. Let x(p, p) denote the 
covariance matrix of ~0 and rJo under vp,p: 

- ( (1- p)p (1- p)p ) 
x(p,p)- (1-p)p Evv.PirJo-pl 2 

For each 0 < p < 1,p > p, let c(p,p) = (ci,j(p,p))t:s;i,i:9 denote a 
2 x 2 symmetric matrix whose quadratic form is defined by the following 
variational formula: 

g_ . c(p, P )g_ cll(p, p)o? + 2c12(p, p)a(3 + e,22(p, p)(32 

/ffc Evv,p [ ( rol { a~o + f3TJo + }} ) 2 Co1] 

where g_ = (a,(3)T, a two-dimensional real column vector (T indicates 
the transpose), and · indicates the inner product in R x R. Then the 
diffusion coefficient matrix is defined by 

D(p,p) = c(p,p)x-l(p,p), 

where x-1 (p, p) is the inverse matrix of x(p, p). The two eigen-values of 
Dare positive (cf. Section 5) and Dis diagonalizable. 

Let v-~ and v-"1 be the particle and energy gradients: 
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and Wfu and wti the particle and energy currents, respectively, from the 
site 0 to the site 1 : 

Here L{o,l} = L01 +Lw. The explicit form of the curr~nts are 

w6;_ Cex("lo)(l- 6) - Cex("ll)(l - ~o) 

w~ Cex("lo)(l- ~d"lo + Czr("7o)6- Cex("71)(1- ~o)"ll- Czr("ll)~o· 

We can show that 

( P) (yr-~) { (Lf) }p,r :~ -D(p,p) yr-"7 E Lf~ : fl,h E :Ff for some KEN , 

where Hp,p is the closure relative to the central limit theorem variance 
VP·P (see Section 3). This would lead one to expect that the hydrody­
namic equation for the limit densities p = p(t, 0) and p = p(t, 0) should 
be 

a(p) a a(p) at P = aoD(p, p) ao P · 

Unfortunately in deriving this equation there arises serious difficulty 
due to the unboundedness of the spin values. While the marginal of 
our grandcanonical measure is roughly Poisson, the energy current wti 
involves the term Cex("lo)"lo that is bounded below by 817'5 (8 > 0) and 
cannot be controlled by the grandcanonical measure as in the case of 
Ginzburg-Landau model, the logarithm of the Poisson density function 
being of the order O(ry0 logry0 ). Nagahata [3] studies a similar model 
and derives a system of diffusion equations of the same form as above: 
his model is the same as the present one except that the energy values 
are bounded by a constant. 

In the rest of this article we shall state some results on the equilib­
rium fluctuations and the central limit theorem variances without proof, 
and give certain asymptotic estimates for the density-density correlation 
coefficients and for the least upper bound of the spectrum of an operator 
of the form VN +Las consequences of these results. In the last part of 
the paper some upper and lower bounds of the diffusion matrix will be 
given. 
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§2. Density-Density Correlation Function 

Consider an infinite particle system on the whole lattice Z whose 
formal generator is L = L: cbrb. It is well defined on Fe: 

Lf(17) = L cb(1J)rbf(1J), 
bEZ* 

Let F~ be the set of all f E Fe such that both f and L f are in 
L2 (vp,p, X). Then the operator L with the domain F~ is a symmet­
ric and non-negative transformation in L2 (vp,p, X). Clearly F~ is dense 
in L2 (vp,p, X). Hence L has the Friedrichs extension, which we denote 
by £: namely £ is the smallest self-adjoint extension of L. The following 
theorem is a consequence from the standard theory on the semigroup of 
operators. Let AK be the finite interval { -K, ... , K} and LA(K) the 
generator of the lattice gas on AK, namely 

LA(K) = L Lb; 
bEA*(K) 

also put XA(K) = z~(K). Here A(K) is used in stead of AK in sub- or 
superscripts and A*(K) = (A(K))* (the set of all oriented bonds in A). 

Theorem 1. The operator £ generates a strongly continuous 
Markov semigroup on L2 (vp,p, X). Denote by S(t), t ;::: 0 this semi­
group, and by SK(t) the semigroup on L2 (XA(K)) generated by LA(K)· 
Then 

lim SK(t)f(17iA(K)) = S(t)f(1J), f E F~, 
K--+oo 

strongly in L2 (vp,p' X). The convergence is locally uniform in t. 

Fix 0 < p < 1 and p > p. Let 17(t) be a Markov process on X whose 
infinitesimal generator and initial distribution are £ and vp,p' respec­
tively. Denote the probability law of the process 17(t) by Peq = Peq(p,p) 
and the expectation relative to it by Eeq(p,p)· Define the fluctuation 
processes Y{N and Y;;~N by 

p 1 "" 2 Y';;,N(J) = 17\T L....t J(xjN)(f.x(N t)- p), 
vN xEZ 

J E Cg"(R), 

Y';;~N(J) = ~ L J(xjN)(1Jx(N2t)- p), 
vN xEZ 

J E Cg"(R) 

respectively. (Cg"(R) is the set of smooth functions with compact sup­
ports.) Under the equilibrium measure Peq(p,p) the process Yt,N = 
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(YtN, ~EN) converges in the sense of finite dimensional distributions, 
na~ely for each set of J 1 , ... , Jk E CQ"(R) and h, ... , tk E [0, oo), the. 
joint distribution of Yt 1 ,N(Jl), ... , Ytk,N(Jk) converges ([6]). The limit 
process Yt = (Yt, Yt) is an infinite dimensional Ornstein-Uhlenbeck 
process. The distribution of Yt is described as follows. 

Let Kv denote the fundamental solution for the heat equation 

and Ut a matrix of corresponding convolution operators: 

Utf_(O) = /_: Kv(t, ()- O')I_(O')dO', 

where I_ = (Jl, J2)T E CQ"(R) x CQ"(R). Let I_1 and I_2 be vector 
functions of the same kind. Then the distribution of the limit process 
Yt is given by 

in particular 

Here E denotes the expectation by the probability law of the limit 
process and 

Q{I_} = 2(I_',ci_')£2(R), a 2 {I_} = (I_,xi_)£2(R)· 

(Also (yt,I_) = ~P(Jl) + ~E(Jz), (I_1,I_2 )£2(R) = fR(J[J.} + J'fJ:i)d(); 
c = c(p,p) is the matrix appearing in the definition of D = D(p,p); I_' is 
the (component-wise) derivative of I_; a 2 (·, ·)is the bilinear form associ­
ated with the quadratic form a 2 {-}.) The kernel Kv may be explicitly 
written down in the form 

Here DT is the transpose of D; for a 2 x 2 real matrix A whose eigenvalues 
are positive, 

1 100 JA := ;;:;; exp{ -02 A -l }dO, 
V 1f -oo 
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which is a real matrix having positive eigenvalues such that A = ( JA) 2 . 

Define the symmetric matrix ~(x, t) with parameters (x, t) E Z x 
[0, oo) by 

g_ · ~(x, t)g_ = Eeq(p,p)[ug_(O, O)ug_(x, t)] 

where ug_(x, t) = a(.;x(t)- p) + f3(TJx(t) .:___ p). 

Since Peq(p,p) is invariant under the translation, ~(x, t) is the covari­
ance matrix of (.;x(s), rJx(s)) and its space-time translation (.;x+y(s + 
t), 'TJx+y(s + t)). Hence if we· define 

R(x, t) := ~(x, t)x-1 (p, p), 

then R(x-y, t-s) is the space-time correlation coefficient of (.;x(t), rJx(t)). 
The next theorem states that R(x, t) behaves like R(x, t) ~ Kn(t, x) as 
x, t ---+ oo, as being expected ([5]). 

Theorem 2. For!_= (Jl, J2)T E C0 (R) x C0 (R) 

J~oo L R(x, N 2t)!_(x/N) = 100 

Kn(t, B)!_(B)dO. 
xEZ -oo 

Theorem 2 is deduced from (4). Indeed by (4), 

(5) J~oo ~ L LJ1 (yjN) · R(x- y, N 2t)!_2 (xjN) 
X y 

because the formula under the limit on the left side equals E[(Yo,N,!_1 ) 

(Yt,N, !_2 ) ]. If the delta function could be taken for !_1 , the relation of 
Theorem 2 would come out. For justification we take Fourier transform 
in (5). To this end let R be the Fourier series with coefficients R: 

Lemma 3. 

R(>., t) 
t(A, t) L ei>.x~(x, t). 

xEZ 

0:::; t(A, t) :::; t(A, 0) =X· 
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Proof. If ax = eiAx~(x, t), then 

k-1 k-1 2k 

L L ay-x = L (2k - lul)au. 
x=-ky=-k u=-2k 

The right-hand side divided by 2k converges, ask-+ oo, to E(.A, t). Since 
S(t) is a symmetric operator, the first diagonal component of ay-x may 
be expressed in the form 

a!~x = E"P,P [eiAy S(tj2){.;y- p}e-iAx S(tj2){.;x- p}], 

and similarly for the other components; hence 

The inequalities of the lemma now follow from the fact that S(t) is 
contraction in L2 (vp,p)· Q.E.D. 
Proof of Theorem 2. Rewriting the relation (5) by means of R, we have 

(6) 

Here 

AN A 

By the Poisson summation formula, I_ (.A)= ExEZ J(.A + 21rNx). The 
class of J{ (i = 1, 2) in (6) may be extended to the set of rapidly 
decreasing functions. Let 8 > 0, g6(0) = ( 47r8)-112e-112 /(46) and I_1 (0) = 
go(O)g_. Then, g0 (.A) = e-6A2 and 

6).2 N 6).2 2e-6(7rN)2 
e- ~ fJo (.A)~ e- + 1 _ e-o(1rN)2 (I.AI ~ N1r); 

and writing I_ for l_2 in (6), we infer that 

lim .1N1r e-0A2 Q · R(.AjN, N 2t)j_N ( -.A)d.A 
N->oo -N1r 

= /_: e-OA2 Q. e-tA2DT j_( -A)dA. 
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On taking the limit as 8 l 0 this relation is also valid for 8 = 0. The 
proof is complete. Q.E.D. 

§3. Central Limit Theorem Variance 

The canonical measure for the configurations on An with the number 
of particles m and the total energy E is the conditional law 

~ [ . l = Vp,p( • n {I~IA(n) = m, 1"71A(n) = E} I :Fz\A(n)). 
n,m,E Vp,p(I~IA(n) = m, 1"71A(n) =E) 

Here for A C Z, I~IA = I:a:EA ~"' and 1"71A = I:a:EA ry,; :FA stands for the 
o--field in X generated by "ly, y E A. From the reversibility relation it 
follows that for any functions f and g of 77 and any bond b E A~, 

where b' is the bond obtained from b by reversing its direction. The 
Dirichlet form for LA(n) accordingly is given by 

Vn,m,E{f} .- -En,m,E[fLA(n)/] 

L v~,m,EU} 
bEA*(n) 

where 1J~,m,E{f} = !En,m,E[(rbf) 2 cb],; the corresponding bilinear form 
is given by 

01 1 1 
Vn,m,E(f, g)= -2En,m,E[f · (LOI +Lw)g] = 2En,m,E[(roif)(rOig)cOI]· 

We introduce a function space on which the central limit theorem 
variance is well defined. The numbers p and p are fixed so that 0 < p < 1 
and p 2: p unless otherwise specified. They will be dropped from the 
notations if used as sub- or superscripts. 

Definition 4. Let g denote the linear space of all functions h E Fe 
of the form 

(7) LlH := L LbH = h, 
bEl* 

where I is an interval of Z and H is a local function such that for some 
positive integer K, 

(8) 
bEl* xEl 
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(This bound, which may be replaced by a weaker one, is adopted only for 
convenience sake. We may take I as the minimal of intervals A such 
that hE FA. ) 

If h E Fe satisfies 

then it admits a representation (7) but the condition (8) may fail to 
hold. The functions Wfu, w/Ji are in g: the requirements are satisfied 
with I = {0, 1} and H = -~0 and H = -ry0 , respectively. For each 
positive integer K put 

F!; = {J E Fe: lf(rt)l :::; K L (rtx)K} 
lxi:SK 

Then the linear space LF!; is obviously included in Q. 
Let Ln,m,E denote the restriction of LA(n) to the space of functions 

on Xn,m,E := {rt E XA(n) : I~IA(n) = m, lrtiA(n) = E}, and for h, g E 9, 
define 

where n' is the maximal integer among those for which both sums in the 
brackets are FA(n)-measurable. 

Theorem 5. For every h, g E g and for every p > 0, p ~ p, there 
exists a following limit 

lim Vn,m,E(h,g), 
m/2n-+p,E/2n-+p 

where the limit is taken in such a way that n, m and E are sent to infinity 
so that mj2n ~ p and E/2n ~ p. The functional defined by this limit 
makes a bilinear form on g. If it is denoted by 

V(h, g) = VP,P(h, g), 

then the subspace 

9o := { O'.W~ + f3w/Ji - Lf : a, f3 E R, f E F!; for some K} 

is dense in g with respect to the quadratic form VP,P{h} := VP,P(h, h). 
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Theorem 5 says that every h E g can be approximated by an element 
of go in the metric v'VP.P as accurately as one needs. To apply this to 
the gradients v-e := eo- 6 and v-ry := "lo- "11' we need the following 
lemma (cf. [6]). 

Lemma 6. Suppose that {1) and {2) are satisfied. Then both v-e 
and v-ry are in g. Let HP and HE stand for the corresponding H's 
( with I(h) = {0, 1} ). Then 

r01HP = eo/Cex(TJo) and r01HE = TJo/Cex(TJo) if eo(1- 6) = 1 

and r 01 H P = 0 if eo ( 1 - 6) = 0; moreover there exists a constant 8 > 0 
such that 8 ~ r01HE ~ 1/8 whenever l(ryo ~ 2)6 = 1. 

The proof of Theorem 5 may be carried out along the same lines as 
in [7] or [8]. 

§4. The Least Upper Bound of Spectrum 

In this section we are concerned with the Markov process whose 
infinitesimal generator is£, a self-adjoint operator on L 2 (vp,p) (see The­
orem 1). Let P(X) be the set of all probability measures on X. Define 
a functional I(f..L) of f..L E P(X) by 

I(f..L) = E"'[r.p(-.C)r.p], where r.p = ..jdf..L/dv 

if f..L is absolutely continuous relative to v = vp,p and r.p is in the domain 
of ..;=l; and I(f..L) = oo otherwise. For a local function G on X let 
Da{G+.C} denote the least upper bound of the spectrum of the operator 
G + .C. It has the variational representation 

Given a positive integer nand hE g, let n' be the maximal integer 
such that Tyh E FA(n) if IYI < n', and define a function Gn = G~ by 

1 
Gn =- ~ Tyh. 

2n L.t 
y:lyl<n' 

Theorem 7. LethE g. Let the interval I= I(h) and the func­
tion H be chosen so that 

(9) 
bEl* xEI 
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where ryf[ = ( 'T/x) K, and A and K are positive constants with K ?: 1 . 
Let Gn = G~ be defined as above. Also define a function (; ( 'TJ) for l ?: 1 
by 

l 1 "' K Cn(TJ) = 2n L__. 'T/x l(TJx > l). 
x:ixi :Sn 

Then, if ).. E ( -1, 1), J E C6 (R), and C is a positive constant such that 
AIII 2 (1- 2-K)-1 :::; C, it holds that for all n, lEN, 

J~oo Do {2: [N,\J(xjN)TxGn- ~J2 (xjN)Tx(~] +N1+2-\.c} 
xEZ 

:::; IIJIII2 sup Vn,m,E{h}. 
m,E:E/m:S2l 

where IIJIII2 = JR J2dB and the supremum is taken over all couples of 
positive integers m and E such that m:::; E:::; 2lm. 

Proof. The proof is divided into three steps. 
Step 1. This step is quite similar to a corresponding argument in 

[7], so we provide only an outline. The supremum of the spectrum Do 
that is to be estimated may be given by the variational formula 

DN = sup E~" [2: [N-\jxTxGn- ~j~Tx(~] - N1+2-\T(J-L)]. 
1-'EP(X) xEZ 

where we put Jx = J(xjN). 
Let r.p = J dJ-L/ dv and vA = L:bEA * vb' then T(J-L) = L:bEZ* vb { r.p} = 

2~ L:xEZ vA(n) { Tx'P }. We substitute this into the variational expression 
given above. To compute the expectation appearing in it we first take the 
conditional expectation conditioned on w = TJ!Ac. If J-L( ·iw) stands for 
this conditional law, then E~"[Gn] is expressed a; an integral of F(w) = 

E~"( ·iw) [Gn] by J-L. We have a similar expression for the form VA(n) { r.p }, 
which may be naturally restricted to the space L 2(vA(n), XA(n)) (vA is 
the product measure on XA with the same common one-site marginal 
as that of v = Vp,p)· Rewriting J-L for J-L( ·iw) E P(XA(n)) and taking the 
supremum in J-L, we see that DN is not greater than 

N1+2,\ "' { 2n 1-' [ ,\ . C ·2 l J A(n) } ~ L. sup N1+2,\ E N JxGn- NJx(n - V {r.p} . 
xEZ 1-'EP(XA(n)) 

Decomposing XA(n) into the ergodic classes Xn,m,E we may express 

vA(n){r.p} in the form VA(n){r.p} = L:m L:EPm,EVn,m,E{r.pm,E}, where 
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Pm,E = JL(Xn,m,E) and (/)m,E is the square root of a probability density 
on Xn,m,E· As a consequence we see that if 

N _ { 2njx ~-'[G ] 2nCj; E~-'[rl] 'D { }} nn,m,E,x - sup Nl+>.. E n - N2+2A ':m - n,m,E (/) ' 
p.E'P(Xn,m,E) 

then 

(10) 
N1+2A N 

f!N::; - 2-2::: SUp f!~mEx· 
n x=l m,E , , , 

Step 2. Let ( · )n,m,E stand for the expectation by Pn,m,E· For H 
introduced in Definition 4 and for any FA(n)-measurable function u, we 
have the following identity 

or in terms of the Dirichlet form 

(12) (urxh)n,m,E =- L v~;~,E(u, TxH). 
bEI*(h) 

(Here b +xis the oriented bond obtained by translating b by x.) From 
this it follows that 

A simple computation verifies that the terms I'D~ m E(F, v;2 )1, where FE 
C(Xn,m,E), are bounded by ' ' 

where b' is the bond b but reversely oriented. By employing Schwarz 
inequality and the assumption (9) on Hit therefore follows that IE~-'[Gn]l 
is at most 

2~ L L ( (rb+xTxH)2cb+xVJ2 ) n mE VII* I'Dn,m,E{ (/)} 
lxl<n' bEl*(h) ' ' 

::; lfl A L ( 17* v;2 ) Jvn,m,E{ v;}. 
n I I n,m,E 

x ~n 
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By the inequality 2ab - a2 ~ b2 this shows that 

(13) 2njx ~-'[ ] { } AIII 2f~ "' ( K 2J Nl+A E Gn - Vn,m,E 'P ~ N2+2A ~ "'x 'P . . 
I I n,m,E 
x :<£n 

Since (m-1 L'Tix)K ~ m-1 LTJif, the conditionE= L'T/x > 2lm 
implies the inequality 2-K L'TIIf ~ lKm, which in turn implies that 

This combined with (13) shows that if the constant Cis chosen so that 
AIII2 ~ (1 - 2-K)C, then 

o;:,m,E,x ~ 0 whenever E/m > 2l, 

and accordingly that the supremum over the pairs of m and E in (10) 
may be restricted to those satisfying E /m ~ 2l. Consequently 

(14) 
N1+2A 

oN~ -2-- L sup of:mEx· 
n xEZ m,E:E/m:'£21 ' ' ' 

Step 3. Now we apply the following estimate for the spectrum of the 
Schrodinger type operator Ln,m,E + F with F E C(Xn,m,E) satisfying 
(F)n,m,E = 0: 

(15) Oo{F + Ln,m,E} ~ (F( -Ln,m,E)- 1 F)n,m,E + ; IIFII~, 
n 

where Kn = Kn,m,E is the second eigenvalue of -Ln,m,E (cf. [7],[1] etc.). 
Taking F = (2njxfNl+A)Gn,m,E in (15), where Gn,m,E = Gnlxn,,.,,E, 

o;:,m,E,x < Oo{(2njx/Nl+A)Gn,m,E + Ln,m,E} 

< (2 )V. {~h} + ~. [2njxiiGn,m,EIIoo] 3 

n n,m,E Nl+A K; Nl+A 

~~1t Vn,m,E{h} + 0 (N3:3A) · 

From (14) we thus obtain lim oN~ IIJIIi2 sup Vn,m,E{h}, the 
N-+oo m,E:E/m:'£21 

required bound. Q.E.D. 
The next theorem is essentially a corollary of Theorem 7. 
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Theorem 8. LethE Q and put 

FN (ry) = VN L J(xjN)Txh(ry). 
xEZ 

Then there exists a constant C such that for all positive constants {3 and 

l' 

< {3TffJffi2 sup VPo.Po{h} 
Po,Po'Po/Po <5cl 

+(log 2) / {3 + ( C {3) fl. 

Proof. We may replace FN by 

F!::=VNLJ(xjN) 2~ L Tyh. 
xEZ y:ly-xl<n' 

In fact if 

X N '"""' aN,n = 2n2 L....- [J(xjN)- J(yjN)], 
y: ly-xl<n' 

then fa!V,nf :S: J":.~7N fJ"(s + N- 1x)fds and the difference 

N 

FN- F!: = ~ LaN,nTxh 
vN xEZ 

is obviously negligible under the equilibrium measure. 
Introducing the random variable XN = J0T Ff:(ry(N2 t))dt, we may 

write EeqfXNf for what to estimate. Let K 2: 1 be a constant for which 
the condition (9) is satisfied. Let (~ be a function defined in Theorem 7 
and put 

Then by Jensen's inequality and the Feynman-Kac formula 

Eeq[fXNf- {3YNJ 

1 ±{3XN {32yN log 2 
$ (3 log~~~ Eeq [e - J + (3 

:S: ~~~no{ ±{3FN- ~ L ff3J(x/NWTx(~ + N2L} + lo~ 2 . 
xEZ 
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According to Theorems 7 and 5, if C is chosen suitably large, then 

This gives the required inequality since Eeq[,BYN] :::; C1,8jl. Q.E.D. 

§5. Upper and Lower Bounds For D(p, p) 

Let !5. = J5.(p, p) and R- = R-(p, p) stand for the eigen-values of D(p, p) 
such that !5. :::; R-. We here prove that for some positive constants m and 
M, 

m 
P + (1 + A)-1 :::; !5. :::; K- :::; M(1 +A) (p ~ p > 0), 

where A= A(p,p) is the parameter appearing in the definition of vp,p· 

Proof of the upper bound. We shall apply the fact that if C0 is a sym­
metric 2 x 2 matrix and co~ c, then Tr(eox-1 ) ~ Tr(cx-1 ). Let(·) 
indicate the expectation under vp,p· Then 

g_ · c(p, p )g_ < ( ( rol{ a~o + ,81]o} r CQl) 
( {a~o + ,81]o}2 (1- 6)Cex(1Jo)) + ,82 (~o6Czr(1Jo)) 

In view of the conditions (2) and (3), Cex(1Jo) :::; C[Czr(1Jo)+l(1Jo = 1)]. By 
combining this with the relations (czr(1Jo)) = pA, (1JoCzr(1Jo)) = (p + p)A 
and (1J~Czr(1Jo)) = ((17~) + 2p + p)A, the last line above is dominated by 
,82p2 A plus a constant multiple of 

Recalling what is remarked at the beginning of this proof, noticing 
det x = (p(17~) - p2)(1- p) so that 

-1( 1 ( (1J~)- p2 -(1- p)p ) 
X p, p) = (p(1J~) _ p2)(1 _ p) -(1- p)p (1 - p)p 

and carrying out simple computations, we see that 

Since K- + !5. = Tr( cx-1 ), these yield the required upper bound, if we can 
find a positive constant 8 so that 

(16) 
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(This is certainly true for A :S: 1.) To this end set£= £(A) = max{k : 
Czr(k) :S: A} and Pk = Vp,p{17 : 7]0 = k}jp. Noticing that Pk+I/Pk = 
A/Czr(k + 1), we infer from lczr(k) - Czr(£)1 :S: a1lk- £1 that for all 
sufficiently large A, 

Pk 2: Pl exp{ -a1(k- £) 2 / A} if lk- £1 :S: 2vfA, 

or, what we are about to apply, minU:::::k<R-v'X Pk, Lk>Hv'X pk} 2: 8 
with some constant 8 > 0 independent of A. Hence 

(775)/p- (pjp) 2 Evp,p[lryo- P/PI 2 I77o > 0] 

> APvp,p [l77o- pfpl 2: vfA l77o > 0] 2: 8A. 

Thus we have shown {16). 

Proof of the lower bound. Let A = A(p, p) be a 2 x 2 symmetric matrix 
whose quadratic form is 

g_. Ag_ = V{o:v-e + ,av-ry}. 

Then D(p, p) = x(p, p)A-1 (p, p) and it holds that V {av-e+ ,BV-ry} :S: 
((r01 {o:HP + ,BHE})2 eo1) (cf. [6]), where HP and HE are functions 
introduced in Lemma 6. We shall apply the inequality 

det(xA-1) 1 
/1, > = ------:-,.---,--
- - Tr(xA - 1) Tr(x-1 A)' (17) 

By employing Lemma 6 as well as the conditions (1) through {3) we see 
that for some constant C, 

g_·Ag_ < ((r01{o:HP+,BHE})2c01 ) 

1 eo(1-ed ( )2) 2( ( )) :S: C \ Czr ( 710 + 1) o:eo + .B11o + C .B 6 Czr 77o . 

One observes that the right-hand side equals C times 

2 p( 1) p-p 0: (1- p)- 1-- + 2o:,B(1- p)--
A ZA A 

2 (1- p 2 2 ) +.8 -A-((77o- eo) ) + P A . 

Noticing that ZA = 1 + A/Czr(2) + 0(A2 ) as A l 0 and Vp,p{7]o = 2} = 
pA/Czr(2)ZA, and applying the inequality used in the preceding proof, 
we infer that 

{18) det(x)Tr(x-1 A):::; C'p2 (1- p)A for 0 <A< 1. 
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For large values of .A we make an elementary computation (as we did for 
the upper bound) to see that det(x)Tr(x- 1 A) is at most C times 

1 ~ p (2- p)(p(ry5)- p2) + (1 - ~ )2p2 - (\-~)p ( ("75)- p2) + (1- p)p3 ..\. 

Hence, in view of (16), 

Tr(x-1 A) ~ C' [~ + p] (.A 2:: 1). 

This together with (17) and (18) concludes the asserted lower bound of 
f5.. 
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