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§1. Introduction 

This is a review paper on geometric motions of phase boundaries 
like crystal surfaces when the interfacial energy is very singular. Such 
motions arise in nonequilibrium problem at low temperature. Our pur­
pose is to review a macroscopic approach describing the phenomena by 
a partial differential equation (PDE) with singular diffusivity. Because 
of nonlocal effect of singular diffusivity the notion of solution itself is 
unclear. In this paper we focus the problem whether a solution of ap­
proximate parabolic problem converges to a 'solution' of PDE with the 
singular diffusivity. We do not intend to exhaust the references. 

The equilibrium of a crystal shape is often explained as a solution 
of an anisotropic isoperimetric problem. The problem is described as 
follows. Let 'Y be a continuous function on Rn which is positively ho­
mogeneous of degree one, i.e., "f(Ap) = A"f(p) for all p E Rn, .A > 0. 
Assume that 'Y(P) > 0 for p =f. 0. For an oriented hypersurface S with 
the orientation n (a unit normal vector field) in Rn let I(S) be defined 
by 

(1.1) I(S) = Is 'Y(n)dS, 

where dS denotes the surface element. The quantity I(S) is called the 
interfacial energy and 'Y is called the interfacial energy density (depend­
ing upon the temperature T through the structure of the crystal surface 
S). 
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Anisotropic isoperimetric problem. Minimize I( &D) among all 
open sets D(c Rn) with a fixed volume. 

The answer is by now well-known. The interfacial energy I(&D) is 
minimized if and only if D is a dilation of the Wulff shape W, defined 
by 

(1.2) w, = n {x ERn, X. m ~ 'Y(m)}. 
lml=l 

The reader is referred to [5], [34], [30] and references cited there for the 
development of the theory. This Wulff shape is considered as a shape of 
a crystal in an equilibrium state. The Wulff shape is always convex and 
closed, and its support function 

)'(p) = sup{p · x; x E W,} for p ERn 

is the convex hull of 'Y· At low temperature the Wulff shape has a 
flat portion called a facet. In this case )' is not C1 at the direction 
corresponding to the normal of the facet. We rather consider )' instead 
of/, so we assume that 1 is always convex, since W, = W-y. 

The first variation of I(&D) with respect to a variation of the volume 
of Dis 

(1.3) H, = -divs((Vpr)(n)) with S =&D. 

This is called the weighted mean curvature of S in the direction of n, 
which is the unit outer normal vector field of &D. Here divs denotes the 
surface divergence. If r(P) = IPI, then H, is the usual mean curvature 
H. (We use the convention that His the sum of all principal curvatures 
instead of its average.) The weighted mean curvature of &W, always 
equals -(n- 1) so W, substitutes the role of a unit sphere for usual 
mean curvature. If H, = -(n -1), we expect that Dis the Wulff shape 
but we do not know in general whether such a conjecture is settled except 
the case r(P) = IPI which is proposed by H. Hopf and solved affirmatively 
by [1]. If 1 is not C1 so that W, has a facet, we observe that H, should 
be a nonlocal quantity since otherwise H, = 0 on such a facet, since the 
second fundamental form equals zero on a facet. 

In nonequilibrium state a phase-boundary such as a crystal surface 
moves. Its motion is often considered as a result of thermodynamical 
driving forces-variation of the free energy. A typical example is the 
mean curvature flow equation 

(1.4) V = H on St 
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proposed by Mullins [40] to describe the motion of the antiphase bound­
aries of grains in material sciences. Here, V denotes the normal velocity 
of evolving (embedded) (hyper) surface {St} in the direction of n ; the 
parameter t denotes the time variable. The mean curvature is consid­
ered as the first variation of the area. To study a crystal growth problem 
anisotropic effect must be taken into account. For example one consider 

(1.5) V = M(n)(Hy +C) on St 

as proposed by [39]. Here Cis a constant and M(n) is a positive continu­
ous function on the unit sphere sn-\ H'"Y is the weighted mean curvature 
defined in (1.3), which is considered as the first variation of I of (1.1). 
An axiomatic derivation of equations like (1.4) and (1.5) is found, for 
example, in [34]. Mathematical theory is well-developed for (1.4) and its 
generalization (1.5) if'"'( is smooth and convex. For example one is able to 
extend a solution beyond singularities (e.g. pinching) to a global-in-time 
solution by a level set method [43] (see also [46] and [42]) whose analytic 
foundation is established by [10], [13]; see [27], [30] and references cited 
there. 

At low temperature T the Frank diagram of '"'! = '"'! r 

Frank'"'(= {p ERn; '"'f(p):::; 1} 

may have a corner whose position vector directs to the normal of WT 
(Frank '"'! is a convex conjugate (or polar) of WT) There is a critical 
temperature TR(n) (depending on n) called roughening temperature such 
that there is a facet of W'"Y with the normal ll if and only if T < TR(n). 
The evolution law also depends on temperature explicitly. When the 
latent heat is negligible, its general form [34] is 

(1.6) V = f(n, H'"Y +C) on St 

for a given smooth function f = JT on sn-l X R, which is nondecreasing 
in the second variable. The theory of crystal growth [11] says that if 
T:::; TR(n), then ar ax (n, X) = 0 at X = 0 

while T > TR(n), ar ax (n,X) -1-0 at X= 0. 

So if T > TR(n), the equation (1.6) can be approximated by (1.5) at 
least for small H'"Y +C. However, if T :::; TR(n), we have to study (1.6) 
directly. Evolutions with facets are also discussed in surface sciences; 
see [9], [47] and papers cited there. 
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If Frank 'Y has a corner, the definition of solution is not clear even for 
(1.5). If Frank 'Y is a convex polyhedra, 'Y is called a crystalline energy 
(density). If n = 2 and Bt is a planar curve, a notion of solution is 
proposed by [2] and [48] by restricting Bt as a spcecial polygonal curve. 
This evolution is called a crystalline motion. Based on variational and 
order-preserving structure the notion of solution is extended by [16], 
[19], [21] for (1.5) and (1.6), when Bt is a general graph-like curve (§2.2 
and Appendix). It applies for general graph-like curves with general 'Y 
not necessarily crystalline. Even the level set approach handling non 
graph-like curves is extended to this situation in [23], [24] ; see also [28] 
for a review. By now it is known that the problem for n = 2 is well­
posed although the diffusion effect included in H'Y is not local. To see the 
difficulty of the problem we assume that n = 2, Bt = {(x, y); y = u(x, t)} 
and 'Y(Pt.P2) = IP1I + IP2I and observe that (1.5) with M = 1, C = 0 
equals 

where subscripts t and x of u denote the partial derivatives. It formally 
equals (2.3) since (1 + p2 ) 1128(p) = 8(p), where 8 denotes the Dirac 
delta function; the notion of solution to (2.3) is unclear at all. Similar 
equation 

Ut = (uxfluxl)x + Uxx 

has been proposed by H. Spohn [47], where he proposed a notion of 
solution based on free boundary value problems. 

In this paper we focus the problem whether our solution of (1.6) with 
singular 'Y can approximated by a solution of approximate equation (1.6) 
with regular 'Y, when Bt is given as the graph of a function. We discuss 
this problem in Section 2. Except the last convergence (2.11) the results 
are known (cf. [16], [21], [23], [24] and papers cited there). For evolving 
curves the notions (§2.2 and Appendix) of a solution are consistent with 
an ansatz that the flat portion called facet (whose normal corresponds 
to the corner of the Frank diagram) stays as flat during the evolution. 
We call this ansatz facet-stay-as-facet hypothesis. This hypothesis is 
invoked to define crystalline motion. Our convergence results in Section 
2 assert that the facet-stay-as-facet hypothesis is fulfilled for a limit of 
solutions of approximate problems. This has a strong contrast to the 
problem for evolving surfaces where a facet may break (Remark 2.3 
(i)). So far for three-dimensional problem even local-in-time solvability 
is unknown even when 'Y is crystalline. In Section 3 we claim that a 
solution proposed by H. Spohn [47] is a solution in our sense so it is 
obtained as a limit of approximate problems. For more examples of 
solutions see [36], [26]. There are several other applications of equations 
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with singular diffusivity. The reader is referred to [45], [29], [25], [49] as 
well as [36], [26]. 

In the thermal grooving problem it is often more important to study 
evolution by surface diffusion [41]. This corresponds to the fourth order 
problem V = -b.H'Y [8]. Although there are several analytic results 
when H'r = H, for singular 'Y there are no analytic results; except [47] 
where several special solutions are proposed; however several numeri­
cal results are available as in [44]. This type of problem seems to be 
important to study thermal smoothing of surface [9]. 

Before we conclude this introduction we would like to point out sev­
eral relations between microscopic approach and macroscopic approach. 
For equilibrium problems macroscopic model is justified as a limit of 
several microscopic models [5]. There is roughening transition in mi­
croscopic model [15]. At the low temperature macroscopic interfacial 
energy obtained from microscopic models may have singularities so that 
the Wulff shape has a facet for n 2:: 3 (while it has no facet when n = 2). 
However, for nonequilibrium problem, the convergence from microscopic 
to macroscopic is only known above the roughening temperature [18], 
[35] mainly because of lack of estimates; see also a nice review by T. 
Funaki [ 17]. The authors are grateful to Professor Tadahisa Funaki and 
Professor Herbert Spohn for valuable informative remarks. 

§2. General convergence results 

We are interested in studying the convergence of a solution when 
singular interfacial energy is approximated by a smooth energy. So far 
there are two systematic ways to study this kind of problems. One is 
based on comparison priciples and is considered as an extension [19], 
[21] of the theory of viscosity solutions [12]. The other one is based on 
the theory of nonlinear semigroups initiated by [37] (see also [3]). It 
reflects the variational structure. The first method is so far restricted 
to one space dimensional problem but it applies to equations without 
divergence structure. The second method applies to general space di­
mension but it is restricted to a gradient system, which has a divergence 
structure. We first discuss the first method. 

2.1. Viscosity approach 

We consider a fully nonlinear evolution equation in one space dimension 
of the form 

(2.1) Ut + F(ux,Aw(u)) = 0, x E R, t > 0 
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with Aw(u) formally written as (W'(ux))x. Here W is a given convex 
function on R and C 2 outside a discrete set P. Thus the derivative of 
W may have jumps. The function F : R x R ---> R is a given continuous 
function satisfying a monotonicity condition: 

(2.2) F(p, X) s F(p, Y) for X 2: Y, 

so that the equation (2.2) is (degenerate) parabolic. (The value Aw is 
actually unchanged by adding an affine function to W but we denote it 
by Aw rather than by Awu:) If F(p, X) = -X, then (2.1) is the heat 
equation when W(p) = p2 /2. If W(p) = IPI, the equation (2.1) formally 
becomes 

(2.3) 

and the quantity 8( Ux )uxx is not well-defined even in the distribution 
sense for smooth u. So we need to introduce a new notion of solution. 
(For this particular example both the first and the second methods pro­
vide a suitable notion of a solution.) In [19] (see also [21]) a notion of 
solution called a viscosity solution for initial value problem of (2.1) is 
proposed and its unique existence is proved under periodic boundary 
condition to avoid extra technicality; see [19] for other boundary con­
ditions. We shall recall its definition as well as that of Aw briefly in 
the Appendix. Fortunately, in various settings we have the convergence 
principle. 
CVP. Assume that F6 ---> F and W 6 ---> W locally uniformly as c---> 0. 
For c > 0 let u"' E C([O, T) x T) be a solution of 
(2.4) 
Ut+Fc:(ux,AwJu))=O in (O,T)xR with uit=o=ug in R 

with u0 E C(T), T = R/wZ, w > 0. If u0 ---> u0 in C(T), then u"' 
convergences to some function u locally uniformly in [0, T) x T (without 
taking a subsequence) and u is a unique solution of (2.1) with the initial 
data u0 E C(T). (The constant T may be taken as +oo.) (We should not 
assume uniform convergence of derivatives of W6 so that W is allowed 
to be non -C1 .) 

To state the convergence result rigorously we need to introduce a 
class of W and F. 

£ = {W; W is convex in R and W is C 2 except some 
discrete set P. Moreover, supK\P W" = CK < oo for 
every compact set Kin R}. 
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Any piecewise linear, convex function W belongs to £. Also W (p) = 
alpl/2+bp2 /2 for a, b > 0 belongs to£. Let F be the set of all continuous 
function F satisfying the monotonicity condition (2.2). We shall state 
a special version of the convergence result in [21] where F is allowed to 
depend on the time explicitly. 

Theorem 2.1 (Convergence). Assume that Fe:, FE F and that We;, 
WE£. Then (CVP) holds for viscosity solutions. 

Of course, if We: and Fe: are smooth and the problem (2.4) is strictly 
parabolic with smooth initial data u0, then the classical theory [38] of 
parabolic equations provides a unique smooth solution ue: for (2.4). So 
Theorem 2.1 justifies the notion of solution when W' may have jumps 
in the sense that the solution is the limit of classical solutions of the 
strictly parabolic problems. On the other hand, if We: is piecewise linear, 
and W is smooth, Theorem 2.1 also provides the convergence of the 
crystalline algorithm (proposed by [2] and [48]). Theorem 2.1 extends 
some aspects of earliear convergnece results [16], [33] of the algorithm 
for a general equation. The reader is referred to [21], [22] for details and 
generalizations. As in [22] we also have the convergence of derivatives. 

Theorem 2.2 (Convergence of derivaties). Assume that Fe;, F E F 
and that We:, WE£. Under the situation of (CVP) assume furthermore 
that uaxx(E > 0) is a finite Radon measure with limsupe:->O lluaxxll 1 < 
oo. Then 

lim sup llu~- Uxi!Lr(T)(t) = 0 
e:->Oos,t<T' 

for every r E [1,oo) and 0 < T' < T. Here II· 11 1 denotes the total 
variation of the measure and uaxx represents the distributional second 
derivative of u0. 

Remark 2.3. (i) So far this method does not apply to a spatially in­
homogeneous equation or higher dimensional problems because of com­
plexity of nonlocal curvatures. Despite proposal of several notions of 
solutions [31], [4], [32], the local existence of a solution approximated by 
smoother problem is not yet known. 
(ii) Theorem 2.1 applies to the interface equation (1.6) when St is 
the graph of a spatially periodic function of one variable. In fact, if 
St = {y = u(t, x)}, then (1.6) can be written in the form of (2.1) with 

W(p) = 1(-p, 1), 

F(p, X)= -(1 + p2)112 f(( -p(1 + pz)-112, (1 + pz)-112), X+ C) 
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when n is taken upward, i.e., n = ( -ux, 1)/(1 + u;) 112 . The weighted 
curvature H1 of St in the direction of nat (xo, u(xo)) equals Aw(u)(xo). 
Thus CVP implies that the solution { S[} of 

V = j 6 (n, H1 J on Sf= {y = u6 (t, x)} 

converges to the solution of {St} of (1.6) in the Hausdorff distance sense 
in [0, T) X T x R, provided that j 6 ----+ j, "(6 ----+ 'Y locally uniformly as 
c ----+ 0 and that sg ----+ So in T X R in the Hausdorff distance sense. Such 
a convergence result has been proved for closed curves in more general 
setting [24]. 

2.2. Variational approach 

We consider a gradient system in a multi-dimensional space Rn under 
periodic boundary condition, i.e. in Tn = Ilj=l (RjwjZ), Wj > O(j = 
1, ... , n): 

(2.5) Ut- div((DW)(V'u)) = 0 in Tn x (0, oo). 

Here W: Rn----+ R be a convex function and DW denotes the gradient 
of W. If initial data u0 is Lipschitz continuous, the maximum principle 
yields a priori bound 

(2.6) IIV"ulloo(t) :::; IIV"uolloo for all t ~ 0, 

where II · lloo denotes the L 00 - norm in L 00 (Tn). For example, 

IIV"ulloo(t) = ess.supxETn IV"u(x, t)l. 

Let K be a number such that IIV"uolloo :::; K. We may modify W(p) for 
IPI ~ K + 1 so that W (p) is coercive in the sense that 

(2.7) lim W(p)/IPI = oo 
IPI---+oo 

without changing the notion of a solution with initial data u0 since 
(2.6) holds. This modification simplifies the formulation. As in [16] we 
formulate the problem by using subdifferentials. If we define the energy 
for v E H = L 2 (Tn) by 
(2.8) 

( ) _ { { W(V'v)dx ifV'v E L1 (Tn) and W(V'v) E £ 1 (Tn), 
'P V - }Tn 

oo otherwise, 

then r.p is convex and lower semicontinuous in Has in [6]. (The coerciv­
ity assumption (2.7) is important to conclude the lower semicontinuity.) 
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In [16] only one dimensional problem is treated but we follow their ap­
proach. Then the initial value problem for (2.5) with IIY'uolloo :::; K is 
formulated as an abstract ordinary differential equation for u(t) = u(·, t) 
in the Hilbert space L2 (Tn) with the standard inner product < J, g >= 
JTn fgdx: 

(2.9) 

where 8r.p denotes the subdifferential of r.p, i.e., 

8r.p(v) ={wE H; r.p(v+h)-r.p(v) 2:< w,h > holds for all hE H}. 

A general theory guarantees that for uo E H satisfy IIY'uolloo :::; K 
there is a unique solution u E C([O, T); H) of (2.9) (with (2.8)) which 
is absolutely continuous with values in H on [8, T] as a function oft for 
every 8 > 0, T > 0 ; see [3]. We refer this u as the solution of (2.5) (in 
the variational sense) with initial data u 0 • As in [16] a general stability 
theorem due to J. Watanabe [50] (see also [26]) based on a result of H. 
Brezis and A. Pazy [7] implies the following convergence result. 

Theorem 2.4. Assume that W" and W are convex in R n. Assume 
that W"(p) = W(p) for IPI 2: K + 1 and satisfies (2.7). Assume that 
W" -+ W (locally uniformly) as e -+ 0. Let u" be the solution of 

Ut- div((DW")(V'u)) = 0 in Tn X (0, oo), ult=O = u~ 

with IIV'u5lloo :::; K. Assume that u5 -+ uo in L2 (Tn) as e -+ 0. Then 
u" converges to a solution u of (2.5) with the initial data u0 in the sense 
that for any T > 0 

(2.10) 

Remark 2.5.(i) Since IIY'u"lloo(t) :::; K for all t 2: 0 (cf (2.6)), by 
Arzel8.-Ascoli's theorem we also get the uniform convergence 

(2.11) lim sup llu"- ulloo(t) = 0. 
e:->Oo~t~T 

The proof of (2.11) admitting (2.10) and (2.6) is elementery; see [25, 
Lemma4.3]. 
(ii) This convergence result also asserts that the solution with singular 
energy is approximated by that of smoother problem. 
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(iii) This approach applies to spatially inhomogeneous equation of the 
form 

Ut- b(~) {div(a(x)(DW)(Vu)) + C(x)} = 0 

as described in [26] and [20]. 
(iv) By Theorem 2.1 and 2.4 if both variational and viscosity notion of 
solution is available it must agree each other, since both solutions are 
obtained as the same limiting procedure [20]. 

§3. Examples 

Example 1. We consider (2.3) with w-periodic boundary condition, 
i.e., in T x (0, oo) with T = R/(wZ) and w > 0. Assume that the initial 
data 

(3.1) { 
A(x), 

uo(x) = ho, 
B(x), 

0 ::; x ::; a::o , 
a::o ::; x ::; f3o , 
/30 ::; x ::; w /2 

with a::o::; f3o,A' > O,B' < O,A(O) = B(w/2) = O,A(a::o) = B(f3o) = ho. 
Here A and B are C 1 and ho > 0 is a constant. We also assume that 
A' ::; K, - B' ::; K with some K > 0 so that u0 is Lipschitz continuous. 
We extend uo to [-w /2,0] as an odd function, and further extend u0 as 
an w-periodic function in R, i.e., a function on T. The problem (2.3) 
with (3.1) is formulated as in (2.9) if we take r.p in (2.8) with W(p) = IPI 
for p, IPI ::; K + 1 where lluoxlloo ::; K. The solution is explicitly written 
as follows; see [19],[26]. Let h(t) be a function defined by 

where -1 represents the inverse of a function. This h(t) satisfies h(O) = h0 

and is decreasing in time. Moreover, h(T) = 0 forT= 8(0)/2. We set 

( t) = { min(h(t),uo(x)), t::; T, 
u x, 0, t > T 

x E [O,w/2], 

and extend u(·, t) to [-w/2, OJ as an odd function, and further extend 
u(·, t) as an w-periodic function in R. It turns out that u(x, t) is the 
unique solution of (2.3) with (3.1) (in the variational sense). Indeed, if 
we set 

a::(t) = A-1 (h(t)), f3(t) = B- 1(h(t)) with a::(O) = a::0 , f3(0) = f3o, 



Singular Interfacial Energy 223 

then 

(3.2) 
2 

ht(t) = - (3(t) - a(t) 

The right hand side can be interpreted as - (W' ( +0) - W' ( -0)) / {length 
of flat portion} where W(p) = IPI· See Definition A.3 in the Appendix. 
Since 

(3.3) { 
A(x), 0:::; x:::; a(t), 

u(x, t) = h(t), a(t) :::; x :::; (3(t), 
B(x), (3(t) :::; x:::; w/2 

fort:::; T, it is not difficult to derive 

Ut(·, t) E -8cp(u(·, t)) for all t > 0 

from (3.2) [36], [26]. Indeed, we fix t E [0, T) and set 

((x) = 13_:a(x- a) -1, a:::; x:::; (3, { 
-1, 0:::; x:::; a, 

1, (3:::;x:=:;wj2; 

here we suppress t-dependence of a,(3 and(. We extend (to [-w/2,0] 
as an even function, and further extend (as an w-periodic function in 
R. We then observe that Ut(x, t) = -(:,(x) for x E (O,w). To show 
UtE -8cp(u) it suffices to prove 

(x E 8cp(v) with v(x) = u(x, t). 

We observe that 

-((x) E 8W(vx(x)), 0:::; x:::; w, 

where 8W is the subdifferential of a convex function W on R. In other 
words, W(vx(x) + q)- W(vx(x)) ~ -((x)q for all q E R, x E [O,w]. 
Thus by definition of 8W 

cp(v +h) cp(v) = 1w {W(vx(x) + hx(x))- W(vx(x))}dx 

> 1w -((x)hx(x)dx 

for all h E L2(T) with hx E L2(T), W(hx) E L1(T). Integrating by 
parts yields 

cp(v +h)- cp(v) ~ 1w (xhdx 
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so we conclude that (x E 8cp(v). Thus, we conclude that Ut(·, t) E 

-8cp( u( ·, t)) for each t E (0, T). It is clear that this relation holds for all 
t ~ T since 0 E -8cp(O). 

Note that Ut is a constant on each flat portion of u and its quantity 
depends on the length of the flat portion so is determined nonlocally. We 
also note that the flat portion (facet) instantaneously (spontaneously) 
formed when a0 = (30 . The speed of a(t),(3(t) at t = 0 is infinite in 
this case. By the way we note that the speed (3.2) at the facet can be 
formally obtained by integrating (2.3) on interval (a(t)- 0,(3(t) + 0) if 
one assumes the facet-stay-as-facet hypothesis (see [2],[48]). 

Our convergence theorems (Theorems 2.1, 2.4 and Remark 2.5 (i)) 
in partiular imply that such a solution u is obtained as a local uniform 
limit of the solution uc: of 

(A) 

with a smooth positive function ac: such that ac: ~ 28 as a weak conver­
gence of measures in (-K - 1, K + 1) as c ~ 0. (We may assume that 
ac:(P) = 1 for p with IPI ~ K + 2.) Moreover, u is the viscosity solution 
as shown in [19]. 
Example 2. We give another example of an equation that a facet is 
spontaneously formed. We consider 

(3.4) 

instead of (2.3) with Co > 0. For initial value u 0 we again consider w­
periodic function in R defined in Example 1. Our equation (3.4) is 
formulated as (2.9) by taking 'P of (2.8) by setting 

W(p) = coiPI + IPI 2 /2 for p with IPI ~ K + 1. 

In [47] H. Spohn solves the initial value problem for (3.4) with (3.1) 
by reducing it to the Stefan problem studied by [14] under a symmetry 
assumption 

(3.5) u0 (x- w/4) = u0 ( -x- w/4). 

Since his proposed solution is expressed by a different dependent vari­
able, it is a priori not clear that it is the solution in our sense. We shall 
recall his solution. Assume that u is of the form 

{ 
u(x, t) = h(t), 
u(O, t) = 0, 
Ux(x, t) > 0, 0 ~ x ~ a(t) 

w1 = w/4, 
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with some free boundary a(t) at least for small t > 0. By our symmetry 
assumption (3.5) it is natural to assume that u(x-w1, t) = u( -x-w1, t). 
Differentiate Ut = (W'(ux))x with W(p) = coiPI + IPI 2 /2 in x formally 
and set w = Ux to get 

(3.6) Wt = g(w)xx 

with g defined by 

g(w) = { co+w 
-co +w 

for w > 0, 
for w < 0. 

We set v = g(w) and observe that v(x, t) > c0 for x E [0, a(t)). As in [47] 
we postulate v and Vx is continuous accross x = a(t) and v(a(t), t) = c0 

for (small) t > 0. Since Ux = 0 on (a(t),2w1 - a(t)), it is natural to 
postulate 0 < v(x, t) < c0 for (a(t),wi) by symmetry. Here the case 
a 0 = {30 is also allowed. By (3.6) v satisfies 

(3.7) Vt = Vxx for X E (O,a(t)), 

(3.8) O=Vxx for xE(a(t),wi)· 

Since v(w1 , t) = 0 by symmetry, the equation (3.8) yields 

v(x, t) = eo(wl- x)/(wl- a(t)), x E (a(t),w1). 

By continuity assumption of Vx we have 

(3.9) vx(a(t)- 0, t) = -co/(w1 - a(t)) for (small) t > 0. 

Thus we obtain the Stefan type problem (3.7), (3.9) with v(a(t), t) = 

c0 . The boundary condition vx(O, t) = 0 is provided by the symmetry 
assumption of u0. If (v, a) satisfies these equations, u(x, t) for 0 < x < 
a(t) must satisfiy the heat equation. According to [14] this problem is 
solvable until a(t) becomes zero provided that A in u0 is C 3 in [0, a 0 ]. 

The free boundary a= a(t) is C 1 fort> 0 and continuous up tot= 0. 
Thus our u has the property that u E C([O, T), L2 (T)) and that u is 
absolutely continuous on [8, T- 8] for 8 > 0. To see that u is a solution 
of (3.4) in our variational sense it suffices to show that 

-2co 
Ut(X, t) = j3(t) _ a(t) 

= -(W'( +0)- W'( -0))/{the length of flat portion}, 
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for x E (a(t), (3(t)) and fortE (0, T) with 

T = sup{t; a(r) > 0 for T E [0, t)}, 

where (3(t) = 2w1 - a(t). In fact, as in Example 1 this speed relation 
together with Ut = Uxx for 0 ~ x ~ a(t) yields Ut E -8cp(u) for a.e. 
t E (0, T) by observing that for each t E (0, T) 

((x) = J::_"a (x- a)- co, a~ x ~ (3, { 
-ux, 0 ~ X ~ a, 

-Ux, (3 ~ X ~ W /2 

fulfills Ut = -(x and (x E 8cp(v) with v(x) = u(x,t), where we suppress 
t-dependence of a, (3 and (. (As in Example 1, we extend ( as an w­
periodic function in R.) 

Since for t ;:::: T we have u = 0 so (2.9) is clearly fulfilled for t ;:::: T. 
In other words it suffices to prove that 

(3.10) Ut(x, t) = -c0 /(w1 - a(t)), a(t) ~ x ~ f3(t). 

We integrate (3. 7) with respect to x E (0, a( s)) and then the time vari­
able s E (0, t). We observe that 

r(s) 

Jo Vxx(x, s)dx Vx (a( s) - 0, s) - 0 

-co/(wl- a(s)) 

by changing the order of integration and v(a(s), s) = ca. Thus from 
(3.7) it follows that 

r<o) r<t) t 
Jo (v(x,O)-co)dx= Jo (v(x,t)-ca)dx+co Jo (w1 -a(s))-1ds. 

Since u(a(t), t) = J0a(t)(v(x, t)- ca)dx, we have 

d d 1a(t) Co 
-d (u(a(t), t)) = -d (v(x, t)- ca)dx =- ( )" t t 0 w 1 - at 
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Since v(a(t), t) =eo so that ux(a(t), t) = 0, this implies (3.10). 
We thus conclude that Spohn's solution is the solution in our vari­

ational sense. Thus, again our convergence theorems (Theorem, 2.1, 
2.4 and Remark 2.5(i)) in paticular implies that such a solution u can 
be obtained as a local uniform limit of the solution of the approximate 
equation (A) if ae ---+ 2eo8 + 1 as c: ---+ 0. Moreover, it is the viscosity 
solution. Thus as noted in [21], [22] it can be approximated numerically 
by a crystalline algorithm. A similar remark also applies to Example 1. 

If u0 is concave in [O,w/2], u(x,t) is also concave in [O,w/2] for 
t E [0, T]. This can be proved by above approximation and the standard 
maximum principle. In this case our solution u of (3.4) is a subsolution of 
(2.3) on (0, w/2). Thus by a comparison theorem [19] u = 0 fort > T0 

with some To > 0 since the solution of (2.3) vanishes in finite time. 
In [47] this phenomena has been proved by a different method under 
the assmption that A" < 0 in [O,w/2]. In his situation a is monotone 
decreasing as shown in [47]. 

Appendix. 
tence 

Definition of viscosity solution and its exis-

We recall the definition of viscosity solution for (2.1) and the exis­
tence theorem for the reader's convenience [19], [21]. In the appendix 
we assume W E £ and F E F. Let n be an open interval. 

Definition A.l (P-faceted). A function f E C(n) is called faceted 
at Xo E f2 with slope p in f2 if f fulfills the following properties : there 
is a closed nontrivial finite interval I (c n) (called a faceted region) 
containing x0 such that f agrees with an affine function 

lp(x) = p(x- xo) + f(xo) 

in I and f(x) =1- lp(x) for all x E J \I with some neighborhood J( c n) 
of I. The length of I is denoted by L(f, x 0 ). For a discrete set Pin R a 
function f is called P-faceted at Xo in n iff is faceted at Xo in n with 
some slope p E P. 

Definition A.2 (Space of test functions). Let P be the set of jump 
discontinuities of W'. Let C~(n) be the set of all f E C2 (f!) such that 
f is P-faceted at xo in f2 whenever f' (xo) E P. For Q := (0, T) x f2 with 
T > 0 let Ap(Q) be the set of all function on Q of the form 

f(x) + g(t), f E C~(n), g E C1 (0, T). 
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Definition A.3 (Weighted curvature). Let P be the set of jump 
discontinuities of W'. Let Xo be a point in n. 

For f E C 2 (0) we set the value 

Aw(f)(xo) = W"(f'(xa))J"(xa) 

if f'(x0 ) ~ P, and 

Aw(f)(xo) = ~~~:::~~(f'(xo)) 
if J'(xo) E P and f is P-faceted at xa in 0. Here ~(p) = W'(p + 0)­
W'(p- 0) for pEP, and x(f, x0 ) is the transition number defined by 

{ 
x= +1 
x= -1 
x=O 

if f :2: lp in J, 
if f :S lp in J, 
otherwise 

for some neighborhood J of the faceted region I. 

Definition A.4 (Viscosity solution). A real valued continuous func-
tion u on Q = (0, T) X n is a viscosity subsolution of 

(1) Ut + F(ux, Aw(u)) = 0 in Q 

if 

(2) 1/;t(i, x) + F(1/Jx(t, x), Aw(1/;(t, ·), x)) :S 0 

whenever (1/;, (t, x)) E Ap(Q) x Q fullfills 

max(u-1/;) = (u-1/;)(t,x). 
Q 

A viscosity supersolution is defined by replacing max by min, and the 
inequality in (2) by the reverse one. If u is a sub- and supersolution, u 
is called a viscosity solution. 

Theorem A.5 (Existence [19]). Suppose that ua E C(R) is periodic 
with period w > 0. Then there exists a unique function u E C([O, T] x R) 
(for any T > 0) that satisfies 
(i) u is a viscosity solution of (1) in (0, T) x R; 
(ii)u(O, x) = ua(x) for x E R; 
(iii) u(t, x + w) = u(t, x) for (t, x) E [0, T) x R. 
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