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Behavior of Eigenfunctions 
near the Ideal Boundary of Hyperbolic Space 

Harold Donnelly 

Abstract. 

The spectrum of the Laplacian on hyperbolic space is a proper 
subset of the positive reals. We study eigenfunctions, defined on the 
complements of compact sets, whose eigenvalues lie below the bot­
tom of the spectrum. Such eigenfunctions may arise by perturbing 
the metric on compact subsets of the space. One divides the eigen­
functions by normalizing factors, so that the quotients have analytic 
boundary values on the ideal boundary at infinity. The renormalized 
eigenfunctions are approximated by special polynomials, in nontan­
gential approach regions to the ideal boundary. 

§1. Introduction 

In [6] and [7], the authors studied asymptotic behavior of eigenfunc­
tions, near infinity, for the Schrodinger operator - 2::~=1 82 I ax; + v 
in Rn. Let '1/J E L 2 (Rn) be a square integrable eigenfunction, of the 
Schrodinger operator, with eigenvalue >. < 0. If V decays rapidly, then 
a multiple, {/;(r, B)= '1/J(r, B)lh(r), was shown to have analytic boundary 
values A(B) on the sphere sn-1, compactifying Rn at infinity. A de­
tailed estimate was given for the asymptotic behavior of {/; near a zero 
of A. The two dimensional case was treated in [7], where applications 
were given to the structure of the nodal set of '1/J. If n > 2, no such 
development seems feasible, as discussed in [6]. 

The present work gives analogous results for eigenfunctions of the 
Laplacian b. on hyperbolic space Hn. One assumes that b.¢ = >.¢, with 
>. < (n- 1)2 14 outside some compact subset. This reflects the fact 
[4], that the essential spectrum of b. is now [ ( n - 1 )2 I 4, oo). The case 
n = 2 was described in [3]. Here we proceed to generalize that work to 
arbitrary dimension n. 
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§2. Boundary values at infinity 

Let H be the simply connected, complete, hyperbolic space of di­
mension n :2: 2. That is, H has the Poincare metric of constant curvature 
-1. Fixing p E H, the exponential map exp : TpH ____, H is a diffeomor­
phism. We endow this manifold H with the corresponding geodesic polar 
coordinates. The metric is then given by 

(ds) 2 (dr) 2 + g2 (r)(dB) 2 , 

g(r) sinhr. 

Suppose that ro > 0 and set H(ro) = {x E H I r(x) > ro}. We 
consider eigenfunctions cjJ E L2 ( H ( r 0 )) of the Laplacian D., associated 
to the given Riemannian metric. Thus, one has D.¢ = >..¢. Our concern 
is with the behavior of cjJ as r ----> oo. Thus, we feel free to choose r0 

sufficiently large. The eigenfunction cjJ need not satisfy any constraints 
on the compact boundary of H(r0 ), where r(x) = r0 . 

It seems natural to employ separation of variables. The spherical 
harmonics Yk,j (B), for k :2: 0 and 1 :S: j :S: q( k), form a complete orthonor­
mal basis for L 2 (sn-1 ). Each Yk,j(B) belongs to a q(k)-dimensional 
eigenspace of the spherical Laplacian, with corresponding eigenvalue )...k· 

One may expand 

00 q(k) 

cjJ(r, B)= .2::.2:: cPk,J(r)Yk,J(B). 
k=O j=l 

A computation using the local defining formula for D. gives 

00 q(k) 

D.¢= .2::.2:: b.kcPk,J(r)Yk,J(B), 
k=Oj=l 

where 
I 

b.kcPk,j = -c/J%,j- (n- 1)~ cP~,j + Akg-2 c/Jk,j· 

Here the 1 denotes differentiation in r. Thus cPk,jEL2 ((r0 , oo ), gn- 1 (r)dr). 
So D. is decomposed as a direct sum of the operators D.k, with multi­
plicity q(k). 

Now D.k is unitarily equivalent to Dk = g(n-l)/2 D.kg(l-n)/2 acting 
on L2 ((r0 ,oo), dr). A calculation yields 
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Here 1'(r) = ((n-1)/2)!" +((n-1)/2) 2 (!') 2 , with g = ef. In particular 
1'(r) = ((n- 1)/2)2 + O(e- 2r). 

Set (/;k,j = g(n-l)/ 2¢k,j· Since ,6.¢ =>..¢,one has the corresponding 

equation Dk(/;k,j = >..(/;k,j· Therefore 

(2.1) 

The potential term 1'(r)-)... + Akg-2 decays rapidly to ((n -1)/2)2- >... 
The hypothesis (/;k,j E L 2 ((ro,oo),dr) and the method of asymptotic 
integrations [5, pp. 370-384] give 

Lemma 2.2. The equation (2.1) has square integrable solutions on 
(r0 , oo) if and only if E = (n -1)2 /4-)... is positive. When E > 0, there 
is a one-dimensional space of square integrable solutions. Moreover, any 
non-zero L 2 solution satisfies, for r large, 

-:i. b -VEr -:i. I ;r:;E b -VEr 'f'k,j rv k,je ' 'f'k,j rv -y I'J k,je . 

Here ""' means that the ratio approaches one as r _, oo. The constant 
bk,j is not zero. 

Assume E > 0, and let hk be a solution of (2.1). Suppose hk lies 
inside the one-dimensional space of square integrable solutions, as spec­
ified in Lemma 2.2. If hk(rl) > 0 for some r 1 > r0 , then hk(r) > 0 
for all r ~ r 1. Otherwise, let r 2 > r 1 be the first zero of hk. Clearly, 
-I 
hk(r2 ) :::; 0. By the uniqueness theorem, for second order ordinary dif-_, -

ferential equations, this forces hk(r2 ) < 0. Since hk E L 2 ((r0 , oo), dr), 
the function hk must have a negative minimum r3 > r 2 • However, if 
r0 is sufficiently large, then the potential term 1'(r) -)... + >..kg-2 > 0 
for all r ~ r 0 . Consequently, solutions to (2.1) cannot have negative 
local interior minimums. This contradiction shows that hk(r) > 0 for 
all r ~ r1. 

Now we fix r1 > ro. Define hk E L 2 ( ( ro, oo), dr) by requiring hk to 
satisfy (2.1) and the normalization hk(rl) = 1. The remarks above show 
that this defines hk uniquely. Moreover "¢k,j(r) = (/;k,jh)hk(r), since 

both (/;k,j and hk lie in the one-dimensional space of solutions, specified 
by Lemma 2.2. If(/;= cpg(n-l)/2 , we may write 

00 q(k) 

(2.3) (/;(r,B) = LL¢k,j(rl)hk(r)Yk,j(B). 
k=Oj=l 

The function ¢(r, B) is analytic because (,6. - >..)¢ = 0 and the elliptic 
operator ,6.- >.. has analytic coefficients [8, p. 178]. By Proposition 4.5 
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of the appendix, we may write 

(2.4) 

for positive constants c1 and c2 . Recall that the eigenvalues of the spher­
ical Laplacian satisfy >..k = O(k2 ). 

It is also necessary to control the dependence of the hk upon k. This 
is provided by 

Lemma 2.5. For all k, one has 0 < hk(r) :::; h0 (r), whenever 
r 2 r1. 

Proof. We have already shown that hk(r) > 0. The difference 
ak = h0 - hk satisfies, since >..0 = 0, 

" 2--ak + ['Y(r) - >..]ak ->.kg- hk = 0, 

ak(r1) = 0. 

If ak is ever negative, then, since ak E L 2 ((r0 , oo), dr), the function 
ak must have a negative minimum. At such a local minimum, the dif­
ferential equation for ak cannot hold. This contradiction proves the 
lemma. D 

One now has the necessary preparations to study the asymptotic 
A - --1 

behavior of eigenfunctions. Set ¢(r,O) = ¢(r,O)h0 (r), or equivalently, 

(/J(r, 0) = g(n- 1)12 (r )¢(r, O)h~ 1 (r ). The central result of this section is 

Theorem 2.6. As r--> oo, one has (/J(r, 0) --> A(O), uniformly in 
0. The function A( 0) is real analytic. 

Proof. By (2.4) and Lemma 2.5, we have l¢k,j(r)l = l¢k,j(rl)ihk(r) 
:::; c1e-c2 A ho(r). Now 

00 q(k) 

(/J(r, 0) = 2:: 2:¢k,j(r)h~ 1 (r)Yk,j(O). 
k=Oj=1 

- --1 
Lemma 2.2 guarantees that Ak,j = limr--+oo ¢k,jho exists. The given 

bound on the functions ¢k,j allows one to interchange the limit in r 
with the infinite sum in j. Note that IIYk,Jib = 1, and thus IIYk,JIIoo :::; 

c3 >..~n--:- 2)/4 , by standard elliptic theory. Moreover, the multiplicity q(k) = 

O(>..~n-2)/2). D 



Behavior of Eigenfunctions near the Ideal Boundary 19 

Thus, one has 

CX) q(k) 

A( B) = lim ¢(r, B) = "'"' Ak 1·Yk 1·(B). 
T-*00 ~~ ' ' 

k=Oj=1 

The estimate IAk,j I :::; c1e-c2 VX"k and Proposition 4.2 show that A is real 
analytic. 

If cPk,j is not identically zero, Lemma 2.2 guarantees that Ak,j i 0. 
In particular, A( B) is not the zero function. We also have the expected 

o f. A f. 
Corollary 2. 7. For any 12, hmr--+= 'V 8 cjJ(r, B) = 'V 8 A, where 'V e 

denotes the covariant derivative of sn-1 with its standard metric. 

Proof. The rapid decay l¢k,j(r)lh~ 1 (r):::; c 1 e-c2 ~", and standard 
elliptic estimates for the derivatives of eigenfunctions, allow one to write 

CX) q(k) 

'V~¢(r, B)= L L¢k,j(r)h~ 1 (r)'V~Yk,j(B). 
k=Oj=1 

For the same reasons, one may interchange the sum in j and the limit 
in r, to get 

D 

It is also useful to estimate the rate of convergence in Corollary 2.7. 
In this direction, there are constants Be, so that 

Proposition 2.8. For r > r 1, I'V~A- 'V~¢(r, B) I :::; Bp_e- 2r. 

A - --1 
Proof. Set cPk,j = cPk,j h0 , the coefficient of Yk,j (B) in the spherical 

A A -/ - - -1 --2 
harmonic expansion for c/J. Then c/J~,j = [cPk,jho - cPk,jh0 ]h0 . Define 

-2 A -/ - - -/ 

Wk,j = h0 c/J~,j = cPk,jho - cPk,jh0 . By equation (2.1), we deduce that 

w~,j = Akg- 2"¢k,jho. D 

Now the functions ¢k,j and ho are both of order e-v'Er, according 
to Lemma 2.2. Moreover, g-2 = O(e- 2r). So we may integrate up to 
infinity, yielding 
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Note that limx->oo Wk,j(x) = 0, by Lemma 2.2. 
Recalling the definition of wk,j gives 

¢~,j(x) = -h;;2(x) 1 00 >..kg-2(y)Cfik,j(y)ho(y)dy. 

By Lemma 2.5, 1¢k,j(Y)I = ICfik,j(rl)hk(Y)I ~ Cfik,j(rl)ho(y). So 

1¢~,j(x)l ~ h;;2(x) 1 00 >..kg-2 (y)h~(y)dy1Cfik,j(rl)l. 

Using Lemma 2.2, ho(Y) rv boe-VEr. Thus one has 

Now from (2.4) 

l¢~,j(x)l ~ C51oo g-2(y)dy e-cav'Ak. 

By definition g (y) = sinh y. Therefore 

(2.9) 

The estimate (2.9) is quite appropriate for our present purpose. In 
fact 

00 q(k) 

£ r """ """ A £ (2.10) V' 0 A(8)- Y' ecf>(r, 8) = L...- L...-(Ak,j -1>k,j(r))Y' 0Yk,J(8). 
k=Oj=l 

Since Ak,j = limr->oo ¢k,j(r), we have 

Ak,j- ¢k,j(r) = 100 ¢~,j(x)dx. 

The estimate (2.9) guarantees that the integral converges and also yields 

IAk,j- ¢k,j(r)l ~ cse-cav'Ake-2r. 

Returning to (2.10), one finds that 

00 q(k) 

IY'~A- Y'~¢(r, 8)1 ~ L L Cse-cav'XkiY'~Yk,j(8)le-2r. 
k=Oj=l 

Proposition 2.8 follows easily. 
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§3. Asymptotic estimate 

We proceed to obtain more detailed information concerning the con­
vergence of ¢(r, B) to A( B) as r----> oo. The first step is to derive a basic 
integral equation satisfied by ¢(r, B). This leads to an iterative scheme 
for developing ¢(r, B) in terms of A( B). Near the zeroes of A, ¢may be 
approximated by certain polynomials. The order of these polynomials 
coincides with the order of vanishing of A. 

Recall that 1)(r, B)= ¢(r, B)gCn- 1 )12 (r) and¢ is an eigenfunction of 
the hyperbolic Laplacian with eigenvalue .A. It follows that 1) satisfies 
the partial differential equation 

(3.1) 

Here l:J.e is the Laplacian on sn- 1 . In fact, (3.1) follows by summing the 
equations (2.1). Alternatively, one derives (3.1) directly from the local 
coordinate formula for the Laplacian l:J.. 

The basic idea is to convert the partial differential equation for 1) 
into an integral equation for ¢(r,B) = 1)(r,B)/h0 (r). We may write 

Proposition 3.2. If s > r > ro, then 

A ---1 - - - - --2 
Proof. One has 8¢/8r=8/8r(¢ h0 )=(8¢/8r)ho- ¢(8ho/8r)h0 . 

-2 A - - - -

Set H = h0 8¢/8r = (8¢/8r)ho - ¢(8h0 /8r). Then, using equations 
(2.1) and (3.1), we find 8Hj8r = h0 821)j8r2 -1)82h0 /8r2 = g-2 t:..e¢h0 . 

-2 A 

So 8Hj8r = g- 2 h0 l:J.e¢. D 

By Proposition 2.8, lt:..e¢1 is uniformly bounded in both r and B. 
Also, g-2 = O(e- 2r) and h0 = O(e-v'Er), from Lemma 2.2. So we may 
integrate up to infinity, yielding 

Note that H = (81>/8r)h0 -¢(8h0 j8r) approaches zero as r----> oo. In 

fact, both 1) and h0 are of order e-VEr, by Lemma 2.2 and Theorem 
2.6. Equations (2.1) and (3.1) may be integrated to verify that 81>/8r 
and 8h0 j8r are bounded. 
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The definition of H now yields 

a¢ --2 1= -2 2 , 
or (x, 8) = -ho (x) X ho(y)g- (y)~o</J(y, 8)dy. 

Proposition 3.2 follows by integrating this equation between r and s. 
We now let s--+ oo in Proposition 3.2. Note that h0 (r) ,...., b0 e-v!Er 

from Lemma 2.2. Moreover, the function g-2 (r) = O(e- 2r) and l~o¢1 
is bounded by Proposition 2.8. By Theorem 2.6 and the dominated 
convergence theorem, 

Let T denote the integral-differential operator defined by 

The domain ofT consists offunctions where l~ofl is bounded, uniformly 
in y and 8. 

We may write 
¢(r, 8) = A( 8) + T¢(r, 8). 

Substituting¢= A+ T¢ in the right hand side gives 

Iterating any finite number of times yields, for any positive integer m, 

m 

Jy = LTiA+Tm(¢- A). 
j=O 

Proposition 2.8 and the dominated convergence theorem guarantee that 
we always remain within the domain of T. 

An elementary calculation using Proposition 2.8 yields 

For this computation we use the familiar estimates h0 (r) ,...., b0 e-VEr and 
g(r) = O(e-2r), as noted repeatedly above. 

So, with arbitrary m, we have 

m 

(3.3) ¢(r,8) = LTiA(r,8)+0(e-2(m+l)r). 
j=O 



Behavior of Eigenfunctions near the Ideal Boundary 23 

The function A( B) is analytic and therefore has zeroes of finite order. 
We use (3.3) to investigate the behavior of¢ near an m'th order zero 
of A. Choosing a coordinate system centered at this zero, we have 
A( B)= Am(B) + O(fBfm+l ), where Am is a non-zero polynomial of order 
m. We may denote Am(B) = LiLI=maL(}L + O(fBfm+1 ). Here L = 
(£1,£2, ... ,en-1) is a multi-index of total length ILl = e1 + £2 + ... + 
Rn-1, with each ei being a non-negative integer, and furthermore (JL = 
(}£1 (}£2 ... (}P.n -1 

1 2 n-1 · 
To compute the spherical Laplacian b.e, it is convenient to employ 

normal coordinates for the standard metric on sn-1 . A result of Cart an 
[1] gives gij = 8ij + O(fBf 2 ), and thus 

where aij = O(fBf 2 ) and bi = O(fBI). 
To isolate the dominant contributions for the asymptotic expansion 

of ¢, it is convenient to define Doe = - 2:~::/ 8 2 I 8(};. There is a corre­
sponding integral-differential operator T f = 2:~;:11 Td, where 

- 100 --2 100 -2 -2 82 f Td =- h0 (x) h0 (y)g (y) 802 (y, B)dydx. 
r x , 

Our asymptotic estimate of /jy(r, B) will be valid in the region He = 
{(r, B) I fBI < ce-r, r > r2}, for any given c > 0 and r2 > ro, large 
enough. Suppose that B is an analytic function of(} satisfying B(B) = 
O(fBfP) for some p. If j ;:::: 0, then the definition ofT and Lemma 2.2 give 
T1 B = O(e-pr) in He. The point is that each application ofT involves 
at most two {}-derivatives, but the double integration in r contributes a 

factor e-2r. Similarly, one may bound rJ B = O(e-pr). Since b.e- b.e = 
Eaij82 I 8(}i8(}j + Ebi8 I 8(}i, with aij = O(IBI 2 ) and bi = O(IBI), we see that 
(T- T)1 B = O(e-(P+2j)r). Combining these observations with formula 
(3.3), where m is the order of vanishing of A, yields 

m 

J = L:rJ Am+ O(e-(m+l)r). 
j=O 

Since Am is a polynomial of total order m, in (}, and each Ti involves 
two derivatives in Bi, we have 
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00 

¢ 2:.:1'1 Am+ O(e-(m+1)r) 
j=O 

00 

2:.: 
j=O 

Thus 

(3.4) ¢ "' ~ "' j! 0 aL 0 0 · I· I ... · ' 
ILI=m j=O Jl+h+·+Jn-l=j J 1.J2· Jn- 1 · 

x(yJ,1 8e1)(1'!,2ee2) ... (TJn-1 8en-1) + O(e-(m+1)r) 1 1 2 2 n-1 n-1 · 

It remains to evaluate the individual expressions r~' e;', for fixed i. 
For this purpose, we need the following improvement of Lemma 2.2: 

Lemma 3.5. h0 (r) = b0 e-.JEr + O(e-(VE+2)r). 

Proof. Lemma 2.2 gives h0 (r) "' b0 e-.JEr. Consider the ratio 

u(r) = ho(r)/e-.JEr = h0 (r)eVEr. Then u' = (h~ +VB ho)e.JEr. 
Set w(r) = u'(r)e-2 -JEr = e-VEr(Ji~ + VB h0 ). Differentiating this 

gives the formula w' = (h~- Eh0 )e-.JEr = ( -E + '"Y- >..)h0 e-.JEr = 
('"'!- (n- 1) 2 /4)h0 e-.JEr. Here we used equation (2.1), with k = 
0, and the definition E = ( n - 1 )2 /4 - >... Integrating up to infin­

ity yields w(x) = - fx00 ('"Y(y)- (n- 1)2 /4)h0 (y)e-VEYdy. Note that 

w---'> 0 as r---'> oo, since w(r) = (h~ +VB ho)e-.JEr = O(e-2-JEr), by 

Lemma 2.2. Moreover, the definition of w gives u'(x) = w(x)e2VEx = 

-e2VEx fx00 ('"Y(y)- (n -1) 2 /4)h0 (y)e-VEYdy. Integrating up to infinity 
yields 

_ 100 100
( (n-1)2)_ u(r)- bo = r e2.JEx x '"'f(Y)- 4 ho(y)e-VEYdydx. 

Now '"Y(Y)- (n-1) 2 /4 = O(e- 2Y). The integral then converges by Lemma 
2.2. A calculation gives u(r) - b0 = 0( e-2r). Lemma 3.5 follows after 

multiplying by e-VEr. D 
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Suppose £ = ei ;:::: 2 is any integer. Clearly 

Using Lemma 3.5 and the elementary estimate g(r) = er(1 + O(e-2r))/2 
implies 

An argument by mathematical induction gives 

Lemma 3.6. Fork ::; [£/2], the greatest integer in f/2, 

If k > [£/2], then T~ ef = o. 

Proof. Suppose the required formula has been established for a 
given value k- 1 with k::; [£/2]. Then 

-k £ - -k-1 £ ( -1)k-1 krr-1 (7; -1 
Ti()i(r,e)=Ti(Ti ()i)(r,e)= (k- 1)! s=

1
(vE+s) 

x £! (1= -h-2(x) 1= h2(y)g-2(y)e-2(k-1)y 
(£-2k+2)! r 0 x 0 

x (1 + O(e-2Y) )dydx) (£- 2k + 2)(£- 2k + 1)ef-2k. 

Using Lemma 3.5 and g(r) = (1/2)er(1 + O(e-2r)) yields 

-k £ (-1)k k-1 -1 £! £-2k 
Ti()i(r,e) = (k-1)!}] (viE+s) (£-2k)! ()i 

X 1= e2VEx(l + O(e-2x)) 1= e-2VEy 

x 4e-2Ye-2(k-1)Y(1 + O(e- 2Y))dydx. 

The integral is easily calculated, which completes the induction. D 
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Define polynomials of x = ( x1, x2, ... , Xn- I) by 

2: 
O:'Oj:'O(l/2)1£1 J1 +i2+···+Jn-l =j 

2 Ji :::;.ei 

Jn-1 n~l 

IT (vE+sn_I)-1 IT(xil'- 2j'. 

Sn-1=1 i=l 

Combining (3.4) and Lemma 3.6 gives our main result. 

Theorem 3.7. In the region He = {(r, B) I IBI < ce-r, r > r2}, 
for any given c > 0, one has 

J(r, B)= e-mr L aLPL(erB) + O(e-(m+l)r). 

ILI=m 

In the case of the hyperbolic plane, n = 2, Theorem 3.7 was proved 
m [3]. There one had a single polynomial Pm(x), with m distinct real 
zeroes. This led to a detailed analysis of the nodal structure of¢, near 
B = 0, and as r ---.> oo. For n > 2, a similar discussion does not appear 
feasible. The difficulty lies in the complicated structure of the zero 
set of polynomials of several variables and the related instability of the 
zero set under perturbation. Analogous problems arose in the earlier 
investigations [6] of Schrodinger operators in Rn, n > 2. 

§4. Appendix - Analyticity and expansion in spherical har­
monics 

Let sm denote the standard round m-dimensional sphere. The 
spherical harmonics Yk,j (B), for k 2: 0 and 1 ::; j ::; q(k ), form a 
complete orthonormal basis for L 2 (Sm). Each Yk,j(B) is obtained by 
restriction, to sm c Rm+l, of a homogeneous harmonic polynomial of 
degree k. The dimension of the space of degree k harmonic polynomi­
als is q(k) = O(km- 1 ). Moreover, the spherical harmonics Yk,j(B) are 
eigenfunctions of the spherical Laplacian, with corresponding eigenvalue 
Ak = O(k2 ). The reader may consult [1] for detailed proofs of these 
elementary results. 

Each f E L 2 ( sm) has a generalized Fourier series, with coefficients 
ak,j = fs= f(B)Yk,j(B). Iff E c=(sm), then ak,j = 0(>-.;;£) for any!!, 
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according to partial integration. Moreover, one has a uniformly conver­
gent expansion, as a consequence of standard elliptic theory, 

00 q(k) 

(4.1) f((}) = L .L>k,jYk,j((}). 
k=Oj=l 

This expansion may be repeatedly differentiated, term by term, to yield 
the expansion of any higher order derivative of f. 

The purpose of this appendix is to correlate the analyticity of f 
with the exponential decay of the ak,j, in their dependence upon k. 
This result is implicit in the much more elaborate developments of [6]. 
However, it seems worthwhile to present a simple elementary proof. We 
begin with 

Proposition 4.2. If lak,jl ::::;; c1e-c2 k, then the series of (4.1) 
converges to a real analytic function f. 

Proof. Since we normalized IIYk,j ll2 = 1, one has 
IIYk,j lloo ::::;; c3k(m-l)/2 by standard elliptic theory. The decay hypothesis, 
about ak,j, allows the extension of f to a function 

00 q(k) 

(4.3) u(r, (}) = L rk L ak,j Yk,j ( (}) 
k=O j=l 

on some neighborhood of the closure of the unit ball Bm+l in Rm+l. 
Since u is the uniform limit of harmonic functions, u is harmonic. The 
standard Laplacian D. of Rn is analytic hypoelliptic and thus u is ana­
lytic. It follows that the restriction f of u, to sm, is also analytic. D 

For the converse to Proposition 4.2, it is convenient to employ 

Lemma 4.4. Let u be a solution of the Dirichlet problem on 
B = Bm+t, with analytic boundary data f. Then u extends to a 
harmonic function on a neighborhood of the closure B. 

Proof. The Cauchy-Kovalevskya theorem provides a harmonic ex­
tension h off to a neighborhood of sm c Rm+t. Let X be a smooth 
cut-off function, equal to one near sm, and with support contained 
within the domain of definition of h. Clearly, u - xh = 0 on sm, and 
D.(u- xh) = g E C(f(B). If G is the Greens function of B, one conse­
quently has u- xh = Gg. The explicit formula for G, obtained by the 
method of images [2, p. 264], now shows that u extends harmonically 
past the boundary of B. D 

The converse to Proposition 4.2 is 
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Proposition 4.5. Iff is real analytic, then lak,j I :::; c1e-c2 k in 
the expansion ( 4.1) . 

Proof. Let u be the solution of the Dirichlet problem on Bm+l, 
with boundary data f. Since f is coo, the coefficients ak,j decay faster 
than any polynomial in k, as observed above. Thus the series in (4.3) 
converges for r :::; 1. By uniqueness in the Dirichlet problem, we have 
for r:::; 1, 

00 q(k) 

(4.6) u(r,O) = L rk Lak,jYk,j(O). 
k=O j=l 

By Lemma 4.4, we have for some 8 > 0 and r < 1 + 8, a uniformly 
convergent expansion 

00 q(k) 

u(r, 0) = L L ak,j(r)Yk,j(O). 
k=Oj=l 

Since u is harmonic, separation of variables shows that each ak,j(r) 
satisfies a second order ordinary differential equation. By the uniqueness 
theory for ordinary differential equations, (4.6) holds when r :::; 1 + 8. 
Taking the £ 2 norm gives 

Therefore lak,jl decays exponentially ink. D 
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