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§0. Introduction 

Let kG be the group algebra of a finite group G over a field k of 
characteristic p, where p is a prime. We denote the stable Auslander­
Reiten quiver (AR quiver for short) of kG by rs(kG). For the definition 
of an AR quiver, see [B]. It is known that each connected component r of 
rs(kG) has the uniquely determined tree class T. The AR component 
r is isomorphic as graphs to ZT j1r, where ZT is the graph obtained 
in a standard way from countably many copies of the tree T and 1r is 
a certain subgroup of Aut(ZT). Since the important paper by Webb 
[W] was published, many results concerning the tree classes have been 
obtained. (See [Be], [E3], [E4], [ES] and [01].) In the present paper, 
assuming that k is a perfect field, we determine all the tree classes, not 
the possibilities of them, completely. The following should be the final 
result in this nature. 

Theorem A. Let k be a perfect field. Then the tree class of a 
connected component ofrs(kG) is one of the following: An, A1,2, Aoo, 
Fh, Boo, D 00 , or A~. Moreover, each of the above in fact occurs. Fur­
~hermore, the following hold. Here D is a defect group of the block to 
which the modules in r belong. 

(i) Boo occurs only when D is dihedml. 
(ii) Doc occurs only when D is semidihedml. ([E3], [E4]) 
(iii) A~ occurs only when Dis dihedml or semidihedml. ([E3], [E4]) 
(iv) A1,2 or Fh occurs only when D is a four group. ([Be], [ES]) 

For the notation of the tree classes, we follow 2.30 of [B]. In partic-
ular, 

A- (2,2) B- (1,2) (2,1) 
1,2 : . ---t ·, 3 : . ---t • ---t . ---t ·, 
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(1,2) Boo : • ---t . ---t . ---t .. • • 
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Remark 1. Each of the possibilities in Theorem A occurs in the 
following case. 

(i) An occurs if and only if Dis cyclic. See [B]. 
(ii) A1 ,2 occurs for a four group with p = 2. See p. 180 of [B]. 
(iii) fh occurs for the alternating group on 4 letters with p = 2 if k 

does not contain a cube root of unity. Seep. 195 of [B]. 
(iv) An example of a B00-component is given in Section 4. 
( v) A~ occurs for dihedral groups of order greater than 4 with p = 2. 
(vi) Doo occurs for semidihedral groups with p = 2. 
Furthermore, the following are known. 
(vii) If the tree class is A~, then we have r ~ ZA~ unless D is a 

four group. (See [ES].) 

(viii) If k is algebraically closed, then one of An, A1 ,2 , A 00 , D00 , or 
A~ must occur. (See p.160 of [B].) 

(ix) If the modules in r are periodic, then its tree class is A 00 • 

(2.31.11 of [B]) 

Since Boo appears when we have a certain involutive automorphism 
of an A~ component, the block is tame in this case, too. However, it 
seems that no example of a B 00-component has been known so far, and 
this is the reason why we give an example here. From the results known 
so far, An is the only finite Dynkin tree class and A1,2 and B3 are only 
Euclidean tree classes. The rest are infinite Dynkin tree classes, and 
only A 00 , D00 , A~, Boo and C00 are possible. (See [B].) Hence, in order 
to prove Theorem A, it suffices to give an example of a B 00 -component 
and prove that C00 does not occur. In fact, we prove the following. 

Theorem 1. Let k be a perfect field. Then the following hold. 
(i) As a tree class of a component offs(kG), Coo does not occur. 
(ii) If B 00 occurs, then a defect group D of the block to which the 

modules in r belong is dihedral of order at least 8. 

On the vertices of modules, beginning with the result for p-groups 
in [E2], there are several developments [U2], [OU2] which were obtained 
by using the generalization of Green correspondence due to Kawata [K1] 
and the results on vertices of modules in the Auslander-Reiten sequences 
[U1], [OU1]. In this paper, we have the following, which would be also 
the final result for non-periodic components. 

Theorem B. Let k be a perfect field, and let r be a connected 
component of r s (kG). Suppose that it is not a tube. Then one of the 
following holds. 

(i) All the modules in r have vertices in common. 
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(ii) We can take T: X 1 -X2 -X3-· · ·-Xn - ... in r with r ~ ZT 
and vx(X1) < vx(X2) = vx(X3) = vx(X4) = · · · = vx(Xn) = .... 

(iii) p = 2, r = ZA~, and only two distinct vertices P and Q occur, 
with IP: Ql = 2. Moreover, one of the following holds. 

(iiia) Q is a dihedral group of order greater than 4, and the modules 
with vertex Q lie in a subquiver r Q such that both r Q and r \ r Q are 
isomorphic to ZAoo as graphs. 

(iiib) Q is a Kleinian four group and P is a dihedral group of order 
8, and the modules with vertex Q lie in two or four adjacent T-orbits. 

Moreover, each of the above possibilities in fact occurs. 

Remark 2. The above (i) and (ii) occur in many cases, (iiia) occurs 
for a dihedral 2-group. See (3.3) of [E1]. (iiib) occurs for a dihedral 
group D 8 of order 8 and the symmetric group 84 on 4 letters. The 
group algebra kD8 has an AR component satisfying (iiib) above with 
two adjacent r-orbits of modules having four group as vertex, and kS4 

has an AR component satisfying (iiib) above with four adjacent r-orbits 
of modules having four group as vertex. See also [E1] and V.3 of [E2]. 

Most parts of Theorem B have been proved in [ OU2]. More precisely, 
it has been shown there that there are only three possibilities (i), (ii) 
and (iii), of which (i) and (iii) are exactly the same as in Theorem B 
above. However, the part (ii) of the main theorem in [OU2] asserts that 
there are three possibilities, namely, 

(iia) vx(X1) < vx(X2) = vx(X3) = vx(X4) = · · · = vx(Xn) = ... , 
(iib) vx(X1) < vx(X2) = vx(X3) < vx(X4) = · · · = vx(Xn) = ... , 
(iic) vx(X!) = vx(X2) < vx(X3) = vx(X4) = · · · = vx(Xn) = ... . 
Thus, in order to prove Theorem B, it suffices to show that (iib) 

and (iic) above do not occur. More precisely, it suffices to prove the 
following. 

Theorem 2. In the situation of Theorem B, suppose that r ~ 
ZAoo. Then (i) or (ii) of Theorem B holds. 

The purpose of this paper is of course to prove Theorems 1 and 
2. For the both theorems, semidihedral groups play an important role. 
Thus, after giving some preliminary results in Section 1, we consider 
modules over dihedral and semidihedral groups in Section 2. The theo­
rems are proved in Section 3. Notation is standard. See [F] and [NT]. 
The Auslander-Reiten translate is denoted by T. For symmetric alge­
bras, T is the composite !12 of two Heller translates. For a non-projective 
indecomposable module M, the AR sequence terminating at M is de­
noted by A( M). 
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§ 1. Preliminaries 

In this section, we first consider automorphisms of an AR component 
r of r s (kG). The following is well known. 

Lemma 1.1. Let CY be an automorphism of the graph r which 
commutes with T. Suppose that CY has finite order. 

(i) If r ~ ZAoo, then CY is trivial. 
(ii) If r ~ ZDoo, then CY is trivial or interchanges the two modules 

in the end with the same predecessor. 
(iii) If r ~ ZA~, then CY is trivial or a reflection with respect to a 

certain T-orbit. 

Let k' be a finite Galois extension of k. Assume that every inde­
composable direct summand of M ®k k' for M E r is absolutely inde­
composable. The proof of the following can be found in 2.33.3 of [B]. 

Lemma 1.2. In the situation above, direct summands of M ®k k' 
for M E r belong to a finite set of connected components r 1, · · ·, r m of 
fs(k'G) and Gal(k' /k) acts transitively among the ri 's. In particular, 
ri 's are isomorphic to each other. 

Assume that r has tree class Boo or C00 • In view of Remark 1 (viii), 
we have another tree class for components of fs(k'G). When tensoring 
r with k'' we get the following tree classes. 

Lemma 1.3. In the situation of Lemma 1.2, the following hold. 
(i) If r ~ ZB00 , then ri ~ ZA~ for each i, and some element in 

Gal ( k' / k) stabilizes r i and gives a reflection with respect to a certain 
T-orbit. 

(ii) If r ~ ZCoo, then ri ~ ZDoo for each i, and some element in 
Gal(k' /k) stabilizes ri and interchanges its two ends. 

In [U2] the relationship between the tree classes of components of 
fs(kG) and fs(kN) for a normal subgroup N of G is investigated. 
There it is assumed that k is an algebraically closed field. However, 
those assertions hold in more general situation. One of the impor­
tant and crucial points in the argument is to introduce two indices 
a(M) and b(M) for an indecomposable N-projective kG-module M. 
They are defined by a(M) = dimkeE0 (V0 )jeJ(E0 (V0 )) and b(M) = 
dimkeEc(V0 )/eLc(V0 ), where V is an indecomposable N-source of 
M, Ec(V0 ) = EndkG(V0 ), Lc(V0 ) = J(EN(V))E0 (V0 ), and e is the 
idempotent of Ec(V0 ) with eV0 = M. However, we use only the fact 
that the multiplicities of direct summands can be described in terms of 



On the Auslander-Reiten quiver 359 

them. Thus, if EN(V)jJ(EN(V)) ~ k, then the same conclusions hold. 
On the other hand, if k is a perfect field, then a kG-module M is abso­
lutely indecomposable if and only if Endka(M)jJ(Endka(M)) ~ k by 
VII.6.9 of [HB]. Thus modifying the results in sections 2, 3 and 4 of [U2] 
in such a way, we can summarize them as follows. 

Lemma 1.4. Let N be a normal subgroup of G and A a connected 
component of r s ( kN). Suppose that k is a perfect field, all the modules 
in A are G-invariant absolutely indecomposable, and that all the arrows 
in A are multiplicity free. Let V be in A and M an indecomposable 
direct summand of V 0 . Let r be the connected component of r s (kG) 
containing M. Then one of the following holds. 

(i) All the modules in r are N -projective and r ~ A. 

(ii) r is isomorphic to ZAoo or a tube, that is ZA00 j (Tn). 

Proof. As remarked above, the arguments in sections 2, 3 and 4 
in [U2] can be still applied. In particular, if the modules in A(M) are 
N-projective, then the conclusions of 3.5, 3.7, 3.8 and 3.9 of [U2] yield 
(i). If some direct summand of modules in A(M) is not N-projective, 
then the arguments in 4.1 and 4.2 of [U2] almost give (ii). Here we 
say "almost" because in the proof of 4-.2 of [U2], only the Doo case is 
excluded in order to conclude that the tree class of r is A 00 • This works 
since we assume there that k is algebraically closed. However, in the 
present situation, we have to exclude also the case of B 00 , since this is 
the only remaining case where A(M) has an indecomposable (modulo 
projectives) middle term. Assume that M lies at the end of an AR 
component with tree class Boo. Then we have AR sequences 

A(M): 0--+ TM--+ X EB F--+ M--+ 0, and 

A( X) : 0 --+ T X --+ Y EB 2T M EB F' --+ X --+ 0, 

where X andY are non-projective indecomposable kG-modules and F 
and F' are projective or zero. Note that we are considering the case 
where X is not N-projective. Hence A(X)N splits and we have YN EB 
2b(M)TV ~ XN EB TXN modulo projectives. On the other hand, con­
sidering A(M)N, 2.6 of [U2] implies that XN ~ a(M)M(V) EB (b(M)­
a(M))(V EB TV) modulo projectives, where M(V) is the middle term 
of A(V). Since M(V) and M(TV) do not have TV as a direct sum­
mand and since modules in a B 00-component are not periodic, we have 
2b(M) ::;: 2(b(M) - a(M)). But this gives a(M) ::;: 0, a contradiction. 

Q.E.D. 
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§2. Modules over dihedral and semidihedral group algebras 

We first consider a semidihedral group G of order 2n. Here n 2: 4. 
For a filed k of characteristic 2, the group algebra kG is tame and r s(kG) 
has non-periodic components of type only of A~ and D00 • (See [E3].) 
Let A be a k-algebra generated by two elements a and b with the relations 

In [BD], Bondarenko and Drozd claim the following. Since we can not 
find a literature which describes an explicit isomorphism, we give it here. 

Lemma 2.1. Let k be a perfect field of characteristic 2 and G a 
semidihedral group of order 2n, where n 2: 4. Then we have a k-algebra 
isomorphism kGjsockG ~A. 

Proof. Write G = (x, ylx2n-l = y2 = 1, yxy = x-1+2n- 2
), and 

define u in kG by 

We also have 

(2) (uy- 1)(x -1) = u(yxy- 1)y- (x- 1) 

= u(x- 1)uy + (x- 1) = (x- 1)(u2y- 1). 

Let 

a= (uy- 1) + (x- 1)2n-l_3(y- 1), (3 = y- 1, and G = L g. 
gEG 

Then, (32 = 0. Moreover, a 2 = (x- 1)2n-l_2(y- 1), since we have 

(3) (uy -1)2 = (x- 1) 2n-l_l, 

(4) (uy- 1)(x- 1?n-l_3(y- 1) = G, 
(5) (x- 1) 2n-l_3(y- 1)(uy- 1) 

= G + (x- 1)2n-1_1 + (x- 1)2n-1_2(y- 1), 

(6) ((x- 1)2n-1_3(y- 1))2 = 0. 



On the Auslander~Reiten quiver 

(6) is easy to show. For (3), note that (uy) 2 is equal to 

u(yuy) = u((yxy -1)zn-2_1 + x) = u((x- 1)zn-2_1uzn-2_1 + x) 

= (x- 1)zn-2_1U2n-2 + UX 

= (x- 1)zn-2_1x2n-2 + (x- 1)zn-2_1x + xzn-2 

= (x- 1)zn-1_1 + 1. 

361 

The left hand side of (4) is equal to (x -1)2n-1- 4(uy -1)(x -1)(y -1) 

as (x -1)2n-
1

_ 4 is central in kG. Then (4) can be seen by using (2). (5) 
is proved by using (1) and the following. (We use also (3) above.) 

(y- 1)(uy- 1) = (uy- 1)(y- 1) + (yuy- u) 

= (u- 1)(y- 1) + (1- u2 )u-1 + (x- 1)2n-1. 

From a 2 = (x -1)2n-1_ 2(y- 1), we also obtain a 3 =G. 
Finally, we claim that j3(aj3)Zn-2_1 = a 2 +G. Note first that aj3 

equals to (uy- 1)(y- 1) = (u- 1)(y- 1). Thus, 

j3(aj3) = (y- 1)(u- 1)(y- 1) = (yuy- u)(y- 1) 

= (u- 1 - u)(y- 1) + G = (u2 - 1)u-1(y- 1) + G, 

and by using induction, we obtain 

Now by (1) we have 

j3(aj3)zn-2_1 = (x- 1)zn-1_zu-zn-2+1(y- 1) = (x- 1)zn-1_zx(y- 1) 

= (x- 1)2n-1_2(y- 1) + G = a 2 +G. 

Since a= uy- 1 = (u- 1) + (y- 1) = (x- 1) + (y- 1) modulo 
(J(kG)) 2 , the two elements a and j3 generate kG. Note also that sockG 

is generated by Gover k. Define a map r.p: A___, kGjsockG by r.p(a) = 
a+ sockG and r.p(b) = j3 + sockG. Then, the above computations show 
that r.p is a well defined k-algebra isomorphism. Q.E.D. 

If [k[ 2: 3, Crawley-Boevey gives a description of indecomposable A­
modules in [CB]. Thus it gives a classification of indecomposable modules 
over semidihedral group algebras. We now give the following remark. 
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Lemma 2.2. Let k be a perfect field of characteristic 2 and G a 
semidihedral group of order 2n, where n 2:: 4. Then all the non-periodic 
indecomposable kG-modules are absolutely indecomposable. 

Proof. Since k is perfect, by VII.6.9 of [HB], it suffices to prove 
that M ®k k' is indecomposable for any indecomposable kG-module M 
and any extension k' of k. In the classification of indecomposable kG­
modules in [CB], it is required that k has at least 3 elements. However, if 
this is the case, then the classification is exactly the same in all the cases. 
Hence, if lkl 2:: 3, the assertion holds. Now suppose that k = GF(2). 
Let k1 = GF(22), k2 = GF(23 ) and k3 = GF(26 ). Let M be an 
indecomposable kG-module. Let 

be decompositions of M ®k k1 and M ®k k2 into direct sums of indecom­
posable k1G-modules and k2G-modules, respectively. Then Mt, ... , Mr 
are Gal(kt/k)-conjugates and Mi, ... , M~ are Gal(k2/k)-conjugates. 
Here r is 1 or 2 and sis 1 or 3, since Gal(ktfk) and Gal(k2 /k) are cyclic 
of order 2 and 3, respectively. However, we know that Mi's and Mj's 
are absolutely indecomposable, and thus 

are both indecomposable direct sum decompositions of M ®k k3 . Hence, 
we have r = s = 1. Therefore, M ®k k1 is indecomposable, and it yields 
that M is absolutely indecomposable. Q.E.D. 

Remark 2.3. The assertions in Lemma 2.2 can be proved also in 
the case where G is a dihedral 2-group, by using the classification of 
indecomposable kG-modules. 

The following is a key result in this paper. 

Proposition 2.4. Let k be a perfect field, G a dihedral or semidi­
hedral 2-group, and a an automorphism of G sending each involution 
in G into its G-conjugate. Then every non-periodic indecomposable kG­
module is a-invariant. In particular, every non-periodic indecomposable 
module over a semidihedral group is invariant under any automorphism 
of the group. 

Proof. By Lemma 2.2 and Remark 2.3, we may assume that k 
is algebraically closed. Let M be a non-periodic indecomposable kG­
module. If G is a four group, the result holds clearly. We assume that 
IGI > 4. Thus M lies in a component isomorphic to ZA~ or ZD00 • 
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Consider first the case where M has at least two predecessors in the AR 
component. Take an indecomposable kG-module X and an irreducible 
map f : X ----> M. Suppose that f is surjective. If this is not the case, we 
take its dual. Let U be the kernel of f. We use the argument in 3.2 of 
[E4]. There exists a shifted subgroup H of order 2 such that UH is not 
projective. Let V = k~, the module induced from the trivial module of 
H. It is concluded that dimV ~ IGI/2 ~ dimU', where U' is u or nu. 
Moreover, it is shown that there is no monomorphism from U' to V or 
U' ~ V. Furthermore, in Case 1 (£.-5 on p.155 of [E4]) a contradiction 
is derived when it is assumed that there is no monomorphism from U' 
to V. Consequently, U ~ V holds and we have IGI/2 = dimV = dimU. 

Notice that kH is a subalgebra of kN for some elementary abelian 
subgroup N of order 4 in G. Any such an N is generated by the central 
involution and a non-central involution of G. Thus from the assumption 
on a, there exists g E G such that Hu = HY. Hence Vis a-invariant. Let 
h1 : V ----> vu be an isomorphism. Consider the following commutative 
diagram. Here, by 1.1 of [E4], either h1 or h11 lifts to a map between 
X and xu, and we may assume that h1 does. 

0 -------> V ______!!_____. X ~ M -------> 0 

Since a has finite order and since X and M are indecomposable, h3 must 
be an isomorphism by Fitting's lemma. 

Next consider the case where M lies at the end of a D 00-component. 
There are indecomposable modules X, Y, Z and irreducible maps f : 
X ----> M, f' : X ----> Y and f" : X ----> Z, where MandY have only 
one predecessor. We already know that X and Z are a-invariant by 
the above. Thus Mu is either M or Y. We prove that Mu ~ M by 
showing that dimM =f. dimY. By applying the argument in the first 
paragraph to the map f" : X ----> Z, we have IGI/2 = dimX- dimZ 
mod IGI. Moreover, considering A(M) and A(r-1 X), we have dimX = 
2dimM mod IGI and 2dimX = dimM +dimY +dimZ mod IGI. Hence 
dimM -dimY = IGI/2 mod IGI. Therefore, we have dimM =f. dimY as 
desired. Q.E.D. 

§3. Proof of Theorems 

We prove Theorem 2 first. 
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Proof of Theorem 2. By the very final remark in [OU2], we may 
assume that p = 2, and G is a 2-group. Moreover, it suffices to consider 
the case where vx(X1 ) = vx(X2 ) < vx(X3 ) = vx(X4) = ... in the 
notation of the theorem. If this is the case, then by Theorem B of [E2], 
G has a normal subgroup H with IG: HI = 2 and r8 (kH) has an AR 
component e isomorphic to ZD00 • Furthermore, the two ends in e 
are G-conjugate. Now, by Theorem 4 of [E4], H must be semidihedral. 
However, this is impossible by Proposition 2.4. Q.E.D. 

Proof of Theorem 1. Let k be the algebraic closure of k. Suppose 
that r 8 (kG) has an AR component r isomorphic to either ZB00 or ZCoo. 
Let D be a defect group of the block of G to which the modules in r 
belong. By Theorem B, all the modules have the same vertex Q. Let M 
be in r. Let r ~, · · ·, r r be connected components of r 8 (kG) containing 
indecomposable direct summands of M®kk. All the modules in ri have 
also vertex Q by III.4.14 of [F], and they belong to blocks whose defect 
group is D by III.9.10 of [F]. Now by Lemma 1.2, r/s are Gal(kjk) 
conjugate, and by Lemma 1.3, ri ~ ZA~ if r ~ ZB00 , and ri ~ ZDoo 
if r ~ ZC00 • Hence Dis either dihedral or semidihedral. ([E4]) We will 
show that r ~ ZB00 and D is dihedral. The proof consists of several 
lemmas. 

Lemma 3.1. We may assume that Q is normal in G. Moreover, 
Q is dihedral or semidihedral and we have ID: Ql ~ 2. 

Proof. By [Kl] there is a quiver monomorphism from r to a com­
ponent of r8 (kNa(Q)) which preserves vertices. In particular, M is 
mapped to its Green correspondent. Since ZB00 and ZC00 can not be 
a proper subquiver of any AR component of the stable AR quiver, the 
image of the monomorphism must be a connected component. More­
over, the Green correspondent of M lies in a block of Na(Q) whose 
defect group is also dihedral or semidihedral. Hence, it follows from the 
same argument as in the second paragraph of 4.2 in [E4] (p.158) that 
the kN0 (Q)-modules in the image lie in a block whose defect group is 
D. Thus, we may assume that Q is normal in G. The last statement 
holds since Q is a non-cyclic normal subgroup of D. Q.E.D. 

Let V be a Q-source of M and e the AR component of r8 (kQ) 
containing V. Let N be the set of elements in G those which induce 
automorphisms of Q by conjugation sending each involution in Q into 
its Q-conjugate. 

Lemma 3.2. It follows that Q is a dihedral group of order at least 
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8, 8 ~ ZA~, 8 is G-invariant, and that any element in G \ N induces 
a reflection on 8. 

Proof. Recall that all the modules in r are Q-projective. If Q is 
a four group, then kQ has two T-orbits of non-periodic indecomposable 
modules. Thus r has only finitely many T-orbits, a contradiction. Thus 
Q is not a four group. By Lemma 3.1, we have IG: Nl :::; 2, and G = N 
if Q is semidihedral. Recall that every module in 8 is N-invariant by 
Proposition 2.4. Thus, if G = N, then it would follow from Lemma 1.4 
that r ~ 8 or r has tree class A:xo, a contradiction. Hence G -=/= N, 
and in particular, Q must be dihedral of order at least 8. This implies 
also that 8 ~ ZA~. ([E3]) Moreover, if all the modules in 8 are G­
invariant, or if N = Ia(8), the inertia group of 8 in G, then Lemma 
1.4 and [K2] derive a contradiction similarly. Thus, 8 is G-invariant but 
some modules in 8 are not G-invariant. This means that every element 
in G \ N induces a reflection on 8 by Lemma 1.1. Q.E.D. 

Let H = QCa(Q). Then His a normal subgroup of G contained in 
N. Let X be an indecomposable kH-module such that M is isomorphic 
to a direct summand of X 0 and that the source of X is V, and let A be 
a connected component of rs(kH) containing X. Moreover, let b be a 
block of kH containing X. 

Lemma 3.3. It follows that A ~ 8 ~ ZA~. Moreover, b ~ 
kQ Q<)k A, where A is the full matrix ring over some finite extension field 
of k. In particular, Q is a defect group of b. Furthermore, we may 
assume that b is G-invariant. 

Proof. Again by Lemma 1.4, A ~ 8 ~ ZA~ and all the modules 
in A are Q-projective. The results follow from the argument in the proof 
of 4.1 of [E4]. The last statement holds by [K2]. Q.E.D. 

We fix an isomorphism b ~ kQ ®k A in Lemma 3.3 and identify 
these two algebras. Let S be the unique (up to isomorphisms) simple 
A-module. Then, since b is G-invariant, so is S. Moreover, by Lemma 
3.3, there is an equivalence between modkQ and modb, by which a kQ­
module U corresponds to U ®k S. Let A ®k k = EBiAi be the decompo­
sition into a direct sum of simple algebras over k. Accordingly, we have 
S ®k k = EBiSi and b ®k k ~ kQ ®k (A ®k k) = EBi(kQ ®I; Ai), where Si 

is a simple Ai-module. For each i, let bi = kQ ®k Ai. Then bi is a block 

of kH and its defect group is Q by III. 9.10 of [F]. Moreover, there is 
also an equivalence between mod kQ and modbi, by which a kQ-module 
W corresponds to W ®k Si. Let U be a kQ-module and suppose that 
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the b-module U ®k S lies in A. Since U is not periodic, U ®k k is inde­
composable by Remark 2.3. Hence tensoring the modules in A with k, 
the AR component A decomposes into a disjoint union UiAi. Here Ai 
is an AR component ofrs(kH) and isomorphic to ZA~ by Lemma 3.3. 

Write X ®k k = EE\Xi, where Xi is the direct summand belonging to bi. 
Then Xi lies in Ai. There is an indecomposable direct summand M 1 of 
M ®k k such that M 1 ~ Xf. Without loss of generality, we may assume 
that M 1 lies in r 1 . 

Lemma 3.4. It follows that D = Q, and the conclusions in The­
orem 1 hold. 

Proof. Suppose that D -=f. Q. Considering all the possibilities for Q 
and D, it follows that G = DN and DnN = Q. Since G/ His a 2-group, 
by V.5.15 and V.5.16 of [NT], we may assume that DH is the inertia 
group Ic(b1 ) of b1 in G. In particular, DH = Ic(AI). Without loss 
of generality, we may assume that Vis D-invariant, that is, an element 
of DH \ H induces a reflection on 8 with respect to the T-orbit of V. 
Then, X 1 is D-invariant from the above argument. In fact, we have 
Ic(X1 ) = DH. Now by 2.5 of [U2], the middle term of A(MI) has a 
direct summand whose vertex is D, a contradiction. Therefore, Q =D. 
Finally, we recall that, if a defect group is dihedral, then D 00 does not 
occur. Thus ri ~ ZA~ and we can conclude that r ~ ZBoo by Lemma 
1.3. Q.E.D. 

§4. Examples 

The following gives an example of a group G such that rs(kG) has 
a component isomorphic to ZB00 • It is due to the first author ([02]). 

Let k be a perfect field of characteristic 2 which does not contain 
a cube root of unity. Let n be an integer with n 2 3 and G a group 
generated by x, y , z and t with relations x2 = y 2 = z3 = t 2 = 1 and 

2n-1 2 
(xy) = 1, xz = zx, yz = zy, tx = yt, ty = xt, tz = z t. 

Then IGI = 2n+l3 and G has normal subgroups D = (x, y) and C = (z) 
with DnC = {1 }. Note that Dis a dihedral group of order 2n and Cis a 
cyclic group of order 3. Let H = D x C. Then G is a semidirect product 
of Hand (t). Let O" be a Galois automorphism such that O" interchanges 
the two cube roots of unity. Since k does not contain a cube root of unity, 
kG has the unique (up to isomorphisms) simple module T of dimension 
2. It is G-invariant, and since G/C is a 2-group, T can be extended to a 
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simple kG-moduleS. Moreover, it follows that T®k = T1 EBT2, where T1 
and T2 are non-isomorphic simple kG-modules with T[ = T2. However, 
S ® k is a simple kG-module, since Tf = T2 and (S ® k)c ~ T1 EB T2. 

Let X = (x- 1)kD/skD and Y = (y- 1)kDjskD, where s is 
the sum of all the elements in D. Then X and Y are non-projective 
indecomposable kD-modules and we have xt = Y and yt = X, but 
X and Y are invariant under the Galois actions. (See Remark 2.3.) 
It is known that X and Y lie in the same connected component of 
rs(kD) which is isomorphic to ZA~. (See [W] or [E2].) Now X ®-,;;T1 , 

Y ®-,;;T1, X ®-,;;T2 andY ®-,;;T2 are non-isomorphic indecomposable kH­
modules, and we have (X®-,;; Td = Y ®-,;; T2, (Y ®-,;; Td = X®-,;; T2, 
(X ®-,;;T1)a =X ®-,;;Tz and (Y ®-,;;T1)a = Y ®-,;;Tz. Of course, X ®-,;;T1 and 
Y®-,;;T1 lie in the same AR component 8 1 , and X®-,;;T2 and Y®-,;;T2 lie in 
the same AR component 8 2 . Both 8 1 and 8 2 are isomorphic to ZA~. 
Let Z1 = (X®-,;;TI) 0 = (Y®-,;;T2) 0 and Zz = (X®-,;;T2) 0 = (Y®-,;;T1) 0 . 

Then Z1 and Z2 are non-isomorphic indecomposable kG-modules, and 
we have Z'{ = Z2. Moreover, we have 8i = 8 2 and Z1 and Z2 lie in the 
same AR component r isomorphic to ZA~. 

Finally, we recall that O(k) ®-,;; Ti lies in 8i for i = 1, 2. Here O(k) 

is the Heller translate of the trivial kD-module k , i.e., the kernel of 
the projective cover of k. We have (O(k) ®-,;; Td = O(k) ®-,;; Tz and 

(O(k) ®-,;; T1)a = O(k) ®-,;; T2. Therefore (O(k) ®-,;; T1)0 lies in r and is 
u-invariant. Since Z'{ = Z2 and since Z1 and Z2 lie in r, from Lemmas 
1.1, 1.2 and 1.3, it follows that the tree class of the AR component 
containing O(S) must be B 00 • 
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