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The calculation of the character of Moonshine VOA 

Takeshi Kondo 

§1. Introduction 

In Miyamoto [M3], [M6] and Dong-Griess-Hohn [DGH], they de­
scribed the structure of the Moonshine VOA VQ by using two binary 
codes DQ, SQ and Ising models L(!, 0), L(!, !), L(!, 1~). 

The purpose of this note is to calculate the character of VQ and 
the Thompson series of two involutions of Monster Aut(VQ) (2A, 2B­
involutions of Monster) explicitly by following the descriptions of VQ in 
[M3J,[M6] and [DGHJ. As is well known (cf.[CN]), these are equal to 

j(z) - 744, ( ry(z) ) 24 + 212 (ry(2z)) 24 + 24, ( ry(z) ) 24 + 24 
ry(2z) ry(z) ry(2z) 

respectively, where j(z) is the well known elliptic modular function and 
ry(z) is Dedekind's ry-function. Also see a remark at the end of §4 for the 
calculations of Thompson series for some other elements. Finally, in §5, 
we will mention a little bit about VOA of "Reed Miiller type". 

§2. Ising models 

2.1. Virasoro Algebra 

An infinite dimensional Lie algebra Vir having a basis {L(m) (mE 
Z), c} is called Virasoro algebra if they satisfies 

m 3 -m 
[L(m), c] = 0, [L(m), L(n)J = (m- n)L(m + n) + 12 Om+n,oC. 

Let L(c, h) be an irreducible module of Vir with central charge 
c ( E C) and highest weight h ( E C). Namely, there exists a vector v E 
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L(c, h) such that L(n)v = 0 (n > 0), L(O)v = hv, cv = cv and L(c, h) 
is spanned by L( -n1)L( -n2) · · · L( -nr )v (n1 2:: n2 2:: · · · 2:: nr > 0 ). 

As is easily seen from the commutator relations between the L(n), 
L( -n1)L( -n2 ) • • · L( -nr )vis an eigenvector of L(O) with an eigenvalue 
h + n1 + n 2 + · · · + nr and so L( c, h) is a direct sum of eigenspaces V h+n 
of L(O) with eigenvalue h + n (0 ~ n E Z) :L(c, h) = EBn>o V h+n· 
Now define a q-series 

ch(L(c,h)) =~)dim Vh+n)qh+n. 
n~O 

This series is called the character of L(c, h). More generally, for a graded 
space U = EBnEQUn, a q-series ch(U) = I::nEQ(dim Un)qn is called the 
character of a graded space U. 

An important thing is that, if h = 0, L(c, 0) has a structure of 
VOA . Such VOA is called Virasoro VOA and is the most fundamental 
example of VOA. 

In the following, we will consider the case c = ~. 

2.2. Ising models 

2.2.1. Irreducible modules of L(~, 0). As f~r modules ofVOA £(~,0), 
the following is known: 

(2,1) Any modules of VOA L(~, 0) is completely reducible and 
VOA L(~, 0) has just three irreducible modules L(~,0), L(~,~ ), L(~, l6 ). 

(cf. [DMZ]) 
Let Tn be the tensor product L(~, 0) Q9 • • • Q9 L(~, 0) of n copies of 

L(!, 0). Then, by a general theory of VOA, 
(2,2) Tn has VOA-structure and any module of Tn is completely 

reducible. Also, T n has just 3n irreducible modules 

2.2.2. Characters of L(~, h). As for the characters of L(~, h) (h = 

0, ~ or 116 ), the followings are known: Let 

00 00 00 

q+ = II (1 + qn+!), q_ = II (1- qn+!), qo = II (1 + qn). 
n=O n=O n=1 

Then we have 
ch(L(~,0)) = ~(q+ + q_), ch(L(!, ~)) = ~(q+- q_), ch(L(~, 1~)) = 

1 
qw qo. 
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The characters of L( h1, h2, · · · , hn) = 0n L( ~,hi) is 

n 1 
ch(L(h1, h2, · · · , hn)) =IT ch(L(2, hi)). 

i=1 

Let ry(z) = qd'. IJ::=1 (1- qn) (q = exp(2niz)) be Dedekind's ry-function. 
Then it is clear that 

Also we have 

Furthermore, for the calculations of the character of some VOA, it 
is convenient to note 

j(z)l = 28 (ry(2z))16 + ( ry(z) )8' 
ry(z) ry(2z) 

where j(z) is the well known elliptic modular function. 
2.2.3. Fusion rules. Let An be the set of all irreducible modules of 

Tn = 0n L(~, 0) :An= {L(h1, h2, · · · , hn) I hi= 0, ~ or 116 }. 

Let a binary word o = (01, 02, · · · , On) E F2 of length n act on An as 
follows:For F2 3 o = ( 01, · · · , On) 

01 02 On 
L(h1 h2 · · · h ) ---7 L(h1 + - h2 + - · · · h + -). 

' ' 'n 2' 2' 'n 2 

Here the sum " hi + ¥" is defined as follows: 

These come from well known fusion rules of Ising models which are the 
most important in the theory of Framed VOA described in the next 
section. Note that every orbit of the action of F2 on An is the set of 
L(h1, h2, · · · , hn) which have hi= 1~ in the same position. 

§3. Framed VOA 

We will consider a simple VOA V = ffi~=O V n satisfying the following 
conditions: 

(3.1) dimV0 = 1, i.e. V 0 =< 1 > where 1 is the vacuum ofV, 
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(3.2) V contains Tn = ®nL(!,O) as a subVOA which has Virasoro 
element in common. 
Recently VOA of this type is called Framed VOA. Viewing V as a T n­

module, the complete reducibility (2,2) of Tn yields the decomposition 

V ~ E6(h1oh2 ,. •• ,hn)a(h1 ,h2 ,. •• ,hn)L(hb h2, · · · , hn) (as Tn-module) 

where the a(h1 ,h2 ,. •. ,hn) express multiplicity. This decomposition yields 
an isomorphism as graded space by the condition (3.2) and so we have 

00 

ch(V) = L(dimVn)qn = L 
n=O 

Thus, if we know the multiplicities a(h1 ,h2 ,. •• ,hn)• the character ofV can 
be written down immediately by using the characters of Ising models. 
Note that h1 +h2+· · ·+hn is a nonnegative integer, because the weights 
of VOA are integers. 

Now Miyamoto [M3], [M6] and Dong-Griess-Hohn [DGH] showed 
that the above decomposition of V has a "2-structure " described in 
terms of two binary even codes S and D which will be explained in the 
following. However we will mention just the results and the proofs of 
the statements will be omitted. For the proofs, we refer the readers to 
[M1], [M4], [M6] (or [DGH]) together with [DMJ. 

3.1. CodeS 

For h = (hi. h2, · · · , hn) (hi = 0,! or l6 ), we assign a binary word 
ii = (h~, h~, · · · , h~) E F2 as follows: 

hi - { 1 if hi = 1~ 
i- . 1 0 1fhi=Oor 2 . 

Thus a word ii shows positions in which the hi= 116 appear. Let 

S = {h I ah = a(h1 ,h2 ,. •• ,hn) =/= 0}. 

Then we have 
(3,1,1) S is a linear code. 
(3,1,2) S 3 a ===} 8jwt(a), i.e.the weight of every word of S is 

divisible by 8. 
(3,1,3) h = h' ===} ah = ah', i.e. the multiplicities a(h1, h2, · · · , hn) 

of two L(h1, h2, · · · , hn) coincide if 116 appear in the same positions. 
Therefore, gathering the L(hb h2, · · · , hn) with 116 in the same positions, 
we get the decomposition. 

(3,1,4) Vo:=ao:(E9f..=o:L(hi.h2,··· ,hn)), V=E9o:ESVo:. 
We will call this decomposition Tn-decomposition ofV. 
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3.2. CodeD 

In this subsection, we will consider the L(h1, h2, · · · , hn) with h.= 0. 
Thus we have hi = 0 or ~· For h = (h1, h2, · · · , hn) with h.= 0, assign 
a binary word (2h11 2h2, · · · , 2hn) E F2 and set 

Then we have 

Let 

(3,2,1) D is an even linear code and Dj_ ::) S , 
(3,2,2) h. = 0 ===} ah = 1. 

where 8 = ( 81.82, · · · , 8n)· 
Then we have 

(3,2,3) V 0 is a subVOA of V and the va (a E S) are irreducible 
modules of V 0 . 

3.3. The structure of va 

V 0 defined above is what is called Code VOA in a series of Miyamoto's 
papers [M2], [M4], [M5] and [M6]. In view of Miyamoto [M4], the mul­
tiplicities aa (a E S) are described as follows by using D, S, a: 

For a E S, set Da = {8 ED I supp(8) C supp(a)}. 
(3,3,1) Let Ha be a maximal selforthogonal subcode of Da. Then 

aa.= [Da: Ha]· 
Now consider the decomposition ya = aa(EBb.=aL(hl, h2, · · ·, hn)). 
Then what is the set of the L(h1, h2, · · · , hn) which appears in the 

righthandside? 
In order to examine this set, recall the action of F2 on An defined 

in §2.2.3. For a E S, we put 

and consider the action of D on An (a). Then we have that 
the set of {L(h1, h2, · · · , hn)} which appear in the above decomposi­

tion of va is equal to an orbit (with integral weight) of the action of D 
on An(a). 

Note that Da is one-point stabilizer of this action of D on An( a). 
Therefore, 

2n-wt(a) 

the number of orbits of the action of D on An(a)= [D: Da]. 
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Thus we see that the decomposition of a Framed VOA as Tn-module 

can be completely described by two binary codes D, Sand the choice of 
an orbit of the action of Don An(a) for each a E S. 

Remark. Now we are naturally led to a problem: 
When two binary codes D, S satisfying (3, 1, 2) and (3, 2, 1) are given, 

can we construct a VOA by choosing suitably an orbit (with integral 
weight) of the action of D on An(a) for each a E S? 

In [M5], [M6], Miyamoto showed that, under suitable conditions for 
D, S, Framed VOA can be constructed (for some such examples, see §5 
of this note) and, in particular, starting from two special binary codes 
DQ, SQ which are described in the next section, Moonshine VOA can be 
reconstructed. 

§4. Moonshine VOA 

Dong-Mason-Zhu [DMZ] showed that Moonshine VOA VQ con­
structed by Frenkel-Lepowsky-Meurman [FLM] satisfies the conditions 
(3.1), (3.2) in the beginning of the previous section for n = 48, and then 
Miyamoto [M3] and Dong-Greiss-Hohn [DGH] determined two codes 
D, S. In this section, these codes DQ, SQ for VQ will be described and 
the character of VQ will be calculated by using DQ, SQ. Also Thompson 
series for two involutions of Aut(VQ) will be calculated. 

4.1. Codes DQ, SQ 

Firstly we define two binary codes D#, S# of length 16. Let S# 
be a binary code generated by the following five words of length 16: 
(116), (1808), ((1404)2), ((1202)4), ((1.0)8) 

In coding theory, S# is known to be the 1st order Reed-Muller code 
RM(4, 1) of length 16. Let D# = (S#)J. =(orthogonal complement of 
s#). D# is known to be the 2nd order Reed-Muller code RM(4, 2). 

The code SQ is defined to be the set of words of length 48 which put 
three words of s# in order as follows: 

SQ is a (48, 7, 16)-binary code and its weight enumerator is 
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Finally let D~ = (S~).l. Then D~ is a (48,41,4)-binary code and when 
a word of D~ is written in the shape like (p1, p2, p3) (Pi E F~6 ), we have 

D~ 3 (Pb P2, P3)(Pi E F~6 ) (4.1.1) 
{=::=} Pi is an even word and P1 + P2 + P3 = 0 mod D#. 

These D~, S~ are codes for Moonshine VOA V~. 

4.2. T 48-decomposition of V~ 

The following table gives some datas which are necessary for the 
description of T4s-decomposition (3.1.4) of V~: 

wt(a) #of a IDil # of orbits multi., a01 

I 0 1 1 27 1 
II 16 3 jD#I=IHsl2 · 23 4 23 

III 24 120 1Hsl3. 26 2 26 

IV 32 3 jD#j2. 24= 1Hsl4. 21o 2 210 

v 48 1 ID~I=IHsl6. 217 1 217 

What the 1st and 2nd column of this table mean is clear. The 
most important .column is the 3rd one which gives the order of Di 
together with the structure of Di for each a E S~. For example, 
jD#j = 1Hsl2 · 23 in the 2nd row means that (D~)a ~ D# and (D~)a 
contains a direct sum of two copies of Hamming code H 8 as a maxi­
mal selforthogonal subcode which has the index 23 in (D~) 01 • This can 
be easily from §4.1, (4.1.1). The 4th column gives the number of orbits 

~ 2n-wt(a<) 
of the action of D on A4s(a)(= [D~:(Db)"']). The 5th column is the 
multiplicities(= ((D~)a : H01 ]) appearing in irreducible module (V~)a in 
T 48-decomposition (3.1.4) of V~ (cf. (3.3.1)). 

Now, for the description of T 48-decomposition of V~, it remains to 
choose an orbit of the action of D~ on A48 (a) for each a E S~. Consider 
the 2nd row, for example. The number of orbits is 4. As is easily 
seen, the representatives of each orbit (say, for a = (116 , 016 , 016)) are 
L((l)16 016 016) L((l)16 016 1015) L((l)16 1015 016) and 

16 ' ' ' 16 ' ' 2 ' 16 ' 2 ' ' 
L((l)16 1015 lo15) 

16 ' 2 '2 . 
The 2nd and the 3rd one is improper, because they have half-integral 
weight. The 1st one is also improper, because it has weight 1 but the 
Moonshine VOA V~ has no vector of weight 1. Thus we must choose 
the last one as a representative. This orbit is the set of all L(C16)16 , *, *) 
such that ! . appear odd times in each part of two *· 
For other rows of the above table, the orbit is uniquely determined by 
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"integral condition" of weight. Thus we have 

wt(a) a representative of orbit 

I 0 £(048) 

II 16 L(( l6 )16( ~015)( ~015)) 

III 24 L(U6)24(~o23)) 

IV 32 £((116)32016) 

v 48 £((116)48) 

4.3. The calculation of the the character 
Firstly let us remark about the character of Code VOA. 
Let D be a binary even code and Mv be a code VOA forD: 

lh 82 8n 
Mv = EBoEDL( 2' 2' · .. , 2) (8 = (81, 82, .. · , 8n)). 

Let Wv(x, y) = l:oED xn-wt(o)ywt(o) (the weight enumerator of D). 
Then the character of Mv is expressed as follows: 

1 1 1 
ch(Mv) = Wv(ch(L( 2 , 0)), ch(L(2, 2)) 

Using formulas of ch(L(~, 0)), and ch(LG, ~)) mentioned in §2.2.2 and 
MacWilliam's identity in coding theory, we have 

Let us begin the calculation of the character of VQ: 

VQ = EBaESb(VQ)"'. 

For that purpose, let us calculate ch((VQ)<>) since we know the T 48-

decomposition of (VQ)<> in §4.2. 

Case I where SQ 3 a is ofType I , i.e. a= (048): 
In this case, (VQ)<> ~ Mvb (code VOA) and so 

1 
ch((VQ)"') = 27 (qt8 + 3q~2q~6 + 120q~4q~4 + 3q~6q'-!_2 + q~8). 

Using a formula qoq+q- = 1 and Jacobi's formula 16q! qg = q~- qf!_, we 
get 
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Here we put the righthandside as Q I. 
Case II where S~ :1 a is ofType II, i.e. a= (1 16016016 ), (016116016) 

or (016016116). 
For simplicity of notations, let 

1 1 1 1 1 
X= ch(L( 2 ,o)), Y = ch(L( 2 , "2)), Z = ch(L(2, 16 )). 

Then we have 

2'z" (t, ( 2/~ 1 ) x"-("-'ly"-'Y 

23. !((X+ Y)16 _(X_ Y)16)2 z16 4 . 

Transforming this in the same way as Case I, we get 

ch((V~)a) = 23(214q3q68 + 28q2q64) = Qn. 

Calculating ch( (V~)<>) for a of Type I I I, TV, V similarly, we get 

ch((V~)a) 26(2llq3q68 + 3. 23q2q64) 

ch((V~)<>) = 210(27 q3q68 + q2q64) 
ch((V~)<>) = 217 q3q68 

Thus we have 

Qni for a of Type III, 
Q IV for a of Type IV, 
Qv for a of Type V. 

Finally using J·(z)~ = 28 ( 77 (2z))
16 + ( ry(z) )

8 we get 
' ry(z) ry(2z) ' 

!ch(V~) = j(z)- 744. 
q 

4.4. Thompson series of some involutions of Aut(V~) 
ForTE Aut(V~) (Monster), 
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is called Thompson series of 7. We will calculate Thompson series of 
some involutions of Aut(VQ). 

For each i (1 ::::; i ::::; 48), we define a linear transformation of VQ as 
follows: 

I(VQ)a _ (. )Id (. ) _ { -1 i E supp(a) 
7i - E z,a (V~)"' E z,a - 1 i tf_ supp(a) 

Then 7i is an automorphism (as VOA) of VQ (cf. [M1]). In the fol­
lowing, we will calculate Thompson series of 7 1 E Aut(VQ) (2A-involution) 
and 7 17 2 E Aut(VQ) (2B-involution). For each a E SQ, let 

{ 
-1 Ea = 1 

1 E supp(a) 
1 tf_ supp(a). 

QI+(-1+1+1)Qn+(1-1-1)Qiv-Qv+ ( L Ea) QIII· 

a:Type III 

But since the number of a of Type III with 1 E supp(a) is equal to the 
number of a of Type I I I with 1 tf_ supp( a), the last term is canceled 
and so we get 

= q ( 212 (7J(2z)) 24 + (~) 24 + 24) . 
ry(z) ry(2z) 

Thus Thompson series T71 (q) is equal to a modular function correspond­
ing to 2A-involution of Monster ( cf. [CN]). Next, let 

E' = { 1 1, 2 E supp(a) or 1, 2 tf_ supp(a) 
a -1 otherwise. 

QI+(1+1+1)Qn+(1+1+1)Qiv+Qv+ ( L E~) Qni· 
a:Typeiii 
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But since there exist 56 a of Type I I I with E~ == 1 and 64 a of Type I I I 
withE~= -1, we get 

qT.,-1 .,-2 (q) = QI + 3 · Qn + 3 · Qiv + Qv- 8 · Qni 

= (q+q-)24 + 24q = q ( ( 77(~;)) 24 + 24) . 

Thus Thompson series T.,-1 .,..2 ( q) is equal to a modular function corre­
sponding to 2B-involution of Monster (cf. [CN]). 

Remark. For some r E Aut(VQ) which come from Aut(DQ), it is 
possible to calculate Thompson series T.,..(q) explicitly. In fact, Miyamoto 
[M6] has done it for such 3-element of Aut(VQ) (which corresponds to 
3C-element of Monster and T.,..(q) = j(3z)~.) Also Sakuma [S], one of 
Miyamoto's graduate students, has written down T.,..(z) in terms of the 
characters of Ising models for such 5-element and 7-element which should 

be (.,.:WJ))6 + 6 and (.:WJ)) 4 + 49 · (~[~))4 + 4 respectively, although it 
is a little bit unsatisfactory for these identifications. 

§5. VOA of Reed Miiller type 

Form~ 4, let 
S(m) = RM(m, 1) (1st order Reed Muller code of length 2m) 
D(m) = S(m)l_ = RM(m,m- 2) ((m- 2)-th order Reed Miiller 

code of length 2m) 
(Note that S(4),D(4) is nothing but S#,D# respectively in §4.1). It is 
easy to see that 

(5,1) D(m), S(m) satisfy the conditions (3.1.2), (3.2.1) 
(5,2) Orbit of the action of D(m) on A2=(a) for each a E S(m) is 

uniquely determined under integral condition of weight. 
Furthermore, in view of Miyamoto's theory [M5], [M6], there exists VOA 
for D(m), S(m). We denote it by V(m). 

Remark. V(m) can be constructed as VOA over the real num­
ber field with a positive definite invariant form and then, if m ~ 6, 
Aut(V(m)) is a finite group (cf. [M6]). Form= 4, 5, we see V(4) = Es­
Lattice VOA and V(5) = E 16-Lattice VOA. As for the character of 

V(m), we can easily see that q- 2
";.;

1 ch(V(m)) is equal to j(z)~, j(z)~ 
and j(z)~ (j(z)- 992) form= 3, 4 and 5 respectively. 
More generally, it seems very likely 

q- 2
";.;

1 ch(V(m)) = j(z)~(a polynomial of j(z)) (p, = 1 ar 2). 
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But the author has not yet checked it. 
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