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§1. Introduction 

This paper is the first of the sequel of papers on the joint work 
of these authors on modular forms. We consider the problem of de­
termining finite index subgroups of the modular group SL(2, Z) whose 
ring of modular forms is isomorphic to a polynomial ring. First, in this 
paper, we consider this question for modular forms of integral weights. 
In subsequent papers, we will consider the problem for modular forms 
of half-integral weights, and more generally, of 1/l-integral weights. It 
turns out that the case of l = 5 is particularly interesting in connec­
tion with the classical work of F. Klein [9], as well as its analogy with 
the other two cases of l = 1 and l = 2, which are related to ternary 
and binary self-dual codes, respectively. In this first paper, we explain 
our overall motivation, and we prove the results only for the integral 
weight case. We remark that some preliminary announcements of some 
of the results given in the present paper have been made in two unofficial 
publications [2] and [17] written in Japanese. 

§2. Statement of Results 

Let r be a finite index subgroup of SL(2, Z). We denote by 9J1(r) 
the ring of modular forms of integral weights on the group r. It is well 
known that 

(1) 
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where E4 and E6 are the Eisenstein series of weights 4 and 6, respec­
tively. Since E4 and E 6 are algebraically independent, VJt(SL(2, Z)) is 
isomorphic to the polynomial ring in two variables. There are proper 
subgroups r of SL(2, Z) whose rings of modular forms of integral weights 
are isomorphic to polynomial rings. Note that, if a subgroup r has this 
property, then its ring of modular forms of integral weights is isomor­
phic to the polynomial ring in two variables. It is the purpose of the 
present paper to give a classification of such subgroups up to conjugacy 
in SL(2, Z). 

Theorem 1. Let mt(r) be the ring of modular forms on a finite 
index subgroup r of the modular group SL(2, Z). Suppose that mt(r) = 
C[¢1 , ¢2 ] where <P1 and ¢2 are algebraically independent modular forms of 
integral weights. Then r is conjugate in SL(2, Z) to one of the seventeen 
subgroups listed in Table I. 

wt u+v index r No. 1-L 112 113 
r c(r) = lloo 

(a) 4,6 1 1 1 1 1 1 SL(2, Z) 1 
(b) 2,4 3 1 0 2 3 6 ro(2) 2 

(c) 2,2 6 0 0 3 6 
6 r(2) 3 
24 ro(4) 4 

(d) 1,3 4 0 1 2+0 8 24 r1(3) 5 
48 a 0 ·1r1(4)ao 6 
48 aQ" 1a11 r 1 ( 4)a10"Q 7 

(e) 1,2 6 0 0 2+1 12 
48 aQ" 1a21 r 1 (4)a20"Q 8 
48 r1(4) 9 
48 a11r1(4)al 10 
192 a21 r 1 ( 4)a2 11 
24 r(3) 12 
48 r1(4) n r(2) 13 

(f) 1,1 12 0 0 4+0 24 
120 r1(5) 14 
144 r1(6) 15 
192 ro(8) nr1(4) 16 
648 ro(9) n rl (3) 17 

Table 1. List of Subgroups 

In Table 1, The column labeled as "wt" gives the weights of the 
modular forms ¢1,¢2 in Theorem 1. The parameters /-L, 112,113 ,1100 , u, v 
will be defined in Section 3. The intersection of all conjugates of r in 
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SL(2, Z) is denoted by C(r), so that the index in SL(2, Z) of C(r) is 
the order of the permutation group induced by the action of SL(2, Z) 
on SL(2, Z)jr. The columns labeled as "index" give the indices of r 
and C(r) in SL(2,Z). The elements u0 ,CT1,CT2 appearing in case (e) 
will be defined in Section 4, where we give a proof of Theorem 1. In 
Section 5, we show that for each of the seventeen subgroups r, the ring 
of modular forms of integral weights on r is indeed the polynomial ring 
in two modular forms. 

§3. Preliminaries 

We assume that the reader is familiar with basic concepts of modular 
forms of integral weights on finite index subgroups of SL(2, Z), as they 
are available in [13] and [16]. For r c SL(2,Z), let us set r = r · 
{±1}/{±1} C PSL(2,Z). The following parameters of a finite index 
subgroup r of SL(2, Z) are commonly used: 

p, = \ PSL(2, Z) :I'\, 
v2 = the number of inequivalent elliptic points of order 2, 

v3 = the number of inequivalent elliptic points of order 3, 

1/00 = the number of inequivalent cusps, 

g = the genus of r 

= 1 + !!:__ _ 1/2 _ 1/3 _ 1/oo • 

12 4 3 2 

Furthermore, if -1 rf_ r, then we distinguish two types of cusps, called 
regular and irregular. Namely, suppose that xis a cusp of r, u(x) = oo, 
u E SL(2,Z). Then we have urxu-1 =('¢h) or (-'¢h) for some positive 

integer h, where = (1. 1) 
'¢ 0 1 ° 

In the former case the cusp x is called regular, otherwise it is called 
irregular. Let us denote by u ( resp. v) the number of inequivalent regular 
(resp. irregular) cusps. Then, obviously 1/00 = u + v holds. Let rotk(r) 
denote the space of modular form of weight k on r. Then dim rotk (r) 
(k 2: 2) can be calculated by using just the above parameters. Namely, 
we have 

dimrot2(r) = {g + Voo- 1 ~f Voo > 0, 
g If 1/00 = 0, 

and 
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if k is even and k ~ 4, 

0 k k k k-1 
d1mootk(r) = (k -1)(g -1) + v2[4J + v3[3J + 2u + - 2-v, 

if k is odd, k ~ 3, and -1 (j. r. If -1 E r, then ootk(r) = 0 for odd k. 
Note that the formula for dim0011(r) is not known in general. 

To conclude this section, we explain the notation used to describe the 
subgroups in Table 1. Recall the standard notation for certain subgroups 
of SL(2, Z): 

r(N)={(~ 

ro(N)={(~ 

r1(N) = { (~ 

b) E SL(2 Z) I b = c = 0 (mod N) } 
d ' a = d = 1 (mod N) ' 

~) E SL(2,Z) I c= 0 (mod N)}, 

b) E SL(2 Z) I c = 0 (mod N) } 
d ' a = d = 1 (mod N) ' 

The groups No. 6-11 are pairwise conjugate in GL(2, Q). The elements 
ao,a1,a2 are defined by 

ao = G ~), a1 = ao'l/J<Pa0\ a2 = ao'lf;a0\ where <P = (~ ~1). 
The group No. 16 is conjugate in GL(2, Q) to the group No. 13: 

(2) 

Also, the group No. 17 is conjugate in GL(2, Q) to the group No. 12: 

(3) ( o3) r(3) (o1 o3) -1 ro(9) n r1(3) = ~ 

§4. Proof of Theorem 1 

Suppose that oot(r) = C[¢1, ¢ 2], where ¢1 ,¢2 are algebraically in­
dependent modular forms of weight a~, a2 , respectively, on r. Then we 
have, as formal power series, 

(4) 

Without loss of generality we may assume a1 :::; a2 • Since oot(r) :J 

9Jt(SL(2, Z)), (1) implies a1 :::; 4 and a2 :::; 6. 
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First consider the case where -1 ~ r. For fixed a17 a 2 , comparing 
the coefficients in (4), we obtain a system of linear equations with un­
knowns g, v 2 , v 3 , u, v. Taking the conditions 11- > 0, v 2 2: 0, v 3 2: 0 into 
account, the list of solutions consists of the cases ( d)-(f) in Table 1 and 
the case 

(g) 

In order to classify subgroups f of SL(2, .Z) of given parameters, we 
use a modification of the technique used in Millington [12]. If we put A = 
¢-1'lj;, then SL(2, .Z) has a presentation(¢, A I ¢ 4 = A3 = 1, [A, ¢ 2] = 1). 
Let f be a finite index subgroup of SL(2, Z), X = SL(2, Z)/f, X = 

SL(2,Z)/(f, -1). Then SL(2,.Z) acts on X, X, and we have lXI = 11-· 

Lemma 2. ¢ fixes v2 elements of X, A fixes v3 elements of X, and 
'lj; has v00 cycles on X. If -1 ~ r, then a cusp x is regular if and only 
if('lj;) has two orbits on ('lj;,-1)af/f, where a(x) = oo, a E SL(2,Z). 
In particular, 'lj; has 2u + v cycles on X. 

Proof. The statement on the action on X has been proved in [12]. 
As for the regularity of a cusp x, it suffices to prove that x is irregular 
if and only if ('lj;) acts transitively on ('lj;, -1)af /f. The latter condition 
is equivalent to the existence of a positive integer h satisfying 'lj;haf = 
-ar. This implies -'lj;h E ar xa-1 ' hence the cusp X is irregular. The 
proof of the converse is similar. Q.E.D. 

We now describe how to obtain the list of subgroups in the cases 
(d)-(f), and how to prove the nonexistence of a subgroup in the case (g). 
First, we enumerate all subgroups r of index 11- in PSL(2, .Z). This can 
be done by GAP [6], using the command LowlndexSubgroupsFpGroup, if 

-- -2 -3 -
one defines PSL(2, .Z) as (¢,A I ¢ =A = 1). Since X can be identified 
naturally with PSL(2, .Z)/f', the parameters v 2 , v3 and v00 make sense 
for r. Thus we can extract only those subgroups r of index 11- having 
the parameters v2 , v3 , v00 as prescribed in the cases (d)-(g). 

The next step is to find subgroups r of index 211- in SL(2, .Z) whose 
images are one of the r found in the previous step. We need to check 
whether r satisfies the condition on the parameters u, v described in 
Lemma 2. This step can also be done easily by GAP, and we obtain the 
subgroups No. 5-17. We remark that the six subgroups in the case (f) 
appeared in [3]. 

Next consider the case where -1 E f. The method is similar to the 
previous case, and the computation is far simpler. Comparing the coef­
ficients in ( 4), we see that the list of possible parameters is as described 
in the cases (a)-(c) in Table 1. Then we enumerate all subgroups r of 
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index JL in PSL(2, Z) having the parameters as in (a)-( c). The subgroup 
r is the full inverse image of r in SL(2, Z). 

§5. Generators of the rings of modular forms 

In this section, we show that for each of the seventeen subgroups r in 
Table 1, its ring of modular forms is isomorphic to a polynomial ring. We 
have seen that this is the case for SL(2,Z). Indeed, for the cases (a)-(c) 
in Table 1, since the weights are even, it is sufficient to check (4) using 
the dimension formula; it follows from (4) that there exist algebraic 
independent modular forms of weight a1, a2. To be more precise, let 
03(7),02(7) be Jacobi's theta functions. It is well known and easy to 
see that wt(r(2)) = «:::[03(27)4 ,02(27)4] and that r 0 (4) = u0 r(2)u01. 
So, we have the assertions for the groups No. 3 and No. 4. As for 
cases (b) and (d), more explicit information can be found in [11, p;52, 
Corollary] for r 0 (2), [11, p.53, Theorem 2] for r 1(3). We note that the 
notation of subgroups in [11] is different from ours. The groups No. 6-
11 are pairwise conjugate in GL(2, Q), so it suffices to give generators 
for No. 6 only. The result for the group No. 6 is given in [8, p.186] as 
wt(u01r1(4)uo) = «:::[03(27)2,02(27)4]. 

Let r be one of the subgroups No. 12-17. Suppose that there exist 
modular forms 4h, (h of weight 1 on r such that the leading terms of 
their Fourier expansion with respect to q = e27riT are 1, q, respectively. 
Considering the leading terms of ¢1, ¢~-1 ¢2, ... , ¢2, we can prove that 
¢1, ¢~-1 ¢2, ... , ¢2 are linearly independent. Hence ¢1, ¢2 are alge­
braically independent. Since dimwt2(r) = 3, we have dimwt1(r) :::; 2. 
Therefore, to prove the claim, we have only to find modular forms ¢1, ¢2 
of weight 1 on r such that the leading terms of their Fourier expansion 
are 1, q, respectively. This means that, we only need to find two linearly 
independent modular forms of weight 1 on r. 

Let N be a positive integer, x a primitive Dirichlet character mod 
N such that x( -1) = -1. Then the Eisenstein series 

1 00 

Ex(7) = 2L(O,x) + 2:) L x(d))qn 
n=1 dln,d>O 

is a modular form of type (1, x) on r 0 (N) (see Heeke [7]). 
The subgroup No. 12, 17. For the group r(3), the result is well 

known (see [5, Theorem 5.4]). Namely, wt(r(3)) = C[cpb cp2] with 

(5) IP2 = qfi L qx2-xy+y2+x-y. 

(x,y)EZ2 
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Interestingly enough, this fact was known in connection with the weight 
enumerators of ternary self-dual codes. For a future use, we remark 
that SL(2,Z) acts on the 2-dimensional space spanned by 'fh,<p2 as the 
unitary reflection group (No. 4 in [15)) 

1 (1 2) (1 0 ) (iyl3 1 _ 1 , O e2~; )~SL(2,Z/3Z)~SL(2,Z)jr(3). 

The ring of polynomial invariants of this group is the polynomial ring 
in f, g, where 

Moreover, f(<pt, <p2) = E4 and g(<p1, <p2) = E6 hold. The ring of invari­
ants C[J, g] contains the ring of weight enumerators of ternary self-dual 
codes (see [4)). In view of (3), the ring 9Jt(r0 (9) n r 1 (3)) is generated by 
<p1 (3r), <p2(3r). However, we also give different generators of this ring 
as follows. 

Let x1 be the non-trivial Dirichlet character mod 3. Then the Eisen­
stein series Ex1 (r) is a modular form of type (1, Xl) on ro(3). This im­
plies that Ex1 (r) and Ex1 (3r) are linearly independent modular forms 
of type (1, x1) on r 0 (9). Hence they are modular forms of weight 1 on 
ro(9) n rl(3). 

Let ry(r) be the Dedekind eta-function. Then it is shown in [10] that 
ry(9r) 3 jry(3r) and ry(r) 3 jry(3r) also are modular forms of type (1, x1) on 
ro(9). The relations between these forms are: 

ry(9r) 3 jry(3r) = Ex1 (r)- Ex1 (3r), 

ry(r)3 jry(3r) = -3(Ex1 (r)- 3EX1 (3r)). 

Moreover, we have 

<p1 (3r) = 6Ex1 (r), 

<p2(3r) = Ex1 (r)- Ex 1 (3r). 

The subgroups No. 13, 16. Let x2 be the non-trivial Dirichlet 
character mod 4. Then the Eisenstein series Ex2 ( r) is a modular form 
of type (l,x2) on r 0 (4). This implies that Ex2 (r) and Ex2 (2r) are 
linearly independent modular forms of type ( 1, X2) on r o ( 8). Hence they 
are modular forms of weight 1 on the subgroup No. 16: r 0 (8) n r 1 (4). 
Alternatively, it is shown in [10] that ry(8r)4 /ry(4r)2 and ry(r)4 /ry(2r)2 

also are modular forms of type (1, x2) on r 0 (8). Th~ relations between 
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these forms are: 

1J(8r)4 /1J(4r) 2 = Ex2 (r)- Ex2 (2r), 

1J(r)4 /1J(2r) 2 = -4(Ex2 (r)- 2Ex2 (2r)). 

Note that rot(r1(4) n r(2)) = C[03 (r)2 , 04 (r)2] (see [8, p.186]) follows 
from (2). More explicitly, we have 

03 (2r) 2 = 4Ex2 (r), 

04(2r)2 = -4(Ex2 (T)- 2Ex2 (2r)). 

The subgroup No. 14. Let x3 be the Dirichlet character mod 5 
such that x3 (2) =A. Then the Eisenstein series Ex 3 (r) and Exa(r) 
are modular forms of type (1, x3 ), (1, x3 ), respectively on r 0 (5). Hence 
they are linearly independent modular forms of weight 1 on rt(5). 

The subgroup No. 15. Recall that Ex1 (r) is a modular form 
of type (1, x1) on r 0 (3), where Xt is the non-trivial Dirichlet character 
mod 3. This implies that Ex1 (r) and Ex 1 (2r) are linearly independent 
modular forms of type (1, x1) on r 0 (6). Hence they are modular forms 
of weight 1 on r1(6). It is shown in [10] that 1J(T)1J(6r)6 /1J(2r) 21J(3r)3 

and 1J(6r)1J( r)6 /1J(3r)21J(2r)3 also are modular forms of type (1, xt) on 
r 0 (6). The relations between these forms are: 

1J(T)1J(6r)6 /1J(2r) 21J(3r)3 = Ex1 (r)- En (2r), 

1J(6r)1J(r)6 /1J(3r)21J(2r)3 = -6(Ex1 (r)- 2Ex1 (2r)). 

§6. Concluding remarks 

We note that the classification of the subgroups r c SL(2, Z) whose 
ring of modular forms is isomorphic to a polynomial ring is regarded as 
an analogue of the classification of the finite unitary reflection groups of 
dimension 2. We expect that higher dimensional analogue for this is the 
classification of the subgroups in the Siegel modular groups whose ring 
of Siegel modular forms is isomorphic to a polynomial ring. There are 
many possible generalizations of the ideas and the motivations presented 
in this paper. We will discuss some of the generalizations in subsequent 
papers, we briefly mention some of them below. 

(1) Classify discrete subgroups of SL(2, IR), not necessarily contained 
in SL(2, Z), whose ring of modular forms is isomorphic to a poly­
nomial ring. 

(2) Classify subgroups of SL(2, Z) whose ring of modular forms of 
half-integral weights is isomorphic to a polynomial ring. 
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Furthermore, we can consider a similar problem for 1/l-integral weights 
(see Rankin [14] for the definition of modular forms offractional weights). 
In general, if the ring of modular forms of 1/l-integral weights on r is 
isomorphic to the polynomial ring generated by two modular forms of 
weight 1/l, then we see that r must be a subgroup of index 24l in 
SL(2, Z). A recent work of A. Sebbar on the classification of genus 
zero congruence subgroups with no elliptic points implies that they are 
noncongruence subgroups except for finitely many exceptions. The com­
plete classifications of such subgroups of index 24l seems very difficult 
in general. In the case l = 2, using the method described in Section 4, 
we can see that there are 191 possible such subgroups r of index 48 in 
SL(2, Z) up to the conjugacy. Some of them are congruence subgroups 
and others are noncongruence subgroups. We expect that many of them, 
hopefully all of them, satisfy the property mentioned in (2). Note that 
some results on modular forms on noncongruence subgroups are given 
in [1]. 

As we remarked in Section 1, the case l = 5 is interesting, and this 
will be treated in a subsequent paper. We also mention that, partly 
motivated by our present research, T. Ibukiyama is recently developing 
a theory of modular forms of fractional weights from a more general 
viewpoint, which will be published in due course. 
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