Finite Crystals and Paths

Goro Hatayama, Yoshiyuki Koga, Atsuo Kuniba, Masato Okado and Taichiro Takagi

Dedicated to Professor Tetsuji Miwa on his fiftieth birthday

Abstract.

We consider a category of finite crystals of a quantum affine algebra whose objects are not necessarily perfect, and set of paths, semi-infinite tensor product of an object of this category with a certain boundary condition. It is shown that the set of paths is isomorphic to a direct sum of infinitely many, in general, crystals of integrable highest weight modules. We present examples from $C_n^{(1)}$ and $A_{n-1}^{(1)}$, in which the direct sum becomes a tensor product as suggested from the Bethe Ansatz.

§1. Introduction

The main object of this note is to define a set of paths from a finite crystal B, which is not necessarily perfect, and investigate its crystal structure. The set of paths $\mathcal{P}(\mathbf{p}, B)$ is, roughly speaking, a subset of the semi-infinite tensor product $\cdots \otimes B \otimes \cdots \otimes B \otimes B$ with a certain boundary condition related to p. If B is perfect, it is known [KMN1] that as crystals, $\mathcal{P}(\mathbf{p}, B)$ is isomorphic to the crystal base $B(\lambda)$ of an integrable highest weight module with highest weight λ of the quantum affine algebra $U_q(\mathfrak{g})$. While trying to generalize this notion, we had two examples in mind: (a) $g = C_n^{(1)}, B = B^{1,l}(l : \text{odd});$ (b) $g = A_{n-1}^{(1)}, B = B^{1,l}(l : \text{odd});$ $B^{1,l} \otimes B^{1,m}$ (l > m). For this parametrization of finite crystals, we refer to [HKOTY]. $B^{1,l}$ stands for the crystal base of an irreducible finitedimensional $U_q'(\mathfrak{g})$ -module. In case (a) (resp. (b)) this finite-dimensional module is isomorphic to $V_{l\overline{\Lambda}_1} \oplus V_{(l-2)\overline{\Lambda}_1} \oplus \cdots \oplus V_{\overline{\Lambda}_1}$ (resp. $V_{l\overline{\Lambda}_1}$) as $U_q(\overline{\mathfrak{g}})$ module, where V_{λ} is the irreducible finite-dimensional module with highest weight λ . In both cases B is not perfect except when l=m in (b). For precise treatment see section 4.1 for (a) and 4.2 for (b).

Received January 14, 1999.

Let us consider case (a) first. When l=1 it has already been known [DJKMO] that the formal character of $\mathcal{P}(\mathbf{p},B^{1,1})$ for suitable \mathbf{p} agrees with that of the irreducible highest weight $A_{2n-1}^{(1)}$ -module with fundamental highest weight Λ_i regarded as $C_n^{(1)}$ -module via the natural embedding $C_n^{(1)} \hookrightarrow A_{2n-1}^{(1)}$. On the other hand, the Bethe Ansatz suggests [Ku] that $\mathcal{P}(\mathbf{p},B^{1,l})$ is equal to $B(\lambda)\otimes\mathcal{P}(\mathbf{p}^{\dagger},B^{1,1})$ for suitable $\mathbf{p},\mathbf{p}^{\dagger}$ and a level $\frac{l-1}{2}$ dominant integral weight λ at the level of the Virasoro central charge.

Let us turn to case (b). In [HKMW] the $U_q'(\widehat{sl}_2)$ -invariant integrable vertex model with alternating spins is considered. To translate the physical states and operators of this model into the language of representation theory of the quantum affine algebra $U_q(\widehat{sl}_2)$, they considered a set of paths with alternating spins and showed that it is isomorphic to the tensor product of crystals with highest weights. Another appearance of example (b) can be found in [HKKOTY]. They considered the inductive limit of $(B^{1,l})^{\otimes L_1} \otimes (B^{1,m})^{\otimes L_2}$ when $L_1, L_2 \to \infty, L_1 \equiv r_1, L_1 + L_2 \equiv r_2 \pmod{n}$, and showed that there is a weight preserving bijection between the limit and $B((l-m)\Lambda_{r_1}) \otimes B(m\Lambda_{r_2})$. Since there is a natural isomorphism $B^{1,l} \otimes B^{1,m} \simeq B^{1,m} \otimes B^{1,l}$, the above result claims that $\mathcal{P}(p, B^{1,l} \otimes B^{1,m})$ for suitable p is bijective to $B((l-m)\Lambda_{r_1}) \otimes B(m\Lambda_{r_2})$ with weight preserved. These results are consistent with the earlier Bethe ansatz calculations on "mixed spin" models [AM, DMN].

If we forget about the degree of the null root δ from weight, this phenomenon is explained using the theory of crystals with core [KK]. (See also [HKMW] section 3.2.) Let $\{B_k\}_{k\geq 1}$ be a coherent family of perfect crystals and B'_m be a perfect crystal of level m. Fix l such that $l\geq m$ and take dominant integral weights λ and μ of level l-m and m. Then there exists an isomorphism of crystals:

$$B(\lambda) \otimes B(\mu) \simeq B(\sigma\lambda) \otimes B_{l-m} \otimes B(\sigma'\mu) \otimes B'_{m}$$

$$\simeq B(\sigma\lambda) \otimes B(\sigma\sigma'\mu) \otimes (B_{l} \otimes B'_{m}),$$

where σ and σ' are automorphisms on the weight lattice P related to $\{B_k\}_{k\geq 1}$ and B'_m . Iterating this isomorphism infinitely many times, we can expect

$$\mathcal{P}(\mathbf{p}^{(\lambda,\mu)}, B_l \otimes B'_m) \simeq B(\lambda) \otimes B(\mu)$$

as $P/\mathbf{Z}\delta$ -weighted crystals with suitable $p^{(\lambda,\mu)}$.

In both cases (a),(b) we have illustrated above, what we expect is an isomorphism of P-weighted crystals of the following type:

(1.1)
$$\mathcal{P}(\mathbf{p}, B) \simeq B(\lambda) \otimes \mathcal{P}(\mathbf{p}^{\dagger}, B^{\dagger})$$

and we shall prove it in this paper. First we examine the crystal structure of $\mathcal{P}(\mathbf{p}, B)$ and show it is isomorphic to a direct sum of $B(\lambda)$'s. Therefore, the structure of $\mathcal{P}(\mathbf{p}, B)$ is completely determined by the set of highest weight elements. In the LHS of (1.1), such set $\mathcal{P}(\mathbf{p}, B)_0$ is easy to describe, and in the RHS, this set turns out to be the set of restricted paths $\mathcal{P}^{(\lambda)}(\mathbf{p}^{\dagger}, B^{\dagger})$, which is familiar to the people in solvable lattice models. Thus establishing a weight preserving bijection between $\mathcal{P}(\mathbf{p}, B)_0$ and $\mathcal{P}^{(\lambda)}(\mathbf{p}^{\dagger}, B^{\dagger})$ directly, we can show (1.1).

§2. Crystals

2.1. Notation

Let \mathfrak{g} be an affine Lie algebra. We denote by I the index set of its Dynkin diagram. Note that 0 is included in I. Let α_i, h_i, Λ_i $(i \in I)$ be the simple roots, simple coroots, fundamental weights for \mathfrak{g} . Let $\delta = \sum_{i \in I} a_i \alpha_i$ denote the standard null root, and $c = \sum_{i \in I} a_i^{\vee} h_i$ the canonical central element, where a_i, a_i^{\vee} are positive integers as in [Kac]. We assume $a_0 = 1$. Let $P = \bigoplus_{i \in I} \mathbf{Z} \Lambda_i \oplus \mathbf{Z} \delta$ be the weight lattice, and set $P^+ = \sum_{i \in I} \mathbf{Z}_{\geq 0} \Lambda_i \oplus \mathbf{Z} \delta$.

Let $U_q(\mathfrak{g})$ be the quantum affine algebra associated to \mathfrak{g} . For the definition of $U_q(\mathfrak{g})$ and its Hopf algebra structure, see e.g. section 2.1 of [KMN1]. For $J \subset I$ we denote by $U_q(\mathfrak{g}_J)$ the subalgebra of $U_q(\mathfrak{g})$ generated by e_i, f_i, t_i $(i \in J)$. In particular, $U_q(\mathfrak{g}_{I\setminus\{0\}})$ is identified with the quantized enveloping algebra for the simple Lie algebra whose Dynkin diagram is obtained by deleting the 0 vertex from that of \mathfrak{g} . We also consider the quantum affine algebra without derivation $U_q'(\mathfrak{g})$. As its weight lattice, the classical weight lattice $P_{cl} = P/\mathbf{Z}\delta$ is needed. We canonically identify P_{cl} with $\bigoplus_{i \in I} \mathbf{Z}\Lambda_i \subset P$. For the precise treatment, see section 3.1 of [KMN1]. We further define the following subsets of $P_{cl}: P_{cl}^0 = \{\lambda \in P_{cl} \mid \langle \lambda, c \rangle = 0\}, P_{cl}^+ = \{\lambda \in P_{cl} \mid \langle \lambda, h_i \rangle \geq 0 \text{ for any } i\}, (P_{cl}^+)_l = \{\lambda \in P_{cl}^+ \mid \langle \lambda, c \rangle = l\}$. For $\lambda, \mu \in P_{cl}$, we write $\lambda \geq \mu$ to mean $\lambda - \mu \in P_{cl}^+$.

2.2. Crystals and crystal bases

We summarize necessary facts in crystal theory. Our basic references are [K1], [KMN1] and [AK].

A crystal B is a set B with the maps

$$\tilde{e}_i, \tilde{f}_i: B \sqcup \{0\} \longrightarrow B \sqcup \{0\}$$

satisfying the following properties:

$$\tilde{e}_i 0 = \tilde{f}_i 0 = 0,$$

for any b and i, there exists n > 0 such that $\tilde{e}_i^n b = \tilde{f}_i^n b = 0$, for $b, b' \in B$ and $i \in I$, $\tilde{f}_i b = b'$ if and only if $b = \tilde{e}_i b'$.

If we want to emphasize I, B is called an I-crystal. A crystal can be regarded as a colored oriented graph by defining

$$b \xrightarrow{i} b' \iff \tilde{f}_i b = b'.$$

For an element b of B we set

$$\varepsilon_i(b) = \max\{n \in \mathbf{Z}_{\geq 0} \mid \tilde{e}_i^n b \neq 0\}, \quad \varphi_i(b) = \max\{n \in \mathbf{Z}_{\geq 0} \mid \tilde{f}_i^n b \neq 0\}.$$

We also define a P-weighted crystal. It is a crystal with the weight decomposition $B = \sqcup_{\lambda \in P} B_{\lambda}$ such that

$$(2.1) \tilde{e}_i B_{\lambda} \subset B_{\lambda + \alpha_i} \sqcup \{0\}, \quad \tilde{f}_i B_{\lambda} \subset B_{\lambda - \alpha_i} \sqcup \{0\},$$

(2.2)
$$\langle h_i, \operatorname{wt} b \rangle = \varphi_i(b) - \varepsilon_i(b).$$

Set

$$\varepsilon(b) = \sum_{i \in I} \varepsilon_i(b) \Lambda_i, \quad \varphi(b) = \sum_{i \in I} \varphi_i(b) \Lambda_i.$$

Then (2.2) is equivalent to $\varphi(b) - \varepsilon(b) = wt b$. P_{cl} -weighted crystal is defined similarly.

For two weighted crystals B_1 and B_2 , the tensor product $B_1 \otimes B_2$ is defined.

$$B_1 \otimes B_2 = \{b_1 \otimes b_2 \mid b_1 \in B_1, b_2 \in B_2\}.$$

The actions of \tilde{e}_i and \tilde{f}_i are defined by

$$(2.3) \tilde{e}_{i}(b_{1} \otimes b_{2}) = \begin{cases} \tilde{e}_{i}b_{1} \otimes b_{2} & \text{if } \varphi_{i}(b_{1}) \geq \varepsilon_{i}(b_{2}) \\ b_{1} \otimes \tilde{e}_{i}b_{2} & \text{if } \varphi_{i}(b_{1}) < \varepsilon_{i}(b_{2}), \end{cases}$$

$$(2.4) \tilde{f}_{i}(b_{1} \otimes b_{2}) = \begin{cases} \tilde{f}_{i}b_{1} \otimes b_{2} & \text{if } \varphi_{i}(b_{1}) > \varepsilon_{i}(b_{2}) \\ b_{1} \otimes \tilde{f}_{i}b_{2} & \text{if } \varphi_{i}(b_{1}) \leq \varepsilon_{i}(b_{2}). \end{cases}$$

$$(2.4) \tilde{f}_i(b_1 \otimes b_2) = \begin{cases} \tilde{f}_i b_1 \otimes b_2 & \text{if } \varphi_i(b_1) > \varepsilon_i(b_2) \\ b_1 \otimes \tilde{f}_i b_2 & \text{if } \varphi_i(b_1) \le \varepsilon_i(b_2) \end{cases}$$

Here $0 \otimes b$ and $b \otimes 0$ are understood to be 0. ε_i, φ_i and wt are given by

$$(2.5) \varepsilon_i(b_1 \otimes b_2) = \max(\varepsilon_i(b_1), \varepsilon_i(b_1) + \varepsilon_i(b_2) - \varphi_i(b_1)),$$

$$(2.6) \varphi_i(b_1 \otimes b_2) = \max(\varphi_i(b_2), \varphi_i(b_1) + \varphi_i(b_2) - \varepsilon_i(b_2)),$$

$$(2.7) \quad wt(b_1 \otimes b_2) = wt b_1 + wt b_2.$$

Definition 2.1 ([AK]). We say a P (or P_{cl})-weighted crystal is regular, if for any $i, j \in I$ $(i \neq j)$, B regarded as $\{i, j\}$ -crystal is a disjoint union of crystals of integrable highest weight modules over $U_q(\mathfrak{g}_{\{i,j\}})$.

Crystal is a notion obtained by abstracting the properties of crystal bases [K1]. Let $V(\lambda)$ be the integrable highest weight $U_q(\mathfrak{g})$ -module with highest weight $\lambda \in P^+$ and highest weight vector u_λ . It is shown in [K1] that $V(\lambda)$ has a crystal base $(L(\lambda), B(\lambda))$. We regard u_λ as an element of $B(\lambda)$ as well. $B(\lambda)$ is a regular P-weighted crystal. A finite-dimensional integrable $U_q'(\mathfrak{g})$ -module V does not necessarily have a crystal base. If V has a crystal base (L, B), then B is a regular P_{cl}^0 -weighted crystal with finitely many elements.

Let W be the affine Weyl group associated to \mathfrak{g} , and s_i be the simple reflection corresponding to α_i . W acts on any regular crystal B [K2]. The action is given by

$$S_{s_i}b = \left\{ egin{array}{ll} ilde{f}_i^{\langle h_i, \operatorname{wt} b
angle} b & & \operatorname{if} \ \langle h_i, \operatorname{wt} b
angle \geq 0 \ ilde{e}_i^{-\langle h_i, \operatorname{wt} b
angle} b & & \operatorname{if} \ \langle h_i, \operatorname{wt} b
angle \leq 0. \end{array}
ight.$$

An element b of B is called *i-extremal* if $\tilde{e}_i b = 0$ or $\tilde{f}_i b = 0$. b is called extremal if $S_w b$ is *i*-extremal for any $w \in W$ and $i \in I$.

Definition 2.2 ([AK] Definition 1.7). Let B be a regular P_{cl}^0 -weighted crystal with finitely many elements. We say B is simple if it satisfies

- (1) There exists $\lambda \in P_{cl}^0$ such that the weights of B are in the convex hull of $W\lambda$.
- $(2) \ \sharp B_{\lambda} = 1.$
- (3) The weight of any extremal element is in $W\lambda$.

Remark 2.3. Let B be a regular P_{cl}^0 -weighted crystal with finitely many elements. We have the following criterion for simplicity. Let $B(\lambda)$ denote the crystal base of the irreducible highest weight $U_q(\mathfrak{g}_{I\setminus\{0\}})$ -module with highest weight λ . If B decomposes into $B \simeq \bigoplus_{j=0}^m B(\lambda_j)$ as $U_q(\mathfrak{g}_{I\setminus\{0\}})$ -crystal and λ_j satisfies

- (1) $\lambda_j \in \lambda_0 + \sum_{i \neq 0} \mathbf{Z}_{\leq 0} \alpha_i$ and $\lambda_j \neq \lambda_0$ for any $j \neq 0$,
- (2) The highest weight element of $B(\lambda_j)$ is not 0-extremal for any $j \neq 0$,

then B is simple.

Proposition 2.4 ([AK] Lemma 1.9 & 1.10). Simple crystals have the following properties.

- (1) A simple crystal is connected.
- (2) The tensor product of simple crystals is also simple.

118

2.3. Category C^{fin}

Let B be a regular P_{cl}^0 -weighted crystal with finitely many elements. For B we introduce the level of B by

$$lev B = min\{\langle c, \varepsilon(b) \rangle \mid b \in B\} \in \mathbb{Z}_{>0}.$$

Note that $\langle c, \varepsilon(b) \rangle = \langle c, \varphi(b) \rangle$ for any $b \in B$. We also set $B_{\min} = \{b \in B \mid \langle c, \varepsilon(b) \rangle = \text{lev } B\}$ and call an element of B_{\min} minimal.

Definition 2.5. We denote by $C^{fin}(\mathfrak{g})$ (or simply C^{fin}) the category of crystal B satisfying the following conditions:

- (1) B is a crystal base of a finite-dimensional $U'_a(\mathfrak{g})$ -module.
- (2) B is simple.
- (3) For any $\lambda \in P_{cl}^+$ such that $\langle c, \lambda \rangle \geq \text{lev } B$, there exists $b \in B$ satisfying $\varepsilon(b) \leq \lambda$. It is also true for φ .

We call an object of $C^{fin}(\mathfrak{g})$ finite crystal.

Remark 2.6. (i) Condition (1) implies B is a regular P_{cl}^0 -weighted crystal with finitely many elements.

- (ii) Set l = lev B. Condition (3) implies that the maps ε and φ from B_{\min} to $(P_{cl}^+)_l$ are surjective. (cf. (4.6.5) in [KMN1])
- (iii) Practically, one has to check condition (3) only for $\lambda \in P_{cl}^+$ such that there is no $i \in I$ satisfying $\lambda \Lambda_i \geq 0$ and $\langle c, \lambda \Lambda_i \rangle \geq \text{lev } B$. In particular, if $a_i^{\vee} = 1$ for any $i \in I$ ($\mathfrak{g} = A_n^{(1)}, C_n^{(1)}$), the surjectivity of ε and φ assures (3).
- (iv) The authors do not know a crystal satisfying (1) and (2), but not satisfying (3).

Let B_1 and B_2 be two finite crystals. Definition 2.5 (1) and the existence of the universal R-matrix assures that we have a natural isomorphism of crystals.

$$(2.8) B_1 \otimes B_2 \simeq B_2 \otimes B_1.$$

The following lemma is immediate.

Lemma 2.7. Let B_1, B_2 be finite crystals.

- (1) $lev(B_1 \otimes B_2) = max(lev B_1, lev B_2).$
- (2) If $\operatorname{lev} B_1 \geq \operatorname{lev} B_2$, then $(B_1 \otimes B_2)_{\min} = \{b_1 \otimes b_2 \mid b_1 \in (B_1)_{\min}, \varphi_i(b_1) \geq \varepsilon_i(b_2) \text{ for any } i\}.$
- (3) If $lev B_1 \leq lev B_2$, then $(B_1 \otimes B_2)_{min} = \{b_1 \otimes b_2 \mid b_2 \in (B_2)_{min}, \varphi_i(b_1) \leq \varepsilon_i(b_2) \text{ for any } i\}.$

 $\mathcal{C}^{fin}(\mathfrak{g})$ forms a tensor category.

Proposition 2.8. If B_1 and B_2 are objects of $C^{fin}(\mathfrak{g})$, then $B_1 \otimes B_2$ is also an object of $C^{fin}(\mathfrak{g})$.

Proof. We need to check the conditions in Definition 2.5 for $B_1 \otimes B_2$. (1) is obvious and (2) follows from Proposition 2.4 (2).

Let us prove condition (3) for ε . Set $l_1 = lev B_1, l_2 = lev B_2$. Using (2.8) if necessary, we can assume $l_1 \geq l_2$. Thus we have $lev B_1 \otimes B_2 = l_1$. For any $\lambda \in P_{cl}^+$ such that $\langle c, \lambda \rangle \geq l_1$, one can take $b_1 \in B_1$ satisfying $\varepsilon(b_1) \leq \lambda$. Since $\langle c, \varphi(b_1) \rangle \geq l_1 \geq l_2$, one can take $b_2 \in B_2$ satisfying $\varepsilon(b_2) \leq \varphi(b_1)$. In view of (2.5) one has $\varepsilon(b_1 \otimes b_2) = \varepsilon(b_1) \leq \lambda$.

For the proof of φ , repeat a similar exercise for $B_2 \otimes B_1 (\simeq B_1 \otimes B_2)$ using (2.6).

2.4. Category C^h

If an element b of a crystal B satisfies $\tilde{e}_i b = 0$ for any i, we call it a highest weight element.

Definition 2.9. We denote by $C^h(I, P)$ (or simply C^h) the category of regular P-weighted crystal B satisfying the following condition:

For any $b \in B$, there exist $l \geq 0, i_1, \dots, i_l \in I$ such that $b' = \tilde{e}_{i_1} \dots \tilde{e}_{i_l} b \in B$ is a highest weight element.

Clearly, $C^h(I, P)$ forms a tensor category.

Proposition 2.10 ([KMN1] Proposition 2.4.4). An object of $C^h(I, P)$ is isomorphic to a direct sum (disjoint union) of crystals $B(\lambda)$ ($\lambda \in P^+$) of integrable highest weight $U_q(\mathfrak{g})$ -modules.

Let O be an object of $C^h(I, P)$. By O_0 we mean the set of highest weight elements in O. Suppose that $O_0 = \{b_j \mid j \in J\}$ and $wt b_j = \lambda_j \in P^+$, then from the above proposition we have an isomorphism

$$O \simeq \bigoplus_{j \in J} B(\lambda_j)$$
 as P -weighted crystals.

J can be an infinite set.

The following lemma is standard.

Lemma 2.11. Let B_1, B_2 be weighted crystals. Then $b_1 \otimes b_2 \in B_1 \otimes B_2$ is a highest weight element, if and only if b_1 is a highest weight element and $\tilde{e}_i^{(h_i, \text{wt } b_1)+1} b_2 = 0$ for any i.

Let O be an object of $C^h(I, P)$. From this lemma we have the following bijection.

$$\begin{array}{cccc} (B(\lambda) \otimes O)_0 & & \longrightarrow & O^{\leq \lambda} := \{b \in O \mid \tilde{e}_i^{\langle h_i, \lambda \rangle + 1} b = 0 \text{ for any } i\} \\ u_{\lambda} \otimes b & & \mapsto & b. \end{array}$$

Note that $O^{\leq 0} = O_0$.

§3. Paths

In this section we construct a set of paths from a finite crystal and consider its structure.

3.1. Energy function

Let us recall the energy function used in [NY] to identify the Kostka-Foulkes polynomial with a generating function over classically restricted paths.

Let B_1 and B_2 be two finite crystals. Suppose $b_1 \otimes b_2 \in B_1 \otimes B_2$ is mapped to $\tilde{b}_2 \otimes \tilde{b}_1 \in B_2 \otimes B_1$ under the isomorphism (2.8). A **Z**-valued function H on $B_1 \otimes B_2$ is called an *energy function* if for any i and $b_1 \otimes b_2 \in B_1 \otimes B_2$ such that $\tilde{e}_i(b_1 \otimes b_2) \neq 0$, it satisfies

$$\begin{split} H(\tilde{e}_i(b_1\otimes b_2)) &= H(b_1\otimes b_2) + 1 &\quad \text{if } i = 0, \varphi_0(b_1) \geq \varepsilon_0(b_2), \\ \varphi_0(\tilde{b}_2) \geq \varepsilon_0(\tilde{b}_1), \\ &= H(b_1\otimes b_2) - 1 &\quad \text{if } i = 0, \varphi_0(b_1) < \varepsilon_0(b_2), \\ \varphi_0(\tilde{b}_2) < \varepsilon_0(\tilde{b}_1), \\ (3.1) &= H(b_1\otimes b_2) &\quad \text{otherwise.} \end{split}$$

When we want to emphasize $B_1 \otimes B_2$, we write $H_{B_1B_2}$ for H. The existence of such function can be shown in a similar manner to section 4 of [KMN1] based on the existence of *combinatorial R-matrix*. The energy function is unique up to additive constant, since $B_1 \otimes B_2$ is connected. By definition, $H_{B_1B_2}(b_1 \otimes b_2) = H_{B_2B_1}(\tilde{b}_2 \otimes \tilde{b}_1)$.

If the tensor product $B_1 \otimes B_2$ is homogeneous, i.e., $B_1 = B_2$, we have $\tilde{b}_2 = b_1$, $\tilde{b}_1 = b_2$. Thus (3.1) is rewritten as

$$\begin{array}{ll} H(\tilde{e}_{i}(b_{1}\otimes b_{2})) & = H(b_{1}\otimes b_{2})+1 & \text{if } i=0, \varphi_{0}(b_{1})\geq \varepsilon_{0}(b_{2}), \\ & = H(b_{1}\otimes b_{2})-1 & \text{if } i=0, \varphi_{0}(b_{1})<\varepsilon_{0}(b_{2}), \\ & = H(b_{1}\otimes b_{2}) & \text{if } i\neq 0. \end{array}$$

The following proposition, which is shown by case-by-case checking, reduces the energy function of a tensor product to that of each component.

Proposition 3.1. Set $B = B_1 \otimes B_2$, then

$$H_{BB}((b_1 \otimes b_2) \otimes (b'_1 \otimes b'_2)) = H_{B_1B_2}(b_1 \otimes b_2) + H_{B_1B_1}(\tilde{b}_1 \otimes b'_1) + H_{B_2B_2}(b_2 \otimes \tilde{b}'_2) + H_{B_1B_2}(b'_1 \otimes b'_2).$$

Here $\tilde{b}_1, \tilde{b}'_2$ are defined as

$$\begin{array}{cccc} B_1 \otimes B_2 & \simeq & B_2 \otimes B_1 \\ b_1 \otimes b_2 & \mapsto & \tilde{b}_2 \otimes \tilde{b}_1 \\ b_1' \otimes b_2' & \mapsto & \tilde{b}_2' \otimes \tilde{b}_1'. \end{array}$$

Remark 3.2. Decomposition of the energy function is not unique. For instance, the following also gives such decomposition.

$$H_{BB}((b_1 \otimes b_2) \otimes (b'_1 \otimes b'_2)) = H_{B_2B_1}(b_2 \otimes b'_1) + H_{B_1B_1}(b_1 \otimes \check{b}'_1) + H_{B_2B_2}(\check{b}_2 \otimes b'_2) + H_{B_1B_2}(\check{b}'_1 \otimes \check{b}_2),$$

where

$$B_2 \otimes B_1 \simeq B_1 \otimes B_2$$

 $b_2 \otimes b'_1 \mapsto \check{b}'_1 \otimes \check{b}_2.$

3.2. Set of paths $\mathcal{P}(\mathbf{p}, B)$

We shall define a set of paths from any finite crystal in C^{fin} imitating the construction in section 4 of [KMN1] from a perfect crystal.

Definition 3.3. An element $\mathbf{p} = \cdots \otimes \mathbf{b}_j \otimes \cdots \otimes \mathbf{b}_2 \otimes \mathbf{b}_1$ of the semi-infinite tensor product of B is called a reference path if it satisfies $\mathbf{b}_j \in B_{\min}$ and $\varphi(\mathbf{b}_{j+1}) = \varepsilon(\mathbf{b}_j)$ for any $j \geq 1$.

Definition 3.4. Fix a reference path $\mathbf{p} = \cdots \otimes \mathbf{b}_j \otimes \cdots \otimes \mathbf{b}_2 \otimes \mathbf{b}_1$. We define a set of paths $\mathcal{P}(\mathbf{p}, B)$ by

$$\mathcal{P}(\mathbf{p},B) = \{p = \cdots \otimes b_j \otimes \cdots \otimes b_2 \otimes b_1 \mid b_j \in B, b_k = \mathbf{b}_k \text{ for } k \gg 1\}.$$

An element of $\mathcal{P}(\mathbf{p}, B)$ is called a *path*. For convenience we denote b_k by p(k) and $\cdots \otimes b_{k+2} \otimes b_{k+1}$ by p[k] for $p = \cdots \otimes b_j \otimes \cdots \otimes b_2 \otimes b_1$.

Definition 3.5. For a path $p \in \mathcal{P}(\mathbf{p}, B)$, set

$$E(p) = \sum_{j=1}^{\infty} j(H(p(j+1) \otimes p(j)) - H(p(j+1) \otimes p(j))),$$

$$W(p) = \varphi(\mathbf{p}(1)) + \sum_{j=1}^{\infty} (\operatorname{wt} p(j) - \operatorname{wt} \mathbf{p}(j)) - E(p)\delta.$$

E(p) and W(p) are called the energy and weight of p.

We distinguish $W(p) \in P$ from $wt p = \varphi(\mathbf{p}(1)) + \sum_{j=1}^{\infty} (wt p(j) - wt \mathbf{p}(j)) \in P_{cl}$.

- Remark 3.6. (i) If B is perfect, the set of reference paths is bijective to $(P_{cl}^+)_l$, where l = lev B. For $\lambda \in (P_{cl}^+)_l$ take a unique $\mathbf{b_1} \in B_{\min}$ such that $\varphi(\mathbf{b_1}) = \lambda$. The condition $\varphi(\mathbf{b_{j+1}}) = \varepsilon(\mathbf{b_j})$ fixes $\mathbf{p} = \cdots \otimes \mathbf{b_j} \otimes \cdots \otimes \mathbf{b_1}$ uniquely.
 - (ii) In [KMN1] \mathbf{p} is called a ground state path, since $E(p) \geq E(\mathbf{p})$ for any $p \in \mathcal{P}(\mathbf{p}, B)$. But if B is not perfect, it is no longer true in general.

The following theorem is essential for our consideration below.

Theorem 3.7. Assume rank $\mathfrak{g} > 2$. Then $\mathcal{P}(\mathbf{p}, B)$ is an object of \mathcal{C}^h .

Proof. Assume $\tilde{e}_i p = \cdots \otimes \tilde{e}_i b_j \otimes \cdots \otimes b_1 \neq 0$. Note that $E(\tilde{e}_i p) = E(p) - \delta_{i0}$ and wt $\tilde{e}_i b_j = \text{wt } b_j + \alpha_i - \delta_{i0} \delta \in P_{cl}$. By Definition 3.5 it is immediate to see $\mathcal{P}(\mathbf{p}, B)$ is a P-weighted crystal. Thus one has to check the following:

- (i) If for any $i, j \in I$ $(i \neq j)$, $\mathcal{P}(\mathbf{p}, B)$ regarded as $\{i, j\}$ -crystal is a disjoint union of crystals of integrable highest weight modules over $U_q(\mathfrak{g}_{\{i,j\}})$.
- (ii) For any $p \in \mathcal{P}(\mathbf{p}, B)$, there exist $l \geq 0, i_1, \dots, i_l \in I$ such that $p' = \tilde{e}_{i_1} \dots \tilde{e}_{i_l} p \in \mathcal{P}(\mathbf{p}, B)$ is a highest weight element.

We prove (i) first. For $p \in \mathcal{P}(\mathbf{p}, B)$ take m, m' such that $p(k) = \mathbf{p}(k)$ for k > m and $m' \gg m$. Note that if $\tilde{f}_{i_N} \cdots \tilde{f}_{i_1} p[m] = p[m'] \otimes b'_{m'} \otimes \cdots \otimes b'_{m+1}$, then $b'_k = \mathbf{p}(k)$ for k > m+N. From the assumption, $U_q(\mathfrak{g}_{\{i,j\}})$ is the quantized enveloping algebra associated to a finite-dimensional Lie algebra. Since B is regular, the connected component containing p[m], as $\{i,j\}$ -crystal, can be considered to be in $B(\varphi(p[m'])) \otimes B^{\otimes (m'-m)}$. Since $\varepsilon(p[m]) = 0$, we can regard p[m] as highest weight element of some $\{i,j\}$ -crystal B_0 which is isomorphic to the crystal of an integrable highest weight $U_q(\mathfrak{g}_{\{i,j\}})$ -module. Hence p is contained in a component of the $\{i,j\}$ -crystal $B_0 \otimes B^{\otimes m}$, which is a disjoint union of crystals of integrable highest weight $U_q(\mathfrak{g}_{\{i,j\}})$ -modules.

To prove (ii) for $p = \cdots \otimes b_k \otimes \cdots \otimes b_1 \in \mathcal{P}(p, B)$, we take the minimum integer m such that p' = p[m] is a highest weight element. We prove by induction on m.

First let us show that there exist $l \geq 0, i_1, \dots, i_l \in I$ such that $\tilde{e}_{i_1} \cdots \tilde{e}_{i_l}(p' \otimes b_m)$ is a highest weight element. The proof is essentially the same as a part of that of Theorem 4.4.1 in [KMN1]. Nevertheless we repeat it for the sake of self-containedness. Suppose that there does

not exist such i_1, \dots, i_l . Then there exists an infinite sequence $\{i_{\nu}\}$ in I such that

$$\tilde{e}_{i_k}\cdots\tilde{e}_{i_1}(p'\otimes b_m)\neq 0.$$

Since $\tilde{e}_{i_k}\cdots \tilde{e}_{i_1}(p'\otimes b_m)=p'\otimes \tilde{e}_{i_k}\cdots \tilde{e}_{i_1}b_m$ and B is a finite set, there exists $b^{(1)}\in B$ and j_1,\cdots,j_l such that

$$p'\otimes b^{(1)}=\tilde{e}_{j_1}\cdots\tilde{e}_{j_1}(p'\otimes b^{(1)}).$$

Hence setting $b^{(\nu+1)} = \tilde{e}_{i} b^{(\nu)}$, we have

$$\tilde{e}_{j_{\nu}}(p'\otimes b^{(\nu)}) = p'\otimes b^{(\nu+1)}$$
 and $b^{(l+1)} = b^{(1)}$.

In view of (2.6) we have $\varphi_i(p') \geq \varphi_i(b_{m+1})$ for any i. Thus by (2.3) we have $\varepsilon_{j_{\nu}}(b^{(\nu)}) > \varphi_{j_{\nu}}(p') \geq \varphi_{j_{\nu}}(b')$ for some $b' \in B$. Hence we have

$$\tilde{e}_{j_{\nu}}(b'\otimes b^{(\nu)})=b'\otimes b^{(\nu+1)}.$$

Therefore, from (3.2), we have

$$H(b' \otimes b^{(\nu+1)}) = H(b' \otimes b^{(\nu)}) - \delta_{i,0}.$$

Hence $H(b'\otimes b^{(l+1)})=H(b'\otimes b^{(1)})-\sharp\{\nu\mid j_{\nu}=0\}$, which implies there is no ν such that $j_{\nu}=0$. On the other hand, $\sum_{\nu}\alpha_{j_{\nu}}=0$ mod $\mathbf{Z}\delta$ and hence $\sum_{\nu}\alpha_{j_{\nu}}$ is a positive multiple of δ , which contradicts $0\notin\{j_1,\cdots,j_l\}$.

Now set $p'' = p' \otimes b_m (= p[m-1]), b'' = b_{m-1} \otimes \cdots \otimes b_1$. Notice that for any $i \in I$ satisfying $\tilde{e}_i p'' \neq 0$, there exists $k \geq 1$ such that

$$\tilde{e}_i^k(p''\otimes b'')=\tilde{e}_ip''\otimes \tilde{e}_i^{k-1}b''.$$

Therefore there exist $l \geq 0, (i_1, k_1), \dots, (i_l, k_l) \in I \times \mathbb{Z}_{>0}$ such that

$$\tilde{e}_{i_1}^{k_1}\cdots\tilde{e}_{i_l}^{k_l}p=\tilde{e}_{i_1}\cdots\tilde{e}_{i_l}p''\otimes\tilde{e}_{i_1}^{k_1-1}\cdots\tilde{e}_{i_l}^{k_l-1}b''$$

and $\tilde{e}_{i_1}\cdots \tilde{e}_{i_l}p''$ is a highest weight element. Now we can use the induction assumption and complete the proof.

Remark 3.8. As seen in the proof, the theorem does not require the condition $\mathbf{b}_i \in B_{\min}$ for the reference path $\mathbf{p} = \cdots \otimes \mathbf{b}_i \otimes \cdots \otimes \mathbf{b}_1$.

The following proposition describes the set of highest weight elements in $\mathcal{P}(\mathbf{p}, B)$.

Proposition 3.9.

$$\mathcal{P}(\mathbf{p}, B)_0 = \{ p \in \mathcal{P}(\mathbf{p}, B) \mid p(j) \in B_{\min}, \varphi(p(j+1)) = \varepsilon(p(j)) \text{ for } \forall j \}.$$

Proof. Assume $p = \cdots \otimes b_j \otimes \cdots \otimes b_1$ is a highest weight element. We prove the following by induction on m in decreasing order.

- (i) $b_m \in B_{\min}, \varphi(b_{m+1}) = \varepsilon(b_m)$
- (ii) $\varphi(p[m-1]) = \varphi(b_m)$

These conditions are satisfied for sufficiently large m. From (ii) for m+1 we have $\varphi(p[m]) = \varphi(b_{m+1})$. From Lemma 2.11 we see that p[m] is a highest weight element and $\varepsilon(b_m) \leq wt \, p[m] = \varphi(p[m]) = \varphi(b_{m+1})$. Combining this with (i) for m+1, we can conclude (i) for m. For (ii) use (2.6).

As seen in the proof, we obtain

Corollary 3.10. If $p \in \mathcal{P}(p, B)_0$, then wt $p[j] = \varphi(p(j+1))$.

3.3. Restricted paths

When B is perfect the set of restricted paths was defined in [DJO] and shown to be bijective to $(B(\lambda) \otimes B(\mu))_0$ for some $\lambda, \mu \in P_{cl}^+$. Here we shall consider restricted paths for any finite crystal B.

For $\lambda \in P_{cl}^+$ and $p \in \mathcal{P}(\mathbf{p}, B)$, we introduce a sequence of weights $\{\lambda_j(p)\}_{j\geq 0}$ by

$$\lambda_j(p) = \lambda + \varphi(p(j+1)) \text{ for } j \gg 1,$$

 $\lambda_{j-1}(p) = \lambda_j(p) + \text{wt } p(j).$

Notice that this definition is well-defined by virtue of the property of the reference path. In fact, $\lambda_j(p) = \lambda + wt p[j]$.

Definition 3.11. For $\lambda \in P_{cl}^+$ we define a subset $\mathcal{P}^{(\lambda)}(\mathbf{p}, B)$ of $\mathcal{P}(\mathbf{p}, B)$ by

$$\mathcal{P}^{(\lambda)}(\mathbf{p}, B) = \{ p \in \mathcal{P}(\mathbf{p}, B) \mid \tilde{e}_i^{\langle h_i, \lambda_j(p) \rangle + 1} p(j) = 0 \text{ for } \forall i, j \}.$$

An element of $\mathcal{P}^{(\lambda)}(\mathbf{p}, B)$ is called a restricted path.

Proposition 3.12. For $\lambda \in P_{cl}^+$ we have

$$\mathcal{P}(\mathbf{p}, B)^{\leq \lambda} = \mathcal{P}^{(\lambda)}(\mathbf{p}, B).$$

Proof. Assume $p = \cdots \otimes b_j \otimes \cdots \otimes b_1 \in \mathcal{P}(\mathbf{p}, B)^{\leq \lambda}$, which is equivalent to saying $u_{\lambda} \otimes p$ is a highest weight element. So is $u_{\lambda} \otimes p[j] \otimes b_j$ by Lemma 2.11. Using this lemma again we get $\varepsilon(b_j) \leq wt(u_{\lambda} \otimes p[j]) = \lambda_j(p)$.

To show the inverse inclusion, assume $p = \cdots \otimes b_j \otimes \cdots \otimes b_1 \in \mathcal{P}^{(\lambda)}(p,B)$. We prove $\varepsilon(p[j]) \leq \lambda$ by induction on j in decreasing order. We know $\varepsilon(p[j]) = 0$ for sufficiently large j. Supposing $\varepsilon(p[j]) \leq \lambda$ we immediately obtain $\varepsilon(p[j] \otimes b_j) \leq \lambda$ from (2.5) and the condition $\varepsilon(b_j) \leq \lambda_j(p)$.

As seen in the proof we have $\lambda_j(p) \in P_{cl}^+$ and its level is $\langle c, \lambda \rangle + lev B$. Combining the results in section 2.4, Theorem 3.7 and Proposition 3.12, we obtain

Theorem 3.13. Let $\mathcal{P}(\mathbf{p}, B)$ and $\mathcal{P}(\mathbf{p}^{\dagger}, B^{\dagger})$ be two sets of paths. If for certain $\lambda \in P_{cl}^+$, there exists a bijection

(3.3)
$$\mathcal{P}(\mathbf{p}, B)_{0} \longrightarrow \mathcal{P}^{(\lambda)}(\mathbf{p}^{\dagger}, B^{\dagger})$$

$$p \mapsto p^{\dagger}$$

such that $W(p) = \lambda + W(p^{\dagger})$, then we have an isomorphism of P-weighted crystals

$$\mathcal{P}(\mathbf{p}, B) \simeq B(\lambda) \otimes \mathcal{P}(\mathbf{p}^{\dagger}, B^{\dagger}).$$

They are isomorphic to a direct sum of crystals of integrable highest weight $U_q(\mathfrak{g})$ -modules, and their highest weight elements are parametrized by (3.3).

§4. Examples

We shall give two examples to which we can apply Theorem 3.13 efficiently.

4.1. Example 1

We present a useful proposition first. Similar to $O^{\leq \lambda}$ we define $B^{\leq \lambda}$ for a finite crystal B and $\lambda \in P_{cl}^+$ by

$$B^{\leq \lambda} = \{ b \in B \mid \tilde{e}_i^{\langle h_i, \lambda \rangle + 1} b = 0 \text{ for any } i \}.$$

Note that if lev B = l, then $B_{min} = \bigsqcup_{\lambda \in (P_{cl}^+)_l} B^{\leq \lambda}$.

Proposition 4.1. Let B and B^{\dagger} be finite crystals such that lev $B \ge \text{lev } B^{\dagger}$, and $\mathbf{p} = \cdots \otimes \mathbf{b}_j \otimes \cdots \otimes \mathbf{b}_1$ be a reference path for B. Suppose there exists a map $t: B_{\min} \to B^{\dagger}$ satisfying the following conditions:

- (1) For any $\mu \in (P_{cl}^+)_l$ (l = lev B), $t|_{B \leq \mu}$ is a bijection onto $(B^{\dagger})^{\leq \mu}$.
- (2) $wtt(b) = wtb \text{ for any } b \in B_{\min}$.
- (3) $H_{B^{\dagger}B^{\dagger}}(t(b_1)\otimes t(b_2)) = H_{BB}(b_1\otimes b_2)$ up to global additive constant for any $(b_1,b_2)\in B^2_{\min}$ such that $\varphi(b_1)=\varepsilon(b_2)$.

(4) $\mathbf{p}^{\dagger} = \cdots \otimes t(\mathbf{b}_j) \otimes \cdots \otimes t(\mathbf{b}_1)$ is a reference path for B^{\dagger} . Then setting $\lambda = \varphi(\mathbf{b}_1) - \varphi(t(\mathbf{b}_1))$, we have

$$\mathcal{P}(\mathbf{p}, B) \simeq B(\lambda) \otimes \mathcal{P}(\mathbf{p}^{\dagger}, B^{\dagger}).$$

Proof. Consider the following map.

$$\mathcal{P}(\mathbf{p}, B)_0 \longrightarrow \mathcal{P}(\mathbf{p}^{\dagger}, B^{\dagger})$$

$$p = \cdots \otimes b_1 \otimes \cdots \otimes b_1 \mapsto p^{\dagger} = \cdots \otimes t(b_1) \otimes \cdots \otimes t(b_1)$$

From Theorem 3.13 it suffices to show that this map is a bijection onto $\mathcal{P}^{(\lambda)}(p^{\dagger}, B^{\dagger})$ such that $W(p) = \lambda + W(p^{\dagger})$. Preservation of weight is immediate. To show the bijectivity one has to notice that $wt p^{\dagger}[j] - wt p[j]$ does not depend on j. Thus one has $wt p^{\dagger}[j] - wt p[j] = wt p^{\dagger} - wt p = -\lambda$, and hence

$$\lambda_j(p^{\dagger}) = \lambda + \operatorname{wt} p^{\dagger}[j] = \operatorname{wt} p[j] = \varphi(b_{j+1}) = \varepsilon(b_j).$$

Note that $p \in \mathcal{P}(\mathbf{p}, B)_0$ (cf. Proposition 3.9 & Corollary 3.10). In view of (1) this equality concludes the bijectivity.

We now consider the $C_n^{(1)}$ case. For an odd positive integer l, consider a finite crystal $B^{1,l}$ given by

$$B^{1,l} = \left\{ (x_1, \dots, x_n, \overline{x}_n, \dots, \overline{x}_1) \, \middle| \, \begin{array}{l} x_i, \overline{x}_i \in \mathbf{Z}_{\geq 0} \, \forall \, i = 1, \dots, n \\ \sum_{i=1}^n (x_i + \overline{x}_i) \in \{l, l - 2, \dots, 1\} \end{array} \right\}.$$

The crystal structure of $B^{1,l}$ is given by

$$\tilde{e}_0b = \begin{cases} (x_1-2,x_2,\ldots,\overline{x}_2,\overline{x}_1) & \text{if } x_1 \geq \overline{x}_1+2, \\ (x_1-1,x_2,\ldots,\overline{x}_2,\overline{x}_1+1) & \text{if } x_1 = \overline{x}_1+1, \\ (x_1,x_2,\ldots,\overline{x}_2,\overline{x}_1+2) & \text{if } x_1 \leq \overline{x}_1, \end{cases}$$

$$\tilde{e}_ib = \begin{cases} (x_1,\ldots,x_i+1,x_{i+1}-1,\ldots,\overline{x}_1) & \text{if } x_{i+1} > \overline{x}_{i+1}, \\ (x_1,\ldots,\overline{x}_{i+1}+1,\overline{x}_i-1,\ldots,\overline{x}_1) & \text{if } x_{i+1} \leq \overline{x}_{i+1}, \end{cases}$$

$$\tilde{e}_nb = (x_1,\ldots,x_n+1,\overline{x}_n-1,\ldots,\overline{x}_1),$$

$$\tilde{f}_0b = \begin{cases} (x_1+2,x_2,\ldots,\overline{x}_2,\overline{x}_1) & \text{if } x_1 \geq \overline{x}_1, \\ (x_1+1,x_2,\ldots,\overline{x}_2,\overline{x}_1-1) & \text{if } x_1 = \overline{x}_1-1 \\ (x_1,x_2,\ldots,\overline{x}_2,\overline{x}_1-2) & \text{if } x_1 \leq \overline{x}_1-2, \end{cases}$$

$$\tilde{f}_ib = \begin{cases} (x_1,\ldots,x_i-1,x_{i+1}+1,\ldots,\overline{x}_1) & \text{if } x_{i+1} \geq \overline{x}_{i+1}, \\ (x_1,\ldots,\overline{x}_{i+1}-1,\overline{x}_i+1,\ldots,\overline{x}_1) & \text{if } x_{i+1} \leq \overline{x}_{i+1}, \end{cases}$$

$$\tilde{f}_nb = (x_1,\ldots,x_n-1,\overline{x}_n+1,\ldots,\overline{x}_1),$$

where $b = (x_1, \ldots, x_n, \overline{x}_n, \ldots, \overline{x}_1)$ and $i = 1, \ldots, n-1$. If some component becomes negative upon application, it should be understood as 0. The values of ε_i, φ_i read

$$\begin{array}{ll} \varepsilon_0(b) = \frac{l-s(b)}{2} + (x_1 - \overline{x}_1)_+, & \varphi_0(b) = \frac{l-s(b)}{2} + (\overline{x}_1 - x_1)_+, \\ \varepsilon_i(b) = \overline{x}_i + (x_{i+1} - \overline{x}_{i+1})_+, & \varphi_i(b) = x_i + (\overline{x}_{i+1} - x_{i+1})_+, \\ \varepsilon_n(b) = \overline{x}_n, & \varphi_n(b) = x_n. \end{array}$$

Here $s(b) = \sum_{i=1}^{n} (x_i + \overline{x}_i), (x)_+ = \max(x, 0)$ and $i = 1, \dots, n-1$. $B^{1,l}$ is a level $\frac{l+1}{2}$ non-perfect crystal. Now for a fixed l set $B = B^{1,l}$. The minimal elements of B are grouped as $B_{\min} = \bigsqcup_{\mu \in (P_{cl}^+)_{l+1}} B^{\leq \mu}$, where

for $\mu = \mu_0 \Lambda_0 + \cdots + \mu_n \Lambda_n$. The set $B^{\leq \mu}$ is given by

$$B^{\leq \mu} = \{b_k^{\mu} \mid \mu_{k-1} > 0, 1 \leq k \leq n\} \cup \{b_{\overline{k}}^{\mu} \mid \mu_k > 0, 1 \leq k \leq n\},$$

$$b_k^{\mu} = (\mu_1, \dots, \mu_{k-1} - 1, \mu_k + 1, \dots, \mu_n, \mu_n, \dots, \mu_{k-1} - 1, \dots, \mu_1),$$

$$b_{\overline{k}}^{\mu} = (\mu_1, \dots, \mu_k - 1, \dots, \mu_n, \mu_n, \dots, \mu_1).$$

Next consider $B^{\dagger} = B^{1,1}$ by taking l to be 1. Setting

$$b_k^\dagger = (x_i = \delta_{ik}, \overline{x}_i = 0), \quad b_{\overline{k}}^\dagger = (x_i = 0, \overline{x}_i = \delta_{ik})$$

for $1 \le k \le n$, one has

$$(B^{\dagger})^{\leq \mu} = \{b_k^{\dagger} \mid \mu_{k-1} > 0, 1 \leq k \leq n\} \cup \{b_{\overline{k}}^{\dagger} \mid \mu_k > 0, 1 \leq k \leq n\}$$

for μ as above. Define the map $t: B_{\min} \to B^{\dagger}$ by

$$t|_{B^{\leq \mu}}: b_k^{\mu} \mapsto b_k^{\dagger} \qquad \text{for } k \in \{1, \dots, n, \overline{n}, \dots, \overline{1}\}.$$

We are to show that this t satisfies the conditions (1) – (4) in Proposition 4.1. For our purpose fix a dominant integral weight $\lambda \in (P_{cl}^+)_{\frac{l-1}{2}}$ and define $\mathbf{p} = \cdots \otimes \mathbf{b}_j \otimes \cdots \otimes \mathbf{b}_1$ by

$$\mathbf{b}_j = \begin{cases} b_{\bar{\lambda}}^{\lambda + \Lambda_i} & \text{if } j \equiv i \, (\text{mod } 2n) \text{ for some } i \, (1 \leq i \leq n), \\ b_i^{\bar{\lambda} + \Lambda_{i-1}} & \text{if } j \equiv 1 - i \, (\text{mod } 2n) \text{ for some } i \, (1 \leq i \leq n). \end{cases}$$

Note that $\varepsilon(b_{\overline{i}}^{\lambda+\Lambda_i}) = \varphi(b_i^{\lambda+\Lambda_{i-1}}) = \lambda + \Lambda_i, \varepsilon(b_i^{\lambda+\Lambda_{i-1}}) = \varphi(b_{\overline{i}}^{\lambda+\Lambda_i}) = \lambda + \Lambda_{i-1}$. p becomes a reference path. Let us check (1) - (4) in Proposition 4.1. (1),(2) and (4) are straightforward. To check (3) one can use the formula for H_{BB} in [KKM] section 5.7. (In [KKM] our non-perfect case is not considered. However, the formula itself is valid. Since the formula in [KKM] contains some misprints, we rewrite it below.)

$$H_{B^{1,l}B^{1,l}}(b\otimes b') = \max_{1\leq j\leq n}(\theta_j(b\otimes b'),\theta_j'(b\otimes b'),\eta_j(b\otimes b'),\eta_j'(b\otimes b')),$$

$$\theta_{j}(b \otimes b') = \sum_{k=1}^{j-1} (\overline{x}_{k} - \overline{x}'_{k}) + \frac{1}{2} (s(b') - s(b)),$$

$$\theta'_{j}(b \otimes b') = \sum_{k=1}^{j-1} (x'_{k} - x_{k}) + \frac{1}{2} (s(b) - s(b')),$$

$$\eta_{j}(b \otimes b') = \sum_{k=1}^{j-1} (\overline{x}_{k} - \overline{x}'_{k}) + (\overline{x}_{j} - x_{j}) + \frac{1}{2} (s(b') - s(b)),$$

$$\eta'_{j}(b \otimes b') = \sum_{k=1}^{j-1} (x'_{k} - x_{k}) + (x'_{j} - \overline{x}'_{j}) + \frac{1}{2} (s(b) - s(b')),$$

where $b = (x_1, \ldots, x_n, \overline{x}_n, \ldots, \overline{x}_1), b' = (x'_1, \ldots, x'_n, \overline{x}'_n, \ldots, \overline{x}'_1).$

Therefore, the isomorphism in Proposition 4.1 holds with notations above.

4.2. Example 2

We consider the $A_{n-1}^{(1)}$ case. Let $B^{1,l}$ be the crystal base of the symmetric tensor representation of $U'_q(A_{n-1}^{(1)})$ of degree l. As a set it reads

$$B^{1,l} = \{(a_0, a_1, \cdots, a_{n-1}) \mid a_i \in \mathbf{Z}_{\geq 0}, \sum_{i=0}^{n-1} a_i = l\}.$$

For convenience we extend the definition of a_i to $i \in \mathbf{Z}$ by setting $a_{i+n} = a_i$ and use a simpler notation (a_i) for $(a_0, a_1, \dots, a_{n-1})$. For instance, (a_{i-1}) means $(a_{n-1}, a_0, \dots, a_{n-2})$. The actions of \tilde{e}_r, \tilde{f}_r $(r = 0, \dots, n-1)$ are given by

$$\tilde{e}_r(a_i) = (a_i - \delta_{i,r}^{(n)} + \delta_{i,r-1}^{(n)}), \quad \tilde{f}_r(a_i) = (a_i + \delta_{i,r}^{(n)} - \delta_{i,r-1}^{(n)}).$$

Here $\delta_{ij}^{(n)}=1$ $(i\equiv j \bmod n),=0$ (otherwise). If some component becomes negative upon application, it should be understood as 0. The values of ε, φ read as follows.

$$\varepsilon((a_i)) = \sum_{i=0}^{n-1} a_i \Lambda_i, \quad \varphi((a_i)) = \sum_{i=0}^{n-1} a_{i-1} \Lambda_i.$$

Thus $lev B^{1,l} = l$ and all elements are minimal. We introduce a **Z**-linear automorphism σ on P_{cl} by $\sigma \Lambda_i = \Lambda_{i-1}$ $(\Lambda_{-1} = \Lambda_{n-1})$.

Now consider the finite crystal $B = B^{1,l} \otimes B^{1,m}$ $(l \geq m)$ and set $B^{\dagger} = B^{1,m}$. From Lemma 2.7 (1) the level of B is l. Fix two dominant

integral weights $\lambda = \sum_{i=0}^{n-1} \lambda_i \Lambda_i \in (P_{cl}^+)_{l-m}, \mu = \sum_{i=0}^{n-1} \mu_i \Lambda_i \in (P_{cl}^+)_m$. From (λ, μ) we define a path

$$\mathbf{p}^{(\lambda,\mu)}(j) = (\lambda_{i+j} + \mu_{i+2j}) \otimes (\mu_{i+2j-1}) \in B.$$

From Lemma 2.7 (2) we see $\mathbf{p}^{(\lambda,\mu)}(j) \in B_{\min}$ and by (2.5),(2.6) we obtain $\varepsilon(\mathbf{p}^{(\lambda,\mu)}(j)) = \sigma^j \lambda + \sigma^{2j} \mu = \varphi(\mathbf{p}^{(\lambda,\mu)}(j+1))$. Therefore $\mathbf{p}^{(\lambda,\mu)}$ is a reference path.

We would like to show

$$(4.1) \qquad \mathcal{P}(\boldsymbol{p}^{(\lambda,\mu)},B) \simeq B(\lambda) \otimes \mathcal{P}(\boldsymbol{p}^{(\mu)},B^{\dagger}) \quad \text{as P-weighted crystals}$$

with $p^{(\mu)}(j) = (\mu_{i+j})$. To do this, consider the following map

$$(4.2) \mathcal{P}(\mathbf{p}^{(\lambda,\mu)}, B)_0 \longrightarrow \mathcal{P}(\mathbf{p}^{(\mu)}, B^{\dagger})$$

$$p \mapsto p^{\dagger}$$

given by $p^{\dagger}(j) = (b_{i-j+1}^{(j)})$ for $p(j) = (a_i^{(j)}) \otimes (b_i^{(j)})$. Note that $\mathbf{p}^{(\lambda,\mu)}$ is sent to $\mathbf{p}^{(\mu)}$ under this map. By Theorem 3.13 it suffices to check the following items:

- (i) The map (4.2) is a bijection onto $\mathcal{P}^{(\lambda)}(\boldsymbol{p}^{(\mu)}, B^{\dagger})$.
- (ii) $wt p wt p^{\dagger} = \lambda$.
- (iii) $E(p) = E(p^{\dagger})$.

Since $p \in \mathcal{P}(\mathbf{p}^{(\lambda,\mu)},B)_0$, one obtains (cf. Lemma 2.7 (2), Proposition 3.9)

(4.3)
$$\varphi_i((a_i^{(j)})) = a_{i-1}^{(j)} \ge b_i^{(j)} = \varepsilon_i((b_i^{(j)}))$$

(4.4)
$$\varphi_i(p(j)) = a_{i-1}^{(j)} + b_{i-1}^{(j)} - b_i^{(j)} = a_i^{(j-1)} = \varepsilon_i(p(j-1))$$

for any i, j. Taking sufficiently large J and using (4.4), one has

$$\begin{split} \operatorname{wt} p^{\dagger}[j] &= \sum_{i} b_{i-J+1}^{(J)} \Lambda_{i} + \sum_{k=j+1}^{J} \sum_{i} (b_{i-k}^{(k)} - b_{i-k+1}^{(k)}) \Lambda_{i} \\ &= \sum_{i} (b_{i-J+1}^{(J)} - a_{i-J}^{(J)} + a_{i-j}^{(j)}) \Lambda_{i} \\ &= \sum_{i} a_{i-j}^{(j)} \Lambda_{i} - \lambda. \end{split}$$

Thus the condition $\varepsilon(p^{\dagger}(j)) \leq \lambda_j(p^{\dagger})$ is equivalent to saying $b_{i-j+1}^{(j)} \leq a_{i-j}^{(j)}$ for any i, which is guaranteed by (4.3). This proves (i). For (ii) one only has to notice that $wt p[j] = \varphi(p(j+1)) = \sum_i a_i^{(j)} \Lambda_i$.

In order to prove (iii), we set

$$E_L^{diff} = \sum_{j=1}^L j \{ H_{BB}(((a_i^{(j+1)}) \otimes (b_i^{(j+1)})) \otimes ((a_i^{(j)}) \otimes (b_i^{(j)}))) \\ -H_{B^{\dagger}B^{\dagger}}((b_{i-(j+1)+1}^{(j+1)}) \otimes (b_{i-j+1}^{(j)})) \}.$$

We can assume $(a_i^{(j)}) \otimes (b_i^{(j)}) \in B_{\min}$ for $1 \leq j \leq L+1$. Under such assumption the isomorphism $B^{1,l} \otimes B^{1,m} \simeq B^{1,m} \otimes B^{1,l}$ sends $(a_i) \otimes (b_i)$ to $(b_{i+1}) \otimes (a_i - b_{i+1} + b_i)$ [NY]. Thus, from Proposition 3.1 we have

$$H_{BB}(((a_i) \otimes (b_i)) \otimes ((a_i') \otimes (b_i'))) = b_0 + a_0' + b_0' + H_{B^{\dagger}B^{\dagger}}((b_i) \otimes (b_{i+1}')).$$

Let us recall the following formula for $H_{B^{1,m}B^{1,m}}$ (cf. [KKM] section 5.1).

$$H_{B^{1,m}B^{1,m}}((b_i)\otimes(b_i')) = \max_{0\leq j\leq n-1} \left(\sum_{k=0}^{j-1} (b_k'-b_k) + b_j'\right)$$

From this one gets

$$\begin{split} H_{B^{\dagger}B^{\dagger}}((b_{i}^{(j+1)}) \otimes (b_{i+1}^{(j)})) - H_{B^{\dagger}B^{\dagger}}((b_{i-j}^{(j+1)}) \otimes (b_{i-j+1}^{(j)})) \\ &= \sum_{k=1}^{j} (b_{k-j-1}^{(j+1)} - b_{k-j}^{(j)}). \end{split}$$

Using above facts and (4.4) one obtains

$$E_L^{diff} = \sum_{j=1}^{L} \sum_{k=0}^{j-1} a_{-k}^{(L)} + L \sum_{k=0}^{L} b_{-k}^{(L+1)}.$$

This completes (iii). We have finished proving (4.1). It is also known [KMN2] that $\mathcal{P}(\mathbf{p}^{(\mu)}, B^{1,m}) \simeq B(\mu)$. Therefore we have

$$\mathcal{P}(\mathbf{p}^{(\lambda,\mu)}, B^{1,l} \otimes B^{1,m}) \simeq B(\lambda) \otimes B(\mu)$$
 as P -weighted crystals.

The multi-component version is straightforward. Consider the finite crystal $B^{1,l_1} \otimes \cdots \otimes B^{1,l_s}$ $(l_1 \geq \cdots \geq l_s \geq l_{s+1} = 0)$. For $\lambda^{(i)} \in (P_{cl}^+)_{l_i-l_{i+1}}$ $(1 \leq i \leq s)$ we define a reference path $\mathbf{p}^{(\lambda_1, \dots, \lambda_s)}$ by

the k-th tensor component of
$$\mathbf{p}^{(\lambda_1, \dots, \lambda_s)}(j)$$

= $(\lambda_{i+kj-k+1}^{(k)} + \lambda_{i+(k+1)j-k+1}^{(k+1)} + \dots + \lambda_{i+sj-k+1}^{(s)}).$

Then we have

$$\mathcal{P}(\mathbf{p}^{(\lambda_1,\cdots,\lambda_s)},B^{1,l_1}\otimes\cdots\otimes B^{1,l_s})\simeq B(\lambda_1)\otimes\cdots\otimes B(\lambda_s).$$

The proof will be given elsewhere.

Acknowledgements

The authors thank Professor Masaki Kashiwara and Professor Tetsuji Miwa for useful discussions and kind interest.

References

- [AK] T. Akasaka and M. Kashiwara, Finite-dimensional representations of quantum affine algebras, Publ. Res. Inst. Math. Sci. 33 (1997) 839-867.
- [AM] S. R. Aladim and M. J. Martins, Critical behaviour of integrable mixed spin chains, J. Phys. A26 (1993) L529-534.
- [DJKMO] E. Date, M. Jimbo, A. Kuniba, T. Miwa and M. Okado, One dimensional configuration sums in vertex models and affine Lie algebra characters, Lett. Math. Phys. 17 (1989) 69-77.
- [DJO] E. Date, M. Jimbo and M. Okado, Crystal base and q-vertex operators, Commun. Math. Phys. 155 (1993) 47-69.
- [DMN] H. J. de Vega, L. Mezincescu and R. I. Nepomechie, Thermodynamics of integrable chains with alternating spins, Phys. Rev. B49 (1994) 13223-13226.
- [HKKOTY] G. Hatayama, A. N. Kirillov, A. Kuniba, M. Okado, T. Takagi and Y. Yamada, Character formulae of \widehat{sl}_n -modules and inhomogeneous paths, Nucl. Phys. **B536** [PM] (1998) 575-616.
- [HKOTY] G. Hatayama, A. Kuniba, M. Okado, T. Takagi and Y. Yamada, Remarks on fermionic formula, Contemporary Mathematics 248 (1999) 243-291.
- [HKMW] J. Hong, S-J. Kang, T. Miwa and R. Weston, Vertex models with alternating spins, math.QA/9811175.
- [Kac] V. G. Kac, Infinite dimensional Lie algebras, 3rd edition, Cambridge Univ. Press. Cambridge (1990).
- [KK] S-J. Kang and M. Kashiwara, Quantized affine algebras and crystals with core, Commun. Math. Phys. 195 (1998) 725-740.
- [KKM] S-J. Kang, M. Kashiwara and K. C. Misra, Crystal bases of Verma modules for quantum affine Lie algebras, Compositio Math. 92 (1994) 299-325.
- [KMN1] S-J. Kang, M. Kashiwara, K. C. Misra, T. Miwa, T. Nakashima and A. Nakayashiki, Affine crystals and vertex models, Int. J. Mod. Phys. A 7 (suppl. 1A) (1992) 449-484.

- [KMN2] S-J. Kang, M. Kashiwara, K. C. Misra, T. Miwa, T. Nakashima and A. Nakayashiki, Perfect crystals of quantum affine Lie algebras, Duke Math. J. 68 (1992) 499-607.
- [K1] M. Kashiwara, On crystal bases of the q-analogue of universal enveloping algebras, Duke Math. J. 63 (1991) 465-516.
- [K2] M. Kashiwara, Crystal bases of modified quantized enveloping algebra, Duke Math. J. 73 (1994) 383-413.
- [Ku] A. Kuniba, Thermodynamics of $U_q(X_r^{(1)})$ Bethe ansatz system with q a root of unity, Nucl. Phys. **B389** (1993) 209-244.
- [NY] A. Nakayashiki and Y. Yamada, Kostka polynomials and energy functions in solvable lattice models, Selecta Mathematica, New Ser. 3 (1997) 547-599.

Goro Hatayama
Institute of Physics
Graduate School of Science
University of Tokyo
Komaba, Tokyo 153-8902
Japan

Yoshiyuki Koga Department of Mathematics Graduate School of Science Osaka University Toyonaka, Osaka 560-0043 Japan

Atsuo Kuniba Institute of Physics Graduate School of Arts and Sciences University of Tokyo Komaba, Tokyo 153-8902 Japan

Masato Okado
Department of Informatics and Mathematical Science
Graduate School of Engineering Science
Osaka University
Toyonaka, Osaka 560-8531
Japan

Taichiro Takagi Department of Mathematics and Physics National Defense Academy Yokosuka 239-8686 Japan