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§1. Introduction and theorem 

In the present paper we consider the asymptotic behavior in time of 
solutions for the coupled Klein-Gordon-Schrodinger equations: 

(1.1) 

(1.2) 

(1.3) 

.8 1 
i ot 'l/J + ;j_11'l/J = qxt/J, t E R, x E RN, 

a2 
ot2 ¢-t:i..¢+¢=-l'l/il 2 , tER, xERN, 

8 
'l/J(O,x) = 'l/J0 (x), cp(O,x) = c/>0 (x), otcp(O,x) = c/>1(x). 

Equations (1.1)-(1.2) describe a classical model ofYukawa's interaction 
of conserved complex nucleon field with neutral real meson field and 
the associated mass has been normalized as unity. Here 'l/J is a complex 
scalar nucleon field, and ¢ is a real scalar meson field. (1.1)-(1.2) are 
a semi-relativistic version of the coupled Klein-Gordon-Dirac equations 
(see, e.g., [2]). 

Since the interaction above is only quadratic, the problems concern­
ing asymptotic behavior of solutions are harder than the cases of higher 
interactions, especially in lower space dimensions. In order to examine 
the basic structure of nonlinearities of (1.1)-(1.2), it would be instructive 
to look at the decoupled case with self-interaction. 

There are a large amount of papers concerning the asymptotic be­
havior in time of solutions for the nonlinear Schrodinger equation 

(1.4) 
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and the nonlinear Klein-Gordon equation 

(1.5) 

(for the nonlinear Schrodinger equation, see [3], [6], [11]-[13], [16], [17], 
[19], [21], [23], [27]-[31] and for the nonlinear Klein-Gordon equation, 
see [4], [5], [14], [18], [20], [22], [24], [26]-[29]). When we consider the 
asymptotic behavior of solutions for (1.4) or (1.5), it is natural and 
important to investigate whether the wave operators W ± exist or not. 
For (1.4), we define the wave operator W+ as follows. Let u+(t) be the 
solution of the free Schrodinger equation 

(1.6) .8 lA 
i8tu+ 2L.J.u=0, 

with u+(0) = '¢+• If one can look for the solution u(t) of (1.4) with 
u(0) = 'I/Jo such that u(t) exists globally in time and 

(1.7) llu+(t) - u(t)IIL2 ----+ 0 (t--+ +oo), 

then the wave operator W+ can be defined by a mapping from u+(0) = 
'¢+ to u(0) = '¢0 . Here '¢+ and '¢0 are called a scattered state and 
an interacting state, respectively. For the case oft --+ -oo, the wave 
operator W _ is defined in the same way. We can also consider the wave 
operators W± for (1.5). In [6], [26] and [31] it is proved that when 
N = 3 and the nonlinear term is quadratic, that is, p = 2, both in the 
cases (1.4) and (1.5) the wave operators W± can be defined for some 
data. On the other hand, in (3], (10], [14], [17] and [20] it is proved that 
when N = 1, 2 and p = 2, there exist no nontrivial asymptotically free 
solutions for (1.4) and (1.5), that is, the wave operators W± can not 
be defined for any nonzero data. This is because the time decay rate 
of solutions of (1.4) and (1.5) for N = 2 is worse than that for N = 3. 
Therefore, we have to consider the modified wave operators for (1.4) and 
(1.5) with N = 2 and p = 2 (see, e.g., (23]). 

The unique global existence of solutions for (1.1)-(1.3) are already 
established (see [1], [2], [8] and [15]). Fukuda and M. Tsutsumi [9] and 
Strauss [29] studied the asymptotic behavior as t --+ ±oo of solutions 
for the coupled Klein-Gordon-Schrodinger equations with interactions 
higher than the quadratic order of (1.1)-(1.2). The results in [9] and 
[29] are similar to the results obtained for the decoupled nonlinear Klein­
Gordon and Schrodinger equations. 

If there is a complete analogy between the full system (Ll)-(1.2) 
and the decoupled system (1.4) and (1.5), it is natural to conjecture that 
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when N = 2, the wave operators W± could not be defined for (1.1)-(1.2). 
But this conjecture is not true. The purpose in the present paper is to 
show that when N = 2, the wave operators W± for {1.1)-(1.2) can be 
defined for certain scattered data. 

This is a sharp contrast to the decoupled case and gives a reason 
that the coupled Klein-Gordon-Schrodinger equations are not a simple 
superposition of the nonlinear Klein-Gordon and Schrodinger equations. 

Before we state the theorem, we define several notations. Let w = 
J-A + 1 and let U(t) = e½t.O. be the evolution operator of the free 

Schrodinger equation. We denote by j the Fourier transform of f. For 
nonnegative integers m ands, we define nm and nm,s as follows: 

nm= {v E S'(RN); 11(1- A)1ivllL2 < +oo}, 

nm,s = {v E S'(RN); 11(1 + lxl 2)½(1- A)TvllL2 < +oo} 

with the norms 

llvUH= = 11(1- A)TvllL2, 

llvllH=·• = 11(1 + lxl 2)½(1- A)Tvll£2, 

respectively. For a multi-index a= (ai, ···aN) with nonnegative integers 
aj, we put 

lal = a1 + · · · + aN, 

(!__r =(_!_)al ... (~rN. 
8x 8x1 8xN 

For p ~ 1 and a nonnegative integer k, we let 

with the norm 

We now state the theorem. 

Theorem 1.1. Let N = 2 and c > 0. 
(i) Assume that 'I/J+ E n 2•4 , (1 + lxl 2 )i(if.,)a'I/J+ E L 1(R2) for j + 

lal :::; 2 and supp'ifa+ C {e; 1e1 ~ 1 + c}. We put u+(t) = e½t'°''I/J+­
Assume that <P+o E n 4•2 , ¢+1 E n 3•2 , for lal:::; 4 (if.,)a<P+o E L 1 (R2 ), 
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and for lal ~ 3 (;,,J°'¢+1 E L1 (R2 ). We put v+(t) = (coswt)¢+o + 
(w-1 sinwt)¢+1. Then, there exists rJ > 0 such that if 

'°' . a (1.8) ll1P+IIH2,4 + L..t 11(1 + lxl)3 ( 8x)°''lj;+IIL1 
i+lo:l::;2 

+ ll</J+ollH4 ,2 + ll</J+ollw4 , 1 + II¢+illH3 ,2 + ll</J+illw3 , 1 ~ 'f/, 

(1.1)-(1.2) have the unique solutions ('lj;,¢) satisfying 

1 

(1.9) 'lj; E n Ci ([O, oo ); H 2- 2i), 
j=O 

2 

(1.10) <p E n cJ ([O, oo ); H 2-i), 
j=O 

(1.11) 

(1.12) 

where rJ depends only on r::. 

(ii) Assume that 'lj;_ E H 2,4 , (1 + lxl 2)i(;x)°''lj;_ E L1 (R2 ) for j + 
lal ~ 2 and supp~- C {e;IeI ~ 1 +e}. We put u_(t) = e½tll'lj;_, 

Assume that </J-o E H 4 '2 , ¢'-1 E H 3 ,2 , for lal ~ 4 (fx)°'</J-o E L1 (R2 ), 

and for lal ~ 3 (fx)°'</J-1 E L1 (R2). We put v_(t) = (coswt)</J-o + 
(w-1 sinwt)</J-1. Then, there exists rJ > 0 such that if 

'°' . a (1.13) ll1P-IIH2,4 + L..t 11(1 + lxl)3( 8x)°''lj;_IIL1 
Hlo:l::;2 

+ ll</J-ollH4 •2 + ll</J-ollw4 , 1 + ll</J-1IIH3 ,2 + ll</J-1llw3 , 1 ~ 'f/, 

(1.1)-(1.2) have the unique solutions ('lj;,¢) satisfying 

1 

(1.14) 'lj; En Ci([O,oo);H2- 2i), 
j=O 

2 

(1.15) ¢En Ci([O,oo);H2-i), 
j=O 
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(1.16) 
a a 

ll'ljJ(t) - u_(t)IIH2 + 11¢(t) - v_(t)IIH2 + 11 at ¢(t) - at v_(t)IIH1 

= O(r1 ) (t - -oo), 

(1.17) (1+= ll'ljJ(s) - u_(s)llt2,4ds) 1l 4 = O(r1) (t--; -oo), 

where rJ depends only on E. 

Remark. The unique global existence theorem for the Cauchy 
problem of (1.1)-(1.3) is already established (see [1], [2], [8] and [15]). 
In [1], [2], [8] and [15] only the case of N = 3 is treated, but the proof 
of the unique global solutions for N = 2 is easier than that for N = 3. 
Therefore, the solutions of (1)-(2) given by (i) and (ii) of Theorem 1.1 
can be extended to the whole time interval ( -oo, +oo). 

The following corollary is an immediate consequence of Theorem 
1.1. 

Corollary 1.2. Assume N = 2. Let E > 0. 
(i) By D+ we denote the set of all scattered states (1P+, ¢+0, ¢+1) 

such that supp-it,+ C {~; l~I 2:: 1 + e} and (1.8) holds. Then, for (1.1)­
(1.2) the wave operator W+ : (1P+,¢+0,¢+1) 1-+ ('ljJ(O),¢(O), %t¢(0)) is 
well defined on D +. 

(ii) By D_ we denote the set of all scattered states ('lj!_, ¢-o, ¢_1) 

such that supp-it,_ C {~; l~I 2:: 1 + e} and (1.13) holds. Then, for (1.1)­
(1.2) the wave operator W_: (1P-,¢-o,¢-1) 1-+ ('ljJ(O),¢(O), %t¢(O)) is 
well defined on D _. 

The proofs in the previous papers [9] and [29] are the same as those 
used for (1.4) and (1.5) and do not have anything to do with the specific 
feature of quadratic nonlinearities. Our proof of Theorem 1.1 is based 
on the special property of the Yukawa interaction and on the improved 
decay estimates of the interaction term which take account of the dif­
ference between the propagation properties of the Schrodinger wave and 
the Klein-Gordon wave. 

§2. Sketch of Proof of Theorem 1.1 

We first summarize several lemmas needed for the proof of Theorem 
1.1 without proofs. 

Lemma 2.1. Let N 2:: 1. 
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(i) Let p and q be two positive constants such that l / p + l / q = l and 
2 :Sp::; +oo. Then, 

(ii) Let k be a nonnegative integer. Suppose that for j + !al :S k 

(l+lxl)i+2(:X)"1P E L2 and (l+lxl)H2(tf.,)"1P E L1 . Weputuo(t,x) = 
eilxl 2 /{2t)(it)-N/2,$(f). Then, for some K > 0, 

(2.2) L 11(:x)"(!){U(t)?p - uo(t)}ll2 
2Hlal9 

:S Kltl- 1 L 11(1 + lxl)H2(:x)"1Pll2, !ti 2: 1, 
Hlal:::;k 

(2.3) L II (!)"(:t){U(t)1P - uo(t)}lloo 
2Hlal:::;k 

:S Kltl-N/2- 1 L 11(1 + lxl)i+2(:)°'1Pll2, !ti 2: 1, 
Hlal:::;k 

where K depends only on k and N. 

For the proof of Lemma 2.1, see, e.g., [33, Lemmma 2.1]. 

Lemma 2.2. Assume N = 2. Let k be a nonnegative integer. 
Then, for some K > 0, 

(2.4) L II (!f'(!)\coswt)vlloo 
Hlal:::;k 

:S K(l + ltl)-1 (llvllw2+k,1 + llvllH2+k ), t E R, 

(2.5) L ll(!)"(:t)j(w-1 sinwt)vlloo 
Hlal:::;k 

where K depends only on k. 

For the proof of Lemma 2.2, see, e.g., [5], [13] and [22]. 
We next state the decay estimate of solution for the Klein-Gordon 

equation outside of the light cone. 
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Lemma 2.3. Assume N ~ 1. Let e > 0 and let k be a nonnegative 
integer. Then, for some L > 0, 

{2.7) L II(:)°' (!f (w-1 sinwt)vllL""(lzl>(His)ltl) 
i+lal9 

where [N /2) is the largest integer that does not exceed N /2, and L de­
pends only on e, k and N. 

The proof of Lemma 2.3 is based on the finite speed propagation of 
the Klein-Gordon wave. For the details, see, e.g., [25, Theorem XL 17) 
and [33, Lemma 2.3]. 

We next consider the following problem: Given h(t), find u(t) such 
that 

{2.8) 

(2.9) 

or 

{2.10) 

{2.11) 

a2 
at2 u-~u+u=h(t), t~0, xERN, 

11!u(t)II~ + IIVu{t)II~ + llu(t)II~-+ 0 (t- +oo), 

a2 
at2 u-~u+u=h(t), t::;o, xERN, 

a 
II at u(t)II~ + IIVu{t)II~ + llu(t)II~ -+ 0 (t - -oo). 

We assume that for some M > 0, 

{2.12) 

sup [{l+t)llh{t)ll2+{1+t)2 L 11(:)°'(!)h{t)ll2] ::;M, 
tE[O,oo) 1::,j+lal9 X 

{2.13) 

sup [{l-t)llh{t)ll2+{1-t)2 L ll(!)°'(:t)h{t)ll2] ::;M. 
tE(-oo,O] 1::,j+lal9 



302 T. Ozawa and Y. Tsutsumi 

We have the following lemma concerning the existence of solution 
for (2.8)-(2.9) and (2.10)-(2.11). 

Lemma 2.4. Let N 2:: 1. 
(i) Assume that h E nJ=0C1 ([O, oo ); H 3 - 1) and that h(t) satisfies 

(2.12). Then, there exists a unique solution u(t) of (2.8)-(2.9) such that 

4 

(2.14) u En C1([0,oo);H4 - 1), 
j=O 

(2.15) sup (1 + t) L II(: f'(!)1u(t)ll2 5: CoM, 
tE[O,oo) Hial::,;4 X 

where M is defined (2.12) and C0 is independent of h and u. 
(ii) Assume that h E nJ=0 C1((-oo,O];H3 - 1) and that h(t) satisfies 

(2.13). Then, there exists a unique solution u(t) of (2.10)-(2.11) such 
that 

4 

(2.16) u En C1((-oo,O];H4- 1), 
j=O 

(2.17) 

where M is defined (2.13) and C0 is independent of h and u. 

For the proof of Lemma 2.4, see [33, Lemma 2.4]. 
Now we describe a sketch of proof of Theorem 1. 1. We consider only 

the case oft-+ +oo, because the proof for the case oft-+ -oo is quite 
similar to that for the case of t -+ +oo. 

We seek the solutions to the final value problem for (1.1)-(1.2) 
around almost free solutions. We choose a function z E C 00 ([O, oo)) 
such that z(t) = 1 fort 2:: 2 and z(t) = 0 for O 5, t 5: 1. We put 

where uo(t, x) is defined in Lemma 2.1 (ii). Let v0 (t, x) be a solution 
of (2.8)-(2.9) given by Lemma 2.4 (i) with h = lu1 12. We introduce the 
following almost free solutions. 

(2.19) u(t) = U(t)'l/;+, v(t) = (coswt)¢+o + (w-1 sinwt)¢+1 + v0 (t). 



Klein-Gordon-Schrodinger Equations 

We note that u(t) = u+(t). Furthermore, we put 

(2.20) 

(2.21) 

'lf;(t) = F(t) + u(t), 

</>(t) = N(t) + v(t). 

We rewrite (1.1)-(1.2) as the following system of F and N: 

(2.22) 
8 l 

i BtF + 2~F =NF+ N(u-u1) +Nu1 

+vF+f(t), t:2:0, xER2 , 

(2.23) 
a2 
at2 N - ~N + N = IFl 2 + 2R(F(u - u1)) 

+ 2R(Fu1) + g(t), t 2: o, x E R 2 , 

(2.24) IIF(t)ll2 - o (t-+ oo), 

303 

(2.25) II !N(t)II~ + llv' N(t)II~ + IIN(t)II~-+ o (t-+ oo), 

where 

(2.26) 

(2.27) 

f(t) = v(u - u1) + vu1, 

g(t) = lu - u11 2 + 2R((u - u1)u1). 

Ifwe have the solutions (F, N) of (2.22)-(2.25), then we obtain Theo­
rem 1.1 (i) by (2.20)-(2.21). Lemmas 2.1-2.4 and the support condition 
of the Fourier image of 'l/J+ show that f(t) and g(t) decay in £ 2 fast 
enough as t-+ oo. Therefore, we can obtain the desired solutions (F, N) 
for (2.22)-(2.25). The details of the proof will be published elsewhere 
(see [33]). 
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